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The paper introduces an adaptive version of the stabilized Trace Finite Element Method (TraceFEM) designed 
to solve low-regularity elliptic problems on level-set surfaces using a shape-regular bulk mesh in the embedding 
space. Two stabilization variants, gradient-jump face and normal-gradient volume, are considered for continuous 
trace spaces of the ûrst and second degrees, based on the polynomial families ý1 and ý2. We propose a practical 
error indicator that estimates the 8jumps9 of ûnite element solution derivatives across background mesh faces and 
it avoids integration of any quantities along implicitly deûned curvilinear edges of the discrete surface elements. 
For the ý1 family of piecewise trilinear polynomials on bulk cells, the solve-estimate-mark-reûne strategy, 
combined with the suggested error indicator, achieves optimal convergence rates typical of two-dimensional 
problems. We also provide a posteriori error estimates, establishing the reliability of the error indicator for the 
ý1 and ý2 elements and for two types of stabilization. In numerical experiments, we assess the reliability and 
efficiency of the error indicator. While both stabilizations are found to deliver comparable performance, the 
lowest degree ûnite element space appears to be the more robust choice for the adaptive TraceFEM framework.

1. Introduction

The Trace or Cut Finite Element Method is one of the approaches 
used to approximate surface Partial Differential Equations (PDEs) [1,2]. 
It falls into the category of geometrically unûtted methods because the 
domain of a variational problem, a two-dimensional surface denoted as 
Γ, is embedded within a three-dimensional triangulated domain Ω that 
is a subset of ℝ3, such as a sufficiently large cube. Identifying the active 
mesh, denoted as Ωℎ ⊂Ω, and performing local reûnement or any other 
mesh cell updating procedure is straightforward due to the geometrical 
simplicity. We refer to Fig. 1 for a visual representation. Furthermore, 
handling data structures on the octree mesh Ωℎ can be implemented effi-
ciently and is available in many ûnite element libraries. This üexibility 
is one of the advantages of the Trace Finite Element Method (Trace-
FEM). However, it comes with the cost of constructing quadratures on 
the intersections of Γ with cells from Ωℎ. The size and shape of these 
intersections vary uncontrollably between cells, leading to the necessity 
for a stabilization term, similar to ýℎ in equation (1), in any TraceFEM 
discretization of surface problems. Several variants of such terms are 
available in the literature [1,3], but in this context, we will only consider 
the 8gradient-jump9 face stabilization and the 8normal-gradient9 volume 
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stabilization. These methods have been successfully used and proven to 
be practical and robust.

Adaptive strategies within the context of stabilized TraceFEM are not 
yet well-understood. Previous discussions on adaptivity in the Trace-
FEM setting can be found in the literature [4,5]. In [4], there is no 
stabilization, and an inferior (as seen in the comparison in [1]) 8full-
gradient9 stabilization is considered in [5]. Additionally, both papers 
only considered piece-wise linear ûnite element spaces, with [4] as-
suming tetrahedral meshes and [5] using octree meshes. We extend 
the adaptive methodology introduced in [4] by studying the ûrst and 
second-order stabilized TraceFEM on octree meshes. Another novel as-
pect is the consideration of two stabilizations, namely ýýý

ℎ
(as deûned in 

(11)) and ýýý
ℎ

(as deûned in (13)), in the context of adaptive TraceFEM.
Many mathematical models involving surface PDEs necessitate the 

use of adaptive numerical methods. For instance, the dynamics of liquid 
crystal ûlms can give rise to the formation of defects [6–9]. Mathemat-
ically, a defect in a liquid crystal ûlm corresponds to low regularity 
solutions of the governing PDEs on surfaces. From a numerical modeling 
perspective, this entails the need for adaptive reûnement and coarsen-
ing as the defect forms and evolves along the ûlm. The evolution of 
defects is driven by variations in the energy of the liquid crystal and the 
mass üow, which are governed by the surface Navier–Stokes equation 
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[9]. The necessity of addressing these coupled phenomena numerically 
serves as motivation for the development of adaptive surface FEMs with 
both ûrst and second-order polynomial accuracy.

In this paper, our focus is on adaptive strategies for the stabilized 
TraceFEM applied to the Laplace–Beltrami equation, which serves as a 
prototypical elliptic problem on a surface Γ [10]. An overview of the mo-
tivation and the main results follow. At this point, we will omit certain 
technical details regarding the geometrical consistency of the adaptive 
method. To begin, consider an abstract variational problem on a surface 
Γ: given ÿ ∈ÿ−1(Γ), we seek to ûnd ÿ ∈ÿ1(Γ) such that ÿ(ÿ, ÿ) = ïÿ, ÿð
for all ÿ ∈ÿ1(Γ). We assume that the bilinear form ÿ is symmetric and 
coercive. In the TraceFEM, the discrete space ýℎ is deûned on a graded, 
regular bulk mesh Ωℎ, and we solve the following discrete problem:

ÿ(ÿℎ, ÿℎ) + ýℎ(ÿℎ, ÿℎ) = ïÿ, ÿℎð , ∀ÿℎ ∈ ýℎ (1)

Here, a stabilization form ýℎ ensures the algebraic stability of the re-
sulting linear algebraic system. Residual and jump indicators can be 
derived [11] from the integration by parts in ÿ(ÿℎ, ÿℎ), as done in [4]
for an unstabilized TraceFEM. However, in our case, the stabilization ýℎ
is incorporated into an a posteriori estimate.

We would like to highlight two important aspects of the adaptivity 
methodology for the method (1):

• The jump indicator requires the construction of non-standard one-
dimensional quadratures to handle curved intersections of the sur-
face with faces of bulk cells. The associated implementation burden 
represents a practical inconvenience of the adaptive TraceFEM ap-
proach introduced in [4].

• We have observed that the ratio ýℎ(ÿℎ, ÿℎ)∕ÿ(ÿℎ, ÿℎ), where both 
forms are restricted to a single bulk element, often exhibits signiû-
cant growth, even for uniformly reûned meshes. Consequently, the 
inclusion of the stabilization term ýℎ in an error indicator has the 
potential to compromise its efficiency.

To address the ûrst aspect, we propose an alternative error indica-
tor designed for adaptively reûned, graded, octree tessellations of the 
bulk domain Ω, denoted as Ωℎ. This novel indicator is reliable and 
straightforward to compute, as it eliminates the need for integration 
over the curved intersections of an implicitly deûned surface with two-
dimensional faces of the bulk cells. Instead, the indicator incorporates a 
jump term that only requires the use of a standard 2D quadrature for the 
faces of the bulk mesh cells. Moreover, for the TraceFEM stabilized with 
the gradient-jump face stabilization, this term is already an integral part 
of the method.

As for the second aspect, it is worth noting that the efficiency analy-
sis of TraceFEM indicators remains an open question to the best of our 
knowledge. To explore this further, we undertake a comprehensive nu-
merical investigation to assess the efficiency of the new indicator. In 
the case of stabilized TraceFEM with ý1 ûnite elements, the indicator 
is found to be efficient. However, in the ý2 case, efficiency gradually 
diminishes, although the convergence rates for the adaptive gradient-
jump stabilized TraceFEM still appear to remain optimal.

The remainder of this paper is organized as follows: Section 2 intro-
duces the stabilized adaptive TraceFEM along with a new computation-
ally practical indicator. In Section 3, we provide a proof of the reliability 
estimate for the indicator. In Section 4, the adaptive method is tested 
numerically for low-regularity solutions to the Laplace–Beltrami equa-
tion on the unit sphere. We assess both the reliability and efficiency 
of the method, considering ý1 and ý2 conforming ûnite elements de-
ûned on octree meshes. Furthermore, we perform experiments using the 
adaptive TraceFEM with two different stabilizations.

2. The adaptive trace finite element method

We are interested in the geometrically unûtted ûnite element method 
known as the TraceFEM [12]. The method considered in this section is 

an extension of the TraceFEM and stabilization techniques introduced 
in [2,13,14] to hexahedral bulk octree meshes. After formulation of the 
method for our model problem, the Laplace–Beltrami equation, we in-
troduce error indicators and an adaptive discretization.

2.1. Model problem

Let Ω be an open domain in ℝ3 and let Γ ⊂Ω be a smooth connected 
compact and closed hyper-surface embedded in ℝ3. For a sufficiently 
smooth function ý ∶ Ω →ℝ the tangential derivative on Γ is deûned by

∇Γý =∇ý − (∇ý ⋅ ÿ)ÿ,

where ÿ denotes the unit normal to Γ. Denote by divΓ = tr(∇Γ) the sur-
face divergence operator and by ΔΓ = ∇Γ ⋅ ∇Γ the Laplace–Beltrami 
operator on Γ. The Laplace–Beltrami equation is a model example of 
an elliptic PDE posed on the surface Γ. The equation reads as follows: 
ûnd ÿ ∶ Γ →ℝ satisfying

−ΔΓÿ+ ÿ = ÿ on Γ (2)

The zero order term is added to avoid non-essential technical details 
of handling one-dimensional kernel consisting of all constant functions 
on Γ. The problem is well-posed in the sense of the weak formulation: 
Given ÿ ∈ÿ−1(Γ), ûnd ÿ ∈ÿ1(Γ) satisfying

∫
Γ

(
∇Γÿ ⋅∇Γÿ+ ÿÿ

)
ýý = ∫

Γ

ÿ ÿýý ∀ÿ ∈ÿ1(Γ). (3)

If ÿ ∈ÿ2(Γ), then the unique solution satisûes ÿ ∈ÿ2(Γ) and ‖ÿ‖ÿ2(Γ) ≤
ý‖ÿ‖ÿ2(Γ) with a constant ý independent of ÿ ; see [15].

2.2. Discretization

We assume an octree cubic mesh ℎ covering the bulk domain Ω. In 
addition, we assume that the mesh is gradually reûned, i.e., the sizes of 
two active (ûnest level) neighboring cubes differ at most by a factor of 2. 
Such octree grids are also known as balanced. The method also applies 
for unbalanced octrees, but our analysis and experiments use balanced 
grids. The set of all active (ûnest level) faces is denoted by ÿℎ. The 
mesh is not aligned with the surface Γ, which can cut through the cubes 
with no further restrictions.

By Γℎ we denote a given approximation of Γ such that Γℎ is a ÿ
0,1

piecewise smooth surface without boundary and Γℎ is formed by smooth 
segments:

Γℎ =
⋃

ÿ∈ℎ

ÿ , (4)

where ℎ = {ÿ ⊂ Γℎ ∶ ÿ = Γℎ ∩ ÿ, forÿ ∈ ℎ}. For a given ÿ ∈ ℎ

denote by ÿÿ a cube ÿÿ ∈ ℎ such that ÿ ⊂ ÿÿ (if ÿ lies on a side 
shared by two cubes, any of these two cubes can be chosen as ÿÿ ).

In practice, we construct Γℎ as follows. Assume ÿ is a signed distance 
or general level set function for Γ. We deûne Γℎ as the zero level set of 
ÿℎ, a piecewise polynomial interpolant to ÿ on ℎ:
Γℎ ∶= {ý ∈Ω ∶ ÿℎ(ý) = 0}.

For geometric consistency, the polynomial degree of ÿℎ is the same as 
the degree of piecewise polynomial functions we use to deûne trial and 
test spaces in a ûnite element formulation. In some applications, ÿℎ

is recovered from a solution of a discrete indicator function equation 
(e.g. in the level set or the volume of üuid methods), without any direct 
knowledge of Γ. Assumptions of how well Γℎ should approximate Γ will 
be given later.

The unit (outward pointing) normal to Γℎ vector ÿℎ = ∇ÿℎ∕|∇ÿℎ|
is deûned almost everywhere on Ω. We also deûne ÿℎ(ý) ∶= ý −
ÿℎ(ý)ÿℎ(ý)

ÿ for ý ∈ Γℎ, ý not on an edge. The tangential derivative 
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along Γℎ is given by ∇Γℎ
ý = ÿℎ∇ý for sufficiently smooth ý deûned in 

a neighborhood of Γℎ.
Consider a subdomain ÿℎ of Ω consisting only of those end-level 

cubic cells that contain Γℎ:

ÿℎ =
⋃

ÿ∈ Γ
ℎ

ÿ, with  Γ
ℎ
= {ÿ ∈ ℎ ∶ ÿ = ÿÿ for ÿ ∈ ℎ}. (5)

The piecewise constant function ℎÿ ∶ ÿℎ → ℝ denotes the bulk cubic 
cell size. Denote by Σℎ the set of all end-level internal faces of  Γ

ℎ
, i.e. 

square faces between intersected cells from  Γ
ℎ
,

Σℎ = {ý ∈ ÿℎ ∶ ý ∈ int(ÿℎ)}. (6)

The piecewise constant function ℎý ∶ Σℎ → ℝ denotes the face size. 
Since the mesh is gradually reûned, ℎý = min(ℎÿ+

ý
, ℎÿ−

ý
), where

ÿ+
ý
, ÿ−

ý
∈  Γ

ℎ
are the two bulk cells which share the end-level face 

ý ∈ Σℎ.
We are also interested in the set of all faces which are intersected by 

Γℎ,

ΣΓ
ℎ
= {ý ∈ Σℎ ∶ ý ∩ Γℎ ≠ ∅}. (7)

Intersected faces are necessary internal, so that ΣΓ
ℎ
⊂ Σℎ, but the oppo-

site inclusion does not hold.
For each cell ÿ , let ýÿ be the affine mapping from the reference 

unit cube. Then the ûnite element space of order ý is deûned as:

ý ý
ℎ
∶= {ÿ ∈ ÿ(ÿℎ) | ÿ|ÿ◦ýÿ ∈ýý ,∀ ÿ ∈  Γ

ℎ
}, (8)

where ýý is the Lagrangian ûnite element basis of degree ý. In case of 
ý = 1, ýℎ = ý 1

ℎ
is the space of piecewise trilinear functions correspond-

ing to the family

ý1 = span{1, ý1, ý2, ý3, ý1ý2, ý1ý3, ý2ý3, ý1ý2ý3}. (9)

Note that we consider ÿ1-conforming (i.e., continuous) ûnite elements. 
In this paper we restrict to ý = 1, 2.

Let ÿ ÿ be an extension of ÿ from Γ to Γℎ. The ûnite element formu-
lation reads: Find ÿℎ ∈ ý ý

ℎ
such that

∫
Γℎ

(
∇Γℎ

ÿℎ ⋅∇Γℎ
ÿℎ + ÿℎÿℎ

)
ýý+ ýℎ(ÿℎ, ÿℎ) = ∫

Γℎ

ÿ ÿÿℎ ýý ∀ÿℎ ∈ ý ý
ℎ
.

(10)

Here ýℎ is a stabilization term deûned later. The purpose of the stabiliza-
tion term is to enhance the robustness of the formulation with respect to 
position of the position of Γℎ in the background mesh ℎ. In the context 
of TraceFEM the idea of stabilization was ûrst introduced in [2].

2.3. TraceFEM stabilizations

We are interested in the two commonly used variants of the stabiliza-
tion terms ýℎ in (10). In both cases, the stabilizing term can be assembled 
elementwise over all end-level cubes intersected by Γℎ:

ýℎ(ÿℎ, ÿℎ) =
∑

ÿ∈ Γ
ℎ

ý∗
ÿ
(ÿℎ, ÿℎ) , ∗∈ {ýý ,ýý2,ýý }

1. Gradient-jump face stabilization is the method introduced in [2]
following the cutFEM approach developed for the volumetric prob-
lems. In the context of the TraceFEM, this stabilization is often used 
with quasi-uniform bulk meshes, stationary surfaces, and lowest or-
der elements; see e.g. [16,17,13,14].
In this variant, local stabilizing terms are computed over cube9s 
faces which are in the active skeleton (6),

ýýý
ÿ

(ÿℎ, ÿℎ) =
∑

ý∈ÿÿ∩Σℎ
∫
ý

ÿý �∇ÿℎ� ⋅ �∇ÿℎ� (11)

where ÿý is ÿ(1) stabilization parameter, and �∇ÿℎ� = (∇ÿℎ)|ÿ+ −

(∇ÿℎ)|ÿ− , ý = ÿ− ∩ÿ+, is a <jump= of the gradient across the face. 
Note that for continuous FE, stabilization (11) is equivalent to pe-
nalizing the jumps of normal derivatives across faces.
A higher-order version of ýýý

ℎ
was suggested in [18] and analyzed 

for quasi-uniform meshes in [3]. For ý2 elements it reads:

ýýý2
ÿ

(ÿℎ, ÿℎ) = ýýý
ÿ

(ÿℎ, ÿℎ) + ∫
Γℎ∩ÿ

ÿΓ(ÿℎ ⋅∇ÿℎ)(ÿℎ ⋅∇ÿℎ)

+
∑

ý∈ÿÿ∩Σℎ
∫
ý

ÿ̃ýℎ2
ý
(ÿý ⋅ �∇2ÿℎ�ÿý )(ÿý ⋅ �∇2ÿℎ�ÿý )

+ ∫
Γℎ∩ÿ

ÿ̃Γℎ
2
ÿ
(ÿℎ ⋅ (∇

2ÿℎ)ÿℎ)(ÿℎ ⋅ (∇
2ÿℎ)ÿℎ), (12)

where ÿΓ, ÿ̃ý , and ÿ̃Γ are ÿ(1) tuning parameter. The bilinear form 
ýýý2
ℎ

stabilizes the trace ûnite element space ý 2
ℎ
in the case ý2

polynomial family as shown in [3]. In that paper, a more general 
stabilization ℎÿýýý2

ℎ
, 0 ≤ ÿ ≤ 2, was considered and the sensitivity 

of the method to all stabilization parameters was explored. In our 
numerical results for ý2 family, we choose ÿý = ÿ̃ý = ÿ̃Γ = ÿΓ.
We see that the gradient-jump stabilization gets quite complicated 
for higher order elements. Below we consider a normal-gradient 
volume stabilization, which is universal with respect to the FE de-
gree.

2. Normal-gradient volume stabilization was introduced in [13,14]
and it penalizes the variation of the FE solution in the normal di-
rection to the surface. This property was found particularly useful 
for applying TraceFEM to problems posed on evolving surfaces [19]
and so it is commonly used in this context [20–23]. The stabiliza-
tion reads:

ýýý
ÿ

(ÿℎ, ÿℎ) = ∫
ÿ

ÿÿ (ÿℎ ⋅∇ÿℎ)(ÿℎ ⋅∇ÿℎ), (13)

where ÿÿ is the stabilization parameter, constant in each cell such 
that

ÿÿ ≃ ℎ−1
ÿ

for ÿ ∈  Γ
ℎ
.

Note that ÿℎ =∇ÿℎ∕|∇ÿℎ| is well-deûned on ÿℎ so the integral in 
(13) makes sense.

2.4. Error indicators

One of the goals of this paper is to construct a new TraceFEM error 
estimator which does not involve complicated and expensive computa-
tions on edges Γℎ ∩ý , ý ∈ ΣΓ

ℎ
. These edges are available only implicitly 

as intersections of Γℎ with bulk faces. Moreover, one needs to construct 
an immersed edge quadrature on each intersected face from ΣΓ

ℎ
which is 

a signiûcant computational burden. Again, note that some of the faces 
from ΣΓ

ℎ
are subfaces of bulk cells which complicates the accumulation 

of üux jumps even further.
To this end, we deûne the bulk jump indicator:

ÿý (ÿÿ ) = ‖�∇ÿℎ�‖ÿ2(ÿÿÿ ∩ÿℎ)
, ÿÿ ∈  Γ

ℎ
. (14)

Note that the indicator (14) assesses the variation of the solution gradi-
ent across internal, square faces shared by the cubic cells in  Γ

ℎ
rather 

than across the implicit edges Γℎ ∩ ý , ý ∈ ΣΓ
ℎ
, as done in [24,4,5]. The 

former is more straightforward to compute. Also note that (14) is ac-
cumulated over all faces from (6) rather then just the intersected faces 
from (7).

We will also need the surface residual indicator,

ÿý(ÿ ) = ℎÿÿ
‖ÿℎ +ΔΓℎ

ÿℎ − ÿℎ‖ÿ2(ÿ ) (15)
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which was already used in [24,4,5]. The computation of the (15) re-
quires integration over surface cuts ÿ = Γℎ ∩ ÿÿ , ÿÿ ∈  Γ

ℎ
which is a 

standard procedure in the implementation of TraceFEM (10).
Thus, for the purpose of local mesh adaptation we use the following 

error indicator:

ÿ(ÿÿ ) ∶= (ÿÿÿý(ÿ )
2 + ÿÿÿý (ÿÿ )

2 + ÿýý
∗
ÿÿ

(ÿℎ, ÿℎ))
1
2 , (16)

with some parameters ÿÿ, ÿÿ, ÿý ≥ 0.

Remark 2.1. Note that for the gradient-jump face stabilization, the so-
lution9s jumps over faces (i.e. the ÿý (ÿÿ )

2 quantity) are included in 
ý∗
ÿÿ

(ÿℎ, ÿℎ) term and so the face indicator is extra and we let ÿÿ = 0 in 
the cases of ý1 and ý2. Otherwise, in our numerical experiments with 
normal-gradient volume, we choose ÿÿ = ÿÿ = ÿý = 1.

In this paper we do not consider any indicator of the geometric er-
ror resulting from the approximation Γ and other geometric quantities. 
They are assumed to be of a higher order with respect to ℎÿ .

Results of experiments in Section 4 show that the trace FE adaptive 
method based on ÿ(ÿ ) results in the optimal convergence of the adaptive 
method in ÿ1 and ÿ2 norms.

3. Reliability

In this section we prove an a posteriori error estimate that implies the 
reliability the error indicator (16). We start with several preliminaries.

3.1. Preliminaries

For the surface Γ, we consider its neighborhood:

(Γ) ∶= {ý ∈ℝ
3 | dist(ý,Γ) < ý̃}, (17)

with a suitable ý̃ depending on Γ such that ÿℎ ⊂(Γ) ⊂Ω and the nor-
mal projection ý ∶(Γ) → Γ,

ý(ý) = ý − ý(ý)ÿ(ý)

is well-deûned. Hereafter ý ∈ ÿ2((Γ)) denotes the signed distance 
function such that ý < 0 in the interior of Γ and ý > 0 in the exterior, 
and ÿ(ý) ∶= ∇ý(ý) for all ý ∈(Γ). Hence, ÿ is the normal vector on Γ
and |ÿ(ý)| = 1 for all ý ∈(Γ). The Hessian of ý is denoted by
ÿ(ý) ∶= ∇2ý(ý) ∈ℝ

3×3, ý ∈(Γ).
The eigenvalues of ÿ(ý) are the principal curvatures ÿ1(ý), ÿ2(ý), and 0.

We assume the following estimates on how well Γℎ approximates Γ:

ess supý∈Γℎ
|ý(ý)| ≤ ý1ℎ

ý+1, (18)

ess supý∈Γℎ
|ÿ(ý) − ÿℎ(ý)| ≤ ý2ℎ

ý, (19)

with constants ý1, ý2 independent of ℎ and ý ∈ {1, 2} in the FE degree. 
The assumption is reasonable if Γ is deûned as the zero level of a (lo-
cally) smooth level set function ÿ and Γℎ is the zero of an ÿℎ ∈ ýℎ, 
where ÿℎ interpolates ÿ and it holds

‖ÿ−ÿℎ‖ÿ∞((Γ)) + ℎ‖∇(ÿ− ÿℎ)‖ÿ∞((Γ)) ≲ ℎý+1.

Here and in the remainder, ý ≲ ý means ý ≤ ý ý for some positive con-
stant ý independent of the number of reûnement levels and the position 
of Γℎ in the background mesh.

For ý∈Γℎ, deûne ÿℎ(Γ)(ý)=(1−ý(ý)ÿ1(ý))(1−ý(ý)ÿ2(ý))ÿ
ÿ (ý)ÿℎ(ý). 

The surface measures dý and dýℎ on Γ and Γℎ, respectively, are related 
[24] by

ÿℎ(Γ)(ý)dýℎ(ý) = dý(ý(ý)), ý ∈ Γℎ. (20)

The solution of the Laplace–Beltrami problem and its data are de-
ûned on Γ, while the ûnite element method is deûned on Γℎ. Hence, we 

need a suitable extension of a function from Γ to its neighborhood. For 
a function ÿ on Γ we deûne

ÿÿ(ý) ∶= ÿ(ý(ý)) for all ý ∈(Γ).
The following formulas for this extended function are well-known (cf. 
section 2.3 in [24]):

∇ÿÿ(ý) = (ý− ý(ý)ÿ)∇Γÿ(ý(ý)) in (Γ), (21)

∇Γℎ
ÿÿ(ý) = ÿℎ(ý)(ý− ý(ý)ÿ)∇Γÿ(ý(ý)) a.e. on Γℎ, (22)

with ÿ = ÿ(ý). For ý ∈ Γℎ also deûne ÿ̃ℎ(ý) = ý − ÿℎ(ý)ÿ(ý)
ÿ ∕(ÿℎ(ý) ⋅

ÿ(ý)). One can represent the surface gradient of ÿ ∈ ÿ1(Γ) in terms of 
∇Γℎ

ÿÿ as follows

∇Γÿ(ý(ý)) = (ý− ý(ý)ÿ(ý))−1ÿ̃ℎ(ý)∇Γℎ
ÿÿ(ý) a.e. ý ∈ Γℎ. (23)

Due to (20) and (23), one gets

∫
Γ

∇Γÿ∇Γÿdý = ∫
Γℎ

ýℎ∇Γℎ
ÿÿ∇Γℎ

ÿÿ dýℎ for all ÿ ∈ÿ1(Γ), (24)

with ýℎ(ý) = ÿℎ(ý)ÿ̃
ÿ
ℎ
(ý)(ý − ý(ý)ÿ(ý))−2ÿ̃ℎ(ý).

For sufficiently smooth ÿ and |ÿ| ≤ 2, it holds (cf. Lemma 3 in [10]):

|ÿÿÿÿ(ý)| ≲
( ∑

|ÿ|=2
|ÿÿ

Γ
ÿ(ý(ý))|+ |∇Γÿ(ý(ý))|

)
in (Γ). (25)

We need the following uniform trace inequalities. For any end level 
cell ÿ ⊂ ÿℎ and its face ý ⊂ ÿ it holds

‖ÿ‖2
ÿ2(ÿ∩Γℎ)

≲ ℎ−1
ÿ
‖ÿ‖2

ÿ2(ÿ)
+ ℎÿ‖∇ÿ‖2

ÿ2(ÿ)
∀ ÿ ∈ÿ1(ÿ). (26)

‖ÿ‖2
ÿ2(ý∩Γℎ)

≲ ℎ−1
ý
‖ÿ‖2

ÿ2(ý )
+ ℎý ‖∇ÿ‖2

ÿ2(ý )
∀ ÿ ∈ÿ1(ý ). (27)

Note that for graded octree meshes it holds ℎý ≃ ℎÿ . The proof of (26)
follows by subdividing any cubic cell into a ûnite number of regular 
tetrahedra and further applying Lemma 4.2 from [25] on each of these 
tetrahedra. Similar procedure is applied to prove (27).

We will use the following notation

ÿℎ(ÿ, ÿ) ∶= ∫
Γℎ

(∇Γℎ
ÿ ⋅∇Γℎ

ÿ+ ÿÿ)ýýℎ.

3.2. A posteriori estimate

In this section, we deduce an a posteriori error estimate for the Trace-
FEM (10). For the sake of analysis we make the following assumptions:

(i) The octree mesh is gradually reûned;
(ii) For any ý ∈ Γ denote by ÿ(ý) a number of end-level cubic cells from 

ÿℎ intersected by the line ý(ý) = {ý ∈(Γ) ∶ ý(ý) = ý}. We assume 
ÿ(ý) ≤ ÿ with a constant ÿ independent of ý and the number of 
reûnement levels.

In practice, the ûrst assumption can be satisûed by triggering the 
reûnement of any cell which has a ûner neighbor already marked for 
reûnement. The second assumption does not pose any practical restric-
tions and in experiments we observed that ÿ(ý) is small for all ý sampled 
for testing. An explanation of why Assumption (ii) is reasonable relies 
on the smoothness of Γ and the use of gradually reûned meshes. Indeed 
for a ÿ2 surface, one can choose such ÿ(1) neighborhood (Γ) that ý(ý)
intersects Γ only once at point ý. Assume ÿ(ý) → ∞ with a mesh re-
ûnement for some ý ∈ Γ. Since the end-level cells are getting arbitrary 
small, this implies that ý(ý) intersects or touches Γ at the point of accu-
mulation. However, such only point can be ý and ý(ý) ⟂ Γ(ý) while Γ is 
increasingly üat in the local (mesh) scale. For a graded mesh, this may 
result only in a ûnite number of intersected end-level cells.
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Consider the surface ûnite element error ÿℎ = ÿÿ − ÿℎ in ÿℎ. By ÿ
ý
ℎ

we denote the lift of the error function on (Γ), ÿý
ℎ
(ý) = ÿ(ý(ý)) − ÿℎ(ý)

with ý ∈ Γℎ such that ý(ý) = ý(ý). Note that ÿý
ℎ
is constant in normal 

directions to Γ, i.e. ÿý
ℎ
= (ÿý

ℎ
|Γ)ÿ. Further we prove an a posteriori bound 

for the augmented ÿ1-norm of ÿý
ℎ
on Γ, i.e. for

|||ÿℎ|||2 = ÿ(ÿý
ℎ
, ÿý

ℎ
) + ýℎ(ÿℎ, ÿℎ), with ÿ(ÿ, ÿ) = ∫

Γ

(∇Γÿ ⋅∇Γÿ+ ÿÿ)ýý.

(28)

Using straightforward calculations and (24) one checks the following 
identities for any ÿℎ ∈ ýℎ

|||ÿℎ|||2 = ∫
Γ

ÿÿý
ℎ
ýý− ÿ(ÿý

ℎ
, ÿý

ℎ
) + ýℎ(ÿℎ, ÿℎ)

= ∫
Γℎ

ÿ ÿÿℎÿℎ ýýℎ − ∫
Γℎ

ÿℎÿℎ ýýℎ + ÿℎ(ÿℎ, ÿℎ) + ýℎ(ÿℎ, ÿℎ)

− ÿ(ÿý
ℎ
, ÿý

ℎ
) + ýℎ(ÿℎ, ÿℎ)

= ∫
Γℎ

(ÿ ÿÿℎ − ÿℎ)ÿℎ ýýℎ + ∫
Γℎ

ÿℎ(ÿℎ −ÿℎ)ýýℎ + ÿℎ(ÿℎ, ÿℎ − ÿℎ)

+ ýℎ(ÿℎ, ÿℎ − ÿℎ) − ∫
Γℎ

(ýℎ − ÿℎ)∇Γℎ
ÿℎ ⋅∇Γℎ

ÿℎ dýℎ.

(29)

Element-wise integration by parts for the third term on the right 
hand side of (29) gives

ÿℎ(ÿℎ, ÿℎ − ÿℎ) = ∫
Γℎ

(ΔΓℎ
ÿℎ − ÿℎ)(ÿℎ −ÿℎ) dýℎ

−
1

2

∑
ÿ∈ℎ

∫
ÿÿ

�∇Γℎ
ÿℎ�(ÿℎ −ÿℎ) dÿ.

(30)

The Cauchy inequality gives

ýℎ(ÿℎ, ÿℎ − ÿℎ) ≤
»¼¼½
∑

ÿ∈ Γ
ℎ

ý∗
ÿ
(ÿℎ, ÿℎ)

¾¿¿À

1
2 »¼¼½

∑
ÿ∈ Γ

ℎ

ý∗
ÿ
(ÿℎ − ÿℎ, ÿℎ − ÿℎ)

¾¿¿À

1
2

.

Substituting (30) into (29) and applying the Cauchy inequality ele-
mentwise over ℎ to estimate integrals, we get

|||ÿℎ|||2 ≲
∑

ÿ∈ℎ

(
‖ÿ ÿÿℎ − ÿℎ‖ÿ2(ÿ ) + ‖ýℎ − ÿℎ‖ÿ∞(ÿ )‖∇Γℎ

ÿℎ‖ÿ2(ÿ )

)

× ‖ÿℎ‖ÿ1(Γℎ)

+

( ∑
ÿ∈ℎ

ÿý(ÿ )
2

) 1
2
( ∑

ÿ∈ℎ

ℎ−2
ÿÿ

‖ÿℎ −ÿℎ‖2ÿ2(ÿ )

) 1
2

+

( ∑
ÿ∈ℎ

ℎÿÿ
‖�∇Γℎ

ÿℎ�‖2
ÿÿ

) 1
2
( ∑

ÿ∈ℎ

ℎ−1
ÿÿ

‖ÿℎ −ÿℎ‖2ÿ2(ÿÿ )

) 1
2

+

»
¼¼½
∑

ÿ∈ Γ
ℎ

ý∗
ÿ
(ÿℎ, ÿℎ)

¾
¿¿À

1
2 »
¼¼½
∑

ÿ∈ Γ
ℎ

ý∗
ÿ
(ÿℎ − ÿℎ, ÿℎ − ÿℎ)

¾
¿¿À

1
2

.

(31)

To proceed further we need several results, which we split into a few 
lemmas.

Lemma 3.1. For all ÿ ∈ ℎ it holds

ℎÿÿ
‖�∇Γℎ

ÿℎ�‖2
ÿ2(ÿÿ )

≲ ÿý (ÿÿ )
2. (32)

Proof. Recall that the face-based indicator ÿý (ÿÿ ) for a cell ÿÿ includes 
all internal faces ý ∈ ÿÿÿ ∩ Σℎ rather than only faces from ÿÿÿ ∩ ΣΓ

ℎ
. 

Also note that �∇Γℎ
ÿℎ� = �ÿℎ∇ÿℎ� is a rational function of a ûnite de-

gree on each face of ÿÿ . Application of the uniform trace estimate (27)
followed by the FE inverse estimate on each face ý ⊂ ÿÿÿ ∩ ΣΓ

ℎ
gives 

the assertion. □

Lemma 3.2. The following bound holds for both stabilizations and FE de-
grees:

ý∗
ÿ
(ÿℎ − ÿℎ, ÿℎ − ÿℎ) ≲ ý∗

ÿ
(ÿℎ, ÿℎ) + ℎ−1

ÿ
‖∇ÿℎ‖2ÿ2(ÿ(ÿ))

, (33)

where ÿ(ÿ) denotes a union of cubic cells from ÿℎ sharing faces with ÿ .

Proof. We ûrst apply the triangle inequality to show

ý∗
ÿ
(ÿℎ − ÿℎ, ÿℎ − ÿℎ) ≤ 2(ý∗

ÿ
(ÿℎ, ÿℎ) + ý∗

ÿ
(ÿℎ, ÿℎ)) (34)

We need to estimate the second term on the right-hand side. For the 
gradient-jump stabilization and ý = 2 we have

ýýý2
ÿ

(ÿℎ, ÿℎ) = ÿΓ‖ÿℎ ⋅∇ÿℎ‖2ÿ2(Γℎ∩ÿ)
+ ÿ̃Γℎ

2
ÿ
‖ÿℎ ⋅ (∇

2ÿℎ)ÿℎ‖2ÿ2(Γℎ∩ÿ)

+
∑

ý∈ÿÿ∩Σℎ

(
ÿý ‖∇ÿℎ�‖2

ÿ2(ý )
+ ÿ̃ýℎ2

ý
‖ÿý ⋅ �∇2ÿℎ�ÿý ‖2ÿ2(ý )

)
. (35)

To estimate the ûrst two terms on the right-hand side of (35), we 
apply the trace estimate (26):

‖ÿℎ ⋅∇ÿℎ‖2ÿ2(Γℎ∩ÿ)
≤ ‖∇ÿℎ‖2ÿ2(Γℎ∩ÿ)

≲ ℎ−1
ÿ
‖∇ÿℎ‖2ÿ2(ÿ)

+ ℎÿ‖∇2ÿℎ‖2ÿ2(ÿ)

≲ ℎ−1
ÿ
‖∇ÿℎ‖2ÿ2(ÿ)

ℎ2
ÿ
‖ÿℎ ⋅ (∇

2ÿℎ)ÿℎ‖2ÿ2(Γℎ∩ÿ)
≤ ℎ2

ÿ
‖∇2ÿℎ‖2ÿ2(Γℎ∩ÿ)

≲ ℎÿ‖∇2ÿℎ‖2ÿ2(ÿ)

≲ ℎ−1
ÿ
‖∇ÿℎ‖2ÿ2(ÿ)

.

(36)

To estimate the third and fourth terms on the right-hand side of (35), 
we apply the ûnite element trace and inverse inequalities:

∑
ý∈ÿÿ∩Σℎ

ÿý ‖�∇ÿℎ�‖2
ÿ2(ý )

≲ ‖�∇ÿℎ�‖2
ÿ2(ÿÿ∩Σℎ)

≲ ℎ−1
ÿ
‖∇ÿℎ‖2ÿ2(ÿ(ÿ))∑

ý∈ÿÿ∩Σℎ

ℎ2
ý
‖ÿý ⋅ �∇2ÿℎ�ÿý ‖2ÿ2(ý )

≲ ℎ2
ÿ
‖�∇2ÿℎ�‖2

ÿ2(ÿÿ∩Σℎ)

≲ ℎÿ‖∇2ÿℎ‖2ÿ2(ÿ(ÿ))

≲ ℎ−1
ÿ
‖∇ÿℎ‖2ÿ2(ÿ(ÿ))

.

(37)

The combination of (35)–(37) gives

ýýý2
ÿ

(ÿℎ, ÿℎ) ≲ ℎ−1
ÿ
‖∇ÿℎ‖2ÿ2(ÿ(ÿ))

. (38)

Of course, the same bound (38) holds also for ý = 1. For the normal-
volume stabilization we have

ýýý
ÿ

(ÿℎ, ÿℎ) = ÿÿ‖ÿℎ ⋅∇ÿℎ‖2ÿ2(ÿ)
≲ ℎ−1

ÿ
‖ÿℎ ⋅∇ÿℎ‖2ÿ2(ÿ)

, (39)

where we used that ÿÿ is an ÿ(ℎ−1
ÿ
) parameter. Substituting (38) and 

(39) in (34) proves the lemma. □

Due to geometric approximation properties (18), (19) and <lifting= 
identities (20) and (22) we have
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‖ÿℎ‖ÿ1(Γℎ)
≲ ‖ÿý

ℎ
‖ÿ1(Γ). (40)

Lemma 3.3. There exist ÿℎ ∈ ýℎ such that

∑
ÿ∈ℎ

[
ℎ−2
ÿÿ

‖ÿℎ −ÿℎ‖2ÿ2(ÿ )
+ ℎ−1

ÿÿ
‖ÿℎ −ÿℎ‖2ÿ2(ÿÿ )

+ ý∗
ÿ
(ÿℎ − ÿℎ, ÿℎ − ÿℎ)

]

≲ |||ÿℎ|||2.
(41)

Proof. To handle the edge term on the left-hand side of (41), we need 
some further constructions: For a curved edge ÿ ⊂ ÿÿ denote by ýÿ ⊂

ÿÿÿ the face of ÿÿ such that ÿ ⊂ ýÿ. Denote by ÿ(ÿ) ⊂ ℎ the set of all 
cubic cells touching ýÿ. Let ÿ̃ℎ be the natural polynomial extension of 
the level-set function ÿℎ|ÿÿ

and Γ̃ℎ(ÿ) = {ý ∈ ÿ(ÿ) ∶ ÿ̃ℎ(ý) = 0} be a 
smooth approximation of Γ locally in ÿ(ÿ). Note that due to the graded 
reûnement assumption there is a ℎÿÿ

∕2 neighborhood of ÿ in Γ̃ℎ(ÿ). 

Then for ÿ ∈ÿ1(Γ̃ℎ(ÿ)) in holds

‖ÿ‖2
ÿ2(ÿ)

≲ ℎ−1
ÿÿ

‖ÿ‖2
ÿ2(Γ̃ℎ(ÿ))

+ ℎÿÿ
‖∇Γ̃ℎ(ÿ)

ÿ‖2
ÿ2(Γ̃ℎ(ÿ))

. (42)

The estimate (42) follows from a standard üattening argument and ap-
plying a trace inequality as in (27).

We apply the bulk and (26) trace inequalities and (42) to estimate

ℎ−2
ÿÿ

‖ÿℎ −ÿℎ‖2ÿ2(ÿ )
+

∑
ÿ∈ÿÿ

ℎ−1
ÿÿ

‖ÿℎ −ÿℎ‖2ÿ2(ÿ)

≲ ℎ−3
ÿÿ

‖ÿý
ℎ
−ÿℎ‖2ÿ2(ÿÿ )

+ ℎ−1
ÿÿ

‖∇(ÿý
ℎ
−ÿℎ)‖2ÿ2(ÿÿ )

+
∑
ÿ∈ÿÿ

(
ℎ−2
ÿÿ

‖ÿý
ℎ
−ÿℎ‖2ÿ2(Γ̃ℎ(ÿ))

+ ‖∇Γ̃ℎ
(ÿý

ℎ
−ÿℎ)‖2ÿ2(Γ̃ℎ(ÿ))

)

≲ ℎ−3
ÿÿ

‖ÿý
ℎ
−ÿℎ‖2ÿ2(ÿ(ÿ))

+ ℎ−1
ÿÿ

‖∇(ÿý
ℎ
−ÿℎ)‖2ÿ2(ÿ(ÿ))

+
∑
ÿ∈ÿÿ

(
‖∇Γ̃ℎ

ÿý
ℎ
‖2
ÿ2(Γ̃ℎ(ÿ))

+ ‖∇ÿℎ‖2ÿ2(Γ̃ℎ(ÿ))

)

≲ ℎ−3
ÿÿ

‖ÿý
ℎ
−ÿℎ‖2ÿ2(ÿ(ÿ))

+ ℎ−1
ÿÿ

‖∇(ÿý
ℎ
−ÿℎ)‖2ÿ2(ÿ(ÿ))

+
∑
ÿ∈ÿÿ

(
‖∇Γÿ

ý
ℎ
‖2
ÿ2(ý(Γ̃ℎ(ÿ)))

+ ℎ−1
ÿÿ

‖∇ÿℎ‖2ÿ2(ÿ(ÿ))

)
,

(43)

where we used an estimate

‖∇Γ̃ℎ
ÿý
ℎ
‖ÿ2(Γ̃ℎ(ÿ))

≲ ‖∇Γÿ
ý
ℎ
‖ÿ2(ý(Γ̃ℎ(ÿ)))

, (44)

which holds due to (20), (22) and the fact that (18), (19) also hold for 
the locally extended Γℎ with possibly different ÿ(1) constants ý1, ý2. 
Also note that for any lifted function ÿý ∈ÿ2(ÿℎ)

‖ÿý‖2
ÿ2(ÿ)

≲ ℎÿÿ
‖ÿý‖2

ÿ2(ý(ÿ))
. (45)

Thanks to our assumption (i) there is a Scott-Zhang type interpolant 
ÿℎ ∈ ýℎ of ÿ

ý
ℎ
∈ÿ1(Ω) [26] such that

ℎ−1
ÿ
‖ÿý

ℎ
−ÿℎ‖ÿ2(ÿ) + ‖∇ÿℎ‖ÿ2(ÿ) ≲ ‖ÿý

ℎ
‖ÿ1(ÿ(ÿ)) ∀ ÿ ∈Ωℎ, (46)

where ÿ(ÿ) is deûned as follows: Let ÿ̃(ÿ) consist of ÿ and of all end-
level cubic cells touching ÿ , then ÿ(ÿ) is a patch of cells deûned as 
the union of ÿ̃(ÿ) and of all end-level cubic cells touching ÿ̃(ÿ). We 
assume ý̃ in (17) to be sufficiently large and ℎ sufficiently small that 
ÿ(ÿ) ⊂(Γ) for all ÿ ∈Ωℎ.

Applying in (43) the estimates from (46), (45) and the result from 
Lemma 3.1 yields

∑
ÿ∈ℎ

[
ℎ−2
ÿÿ

‖ÿℎ −ÿℎ‖2ÿ2(ÿ )
+ ℎ−1

ÿÿ
‖ÿℎ−ÿℎ‖2ÿ2(ÿÿ )

+ý∗
ÿÿ

(ÿℎ − ÿℎ, ÿℎ − ÿℎ)
]

≲
∑

ÿ∈ℎ

(
ℎ−1
ÿÿ

‖ÿý
ℎ
‖2
ÿ1(ÿ(ÿÿ ))

+ ‖∇Γÿ
ý
ℎ
‖2
ÿ2(ý(ÿ(ÿÿ )))

+ ℎ−1
ÿ
‖∇ÿℎ‖2ÿ2(ÿ(ÿÿ ))

)

≲
∑

ÿ∈ℎ

(
ℎ−1
ÿÿ

‖ÿý
ℎ
‖2
ÿ1(ÿ(ÿÿ ))

+ ‖∇Γÿ
ý
ℎ
‖2
ÿ2(ý(ÿ(ÿÿ )))

)

≲
∑

ÿ∈ÿℎ

‖ÿý
ℎ
‖2
ÿ1(ý(ÿ(ÿÿ )))

. (47)

In the last inequality we also used the fact that for the graded octree 
mesh diam(ÿ(ÿÿ )) ≃ ℎÿÿ

. Due to assumption (i) any cell ÿÿ may belong 
to a uniformly bounded number of patches. Thanks to this and assump-
tion (ii) any ý ∈ Γ may belong to the projections of patches which total 
number is also uniformly bounded. This establishes the bound
∑

ÿ∈ℎ

‖ÿý
ℎ
‖2
ÿ1(ý(ÿ(ÿÿ )))

≲ ‖ÿý
ℎ
‖2
ÿ1(Γ)

. (48)

Using (43)–(48) proves the lemma. □

Combining (31), (32) and (40), (41) gives the following a posteriori
error estimate

|||ÿℎ||| ≲
( ∑

ÿ∈ℎ

‖ÿ ÿÿℎ − ÿℎ‖2ÿ2(ÿ )
+ ‖ýℎ − ÿℎ‖2ÿ∞(ÿ )

‖∇Γℎ
ÿℎ‖2ÿ2(ÿ )

) 1
2

+

( ∑
ÿ∈ℎ

[
ÿý(ÿ )

2 + ÿý (ÿÿ )
2 + ý∗

ÿÿ
(ÿℎ, ÿℎ)

]) 1
2

. (49)

Assume that local grid reûnement leads to better local surface re-
construction, i.e. (18) and (19) can be formulated locally, then it holds 
‖ÿ ÿÿℎ − ÿℎ‖ÿ2(ÿ ) + ‖ýℎ − ÿℎ‖ÿ∞(ÿ ) = ÿ(ℎý+1). In this case, the ûrst 
term on the right-hand side of (49) is of higher order if ý ≥ 1 for ý1 and 
ý ≥ 2 for ý = 2.

4. Numerical examples

This section presents a numerical study of an adaptive version of 
the stabilized TraceFEM (10), which relies on the novel indicator (49). 
First, we provide details of the adaptive algorithm, including the surface 
approximation, in Section 4.2. Next, we conûrm a posteriori estimates 
for the families ý1 and ý2. Moreover, we address the efficiency of the 
indicator using a manufactured solution. We test both gradient jump 
and normal gradient volume stabilizations. However, we omit the bulk 
jump indicator ÿý (ÿÿ ) (14) in the proposed indicator (53) if the Trace-
FEM scheme (52) is stabilized by including ýýý

ℎ
or ýýý2

ℎ
forms; see 

Remark 2.1.

4.1. A low-regularity test case

This section discusses the model problem (3), the solution of which 
is not regular enough to provide optimal rates of convergence if uniform 
reûnement is employed. We consider the unit sphere Γ and a family of 
solutions ÿ = ÿÿ ∈ÿ1+ÿ(Γ), 0 ≤ ÿ ≤ 1, such that

−ΔΓÿ+ ÿ = ÿ, (50)

with the forcing ÿ = ÿÿ ∈ÿÿ−1(Γ). Consequently, by choosing different 
values of ÿ, we may obtain exact solutions of desired regularity. An 
example [5] of such a family is given in spherical polar coordinates 
(ÿ, ÿ), ÿ ∈ [0, ÿ], ÿ ∈ (−ÿ, ÿ], by

ÿ = sinÿ ÿ sinÿ, ÿ = (1 + ÿ2 + ÿ) sinÿ ÿ sinÿ+ (1 − ÿ2) sinÿ−2 ÿ sinÿ.

(51)

Clearly, ÿ and ÿ have singularities at the north, ÿ = 0 or (ý, ÿ, ÿ) =
(0, 0, 1), and the south, ÿ = ÿ or (ý, ÿ, ÿ) = (0, 0, −1), poles (see Fig. 1) 
while being harmonic in the azimuthal direction ÿ for each ûxed ÿ ≠
0, ÿ.

Before the iterative adaptive procedure starts, one constructs a suf-
ûciently ûne mesh of Ω = [−2, 2]3 so the initial surface approxima-
tion Γℎ is well-deûned. To this end, the distance function ý(ý, ÿ, ÿ) =
ý2 + ÿ2 + ÿ2 −1 is chosen for the level-set description of the unit sphere 
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Fig. 1. Snapshots of the mesh crosscuts at different cycles of the adaptive procedure from Section 4.2. The surface Γℎ is not shown. Active elements  Γ
ℎ
and the 

corresponding domain ÿℎ are colored by the values of the solution (51) with ÿ = 0.4. Vertical direction corresponds to OZ axis. Top: the whole domain [−2, 2]3, with 
many cells remain coarse throughout the procedure. Bottom: closeup view of the north pole (0, 0, 1) of the unit sphere where the gradient of the solution (51) blows 
up.

Γ. The edges of the cube Ω are divided in eight equal segments of length 
ℎ = 0.5, see Fig. 1, cycle = 0. These cells constitute the initial mesh ℎ .
4.2. Adaptive stabilized TraceFEM

In this section we present the adaptive algorithm tested in the numer-
ical experiments. The adaptive procedure is a sequence of cycles each 
consisting of the three steps below.

Step 1 (APPROXIMATE GEOMETRY). To guarantee continuity of the 
surface approximation, we ûrst resolve all hanging nodes in ℎ by 
adding a sufficient number of linear constraints. The interpolant ÿý

ℎ
of 

order ý of the distance function ý on the mesh ℎ identiûes the active 
domain ÿℎ consisting of intersected cells  Γ

ℎ
. Geometrical information 

such as the normal vector ÿℎ and the surface quadratures representing 
Γℎ is derived from the discrete distance function ÿý

ℎ
.

Step 2 (SOLVE). The ûnite element space ý ý
ℎ
consists of continuous 

piece-wise ý1 or ý2 functions deûned on  Γ
ℎ
. We solve the following 

linear system: ûnd ÿℎ ∈ ý ý
ℎ
such that

∫
Γℎ

∇Γℎ
ÿℎ ⋅∇Γℎ

ÿℎ + ∫
Γℎ

ÿℎÿℎ + ýℎ(ÿℎ, ÿℎ) =
(
ÿ ÿ, ÿℎ

)
Γℎ

, ∀ÿℎ ∈ ý ý
ℎ

(52)

where the term ýℎ represents one of stabilizations from Section 2.3.
Step 3 (ESTIMATE&MARK&REFINE). Fix a 0 < ÿ < 1. Using the dis-

crete solution ÿℎ, we compute the indicator ÿ(ÿÿ ),

ÿ2(ÿÿ ) = ‖�∇ÿℎ�‖2
ÿ2(ÿÿÿ ∩ÿℎ)

+ ℎ2
ÿÿ

‖ÿ ÿ +ΔΓℎ
ÿℎ − ÿℎ‖2ÿ2(ÿ )

+ý∗
ÿÿ

(ÿℎ, ÿℎ)

(53)

on each intersected cell ÿÿ ∈  Γ
ℎ
. Next we determine the smallest by 

cardinality set  ÿ
ℎ

⊂  Γ
ℎ
such that

∑
ÿÿ ∈ ÿ

ℎ

ÿ2(ÿÿ ) > ÿ
∑

ÿÿ ∈ Γ
ℎ

ÿ2(ÿÿ ) (54)

and, ûnally, reûne the cells in  ÿ
ℎ
uniformly.

This completes the ûrst cycle. At the beginning of the next cycle 
the new mesh ℎ, reûned near Γ, of the domain Ω is available and we 
proceed to Step 1.

4.3. Unfitted quadratures and other implementation details

The adaptive stabilized TraceFEM scheme of Section 4.2 was imple-
mented in the Finite Element library deal.II [27,28]. Since the method 
is not standard, we start with discussing some implementation details.

• The degrees of freedom of the level-set function exist across the en-
tire mesh domain, whereas the degrees of freedom of the solution 
are conûned to the colored, active domain of intersected cells. In 
principle, the discrete level-set approximation could have a differ-
ent order or even an independent mesh from that of the solution. 
However, for the sake of convenience, we utilized the same triangu-
lation for both the solution and the level-set in our implementation.

• Given that the mesh contains hanging nodes, ensuring the continu-
ity of the FE spaces deûned on it is necessary for a ÿ1-conforming 
method. This continuity requirement extends to both the discrete 
level-set and the discrete solution. To achieve this, we express the 
continuity condition for each hanging node as a linear combination 
involving local degrees of freedom, which is subsequently incor-
porated into the linear system. We apply a similar post-processing 
technique to the discrete level-set function, deûned by a point-wise 
Lagrange interpolant, to eliminate any gaps in the discrete surface 
Γℎ.

• The implementation of (52) requires the integration of polynomial 
functions over the intersections of the implicit surface Γℎ with end 
cells from  Γ

ℎ
. This procedure is non-standard, and our implemen-

tation relies on the dimension-reduction approach detailed in [29]. 
Notably, this algorithm is purpose-built for quadrilaterals and can 
accommodate higher-order approximations of Γℎ.

• Implementation of stabilization forms ýýý
ℎ

and ýýý
ℎ

requires stan-
dard, e.g. Gauss–Lobatto, quadratures on a three-dimensional cube 
ÿÿ and on a two-dimensional square ý , correspondingly.

• Computation of the indicator (16) involves the same numerical in-
tegration procedures as used for (52).
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Fig. 2. Uniform mesh reûnement for different values of ÿ using the scheme (10) which is based on the ý1 TraceFEM and is stabilized by (13). Left: ‖ÿℎ − ÿÿ‖ÿ2(Γℎ)

error. Right: ‖∇Γℎ
ÿℎ − (∇Γÿ)

ÿ‖ÿ2(Γℎ)
error. The exact solution ÿÿ is of low regularity, ÿ ∈ÿ1+ÿ(Γ) only. The expected reduction of the convergence rates to ℎÿ, for 

the ÿ1-seminorm is observed for ÿ < 1. The ÿ2-norm error appears to be less sensitive to ÿ at least for the tested reûnement levels.

• Although the forcing term ÿ ÿ is not an ÿ2(Γℎ) function, the integral 
on the right-hand side of (52) remains well-deûned, provided that 
none of the surface quadrature nodes intersect the north or south 
poles when projected onto Γ.

• In the course of adaptive reûnement some of inactive cells and 
some active cells not from  ÿ

ℎ
are reûned so that the mesh remains 

graded.

4.4. Uniform refinement

The ûrst example serves to motivate the adaptivity and to test our 
implementation of TraceFEM for ý 1

ℎ
and ý 2

ℎ
ambient spaces. We choose 

the exact solutions (51), ÿÿ ∈ÿ1+ÿ(Γ) with ÿ = 1.0, ÿ = 0.7 and ÿ = 0.4

and solve the discrete problems (10) with ý = 1, ýℎ(ÿ, ÿ) = ýýý
ℎ

(ÿ, ÿ), and 
stabilization parameter ÿÿ = 10ℎ−1

ÿ
. The active domain ÿℎ is reûned 

uniformly and the obtained solutions ÿℎ ∈ ý 1
ℎ
are compared with the 

normal extension ÿÿ of the exact solution ÿ ∈ÿ1+ÿ(Γ). We evaluate the 
following surface error norms,

‖ÿℎ − ÿÿ‖ÿ2(Γℎ)
, ‖∇Γℎ

ÿℎ − (∇Γÿ)
ÿ‖ÿ2(Γℎ)

(55)

and the results are presented in Fig. 2. Optimal rates are observed for 
ÿ = 1.0, which corresponds to ÿ ∈ÿ2(Γ), but, as ÿ decreases, the rates 
deteriorate in accordance with the regularity, ÿÿ ∈ ÿ1+ÿ, of the prob-
lem. Asymptotically, the rate ℎÿ is attained for the energy norm as it 
would be expected for ûtted FEMs.

We conducted the same uniform reûnement test using the gradient-
jump face stabilization ýýý

ℎ
, and the results closely resemble those 

shown in Fig. 2. Therefore, we have opted not to include an additional 
plot. Next, we repeated the test for the ý2 family with ý = 2 in ý ý

ℎ
, em-

ploying the stabilizations ýýý
ℎ

and ýýý2
ℎ

. When ÿ = 1, the convergence 
rates are optimal and correspondent to a ûnite element space of sec-
ond degree. However, in cases of low regularity where ÿ < 1, the rate of 
convergence attains ℎÿ only in the energy norm.

4.5. Efficiency indexes

In the numerical experiments we consider different notions of the 
efficiency. As usual, local efficiency indexes are computed for active 
cells ÿÿ ∈  Γ

ℎ
. These indices gauge how closely the actual error, ÿℎ =

∇Γℎ
ÿℎ−∇ÿÿ, is to the error indicator ÿ on the cell. Accumulated over all 

cells, a reliable indicator estimates the error from above. The indicator 
is said to be efficient if the ratio of the indicator and the error, i.e. the ef-
ûciency index, is bounded from above independent of the discretization 
level.

We will consider three efficiency indexes which differ in the patch 
of neighboring cells contributing to the local error ÿℎ for the cell ÿÿ . To 

compute the indexes, one maximizes the following ratios over all cuts 
ÿ = ÿÿ ∩ Γℎ,

ý1 =max
ÿ

ÿ(ÿÿ )

‖ÿℎ‖Γℎ∩ÿÿÿ

, ý2 =max
ÿ

ÿ(ÿÿ )

‖ÿℎ‖Γℎ∩ÿÿ

, ý3 =max
ÿ

ÿý(ÿ )

‖ÿℎ‖Γℎ∩ÿÿ

(56)

Here ÿℎ = ∇Γℎ
ÿℎ − ∇ÿÿ is the energy error, ÿÿÿ

is the patch of all ac-
tive cells from ÿℎ which share at least a vertex with the cell ÿÿ ; ÿÿ is 
the patch of all active cells from ÿℎ which share with the cell ÿÿ a face 
intersected by Γℎ. Clearly, the efficiency index ý3 accumulates the er-
ror over a single cell ÿÿ only and it is the sharpest way to characterize 
the indicator. The notion of efficiency given by ý3 is too stringent, as it 
is known that the corresponding index blows up numerically even for a 
ûtted FEM. At the same time, the theory of a ûtted adaptive FEM guar-
antees that the indicator is efficient if the error is accumulated over a 
patch of neighbors. This fact suggests that the indexes ý1 and ý2 are rea-
sonable extensions of a similar notion to the unûtted ûnite element. The 
distinction between ý1 and ý2 lies in their dependence on the bulk mesh 
and the surface: in the former, the patch is based on the connectivity of 
the intersected cuts ÿ , while in the latter, it relies on the connectivity 
of the bulk cells ÿÿ .

Remark 4.1. Note that the error part in (56) does not include the stabi-
lization ýℎ because we are interested in the surface error for a solution 
to a surface PDE. This is in contrast to the indicator ÿ(ÿÿ ) and to the 
natural discrete norm of (10) which include the stabilization ýℎ. One 
may question if adding the stabilization ýℎ(ÿℎ − ÿÿ, ÿℎ − ÿÿ) to the de-
nominator of indicators (56) can lead to a notion of efficiency which is 
more suitable to TraceFEM. As we found in our numerical experiments, 
such alternation does not change main conclusions drawn from the nu-
merical experiments. For these reasons, we present the numerical results 
using the efficiency indexes as deûned in (56).

4.6. Efficiency and reliability for the ý1 elements

In this experiment, we assess the reliability and the efficiency of 
the indicator (53) using the ý1 family of polynomials (9). Therefore, 
we choose a low-regularity solution (51), ÿ ∈ÿ1+ÿ(Γ) with ÿ = 0.4, of 
the Laplace–Beltrami problem (3) posed on the unit sphere. We run the 
adaptive TraceFEM stabilized by ýℎ = ýýý

ℎ
with ÿý = 10 and by ýℎ = ýýý

ℎ

with ÿÿ = 10ℎ−1
ÿ
and evaluate surface errors (55).

The numerical results, as presented in the top panel of Fig. 3, con-
ûrm the a posteriori analysis conducted in Section 3. Optimal rates are 
observed with both stabilizations, ýýý

ℎ
and ýýý

ℎ
, as shown in Fig. 3, 

and fewer degrees of freedom appear to be needed while using ýýý
ℎ
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Fig. 3. Adaptive reûnement with ÿ = 0.5 using the indicator (16) for the ý1 TraceFEM. Left: ýýý
ℎ

stabilization with ÿÿ = 10ℎ−1
ÿ
. Right: ýýý

ℎ
stabilization with ÿý = 10. 

Top: surface errors (55) for ÿℎ = ÿℎ −ÿÿ and the global estimator (
∑

ÿ ÿ2(ÿÿ ))
1∕2. Bottom: efficiency indexes (56) for different patches of neighbors. The exact solution 

ÿ ∈ÿ1+ÿ(Γ) with ÿ = 0.4 is given by (51) on the unit sphere Γ. We observe that the indicator (16) is reliable and efficient for ý1 TraceFEM with both stabilizations.

to achieve comparable errors. Furthermore, in the plots of the bottom 
panel in Fig. 3, we evaluate the efficiency indexes (56) corresponding to 
several notions of efficiency discussed in Section 4.5. The indexes ý1 and 
ý2 suggest the efficiency of the indicators for ý1 adaptive TraceFEM.

4.7. Efficiency and reliability for the ý2 elements

We proceeded to repeat the experiment for the ý2 TraceFEM, em-
ploying the discrete space ý 2

ℎ
for both the solution ÿℎ and the surface 

approximation Γℎ, following the same adaptive algorithm outlined in 
Section 4.2. In this case, for the gradient-jump face stabilization, the ýýý

ℎ

form was replaced by the ýýý2
ℎ

form with ÿý = 10. As shown in the top 
panel of Fig. 4, the ý2 TraceFEM with gradient-jump face stabilization 
exhibits optimal convergence rates in the ÿ2 and ÿ1 norms, while the 
ý2 TraceFEM with normal-gradient volume stabilization shows almost 
optimal rates in the ÿ1 norm (which is the goal of the suggested indi-
cator (16)) and suboptimal rates in the ÿ2 norm. Nevertheless, similar 
to the ý1 case, the normal-gradient volume stabilization attains consid-
erably smaller errors in both norms for the same number of unknowns. 
Unlike the ý1 scenario, the efficiency indexes in the ý2 case exhibit lin-
ear growth with the number of degrees of freedom, as depicted in the 
bottom panel of Fig. 4.

4.7.1. Effect of the stabilization parameter in ýýý2
ℎ

It was observed in [3] that the performance of the stabilization ýýý2
ℎ

deûned in (12) is sensitive to the choice of the stabilization parame-
ters. We would like to demonstrate how different values of ÿý affect the 
adaptive TraceFEM with indicator (53).

We did not observe improvements in efficiency by tuning the pa-
rameter ÿý in Fig. 4, where we used ÿý = 10. To illustrate this point, 
we present the results of adaptive TraceFEM for two extreme values 
of the stabilization parameter: ÿý = 0.1 and ÿý = 1000, as shown in 

Fig. 5. Similar to Fig. 4, the convergence rates are nearly optimal for 
both extreme values. However, when ÿý = 1000, achieving the same 
level of accuracy requires more degrees of freedom compared to the 
case of ÿý = 0.1.

This behavior of errors is consistent with what is typically observed 
during uniform reûnement. In the adaptive setting, the indicator ÿ in-
cludes the stabilization, and when ÿý = 1000, the estimator focuses on 
reducing the contribution of the stabilization ýℎ(ÿℎ, ÿℎ) to the error func-
tional | | |ÿℎ| | |, as illustrated in the right panels of Fig. 5.

5. Conclusions

In this paper, we explore the application of adaptive stabilized Trace-
FEM for the ûrst time. We focus on solving an elliptic problem on a ûxed 
surface using the two lowest-order continuous ûnite element spaces 
based on ý1 and ý2 elements. For each family, we investigate both 
the gradient-jump face and normal-gradient volume stabilizations.

Our analysis demonstrates that the error indicator in the proposed 
adaptive TraceFEM is reliable, and our numerical tests conûrm the the-
oretical ûndings. Speciûcally, for ý1 elements, a reasonable choice for 
low-regularity solutions, we establish a robust and practical adaptive 
stabilized TraceFEM scheme. In the case of ý2, the efficiency indexes 
grow proportionally with the number of active degrees of freedom.

Another signiûcant contribution of this paper relates to the practi-
cal implementation of the proposed indicator. Rather than computing 
gradient jumps along one-dimensional curvilinear edges between sur-
face patches, which can be computationally intensive due to the im-
plicit surface description in TraceFEM, we evaluate gradient jumps on 
two-dimensional faces between bulk cells. This approach simpliûes the 
implementation of the indicator.

In conclusion, we recommend caution when using the ý2 element in 
adaptive stabilized TraceFEM schemes, while the ý1 element provides 
a highly robust adaptive method.
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Fig. 4. Adaptive reûnement with ÿ = 0.5 using the indicator (16) for the ý2 TraceFEM. Left: ýýý
ℎ

stabilization with ÿÿ = 10ℎ−1
ÿ
. Right: ýýý2

ℎ
stabilization with 

ÿý = ÿ̃ý = ÿ̃Γ = ÿΓ = 10. Top: surface errors (55) for ÿℎ = ÿℎ − ÿÿ and the global estimator (
∑

ÿ ÿ2(ÿÿ ))
1∕2. The exact solution ÿ ∈ÿ1+ÿ(Γ) with ÿ = 0.4 is given by 

(51) on the unit sphere Γ. The indicator (16) is reliable in the energy norm for the ý2 TraceFEM with both stabilizations. The growth of all indexes shown on the 
bottom panels suggest the lack of efficiency. Unlike the energy norm, for which the indicator was designed for, convergence rate in ÿ2 norm appears to be suboptimal 
for the ýýý

ℎ
stabilization.

Fig. 5. The effect of the stabilization parameter ÿý on the adaptive reûnement in Fig. 4. Left: ÿý = 0.1. Right: ÿý = 1000. Surface errors (55) for ÿℎ = ÿℎ − ÿÿ and 
the global estimator (

∑
ÿ ÿ2(ÿÿ ))

1∕2 are shown. We observe that decreasing the stabilization parameter does not improve the lack of efficiency while increasing it 
postpones the asymptotic regime of convergence.
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