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ARTICLE INFO ABSTRACT

Keywords: The paper introduces an adaptive version of the stabilized Trace Finite Element Method (TraceFEM) designed
Surface PDE to solve low-regularity elliptic problems on level-set surfaces using a shape-regular bulk mesh in the embedding
Tracf" FEM space. Two stabilization variants, gradient-jump face and normal-gradient volume, are considered for continuous
it;:;l:;?;on trace spaces of the first and second degrees, based on the polynomial families Q; and Q,. We propose a practical
Level set error indicator that estimates the jumps’ of finite element solution derivatives across background mesh faces and
Unfitted grid it avoids integration of any quantities along implicitly defined curvilinear edges of the discrete surface elements.

For the Q, family of piecewise trilinear polynomials on bulk cells, the solve-estimate-mark-refine strategy,
combined with the suggested error indicator, achieves optimal convergence rates typical of two-dimensional
problems. We also provide a posteriori error estimates, establishing the reliability of the error indicator for the
Q, and Q, elements and for two types of stabilization. In numerical experiments, we assess the reliability and
efficiency of the error indicator. While both stabilizations are found to deliver comparable performance, the
lowest degree finite element space appears to be the more robust choice for the adaptive TraceFEM framework.

1. Introduction

The Trace or Cut Finite Element Method is one of the approaches
used to approximate surface Partial Differential Equations (PDEs) [1,2].
It falls into the category of geometrically unfitted methods because the
domain of a variational problem, a two-dimensional surface denoted as
I', is embedded within a three-dimensional triangulated domain Q that
is a subset of R3, such as a sufficiently large cube. Identifying the active
mesh, denoted as Q;, C Q, and performing local refinement or any other
mesh cell updating procedure is straightforward due to the geometrical
simplicity. We refer to Fig. 1 for a visual representation. Furthermore,
handling data structures on the octree mesh €2, can be implemented effi-
ciently and is available in many finite element libraries. This flexibility
is one of the advantages of the Trace Finite Element Method (Trace-
FEM). However, it comes with the cost of constructing quadratures on
the intersections of I' with cells from Q,. The size and shape of these
intersections vary uncontrollably between cells, leading to the necessity
for a stabilization term, similar to s, in equation (1), in any TraceFEM
discretization of surface problems. Several variants of such terms are
available in the literature [1,3], but in this context, we will only consider
the ‘gradient-jump’ face stabilization and the ‘normal-gradient’ volume
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stabilization. These methods have been successfully used and proven to
be practical and robust.

Adaptive strategies within the context of stabilized TraceFEM are not
yet well-understood. Previous discussions on adaptivity in the Trace-
FEM setting can be found in the literature [4,5]. In [4], there is no
stabilization, and an inferior (as seen in the comparison in [1]) ‘full-
gradient’ stabilization is considered in [5]. Additionally, both papers
only considered piece-wise linear finite element spaces, with [4] as-
suming tetrahedral meshes and [5] using octree meshes. We extend
the adaptive methodology introduced in [4] by studying the first and
second-order stabilized TraceFEM on octree meshes. Another novel as-
pect is the consideration of two stabilizations, namely siF (as defined in
(11))and s 2’ V' (as defined in (13)), in the context of adaptive TraceFEM.

Many mathematical models involving surface PDEs necessitate the
use of adaptive numerical methods. For instance, the dynamics of liquid
crystal films can give rise to the formation of defects [6-9]. Mathemat-
ically, a defect in a liquid crystal film corresponds to low regularity
solutions of the governing PDEs on surfaces. From a numerical modeling
perspective, this entails the need for adaptive refinement and coarsen-
ing as the defect forms and evolves along the film. The evolution of
defects is driven by variations in the energy of the liquid crystal and the
mass flow, which are governed by the surface Navier—Stokes equation
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[9]. The necessity of addressing these coupled phenomena numerically
serves as motivation for the development of adaptive surface FEMs with
both first and second-order polynomial accuracy.

In this paper, our focus is on adaptive strategies for the stabilized
TraceFEM applied to the Laplace-Beltrami equation, which serves as a
prototypical elliptic problem on a surface I" [10]. An overview of the mo-
tivation and the main results follow. At this point, we will omit certain
technical details regarding the geometrical consistency of the adaptive
method. To begin, consider an abstract variational problem on a surface
I': given f € H~!(I"), we seek to find u € H' (') such that a(u, v) = {f,v)
for all v € H'(I'). We assume that the bilinear form a is symmetric and
coercive. In the TraceFEM, the discrete space V), is defined on a graded,
regular bulk mesh €, and we solve the following discrete problem:

Yo, €V (€}

Here, a stabilization form s, ensures the algebraic stability of the re-
sulting linear algebraic system. Residual and jump indicators can be
derived [11] from the integration by parts in a(uy,v;,), as done in [4]
for an unstabilized TraceFEM. However, in our case, the stabilization s,
is incorporated into an a posteriori estimate.

We would like to highlight two important aspects of the adaptivity
methodology for the method (1):

a(up, vp) + sy, vp) ={f,v,),

+ The jump indicator requires the construction of non-standard one-
dimensional quadratures to handle curved intersections of the sur-
face with faces of bulk cells. The associated implementation burden
represents a practical inconvenience of the adaptive TraceFEM ap-
proach introduced in [4].

We have observed that the ratio s, (uy,,u;)/a(uy,u;,), where both
forms are restricted to a single bulk element, often exhibits signifi-
cant growth, even for uniformly refined meshes. Consequently, the
inclusion of the stabilization term s, in an error indicator has the
potential to compromise its efficiency.

To address the first aspect, we propose an alternative error indica-
tor designed for adaptively refined, graded, octree tessellations of the
bulk domain Q, denoted as Q,. This novel indicator is reliable and
straightforward to compute, as it eliminates the need for integration
over the curved intersections of an implicitly defined surface with two-
dimensional faces of the bulk cells. Instead, the indicator incorporates a
jump term that only requires the use of a standard 2D quadrature for the
faces of the bulk mesh cells. Moreover, for the TraceFEM stabilized with
the gradient-jump face stabilization, this term is already an integral part
of the method.

As for the second aspect, it is worth noting that the efficiency analy-
sis of TraceFEM indicators remains an open question to the best of our
knowledge. To explore this further, we undertake a comprehensive nu-
merical investigation to assess the efficiency of the new indicator. In
the case of stabilized TraceFEM with Q, finite elements, the indicator
is found to be efficient. However, in the O, case, efficiency gradually
diminishes, although the convergence rates for the adaptive gradient-
jump stabilized TraceFEM still appear to remain optimal.

The remainder of this paper is organized as follows: Section 2 intro-
duces the stabilized adaptive TraceFEM along with a new computation-
ally practical indicator. In Section 3, we provide a proof of the reliability
estimate for the indicator. In Section 4, the adaptive method is tested
numerically for low-regularity solutions to the Laplace-Beltrami equa-
tion on the unit sphere. We assess both the reliability and efficiency
of the method, considering Q; and Q, conforming finite elements de-
fined on octree meshes. Furthermore, we perform experiments using the
adaptive TraceFEM with two different stabilizations.

2. The adaptive trace finite element method

We are interested in the geometrically unfitted finite element method
known as the TraceFEM [12]. The method considered in this section is
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an extension of the TraceFEM and stabilization techniques introduced
in [2,13,14] to hexahedral bulk octree meshes. After formulation of the
method for our model problem, the Laplace-Beltrami equation, we in-
troduce error indicators and an adaptive discretization.

2.1. Model problem

Let Q be an open domain in R? and let I" C Q be a smooth connected
compact and closed hyper-surface embedded in R3. For a sufficiently
smooth function g : Q — R the tangential derivative on I' is defined by

Vrg=Vg—(Vg-mn,

where n denotes the unit normal to I'. Denote by divy = tr(V) the sur-
face divergence operator and by A = V[ - V[ the Laplace-Beltrami
operator on I'. The Laplace-Beltrami equation is a model example of
an elliptic PDE posed on the surface I'. The equation reads as follows:
find u : I' > R satisfying

—Aru+u=f on T (2)

The zero order term is added to avoid non-essential technical details
of handling one-dimensional kernel consisting of all constant functions
on I'. The problem is well-posed in the sense of the weak formulation:
Given f € H-!(I), find u € H'(I') satisfying

/

r

(Vru-VrU+uu)ds=/fuds VUEHl(F). 3)
r

If f € L*(I"), then the unique solution satisfies u € H*(I") and ||u| zy2 ) <
c|lf L2(D) with a constant ¢ independent of f; see [15].

2.2. Discretization

We assume an octree cubic mesh 7, covering the bulk domain Q. In
addition, we assume that the mesh is gradually refined, i.e., the sizes of
two active (finest level) neighboring cubes differ at most by a factor of 2.
Such octree grids are also known as balanced. The method also applies
for unbalanced octrees, but our analysis and experiments use balanced
grids. The set of all active (finest level) faces is denoted by d7,. The
mesh is not aligned with the surface I', which can cut through the cubes
with no further restrictions.

By I';, we denote a given approximation of I such that I', is a C!
piecewise smooth surface without boundary and I';, is formed by smooth
segments:

=T

TEF,

4

where 7, ={T cI'), : T=T,nS, forS€7T,}. Foragiven T € F,
denote by S; a cube Sy € 7, such that T C Sy (if T lies on a side
shared by two cubes, any of these two cubes can be chosen as S7).

In practice, we construct I';, as follows. Assume ¢ is a signed distance
or general level set function for I'. We define I';, as the zero level set of
¢y, a piecewise polynomial interpolant to ¢ on 7:

T, :={x€Q : $,(x)=0}.

For geometric consistency, the polynomial degree of ¢, is the same as
the degree of piecewise polynomial functions we use to define trial and
test spaces in a finite element formulation. In some applications, ¢,
is recovered from a solution of a discrete indicator function equation
(e.g. in the level set or the volume of fluid methods), without any direct
knowledge of I". Assumptions of how well I', should approximate I" will
be given later.

The unit (outward pointing) normal to I';, vector n, = V¢, /|V,|
is defined almost everywhere on Q. We also define P,(x) :=1 —
n,(x)n,(x)T for x €T, x not on an edge. The tangential derivative



T. Heister, M.A. Olshanskii and V. Yushutin

along I'; is given by Vr, g =P, V¢ for sufficiently smooth g defined in
a neighborhood of I';,.

Consider a subdomain w; of Q consisting only of those end-level
cubic cells that contain I';:

o= ) S, withT =(S€T, : S=Spfor T €F;}. 5

serl
The piecewise constant function hg : @, — R denotes the bulk cubic
cell size. Denote by X, the set of all end-level internal faces of Thr , e
square faces between intersected cells from Thr,

3, ={F€aT, : F€int(w,)}. (6)

The piecewise constant function Ay : X, — R denotes the face size.
Since the mesh is gradually refined, hp = min(h S;,h s; ), where

S;E,S; € Thr are the two bulk cells which share the end-level face
FeXz,.

We are also interested in the set of all faces which are intersected by
Iy,

T, ={F€X, : FnT,#0). @

Intersected faces are necessary internal, so that EZ C X, but the oppo-
site inclusion does not hold.

For each cell S, let Mg be the affine mapping from the reference
unit cube. Then the finite element space of order k is defined as:

VE:i={veC,) | vlsoMg€Q, .Y SET]), ®)

where Q, is the Lagrangian finite element basis of degree k. In case of
k=1,V,= Vh1 is the space of piecewise trilinear functions correspond-
ing to the family

9

Q1 =span{l,x,X,, X3, XXy, X1 X3, Xy X3, X X2 X3 }.

Note that we consider H'! -conforming (i.e., continuous) finite elements.
In this paper we restrict to k =1, 2.

Let f° be an extension of f from I to I';,. The finite element formu-
lation reads: Find u;, € V}{‘ such that

/(Vrhuh-Vrhvh +uhvh)ds+sh(uh,uh):/f"uhds Vvhthk.
T T

(10)

Here s, is a stabilization term defined later. The purpose of the stabiliza-
tion term is to enhance the robustness of the formulation with respect to
position of the position of I'j, in the background mesh 7},. In the context
of TraceFEM the idea of stabilization was first introduced in [2].

2.3. TraceFEM stabilizations

We are interested in the two commonly used variants of the stabiliza-
tion terms s, in (10). In both cases, the stabilizing term can be assembled
elementwise over all end-level cubes intersected by I';,:

st o)=Y S5yv,), *€{JF,JF2,NV)
N=

1. Gradient-jump face stabilization is the method introduced in [2]
following the cutFEM approach developed for the volumetric prob-
lems. In the context of the TraceFEM, this stabilization is often used
with quasi-uniform bulk meshes, stationary surfaces, and lowest or-
der elements; see e.g. [16,17,13,14].

In this variant, local stabilizing terms are computed over cube’s
faces which are in the active skeleton (6),

s (uy,vp) = Z /UF [Vup] - [Vosl
F

Feasnz,

1D
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where o is O(1) stabilization parameter, and [Vu,] = (Vuy)|g+ —
(Vup)lg-, F=S~NnST, is a “jump” of the gradient across the face.
Note that for continuous FE, stabilization (11) is equivalent to pe-
nalizing the jumps of normal derivatives across faces.

A higher-order version of sz F was suggested in [18] and analyzed
for quasi-uniform meshes in [3]. For Q, elements it reads:
S_J;Fz(uh, vy) = SéF(uh, vp) + or(ny, - Vu,)(my, - Vu,)

rpyns

+

/&Fhi‘ g - [V2upIng)ng - [V20,]ng)
Fedsns,

F
+ / Grh (g, - (Viu)n,)(@my, - (Vom,),  (12)
ryns

where or, 65, and 61 are O(1) tuning parameter. The bilinear form
st 2 stabilizes the trace finite element space Vh2 in the case Q,
polynomial family as shown in [3]. In that paper, a more general
stabilization hysZF 2,0 <y <2, was considered and the sensitivity
of the method to all stabilization parameters was explored. In our
numerical results for Q, family, we choose o =6 = 6 = o.
We see that the gradient-jump stabilization gets quite complicated
for higher order elements. Below we consider a normal-gradient
volume stabilization, which is universal with respect to the FE de-
gree.

. Normal-gradient volume stabilization was introduced in [13,14]
and it penalizes the variation of the FE solution in the normal di-
rection to the surface. This property was found particularly useful
for applying TraceFEM to problems posed on evolving surfaces [19]
and so it is commonly used in this context [20-23]. The stabiliza-
tion reads:
sV (upovp) = / psy, - Vu,)(ny, - Vo), 13)

Ky

where pg is the stabilization parameter, constant in each cell such
that

Ps :hgl for SeThr.

Note that n, = V¢, /|V¢,| is well-defined on w, so the integral in
(13) makes sense.

2.4. Error indicators

One of the goals of this paper is to construct a new TraceFEM error
estimator which does not involve complicated and expensive computa-
tionsonedgesI',NF, F € ZE. These edges are available only implicitly
as intersections of I';, with bulk faces. Moreover, one needs to construct
an immersed edge quadrature on each intersected face from 21,: which is
a significant computational burden. Again, note that some of the faces
from 22 are subfaces of bulk cells which complicates the accumulation
of flux jumps even further.

To this end, we define the bulk jump indicator:

npST) = Vupll 208,00, ST € T 14

Note that the indicator (14) assesses the variation of the solution gradi-
ent across internal, square faces shared by the cubic cells in Thr rather
than across the implicit edges ', N F, F € =I' as done in [24,4,5]. The
former is more straightforward to compute. Also note that (14) is ac-
cumulated over all faces from (6) rather then just the intersected faces
from (7).

We will also need the surface residual indicator,

nR(T) = hg |1 fn + Ar,up = upll 20 1s)
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which was already used in [24,4,5]. The computation of the (15) re-
quires integration over surface cuts T =T, N Sy, S; € Thr which is a
standard procedure in the implementation of TraceFEM (10).

Thus, for the purpose of local mesh adaptation we use the following
error indicator:

NSE) 1= (@nR(TY + agnp(Sp) + sy ut)? 16)

with some parameters a,, a,, a, > 0.

Remark 2.1. Note that for the gradient-jump face stabilization, the so-
lution’s jumps over faces (i.e. the 5;(Sy)? quantity) are included in
s’;T (up,,uy,) term and so the face indicator is extra and we let a, =0 in
the cases of O, and Q,. Otherwise, in our numerical experiments with
normal-gradient volume, we choose a, =a, = a, = 1.

In this paper we do not consider any indicator of the geometric er-
ror resulting from the approximation I" and other geometric quantities.
They are assumed to be of a higher order with respect to .

Results of experiments in Section 4 show that the trace FE adaptive
method based on #(T") results in the optimal convergence of the adaptive
method in H! and L? norms.

3. Reliability

In this section we prove an a posteriori error estimate that implies the
reliability the error indicator (16). We start with several preliminaries.

3.1. Preliminaries

For the surface I', we consider its neighborhood:

o) = {x e R? | dist(x,I) < &}, a7

with a suitable ¢ depending on I' such that @, C O(I") C Q and the nor-
mal projection p : OT') - T,
p(x) =X — d(x)n(x)

is well-defined. Hereafter d € C%(O(")) denotes the signed distance
function such that d < 0 in the interior of I' and d > 0 in the exterior,
and n(x) := Vd(x) for all x € O(T'). Hence, n is the normal vector on I
and |n(x)| = 1 for all x € O(T"). The Hessian of d is denoted by

H(x) := V2d(x) eR™3, xe0OM).

The eigenvalues of H(x) are the principal curvatures «(x), k,(x), and 0.
We assume the following estimates on how well I';, approximates I':
hk+1 , (1 8)

(19)

€ss SUPyer, [dx)| <¢;
k
ess Supyer, IN(X) — 0, (X)| < A%,

with constants ¢;, ¢, independent of 4 and k € {1,2} in the FE degree.
The assumption is reasonable if I is defined as the zero level of a (lo-
cally) smooth level set function ¢ and I',, is the zero of an ¢, € V},,
where ¢, interpolates ¢ and it holds

ll = bl Lo oury + AV (D = bp)ll ooy S
Here and in the remainder, A < B means A < ¢ B for some positive con-
stant ¢ independent of the number of refinement levels and the position
of I';, in the background mesh.

For x€l'y,, define pu,(I)(x)=(1-d(x)x(x))(1-d(X)x, (x))n” x)ny,(x).
The surface measures ds and ds;, on I" and I, respectively, are related
[24] by

up(D)(x)ds, (x) = ds(p(x)), (20)

The solution of the Laplace-Beltrami problem and its data are de-
fined on I', while the finite element method is defined on I';,. Hence, we

xel,.
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need a suitable extension of a function from I to its neighborhood. For
a function v on I" we define

v*(x) :=v(p(x)) forall x € OI).

The following formulas for this extended function are well-known (cf.
section 2.3 in [24]):
Vi (x) = (I - d(x)H)Vu(p(x))

in O, @1

Vr,, u'(x)=P,x)A-dx)H)Vru(p(x)) a.e.only, (22)

with H = H(x). For x € I, also define f’h(x) =I- nh(x)n(x)T/(nh(x) .
n(x)). One can represent the surface gradient of u € H I(T) in terms of
Vr,u¢ as follows

Vru(p(x)) = I - d(x)H(x))™! f’h(x)Vrh u(x) ae xerly. (23)
Due to (20) and (23), one gets
/ VruVypods = /A,Z Vr,uVr,v°ds, forallve H\(D), @4

r r,

with A, (%) = #,(OPT () - d(OH(x)) 2P ().
For sufficiently smooth u and |y| < 2, it holds (cf. Lemma 3 in [10]):

|D*uf ()] S < 1Dk u(p)] + |Vru(p(x))|> in O). (25)

|ul=2

We need the following uniform trace inequalities. For any end level
cell S C w;, and its face F C S it holds

10132 5,y S 75 1000 g+ AsIVONT, o V0 E H(S). (26
2 -1 2 2 1
10135 g, S B N0NT5 ) + REIVONDs ) Y 0 E HICE). @7)

Note that for graded octree meshes it holds 4y ~ hg. The proof of (26)
follows by subdividing any cubic cell into a finite number of regular
tetrahedra and further applying Lemma 4.2 from [25] on each of these
tetrahedra. Similar procedure is applied to prove (27).

We will use the following notation

a,(u,v) :=/(Vrhu-Vrhv+uu)dsh.
T

3.2. A posteriori estimate

In this section, we deduce an a posteriori error estimate for the Trace-
FEM (10). For the sake of analysis we make the following assumptions:

(i) The octree mesh is gradually refined;

(ii) For any s € I" denote by K(s) a number of end-level cubic cells from
wj, intersected by the line £#(s) = {x € OI') : p(x) =s}. We assume
K(s) < K with a constant K independent of s and the number of
refinement levels.

In practice, the first assumption can be satisfied by triggering the
refinement of any cell which has a finer neighbor already marked for
refinement. The second assumption does not pose any practical restric-
tions and in experiments we observed that K(s) is small for all s sampled
for testing. An explanation of why Assumption (ii) is reasonable relies
on the smoothness of I" and the use of gradually refined meshes. Indeed
for a C2 surface, one can choose such O(1) neighborhood O(I') that £(s)
intersects I" only once at point s. Assume K(s) - co with a mesh re-
finement for some s € I'. Since the end-level cells are getting arbitrary
small, this implies that £(s) intersects or touches I at the point of accu-
mulation. However, such only point can be s and #(s) L I'(s) while I" is
increasingly flat in the local (mesh) scale. For a graded mesh, this may
result only in a finite number of intersected end-level cells.
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Consider the surface finite element error e, = u® — u;, in w,. By eél
we denote the lift of the error function on O(I), elh (x) = u(p(x)) — up(s)
with s € I', such that p(s) = p(x). Note that eél is constant in normal
directions to I, i.e. eél = (e’h |)¢. Further we prove an a posteriori bound
for the augmented H'-norm of eil onT, i.e. for

|||eh|||2 = a(eil,e;l) +sp,(ep,ep),  with a(u,v) = /(Vl—u -Vrv+uv)ds.
r

(28)

Using straightforward calculations and (24) one checks the following
identities for any y;, € V,

2 ! Il
e, Il =/fehds—a(”hveh)'i‘sh(eh,eh)
Tr

:/feeh/‘hdsh_/fhwhdsh+ah(”h’l//h)+sh(uh"/’h)
Ty Ty

1ol
—a(uy,e;) + sp(ep.ep)

=/(fe/"h_fh)ehdsh+/fh(eh_wh)dsh+ah(uh’wh_eh)
I Iy

+5,(up, vy —ep) — /(Ah —Py)Vr,uy - Vr, e, dsy,.
T
(29

Element-wise integration by parts for the third term on the right
hand side of (29) gives

ap(up,wy, —ep) = /(Arh”h —up)(ep —wy) dsy,
Tp

‘%2

TEF,

(30)
/[[Vrhuh]](eh - l[/h) dr.

aT
The Cauchy inequality gives

=
]

Z s, = ep Wy —ep)
sery

Splup, Wy —ep) < Z g (up,up)
seryr

Substituting (30) into (29) and applying the Cauchy inequality ele-
mentwise over F), to estimate integrals, we get

Mewl® s D (17 = full2cry + 145 = Pall oer IV, a2y )
TEF,

Xllepll i)

1 1
2 2
+< 2 nR(T>2> ( 2 hsllen —wh||§2m>
TeFy TeFy
1 1
2 2
2 -1 2
+< > hSTn[[vrhuhﬂnaT) < > hSTueh—whan((,T))
TeFy, TeF,

1 1

2

Z S*S(Wh —ep Wy —ep)
serl

+ Z s (up,up)

serl
31

To proceed further we need several results, which we split into a few
lemmas.
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Lemma 3.1. For all T € F, it holds

hs NIV, 41325 S 16 (ST 32)
Proof. Recall that the face-based indicator #(Sy) for a cell S includes
all internal faces F € 057 N X, rather than only faces from 057 N El;l.
Also note that [Vp, u,] = [P, Vu,] is a rational function of a finite de-
gree on each face of S;. Application of the uniform trace estimate (27)
followed by the FE inverse estimate on each face F C 057 n ZZ gives
the assertion. []

Lemma 3.2. The following bound holds for both stabilizations and FE de-
grees:

Sown —epwy —ep) S sglepep) + h;;] ”VW"HZLZ(w(S))’ (33)

where w(S) denotes a union of cubic cells from w,, sharing faces with S.

Proof. We first apply the triangle inequality to show

SsQwy —enwy — ep) <2(sg(ep. ep) + S (W wp)) (€2))

We need to estimate the second term on the right-hand side. For the
gradient-jump stabilization and k =2 we have

2
L2(T,NS)

2

~ 72 2
+ Urhs||nh vV W”)nh”LZ(thS)

SgFZ(l//hJI/h) =orlny, - Vy,ll

>

(or VWA, + Sk Ing - [Vwdngl, ) ). G39)
FeasSnz,

L2(F)

To estimate the first two terms on the right-hand side of (35), we
apply the trace estimate (26):

- Vil sy S IVWRIT s o)
S HS VWl 5, + s IV W1
S IVl
Rl - (Vw0 SHIVAGIT o S AVl )
S VRl )

(36)
To estimate the third and fourth terms on the right-hand side of (35),
we apply the finite element trace and inverse inequalities:

2 2
2 or VWl ) S IV s,
FeaSny,

ShG V2

LX((S))
2 hplne [VInel, ) S RSVl 37)
FeosSnz,

12(05n%y)
202
ShsllV Wh”Lz(w(S))

-1 2
S hS ”Vlllh”Lz(w(S)).

The combination of (35)-(37) gives

s 2w wa) S IV s (38)

Of course, the same bound (38) holds also for kK = 1. For the normal-
volume stabilization we have

hgtiny, - V|2 (39)

SgV(lI/h,Wh)=/’s||nh : VII/h”Z S 12(S)’

LX)~

where we used that pg is an O(hgl) parameter. Substituting (38) and
(39) in (34) proves the lemma. []

Due to geometric approximation properties (18), (19) and “lifting”
identities (20) and (22) we have
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”eh”Hl(Fh) b ||e£,||1-11(r)~ (40)

Lemma 3.3. There exist y;, € V), such that

-2 2 -1 2 *
D) (152 e = wallZ g, + Bistlew = vl o, + 55w = € v — )|
€Fn

S llepll*.
(41)

Proof. To handle the edge term on the left-hand side of (41), we need
some further constructions: For a curved edge e C dT denote by F, C
0Sr the face of S such that e C F,. Denote by w(e) C 7, the set of all
cubic cells touching F,. Let ¢, be the natural polynomial extension of
the level-set function ¢h|ST and fh(e) ={xe€wl) : (ﬁh(x) =0} be a
smooth approximation of I" locally in w(e). Note that due to the graded
refinement assumption there is a hg_/2 neighborhood of e in IN“h(e).

Then for p € H'(T',(e)) in holds

2 -1 2
1o, S st ol

_ 2
T LZ(F;,(B)) + hST ”Vrh(e)p” (42)

L2([pe))

The estimate (42) follows from a standard flattening argument and ap-
plying a trace inequality as in (27).
We apply the bulk and (26) trace inequalities and (42) to estimate

2 2 -1 2
hgllen =wall}sp, + %}Thsr||eh villha,
eE

3, _ 2 -1 I _ 2
s hS—r”eh Wh”LZ(ST) + hST ||V(€h Wh)”Lz(ST)
21, _ 2 ol 2
+ 3 (M2l = vl o+ IV Chmwl, )
eedT
< h=3. _ 2 -1 I 2
~ hST ”eh Wh”Lz((u(e)) + hST ”V(eh Wh)”Lz(w(e)) (43)
Ve o 2 2 )
+ 2 (” Rl @, o) FIVYAI o)
ecoT
<h3e — 2 -1 I _ 2
SNl =Wl o + IV =W )
12 -1 2
+ 2 (”VFeh”H(th(e)»+hSr||VW”||L2<w<e>>>’
eedT
where we used an estimate
]l _ ! ~
”Vrh eh”LZ(r,,(e)) S ”Vl"eh ||L2(p(rh(e)))’ (44)

which holds due to (20), (22) and the fact that (18), (19) also hold for
the locally extended I'j, with possibly different O(1) constants ¢;, c,.
Also note that for any lifted function ul e Lz(wh)

12
el

< 12
25y Shs I

L2(p(S))’

Thanks to our assumption (i) there is a Scott-Zhang type interpolant
wy €V, of ¢, € H'(Q) [26] such that

(45)

hgtlel = will 2s) + IVl 2s) S eh oy ¥ S € Q. (46)

where w(.5) is defined as follows: Let @(S') consist of S and of all end-
level cubic cells touching S, then @(S) is a patch of cells defined as
the union of @(S) and of all end-level cubic cells touching @(S). We
assume ¢ in (17) to be sufficiently large and & sufficiently small that
w(S) cO) for all § €Q,.

Applying in (43) the estimates from (46), (45) and the result from
Lemma 3.1 yields

-2 2 -1 2 .
sz [hST lle, — 1//;,||L2(T) +h, ||eh—Wh||L2(aT)+SST(l//h —ep Wy — eh)]
EFn

< —1)1,0 12 12 -1 2 )
s 2 (hSr”eh”H'<w(ST>)+”VFehl|L2<p<w<ST)>>+hS VWAl 2 sy
TeFr,
-1 12 12
s 2 (hSr il sy * ”VFeh”LZ(pwa))))
TeFy,
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< 112
S 2 1 sy “47)
Sewy

In the last inequality we also used the fact that for the graded octree
mesh diam(w(Sr)) =~ hg, . Due to assumption (i) any cell S may belong
to a uniformly bounded number of patches. Thanks to this and assump-
tion (ii) any x € I' may belong to the projections of patches which total
number is also uniformly bounded. This establishes the bound

12
S llegll

O (48)

> lley, 2
H! S
TR, (P((ST)))

Using (43)—(48) proves the lemma. []

Combining (31), (32) and (40), (41) gives the following a posteriori
error estimate

1

2
el s( 2 N un = 1l + 1A —Ph||im(r)||vrhuh||izm>
TeF,

+ <
TEF,

2

2
[nR(T)2 +rp(Sp)? + s’;T(uh,uh)D . (49)

Assume that local grid refinement leads to better local surface re-
construction, i.e. (18) and (19) can be formulated locally, then it holds
Wfemn = fulliaary + 1A, = Pyl poory = O(h**1). In this case, the first
term on the right-hand side of (49) is of higher order if k > 1 for Q; and
k>?2for k=2.

4. Numerical examples

This section presents a numerical study of an adaptive version of
the stabilized TraceFEM (10), which relies on the novel indicator (49).
First, we provide details of the adaptive algorithm, including the surface
approximation, in Section 4.2. Next, we confirm a posteriori estimates
for the families O and Q,. Moreover, we address the efficiency of the
indicator using a manufactured solution. We test both gradient jump
and normal gradient volume stabilizations. However, we omit the bulk
jump indicator #;(Sy) (14) in the proposed indicator (53) if the Trace-
FEM scheme (52) is stabilized by including st or s}{F 2 forms; see
Remark 2.1.

4.1. A low-regularity test case

This section discusses the model problem (3), the solution of which
is not regular enough to provide optimal rates of convergence if uniform
refinement is employed. We consider the unit sphere I" and a family of
solutions u =u,; € H'*4(I'), 0 < A < 1, such that

—Aru+u=f, (50)

with the forcing f = f, € H*~1(I'). Consequently, by choosing different
values of A, we may obtain exact solutions of desired regularity. An
example [5] of such a family is given in spherical polar coordinates
(¢,0), 6 €[0,7], ¢ € (—x,x], by

F=0+2+ Dsin*Osing + (1 — 1*)sin*"2 Osin .
(51)

u=sin* @ sin b,

Clearly, u and f have singularities at the north, § =0 or (x,y,z) =
(0,0,1), and the south, 8 = 7 or (x,y,z) = (0,0,—1), poles (see Fig. 1)
while being harmonic in the azimuthal direction ¢ for each fixed 0 #
0,r.

Before the iterative adaptive procedure starts, one constructs a suf-
ficiently fine mesh of Q = [-2,2]* so the initial surface approxima-
tion I';, is well-defined. To this end, the distance function d(x,y,z) =
x%+y? 4+ z2 — 1 is chosen for the level-set description of the unit sphere
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Fig. 1. Snapshots of the mesh crosscuts at different cycles of the adaptive procedure from Section 4.2. The surface I';, is not shown. Active elements 7'hF and the
corresponding domain w,, are colored by the values of the solution (51) with 4 = 0.4. Vertical direction corresponds to OZ axis. Top: the whole domain [-2,2]?, with
many cells remain coarse throughout the procedure. Bottom: closeup view of the north pole (0,0, 1) of the unit sphere where the gradient of the solution (51) blows

up.

I'. The edges of the cube Q are divided in eight equal segments of length
h=0.5, see Fig. 1, cycle = 0. These cells constitute the initial mesh 7.

4.2. Adaptive stabilized TraceFEM

In this section we present the adaptive algorithm tested in the numer-
ical experiments. The adaptive procedure is a sequence of cycles each
consisting of the three steps below.

Step 1 (APPROXIMATE GEOMETRY). To guarantee continuity of the
surface approximation, we first resolve all hanging nodes in 7, by
adding a sufficient number of linear constraints. The interpolant q.’:’;l of
order k of the distance function d on the mesh 7, identifies the active
domain w), consisting of intersected cells 7'hr. Geometrical information
such as the normal vector n, and the surface quadratures representing
I'j, is derived from the discrete distance function ¢1}‘1.

Step 2 (SOLVE). The finite element space th consists of continuous
piece-wise Q| or Q, functions defined on Thr. We solve the following

linear system: find u;, € th such that

/Vl"h”h -V, op +/uhvh +5,(up,vp) = (fe,uh)rh , Vv, € V}f
Tp L
(52)

where the term s, represents one of stabilizations from Section 2.3.
Step 3 (ESTIMATE&MARK&REFINE). Fix a 0 < 0 < 1. Using the dis-
crete solution uj,, we compute the indicator #(Sy),

2

2 _ 2
n (ST) = "l[vuh]] ” LZ(T)

2 e _
L2(057~nw,,)+h5T”f +Ar,up = upll

+s§T (up,up)
(53)

on each intersected cell Sy € Thr. Next we determine the smallest by
cardinality set 7'h€ C 7'hr such that

Y n(Sp)>0 Y, n*(Sp)

sreT! NS

(54)

and, finally, refine the cells in Th‘g uniformly.
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This completes the first cycle. At the beginning of the next cycle
the new mesh 7}, refined near I', of the domain Q is available and we
proceed to Step 1.

4.3. Unfitted quadratures and other implementation details

The adaptive stabilized TraceFEM scheme of Section 4.2 was imple-
mented in the Finite Element library deal.Il [27,28]. Since the method
is not standard, we start with discussing some implementation details.

« The degrees of freedom of the level-set function exist across the en-
tire mesh domain, whereas the degrees of freedom of the solution
are confined to the colored, active domain of intersected cells. In
principle, the discrete level-set approximation could have a differ-
ent order or even an independent mesh from that of the solution.
However, for the sake of convenience, we utilized the same triangu-
lation for both the solution and the level-set in our implementation.
Given that the mesh contains hanging nodes, ensuring the continu-
ity of the FE spaces defined on it is necessary for a H'-conforming
method. This continuity requirement extends to both the discrete
level-set and the discrete solution. To achieve this, we express the
continuity condition for each hanging node as a linear combination
involving local degrees of freedom, which is subsequently incor-
porated into the linear system. We apply a similar post-processing
technique to the discrete level-set function, defined by a point-wise
Lagrange interpolant, to eliminate any gaps in the discrete surface
r,.

The implementation of (52) requires the integration of polynomial
functions over the intersections of the implicit surface I';, with end
cells from Thr. This procedure is non-standard, and our implemen-
tation relies on the dimension-reduction approach detailed in [29].
Notably, this algorithm is purpose-built for quadrilaterals and can
accommodate higher-order approximations of I'},.
Implementation of stabilization forms si:’ V and s}Jl F requires stan-
dard, e.g. Gauss-Lobatto, quadratures on a three-dimensional cube
Sr and on a two-dimensional square F, correspondingly.
Computation of the indicator (16) involves the same numerical in-
tegration procedures as used for (52).
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Fig. 2. Uniform mesh refinement for different values of A using the scheme (10) which is based on the Q; TraceFEM and is stabilized by (13). Left: |lu, — u|| 2T,

error. Right: ||V u, — (Vru)°|l 2, error. The exact solution u, is of low regularity, u € H 1+4(I") only. The expected reduction of the convergence rates to h*, for
the H'-seminorm is observed for A < 1. The L?-norm error appears to be less sensitive to A at least for the tested refinement levels.

+ Although the forcing term f€ is not an Lz(l"h) function, the integral
on the right-hand side of (52) remains well-defined, provided that
none of the surface quadrature nodes intersect the north or south
poles when projected onto I'.

+ In the course of adaptive refinement some of inactive cells and
some active cells not from Thg are refined so that the mesh remains
graded.

4.4. Uniform refinement

The first example serves to motivate the adaptivity and to test our
implementation of TraceFEM for Vhl and th ambient spaces. We choose
the exact solutions (51), u; € H'**(') with A= 1.0, A=0.7 and A =0.4
and solve the discrete problems (10) with k = 1, s, (u, v) = shN Y (u,v), and
stabilization parameter pg = IOhEI. The active domain w), is refined
uniformly and the obtained solutions u;, € Vhl are compared with the
normal extension u° of the exact solution u € H'*4(I'"). We evaluate the
following surface error norms,

[[ety, = ue”]_z(rh) s ||Vrhuh - (Vru)e”LZ(rh) (55)

and the results are presented in Fig. 2. Optimal rates are observed for
A= 1.0, which corresponds to u € H2(I'), but, as A decreases, the rates
deteriorate in accordance with the regularity, u; € H'*4, of the prob-
lem. Asymptotically, the rate 4% is attained for the energy norm as it
would be expected for fitted FEMs.

We conducted the same uniform refinement test using the gradient-
jump face stabilization st , and the results closely resemble those
shown in Fig. 2. Therefore, we have opted not to include an additional

plot. Next, we repeated the test for the O, family with k =2 in th , em-

ploying the stabilizations shN V and siF 2. When 4 = 1, the convergence

rates are optimal and correspondent to a finite element space of sec-
ond degree. However, in cases of low regularity where 4 < 1, the rate of
convergence attains A only in the energy norm.

4.5. Efficiency indexes

In the numerical experiments we consider different notions of the
efficiency. As usual, local efficiency indexes are computed for active
cells Sy € Thr . These indices gauge how closely the actual error, e;, =
Vr,up — Vu®, is to the error indicator 7 on the cell. Accumulated over all
cells, a reliable indicator estimates the error from above. The indicator
is said to be efficient if the ratio of the indicator and the error, i.e. the ef-
ficiency index, is bounded from above independent of the discretization
level.

We will consider three efficiency indexes which differ in the patch
of neighboring cells contributing to the local error e, for the cell S;. To
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compute the indexes, one maximizes the following ratios over all cuts
T=S,nT,,
n(St) n(St) nr(M)

I, =max ———, I=max ————, I3=max
T ||§h”rhanT T |1l nor T |IEnllr,nsy

(56)

Here &), = Vp,u, — Vu® is the energy error, wg,_ is the patch of all ac-
tive cells from w,, which share at least a vertex with the cell S;; @y is
the patch of all active cells from w;, which share with the cell S a face
intersected by I';,. Clearly, the efficiency index I3 accumulates the er-
ror over a single cell S; only and it is the sharpest way to characterize
the indicator. The notion of efficiency given by I; is too stringent, as it
is known that the corresponding index blows up numerically even for a
fitted FEM. At the same time, the theory of a fitted adaptive FEM guar-
antees that the indicator is efficient if the error is accumulated over a
patch of neighbors. This fact suggests that the indexes I, and I, are rea-
sonable extensions of a similar notion to the unfitted finite element. The
distinction between I and I, lies in their dependence on the bulk mesh
and the surface: in the former, the patch is based on the connectivity of
the intersected cuts T, while in the latter, it relies on the connectivity
of the bulk cells S;.

Remark 4.1. Note that the error part in (56) does not include the stabi-
lization s, because we are interested in the surface error for a solution
to a surface PDE. This is in contrast to the indicator #(S;) and to the
natural discrete norm of (10) which include the stabilization s;,. One
may question if adding the stabilization s, (1, — u®,u;, — u®) to the de-
nominator of indicators (56) can lead to a notion of efficiency which is
more suitable to TraceFEM. As we found in our numerical experiments,
such alternation does not change main conclusions drawn from the nu-
merical experiments. For these reasons, we present the numerical results
using the efficiency indexes as defined in (56).

4.6. Efficiency and reliability for the O elements

In this experiment, we assess the reliability and the efficiency of
the indicator (53) using the Q; family of polynomials (9). Therefore,
we choose a low-regularity solution (51), u € H +4T) with A =04, of
the Laplace-Beltrami problem (3) posed on the unit sphere. We run the
adaptive TraceFEM stabilized by s;, = S,JlF with o =10and by s, = s}]ZV 4
with pg = IOhE1 and evaluate surface errors (55).

The numerical results, as presented in the top panel of Fig. 3, con-
firm the a posteriori analysis conducted in Section 3. Optimal rates are
observed with both stabilizations, s}’:’ V and st , as shown in Fig. 3,
and fewer degrees of freedom appear to be needed while using s,’f 4
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Fig. 3. Adaptive refinement with = 0.5 using the indicator (16) for the Q, TraceFEM. Left: sN" stabilization with pg = 10A3'. Right: s stabilization with ¢, = 10.
Top: surface errors (55) for e, = u;, —u® and the global estimator (3 7*(Sy))'/2. Bottom: efficiency indexes (56) for different patches of neighbors. The exact solution
u € H'*4(I') with A= 0.4 is given by (51) on the unit sphere I'. We observe that the indicator (16) is reliable and efficient for Q, TraceFEM with both stabilizations.

to achieve comparable errors. Furthermore, in the plots of the bottom
panel in Fig. 3, we evaluate the efficiency indexes (56) corresponding to
several notions of efficiency discussed in Section 4.5. The indexes I and
I, suggest the efficiency of the indicators for O, adaptive TraceFEM.

4.7. Efficiency and reliability for the O, elements

We proceeded to repeat the experiment for the Q, TraceFEM, em-
ploying the discrete space th for both the solution u;, and the surface
approximation I';,, following the same adaptive algorithm outlined in
Section 4.2. In this case, for the gradient-jump face stabilization, the sz F
form was replaced by the s}Jl F2 form with o = 10. As shown in the top
panel of Fig. 4, the O, TraceFEM with gradient-jump face stabilization
exhibits optimal convergence rates in the L, and H; norms, while the
0, TraceFEM with normal-gradient volume stabilization shows almost
optimal rates in the H! norm (which is the goal of the suggested indi-
cator (16)) and suboptimal rates in the L, norm. Nevertheless, similar
to the Q| case, the normal-gradient volume stabilization attains consid-
erably smaller errors in both norms for the same number of unknowns.
Unlike the Q, scenario, the efficiency indexes in the Q, case exhibit lin-
ear growth with the number of degrees of freedom, as depicted in the
bottom panel of Fig. 4.

4.7.1. Effect of the stabilization parameter in sz F2

It was observed in [3] that the performance of the stabilization sz F2
defined in (12) is sensitive to the choice of the stabilization parame-
ters. We would like to demonstrate how different values of o affect the
adaptive TraceFEM with indicator (53).

We did not observe improvements in efficiency by tuning the pa-
rameter o in Fig. 4, where we used o = 10. To illustrate this point,
we present the results of adaptive TraceFEM for two extreme values
of the stabilization parameter: o = 0.1 and o = 1000, as shown in
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Fig. 5. Similar to Fig. 4, the convergence rates are nearly optimal for
both extreme values. However, when oy = 1000, achieving the same
level of accuracy requires more degrees of freedom compared to the
case of o =0.1.

This behavior of errors is consistent with what is typically observed
during uniform refinement. In the adaptive setting, the indicator # in-
cludes the stabilization, and when o = 1000, the estimator focuses on
reducing the contribution of the stabilization s, (u,, u;,) to the error func-
tional |||e, ||, as illustrated in the right panels of Fig. 5.

5. Conclusions

In this paper, we explore the application of adaptive stabilized Trace-
FEM for the first time. We focus on solving an elliptic problem on a fixed
surface using the two lowest-order continuous finite element spaces
based on Q; and Q, elements. For each family, we investigate both
the gradient-jump face and normal-gradient volume stabilizations.

Our analysis demonstrates that the error indicator in the proposed
adaptive TraceFEM is reliable, and our numerical tests confirm the the-
oretical findings. Specifically, for Q; elements, a reasonable choice for
low-regularity solutions, we establish a robust and practical adaptive
stabilized TraceFEM scheme. In the case of Q,, the efficiency indexes
grow proportionally with the number of active degrees of freedom.

Another significant contribution of this paper relates to the practi-
cal implementation of the proposed indicator. Rather than computing
gradient jumps along one-dimensional curvilinear edges between sur-
face patches, which can be computationally intensive due to the im-
plicit surface description in TraceFEM, we evaluate gradient jumps on
two-dimensional faces between bulk cells. This approach simplifies the
implementation of the indicator.

In conclusion, we recommend caution when using the Q, element in
adaptive stabilized TraceFEM schemes, while the Q| element provides
a highly robust adaptive method.
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Fig. 4. Adaptive refinement with 6 = 0.5 using the indicator (16) for the Q, TraceFEM. Left: sN" stabilization with pg = 10h3!. Right: 5772 stabilization with
6 =6 =& = op = 10. Top: surface errors (55) for e, =u, — u¢ and the global estimator (3 ;- #*(Sy))!/2. The exact solution u € H'**(T') with 4 = 0.4 is given by
(51) on the unit sphere I'. The indicator (16) is reliable in the energy norm for the Q, TraceFEM with both stabilizations. The growth of all indexes shown on the
bottom panels suggest the lack of efficiency. Unlike the energy norm, for which the indicator was designed for, convergence rate in L?> norm appears to be suboptimal

for the 5" stabilization.
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Fig. 5. The effect of the stabilization parameter o, on the adaptive refinement in Fig. 4. Left: 6, = 0.1. Right: o = 1000. Surface errors (55) for e, = u;, — u® and
the global estimator (3, #%(S7))!/? are shown. We observe that decreasing the stabilization parameter does not improve the lack of efficiency while increasing it

postpones the asymptotic regime of convergence.
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