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Abstract

One strand of modern coexistence theory (MCT) partitions invader growth

rates (IGR) to quantify how different mechanisms contribute to species coexis-

tence, highlighting fluctuation-dependent mechanisms. A general conclusion

from the classical analytic MCT theory is that coexistence mechanisms relying

on temporal variation (such as the temporal storage effect) are generally less

effective at promoting coexistence than mechanisms relying on spatial or

spatiotemporal variation (primarily growth-density covariance). However, the

analytic theory assumes continuous population density, and IGRs are calcu-

lated for infinitesimally rare invaders that have infinite time to find their

preferred habitat and regrow, without ever experiencing intraspecific competi-

tion. Here we ask if the disparity between spatial and temporal mechanisms

persists when individuals are, instead, discrete and occupy finite amounts of

space. We present a simulation-based approach to quantifying IGRs in this

situation, building on our previous approach for spatially non-varying habitats.

As expected, we found that spatial mechanisms are weakened; unexpectedly,

the contribution to IGR from growth-density covariance could even become

negative, opposing coexistence. We also found shifts in which demographic

parameters had the largest effect on the strength of spatial coexistence mecha-

nisms. Our substantive conclusions are statements about one model, across

parameter ranges that we subjectively considered realistic. Using the methods

developed here, effects of individual discreteness should be explored theoreti-

cally across a broader range of conditions, and in models parameterized from

empirical data on real communities.
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INTRODUCTION

The mathematical theory underpinning “Modern Coexistence
Theory” (MCT; Chesson, 1994; Chesson & Warner, 1981)

was developed to support the hypothesis that temporal
variability in environmental conditions might contribute
to species coexistence (Grubb, 1977; Hutchinson, 1961)
rather than just hastening the chance extinction of species
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(May & MacArthur, 1972), and to identify the conditions
required for that to happen. These analyses were later
extended to coexistence mechanisms resulting from
spatial variability, either on its own or in combina-
tion with temporal variability (Chesson, 1985, 2000a;
Johnson & Hastings, 2023; Snyder, 2008; Snyder &
Chesson, 2003, 2004).

One general conclusion from models with both
spatial and temporal variation is that temporal variation
is generally less effective at promoting coexistence than
comparably large spatial or spatiotemporal variation,
except in the limit of extremely long organism lifetimes,
so long as the spatial scale of organismal dispersal or
undirected movement is small enough that each species
can become concentrated in areas where it performs best.
“Coexistence is most likely to occur when all variation is
some combination of spatiotemporal and spatial varia-
tion: pure temporal variation promotes coexistence less
effectively than these other two forms of variation”
(Chesson, 1985, p. 269). “Mechanisms relying on spatial
variation have already been shown to be far stronger than
the temporal storage effect (Snyder, 2008)” (Stump &
Vasseur, 2023).

However, those conclusions were obtained in the
framework of classical analytic MCT, which makes
potentially important assumptions. Specifically, the land-
scape is assumed to be infinitely large relative to the size
of an individual, population densities are treated as
continuous, and coexistence is analyzed by asking
whether an extremely rare species (the “invader”) will
have a positive long-term population growth rate.
Technically, “extremely rare” means that population
growth rate is calculated by linearizing the invader’s
population dynamics at zero population density, and
“long-term” means a theoretical average over infinite
time. An invader is thus given infinite amounts of time
to spread across the entire available landscape, and to
find and cluster in the most advantageous locations.
Moreover, after both those occur, the invader is
assumed to still be so rare that it experiences no intra-
specific competition at all while recovering from the
brink of extinction.

Giving a rare species unlimited opportunity to cluster
in the best locations, and then unlimited time to expand
without ever experiencing intraspecific competition, are
surely the ideal assumptions for maximizing the impact
of spatial variability on coexistence. Are those unrealistic
features possibly the real reason why spatial variation has
been found to have such a “large potential to promote
coexistence” (Snyder, 2008, p. 130), relative to temporal
variation?

These unrealistic features of the classical theory
are easy to deride, but at the same time, it is not clear if

they constitute an actual problem or a manageable
complication. Differential and difference equation
models allow fractional individuals, and thus allow
populations to rebound from minuscule densities (in the
absence of strong Allee effects). But we do not abandon
them because of that flaw. Instead, we try to “throw out
the bathwater” but “keep the baby”—we identify and
disregard behaviors that only occur because we have
ignored the true discreteness of individuals and the finite
extent of the landscape, and learn from conclusions that
are not artifacts of that unrealistic assumption.

Previous work has shown that spatial clustering
makes it harder to escape intraspecific competition.
For example, Murrell (2010) studied how individual
discreteness and clustering due to limited dispersal
affected fluctuation-independent coexistence in a spatial,
individual-based Lotka–Volterra model. Although the
landscape was assumed to be homogenous, limited-range
dispersal caused clustering and increased the intensity of
intraspecific competition. As a result, the species with
stronger intraspecific competition could be excluded from
the community for parameters where coexistence would
occur in the Lotka–Volterra differential equations, or
in the same spatial model with long-range interactions.
This outcome reverses the classical prediction from
Lotka–Volterra type models that stronger intraspe-
cific competition promotes coexistence of competitors
(e.g., Chesson, 2000b, p. 345). However, Murrell (2010,
p. 1615) speculated that interspecific differences in
“habitat requirements, for example, for soil depth or
slope/elevation, will overcome the negative impact of
within-species clustering.”

In the predecessor to this paper (Ellner et al., 2022,
hereafter, DS22), we explored how the spatial distribution
of discrete individuals affected coexistence based on
purely temporal fluctuations: storage effect, and relative
nonlinearity of competition. Analogous to Murrell
(2010), we found that the natural clustering of a rare
species hindered coexistence. Even when rare, each
species experiences elevated competition when condi-
tions are favorable for reproduction, creating positive
environment-competition covariance and thus weakening
the storage effect.

Here, we extend our model and analysis to include
spatial variability and spatial coexistence mechanisms, to
begin sorting “baby” from “bathwater” with regard to
the relative strength of coexistence mechanisms based
on spatial variability when individual discreteness is
acknowledged. We anticipated that individual discrete-
ness would weaken spatial coexistence mechanisms. The
classical theory (Snyder, 2008) says that the dominant
spatial mechanism is growth-density covariance arising
from a rare invader clustering in its preferred part of the
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habitat, while the resident is most abundant elsewhere.
With discrete individuals, that benefit would be reduced
by intraspecific competition even when an invader is
rare. Classically, the key parameter for the strength of
spatial mechanisms is the dispersal range of the invading
species, because it determines whether the lineage initi-
ated by a well-situated invader remains in good habitat.
We expected that to remain true.

We tested these hypotheses through a simulation
study that factorially varied the competing species’ dis-
persal ranges, the spatial scale of habitat heterogeneity,
the strength of intraspecific competition, and the magni-
tudes of spatial and temporal variability. In the process,
we illustrate general methods that can be used to extend
this study to other models, and to ask other questions
about spatial coexistence mechanisms where discreteness
of individuals may be important.

Our approach has much in common with the Johnson
and Hastings (2023) analysis of coexistence mechanisms in
spatiotemporally fluctuating environments. Like Chesson
(2000a) and Johnson, Hastings (2023) assumed continuous
population densities for a population distributed in dis-
crete habitat patches, so our methods differ from theirs,
but many conceptual aspects are the same.

THE MODEL

Our notation is summarized in Table 1. As in DS22, the
model is a spatially explicit version of the classical lottery
model of competition for space in a temporally varying
environment (Chesson & Warner, 1981). The classical
lottery model considers a habitat consisting of N sites,
with one adult occupying each site. Within year t, first
each species-q adult produces βq tð Þ larvae in year t,
which are then dispersed evenly to all sites. Following
this, some adults die (with per capita mortality rate δq)
and a new occupant is chosen for each vacated site by a
fair “lottery”: unbiased random choice of one individual
from all larvae at the site.

The original lottery model is a mean-field model for
expected population change each year, given the fecun-
dities βq tð Þ. When there are two species occupying N1 tð Þ
and N2 tð Þ sites respectively, N1 tð Þ+N2 tð Þ�N and the
model can be written as

N1 t+1ð Þ¼N1 tð Þ 1− δ1ð Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Survivors

+ δ1N1 tð Þ+ δ2 N −N1 tð Þð Þ½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Number of open sites

×
β1 tð ÞN1 tð Þ

β1 tð ÞN1 tð Þ+ β2 tð Þ N −N1 tð Þð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Chance to win an open site

:

ð1Þ

This model is spatially implicit: site locations are
immaterial because larvae disperse uniformly across all
sites.

DS22 made two qualitative changes to the classical
lottery model, both retained here. First, the model was
implemented as a finite-population individual-based
model, tracking discrete adults occupying M2 sites in a
finite square lattice. Second, the model was made spa-
tially explicit, with dispersal kernels specifying how lar-
vae produced at any one site x¼ x1,x2ð Þ are scattered
among sites in the lattice, and a competition neighbor-
hood such that adult fecundity is reduced by the presence
of conspecifics (rather than allospecifics) within their
neighborhood.

Specifically, larval dispersal from site x to site x0

depends on distance (d) between the sites defined as

d x0,xð Þ¼max x01 − x1
�� ��, x02 − x2

�� ��� �
: ð2Þ

The dispersal kernel is defined so that the fraction of
larvae dispersed to sites x0 at distance d is proportional to
e− αd, α≥ 0 (ignoring edge effects). Larvae that would
disperse off the lattice based on distance are re-distributed
to sites in the lattice, in proportion to the kernel values at
those sites. That is, kernels that extend past the edge of the
lattice are re-scaled so as not to lose larvae. Numerical
experiments showed that our simulated lattice is large
enough that the assumed fate of larvae from parents
near the lattice edge is unimportant; see Appendix S1:
Section S1. We also imposed a maximum dispersal dis-
tance of 15, to avoid artifacts of “nano-larvae” dispersing
very large distances, while still allowing each species to
disperse some larvae into clusters of the other species
when α is small. Larval dispersal is described by a
mean-field equation for the expected number of larvae
landing at each site, given the location and fecundity of
all adults, while adult mortality and the lottery for
vacated sites are both done as individual-by-individual
“coin tossing” simulations. Deterministic larval dispersal
reduces our parameter space, because it implies that only
relative fecundities matter, not absolute fecundities. In
DS22 we found that demographic stochasticity in adult
mortality had only trivial effects (the same is true here),
so on the assumption that larvae vastly outnumber
adults, it is safe to ignore demographic stochasticity in
larval dispersal.

The adult competition neighborhood for the individ-
ual at x consists of all sites at distances d between 1 and
some integer k, where distance is calculated as for dis-
persal. DS22 considered k¼ 1, 2, and 3, but the strengths
of coexistence mechanisms showed the same qualitative
trends in response to changes in model parameters for all
values of k, so here we just use k¼ 2. The effect of
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competition is that the maximum per-capita fecundity
βq tð Þ for a species q individual is reduced by a fraction

1= 1+ aqf q
� �

where f q is the fraction of species-q individ-

uals in the individual’s competition neighborhood. The

parameter aq thus measures the strength of intraspecific
competition relative to interspecific competition.

In this paper, we extend the DS22 model by assuming
that the maximum per-capita fecundities βq vary across
space, not just over time. That is, instead of one βq tð Þ

TAB L E 1 Notation and definitions.

Notation Formula and/or meaning

Varied parameters

α Dispersal distance scaling parameter, same for both species. Dispersal is proportional to

e− αd, α≥ 0.

aq Intraspecific competition strength parameter for species q adults. Competition reduces per-capita

fecundity from its maximum, βq x, tð Þ, by the factor 1= 1+ aqf q
� �

:

D Distance scale of permanent spatial variation in Pq.

σP,q Spatial environmental SD. Multiplies Pq,i,j in computing βq x, tð Þ.
σW ,q Temporal environmental SD. Multiplies Wq tð Þ in computing βq x, tð Þ.
δq Per-capita adult mortality rate of species q.

ρW Between-species correlation of random temporal variation W at any one time t.

ρP Between-species correlation of permanent spatial variation P at any one lattice site.

Other parameters and variables

Nq tð Þ Total population of species q at time t, in terms of the no. sites occupied by an adult.

nq x, tð Þ The population of species q at site x and time t, either 0 or 1.

βq x, tð Þ Maximum per-capita fecundity of species q at location x, time t.

μq The overall expectation of per-capita fecundity  logβq
h i

.

f q Fraction of sites occupied by species q in an individual’s competition neighborhood.

Pq Permanent spatial variation affecting species q. This matrix has entries Pq,i,j. We specify that its
spatial mean is 0, and its spatial variance is 1.

Wq tð Þ Random temporal variation affecting species q at all locations, time t.

rq Long-run growth rate of species q, also referred to as log λS,q.

λq x, tð Þ Local population growth rate, defined as Rq x, tð Þ+ 1− δq
� �

.

νq x, tð Þ Local population density of species q, defined as nq x, tð Þ= nq tð Þ� 	
.

Rq tð Þ Expected no. species q recruits at time t.

ηq tð Þ Demographic stochasticity for species q at time t.

Eq x, tð Þ Environment experienced by species q at location x, time t. Equal to βq x, tð Þ.
Cq x, tð Þ Competition experienced by species q at location x, time t. Equal to βq x, tð Þ=Rq tð Þ.
E#
q x, tð Þ Environment experienced by species q, generated independently from Cq x, tð Þ.

χq The population growth measure being partitioned, here the IGR  rq

 �

.

εq,k fANOVA contribution of feature k for species q.

Δk Invader-resident comparison εik − εrk .

• j,v,kð Þ Quantity • for replicate j with vacancy configuration v and lattice configuration k, for example,

C j,v,kð Þ
q tð Þ in one-step-ahead simulations.

J No. replicates per vacancy configuration in one-step-ahead model simulations.

K No. lattice configurations used in one-step-ahead model simulations.

V No. vacancy configurations per lattice configuration in one-step-ahead model simulations.

Note: The model parameters that are varied in simulations are in the upper block of the table.
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value for all species q adults in year t, we have βq x, tð Þ for
each site x in the lattice. Specifically, we assume that
logβ is the sum of three components: an overall expecta-
tion, permanent spatial variation in intrinsic site quality
for each species, and random temporal variation that is
the same at all spatial locations for each species.

1. The overall expectation ½logβq� is denoted μq.
2. The permanent spatial variation for species q is

represented by a matrix Pq with entries Pq,i,j. Without
loss of generality, we assume that the spatial average
of Pq is zero, and that its spatial variance equals 1. Pq

is characterized by its spatial correlation scale D (see
Figure 1) which determines the typical size of “good
habitat” patches for each species, and by
the between-species correlation at each site ρB,P <0,
representing specialization on different types of
habitat.

3. The random temporal variation for species q is
represented by the scalar stochastic process Wq tð Þ (the
“weather”). Wq has mean 0 and variance 1, and is
characterized by its cross-species correlation ρB,W . We
assume for simplicity that each Wq tð Þ series is tempo-
rally uncorrelated, but we assume a negative
cross-species correlation to represent specialization on
different “temporal niches.”

We then specify that at location x¼ i, jð Þ the maxi-
mum per-capita fecundity βq for a species q individual is
defined by

logβq x, tð Þ¼ μq + σP,qPq,i,j + σW ,qWq tð Þ, ð3Þ

where σP and σW are the SDs of the permanent spatial
variation and the random temporal variation, respec-
tively. The realized per-capita fecundity, resulting from
the effect of neighborhood competition, is
βq x, tð Þ= 1+ aqf q x, tð Þ

� �
where f q x, tð Þ is the fraction of

species-q individuals in the competition neighborhood
centered at site x in year t.

The interpretation of the variance parameters σ is
complicated by the log on the left-hand side. Because of
this, larger values of μ will produce higher variance in β
for the same values of σP and σW . To mitigate this prop-
erty, we set μ1 ¼ 0. This entails no loss of generality
because only the ratios β1 x, tð Þ=β2 x, tð Þ matter for the
dynamics. We can therefore divide all βq x, tð Þ by exp μ1ð Þ
without changing anything, and that is equivalent to set-
ting μ1 ¼ 0. (We will later set μ2 < 0 to create a small
mean fitness disadvantage for the invader.) W and each
entry in P were assumed to have truncated Normal distri-
butions. For additional details on how P matrices were
generated, see Appendix S1: Section S2.

METHODS: THEORY

Invader growth rate

Following Ellner et al. (2019) and DS22, we study coexis-
tence by using model simulations to compute invader
growth rate (IGR)  rq


 �
for a species q that has become

rare. With discrete individuals, we cannot use the classi-
cal definition of IGR based on a limit as invader abun-
dance falls to 0. IGR then unavoidably depends on how
“rare” is defined. As we discuss in DS22 (section S2 of the
Supplement to that paper), simulation studies suggest
that the best available definition is the expected growth
rate during one time step, when a species has become
just common enough for the risk of extinction in one
or two time steps to be small. Whether the rare popula-
tion then tends to grow or shrink from one year to the
next determines if it is likely to increase and persist, or
instead shrink and soon perish due to chance mortality
of all survivors at once. The MCT approach of charac-
terizing coexistence through behavior near extinction
boundaries, when a disturbance or string of bad luck
has reduced a species to very low abundance, is
conceptually very similar to the ideas of permanence
(Hutson & Schmitt, 1992) and uniform persistence
(Smith & Thieme, 2011) for deterministic dynamical
systems: however close it comes to extinction, for what-
ever unusual reason, can each species rebound and
rejoin the community?

Using IGR to characterize coexistence has become
somewhat controversial because the relationship between
IGR and mean persistence time can be non-monotonic in
theory (Pande et al., 2020). One strong justification for
studying IGR is that the sign of IGR distinguishes two
distinct scaling regimes for mean persistence time as
a function of total community size, so that a positive
value is required for long-term persistence (see Ellner
et al., 2020, and DS22 [p. 21 and Appendix S1:
Section S1]). To our knowledge, qualitative disagree-
ment between IGR and other persistence metrics has
not yet been demonstrated in any empirically parame-
terized model (e.g., in fig. 4b of Pande et al. (2020), qual-
itative disagreement only arises if mean adult longevity
is deliberately reduced by a factor of 10 or more).

To compare the strength of spatial and temporal
variability mechanisms, we also partition  rq


 �
into

contributions from different coexistence mechanisms and
their interactions. We focus on the canonical partition
of IGR into contributions from storage effect, relative
nonlinearity in competition, relative nonlinearity in
environment, growth-density covariance, and fluctuation-
independent mechanisms (such as resource partitioning)
(Chesson, 1994, 2000a).
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Let � denote an expectation and let �h i denote a spa-
tial average. Let nq x, tð Þ be the number of species q adults
at site x at time t, which is either 0 or 1. The local popula-
tion growth rate λq x, tð Þ is defined as the expected num-
ber of recruits (i.e., number of vacated sites won) that
would be produced by a species q adult at location x at
time t (denoted Rq x, tð Þ), plus the probability of the par-
ent surviving:

λq x, tð Þ¼Rq x, tð Þ+ 1− δq
� �

: ð4Þ

Note, there may or may not be a species q parent at x
at time t; λq x, tð Þ is nonetheless well defined as what
would hold if site x is occupied by species q. The formula
for Rq is derived in Appendix S1: Section S4.

Because nq x, tð Þ¼ 0 or 1, the expected spatially aver-
aged population at the next time step is given by

 nq t+1ð Þ� 	¼ λq x, tð Þnq x, tð Þ� 	
: ð5Þ

The spatially averaged actual population is

nq t+1ð Þ� 	¼ λq x, tð Þnq x, tð Þ� 	
ηq tð Þ, ð6Þ

where Equation (6) defines ηq tð Þ, our measure of demo-
graphic stochasticity. That is, ηq tð Þ is the factor by which
the actual total population for species q differs from the
expected total population.

Following Chesson’s approach, we define the overall
population growth rate ~λq tð Þ by writing

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
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0.
8

1.
0

Distance
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at

ia
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Spatial correlation function, D = 1
Exponential function

A)

B) C)

F I GURE 1 (A). The spatial correlation function used in this paper (black solid line) compared with an exponentially decaying

correlation function (blue dashed line). The spatial correlation at distance d, when the correlation scale is D, is given by

ρS dð Þ¼ 1− z=2ð Þe− 0:35z2 where z¼ d=D. For distances 0 to D this is nearly equal to exponential decrease of correlation with distance

(ρ¼ e− d=D). At greater distances it falls off faster, becoming weakly negative at d¼ 2D, resulting in more clearly defined patches of good and

bad habitat than result from exponential decay. (B). An example of a simulated 50× 50 lattice P with D¼ 2; darker color indicates better

habitat quality for one of the species. (C) A simulated lattice with D¼ 12. Figure made by R script MakeCorrelatedLattices.R

available at https://doi.org/10.6084/m9.figshare.23926179.
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nq t+1ð Þ� 	¼ λq tð Þ� 	
nq tð Þ� 	

+Cov λq tð Þ�
,nq tð ÞÞ� �

ηq tð Þ
¼ λq tð Þ� 	

+Cov λq tð Þ�
,νq x, tð ÞÞ� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
~λq tð Þ

ηq tð Þ nq tð Þ� 	
,

ð7Þ

where νq x, tð Þ¼nq x, tð Þ= nq tð Þ� 	
. Because population

growth is multiplicative, IGR is given by the log of the
stochastic growth rate λS, where logλS is defined as the
average over many time steps of

log
nq t+1ð Þ� 	
nq tð Þ� 	 ¼ log ~λq tð Þηq tð Þ

� �
: ð8Þ

Thus, the IGR to be partitioned is

 rq

 �¼ logλS,q


 �¼ log ~λq tð Þηq tð Þ
� �h i

¼ log~λq tð Þ
 �
+ logηq tð Þ

h i
,

ð9Þ

where the right-hand side is evaluated for population
states in which the focal species q is rare, but not so rare
that its dynamics are dominated by demographic
stochasticity (see DS22, Appendix S1: Section S2).

Partitioning IGR into coexistence
mechanisms

The canonical MCT coexistence mechanisms are based
on expressing population growth as a function of envi-
ronmental (E) and competition (C) factors, where E rep-
resents the potential for population growth for a given set
of abiotic conditions and C is the reduction of population
growth due to competition. For lottery models this is gen-
erally done by defining

Eq x, tð Þ¼ βq x, tð Þ,
Cq x, tð Þ¼ βq x, tð Þ=Rq x, tð Þ: ð10Þ

Thus E is the maximum per-capita fecundity under
current conditions, while E=C is the expected actual
number of recruits produced per adult (“expected”
because these definitions involve the expected net out-
come from the lotteries at each vacant site, not the actual
outcomes in a given year). With these definitions,

λq x, tð Þ¼ 1− δq
� �

+Eq x, tð Þ=Cq x, tð Þ: ð11Þ

For βq ¼ 0 we let Cq equal the limiting value of the
above definitions as βq ! 0; see Appendix S1: Section S4
for details.

As in DS22 (and much like Johnson and
Hastings [2023]), we partition the IGR (Equation 9)
using a simulation-based functional analysis of variance
(fANOVA) approach (Ellner et al., 2019) rather than
the small-variance approximations of analytic MCT
(Chesson, 1994, 2000a; Johnson & Hastings, 2023;
Snyder, 2008; Snyder & Chesson, 2003, 2004). With E and
C defined so that the local growth rates λq are a function
of E and C, the IGR can be written as

 rq

 �¼ log

�
λq Eq x, tð Þ�

,Cq x, tð ÞÞ� 	
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

λ tð Þ

+Covx λq x, tð Þ�
νq x, tð ÞÞ



+ logη tð Þ:

ð12Þ

fANOVA is the general name for several ways of
decomposing a nonlinear function of many variables
into a sum of main effects of each variable, and their
2-way, 3-way, and so forth. interactions. Given a function
χ x1,x2,…,xdð Þ that can be evaluated numerically, an
fANOVA decomposition has the general form

χ x1,x2, � � �,xdð Þ¼ ε0|{z}
Baseline

+
X
i

εi xið Þ
|fflfflfflfflffl{zfflfflfflfflffl}
Main effects

+
X
i≠ j

εi,j xi,xj
� �

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
2−way interactions

+ 3−way + 4−way

+ 5−way� � � + d-way interactions:

ð13Þ

In this paper, the function χ is  rq

 �

, and the xi have
possible values 0 or 1 indicating presence or absence of a
feature of the fluctuations on the right-hand side. The
baseline ε0 is  rq


 �
when all features are absent (E, C,

and η are set to their mean values), and main effects and
interactions are evaluated by systematically adding more
features (i.e., more variances and covariances) and evalu-
ating how that changes the value of χ. An intuitive
understanding of the last sentence is sufficient for read-
ing this paper, but for completeness the rest of this para-
graph explains how the terms are constructed. Let χA

denote the response (here, the value of IGR) when fea-
tures in the set A⊆ 1,2,…,df g are present and all other
features are absent. The effects ε are defined at sequen-
tially higher orders by

εA ¼ χA −
X
B�A

εB: ð14Þ

That is, εA is the effect of having all features in the set
A present, above and beyond the sum of all main effects
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of the features in A and all lower-order interactions
among those features. See Hern�andez et al. (2023),
especially sections A.4 and A.5 in Appendix S1, for more
details and examples.

To reduce the number of terms and make the parti-
tion more interpretable, we did a three-feature
fANOVA of Equation (12) in which the features are
variation in E, in C, and in η with growth-density covari-
ance Cov λ,νð Þ set to zero. Then, as in Johnson and
Hastings (2023, eq. 28), we evaluated the contribution of
growth-density covariance as the change in IGR when
the Cov λ,νð Þ term is included, with all other features
present.

We also carried out several sub-partitions. First: the
interaction term εEC respresents the effect of variance in
both E and C beyond the sum of the main effects of vari-
ance in E while C is constant, and of variance in C while
E is constant. This is separated into the sum of two terms.
The first term is the interactive effect of both E and C
varying (with the actual marginal distributions) but with
zero correlation, beyond the sum of the separate effects
of having E vary while C is constant, and of having C
vary while E is constant. This term is denoted εE#C, the #
symbol indicating that E and C have been made indepen-
dent. The second term is the additional effect of covaria-
tion between E and C, denoted εCov E,Cð Þ and calculated as
εEC − εE#C . This separation is important because analytic
MCT has identified εCov E,Cð Þ as the term measuring the
contribution of the storage effect to IGR. Methods for cal-
culating this sub-partition are described in detail by
Ellner et al. (2016, 2019), and by Johnson and Hastings
(2023) under small-noise assumptions that eliminate
some of the terms.

Second: the Cov E,Cð Þ (storage effect) and Cov λ,νð Þ
(growth-density covariance) contributions were
partitioned into contributions from spatial variation,
from temporal variation, and from the interaction
between those (conceptually very similar to the
space-time decomposition of Johnson and
Hastings [2023]). We define

Espat,q ¼ e μq + σP,qPq xð Þð Þ,
Etemp,q ¼ e μq + σW ,qWq tð Þð Þ ð15Þ

representing the spatial and temporal variation in the
environment, respectively. We computed the spatial
and temporal variance contributions to Cov E,Cð Þ as
Cov Espat,C

� �
and Cov Etemp,C

� �
, respectively. For

Cov λ,νð Þ, because E is not an isolated term, we instead
repeated all the calculations to evaluate Cov λ,νð Þ with
Espat in place of E to get the spatial contribution, and
again with Etemp in place of E to get the temporal

contribution. Finally, the interaction term for each covariance
is given by the difference between the actual value of each
covariance, and the sum of the spatial and temporal
contributions.

As always, the decomposition is applied to both
the invading species and the resident species, and coexis-
tence mechanisms Δ are defined as term-by-term differ-
ences between corresponding ε values for the invader and
residents. If you are not familiar with why invader-resident
comparisons are necessary, see the section General Theory
in Ellner et al. (2019). Here we only considered two-species
competition where the species have equal adult mortality
and therefore equal generation times, so the invader and
resident ε terms were given equal weight (Johnson &
Hastings, 2022a, 2023).

METHODS: EVALUATING
COEXISTENCE MECHANISMS BY
SIMULATION

All model simulations were carried out using R (R Core
Team, 2023) version 4.2.0 or higher for Windows, with
parallelized BLAS from the Intel MKL math library
(see Appendix S1: Section S6).

Generating a sample of lattice
configurations with low invader
population

The first step in partitioning IGR is using model simula-
tions to find configurations of the focal species with suit-
ably low abundance for estimating invader growth rate
 rq

 �

. Because we are studying coexistence rather than
invasion by a new species, we need to find configura-
tions typical of times when the focal species has
become unusually rare, starting from its typical abun-
dance. Simulating the community and waiting for
that situation to arise by chance is prohibitively
time-consuming. In DS22 we used a shortcut: we
started with a very small cluster and allowed its local
spatial structure to equilibrate over a short time period.
We presented evidence that this shortcut was a good
approximation of waiting for rarity to happen by
chance. But that shortcut will not work in the presence
of spatial variability, because a species that has fallen
from moderate abundance to rarity has just experi-
enced a string of bad luck, and one aspect of bad luck is
being concentrated in areas with below-average sites
(see Appendix S1: Section S3 for details). A species
growing from a small initial cluster has, instead, just
experienced decent or good luck. We therefore used an
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iterative method to find community trajectories leading
from typical abundance to rareness of the focal species;
we called our method the “limbo game” because, like
the limbo dance and party game, it involves constantly
lowering the bar.

For each of 50 simulated examples of the permanent
spatial variability matrices P1,P2, we ran 300 indepen-
dent simulations of the model with a 50 × 50 lattice,
starting from a 50:50 mix of the two species distributed
randomly in space, for 200 time steps (20 adult mean life-
times with δ¼ 0:1, 80 with δ¼ 0:4). We then started the
“limbo game”: after each time step the simulations were
paused, and the 6 replicates with the lowest abundance
of the focal species (excepting those where it went
extinct) were replicated 50 times each to use as the
starting conditions for the next time step. This process
was continued (for up to 500 time steps) until at least
25% of replicates had total abundance of the focal species
equal to Gmax ¼ 25 or less. From those final states, we
chose one at random where the total abundance of the
population was at least Gmin ¼ 10 and no more
than Gmax ¼ 25.

There is nothing special about retaining 6 out of
300 parallel simulations; by trial and error, that proved
effective for finding suitably small invader clusters in our
model. Gmin ¼ 10 is large enough that estimates of IGR
are not biased by effects of demographic stochasticity (see
DS22, Appendix S1: Section S2). Gmax needs to be small
enough that making it smaller has no meaningful effect
on results; in preliminary runs we found no difference in
results between Gmax ¼ 40 and Gmax ¼ 20 (see
Appendix S1: Section S5).

The “limbo game” deliberately selects for population
trajectories in which the focal species experienced espe-
cially bad environmental histories, in combination with
bad luck in adult mortality and site lotteries. If there is
no autocorrelation in Wq tð Þ, then atypical past environ-
ment states have no effect on future environment
states. But with temporal autocorrelation, the first steps
after becoming rare would strongly reflect the atypical
recent history.

With continuous population density, this atypical
period is transient and, therefore, can be ignored when
defining invader growth rate as an (infinitely) long-term
average rate. But with discrete individuals, we cannot do
that: if the species is a stable member of the community,
recovery from rarity may be quick rather than a
long-term process. Temporal autocorrelation thus poses
interesting, unresolved questions about exactly how
invader growth rate should be defined for models with
discrete individuals. We hope to examine this in the
future, but this issue is distinct from our central ques-
tions in this paper. Here, we only consider uncorrelated
temporal environmental variation.

Estimating mechanism effects through
one-step-ahead averaging

Once “limbo game” simulations have generated lattices
with a rare invader, the second step is using one-step-ahead
model simulations to estimate the quantities needed for
quantifying coexistence mechanisms. For this step, a set of
K ¼ 50 lattices, each representing a landscape of P1 and
P2 values with mean zero and variance one was created
and saved, for each of the distance scales D¼ 2, 5, and
12. These lattices were used with all values of the other
parameters. The procedure is as follows: aside from limbo
game it is the same as DS22, and you can see DS22
pp. 12–13 and Figure 2 for more details.

1. For each limbo game endpoint at some time T, we
generated V ¼ 20 independent coin-tossing simula-
tions of adult mortality at each site. This created V
vacancy configurations.

2. For each vacancy configuration, we conducted J ¼ 50
independent draws of the environments Eq x,Tð Þ,
computed adult fertilities, dispersed larvae across
sites, and simulated a random lottery at each vacant
site to get the population at time T +1 (note, J was
denoted R in DS22, resulting in R and r having multi-
ple meanings.)

For each of the KVJ one-step-ahead simulations
(indexed by k,v and j), the actual one-step-ahead popula-
tion growth rate can be expressed as in Equation (7),

r j,v,kð Þ
q ¼ log λq E j,v,kð Þ

q x,Tð Þ
�

,C j,v,kð Þ
q x,Tð ÞÞ

D Eh
+ Cov λ j,v,kð Þ

q Tð Þ
�

,ν j,v,kð Þ
q Tð ÞÞ

i
+ log η j,v,kð Þ Tð Þ:

ð16Þ

The E and C values were calculated from
Equation (10), using R from (Appendix S1: Equation S2),
λq values are calculated from Equation (11), and η values
from Equation (6).

Equation (16) is the basis for computing the “counter-
factual” population growth rates χα where features of the
actual dynamics are present or absent in various combi-
nations (see Equation (14)).

1. The estimate of the actual IGR  rq

 �

is the average of
(16) over r j,v,kð Þ

q values.
2. Variance in E was removed by setting all E j,v,kð Þ

q equal
to  Eq


 �
, and then re-computing r j,v,kð Þ

q values.
3. Variance in η was removed by replacing each value by

its average across all KVJ one-step-ahead simulations.
4. Because of edge effects we expect the mean of C to

vary by location, so variance in C was removed by
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setting the value at each location equal to its average
across all KVJ one-step-ahead simulations. We consid-
ered several different ways to average C, but with a
large M and large K, averages over lattice sites, over
configurations, or over time in any combination will
differ very little at nearly all sites.

5. Covariance between E and C was removed by generat-
ing new E values, from their marginal distribution but
independent of C, for each of the KVJ replicates.

6. Spatial and temporal components of covariance terms
were computed by replacing each Eq value by the
corresponding spatial or temporal component (see
Equation (15) and subsequent text).

7. Growth-density covariance was removed by setting
Cov λ j,v,kð Þ

q Tð Þ,ν j,v,kð Þ
q Tð Þ

� �
� 0 in Equation (16).

SIMULATION STUDY DESIGN

We studied a situation where the focal species (q¼ 2) has
a weak disadvantage in competition: μ1 ¼ 0,μ2 ¼ − 0:07.

Coexistence can, nonetheless, result from either
fluctuation-independent mechanisms (a large intraspecific
competition coefficient a) or fluctuation-dependent mech-
anisms (storage effect, growth-density covariance, rela-
tive nonlinearities in E and C). We set adult mortality
δ¼ 0:2, so that adults live 5 years on average. In DS22 we
found that the value of δ affected the absolute magni-
tudes of coexistence mechanisms, but had no effect on
any of the qualitative trends or conclusions.

Our main simulation study was a factorial design
comprising all possible combinations of the following
parameter values:

1. Adult intraspecific competition strength a� 0:1,1f g.
The fecundity reduction from competing entirely
with conspecifics rather than allospecifics is 11% when
a¼ 0:1 and 50% when a¼ 1.

2. Larval dispersal parameter α� 0,0:12,0:4f g, with equal
values for the two species, and maximum dispersal
distance always set to 15. These values produced mean
dispersal distances of roughly 7.5, 5.1, and 2, respectively.
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F I GURE 2 Relationship between coexistence mechanisms and average larval invader fraction. Left: Storage Effect. Right:

Growth-density covariance. Top, middle, and bottom rows show the total, spatial component, and temporal component. These results are for

σP ¼ σW ¼ 0:25 (black circles) or σP ¼ σW ¼ 0:5 (red circles) with δ¼ 0:2, and σP ¼ σW ¼ 0:25 with δ¼ 0:08 (blue circles). Figure made by R

script Graphs_HighVariance.R available at https://doi.org/10.6084/m9.figshare.23926179.
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3. The spatial scale of permanent spatial varia-
tion D� 2,5,12f g.

4. Magnitudes of environmental variation σP ¼ σW ¼ 0:25
and σP ¼ σW ¼ 0:5, always with equal values for the
two species. We assumed between-species correlation
− 0:75 for both P and W , so that a relatively good year
or place for one is probably a relatively bad year
or place for the other. As noted above,W had zero tem-
poral autocorrelation.

Because overlapping generations is a requirement for
the storage effect, we repeated the above design for
δ¼ 0:08 (mean adult lifespan of 12.5 years) restricted to
σP ¼ σW ¼ 0:25. Since negative cross-species correlation
in response to temporal variation favors the storage
effect, we also repeated the above design with this corre-
lation reduced to − 0:35, and again with the cross-species
correlation in spatial variation also reduced to − 0:35, in
both cases with σP ¼ σW ¼ 0:5.

RESULTS

DS22 found that the strength of the storage effect was
almost entirely determined by the average larval invader
fraction. Average larval invader fraction is defined as fol-
lows: for a randomly chosen invader larva—after larval
dispersal but before the lottery for sites—what fraction of
the other larvae in your site are also invaders? In DS22,
for a given value of δ and σW , the strength of the storage
effect was almost perfectly predictable from average lar-
val invasion fraction (R2 > 0:9, DS22 Figure 5). Here, with
spatial variability comparable with temporal variability,
we find no similarly tight link between larval invader
fraction and any of the fluctuation-dependent coexistence
mechanisms (Figure 2). Average larval invader fraction is
still important, but it is not the only important feature.

Overall mechanism importance

The magnitudes of coexistence mechanisms are strongly
dependent on the values of σP and σW , so unless stated
otherwise, all graphs are based on results for
σP ¼ σW ¼ 0:5 with δ¼ 0:2. Additional results for
σP ¼ σW ¼ 0:25 (Appendix S1: Section S7), for δ¼ 0:08
(Appendix S1: Section S8), and for weaker cross-species
negative correlation in W (Appendix S1: Section S9) or in
W and P (Appendix S1: Section S10), all show exactly the
same qualitative features.

Figure 3 summarizes the typical absolute magnitudes
of the terms in the partition (left panel) and the quantiles
of their distributions (right panel).

1. The baseline no-fluctuations IGR is large when a¼ 1
(strong niche differences). When a¼ 0:1 (weak niche
differences) the baseline term is roughly 0 on average
and never above 0.03.

2. The important fluctuation-dependent mechanisms
are the covariances, as expected: EC covariance
(storage effect) and growth-density covariance.
Relative nonlinearity terms (in E and C) are small,
and demographic stochasticity is unimportant.

3. For storage effect, the temporal component is most
important; for growth-density covariance, the spatial
component is most important.

4. There is sometimes a substantial interaction between
the spatial and temporal components of growth-
density covariance, but for storage effect there is
essentially no interaction between spatial and tempo-
ral components.

Effects of dispersal scales and adult
competition

Figure 4 shows how the average strengths of the main
fluctuation-dependent mechanisms vary as a function of
the spatial scales in the model (invader dispersal scale,
resident disperser scale, and correlation scale of perma-
nent spatial variation). To aid comparison, the same
y-axis range has been used for all panels.

The storage effect contributions are remarkably con-
stant across parameters. There is a weak negative effect
of resident dispersal scale, and a weak positive effect of
the scale of permanent spatial variation, which together
explain over 90% of the variance in the storage effect con-
tribution across parameters in the study. A negative effect
of invader spatial scale explains an additional 2% of the
variance.

The contributions of growth-density covariance have
similar trends but are much more variable. The dominant
trends are a positive effect of the scale of permanent
spatial variation (explaining 70% of the variance) and a
negative effect of resident dispersal scale (explaining 14%
of the variance). The relatively small dependence on
invader dispersal scale is non-monotonic, with the contri-
bution to IGR larger at mean distance 5.1 than at mean
distance 2, but slightly smaller at mean dispersal distance
7.5. When invader dispersal is highly localized (top row),
the contribution of growth-density covariance is
decreased (and can even be negative) with strong intra-
specific competition (a¼ 1, right column, versus a¼ 0:1,
left column).

These results broadly support the previously quoted
conclusion of Snyder (2008) that “it is the possibility of

ECOLOGY 11 of 17

 19399170, 0, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecy.4404 by C

ornell U
niversity Library, W

iley O
nline Library on [17/10/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



spatial segregation which gives spatial variation its large
potential to promote coexistence.” We have assumed that
areas good for one species are bad for another, so
increases in the scale of permanent spatial variation
make it easier for spatial segregation to occur through
each species building up populations in distinct favorable
areas. Small-scale permanent spatial variation in combi-
nation with localized invader dispersal results in the
strongest impact of intraspecific competition, presumably
because invaders are more tightly clustered and more
likely to have conspecific neighbors.

On the other hand, it may seem counter-intuitive that
growth-density covariance is affected more by resident
dispersal scale than by invader dispersal scale. When
IGRs are evaluated, the resident is “everywhere” while
the few invaders are somewhat clustered and occupy at
most 1% of sites. Why should it matter if a resident larva
lands on a nearby site, which is probably occupied by

a resident and surrounded by other residents, rather
than a distant site which is probably also occupied by a
resident and surrounded by other residents?

High growth-density covariance is the result of
invaders tending to be in “good” sites: ones where their
expected offspring production is high. Figure 5 shows
that a crucial ingredient in that outcome is that invaders
are situated where their larvae face fewer than average
competitors for vacant sites. The y axis is proportional to
the growth-density covariance term Cov λ,νð Þ in
Equation (7). Points at the upper left are parameters
where invaders tend to be in sites where their expected
fitness is high (large y-axis value), and their larvae
encounter relatively few other larvae (low x-axis value).
Because most of their neighbors are residents, and
invaders concentrate where conditions are good for them
and bad for the resident, invaders are in locations where
most of their neighbors have low fecundity. When
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F I GURE 3 Summaries of the average absolute magnitudes of the terms in the partition (left), and quantiles of their distributions

(right), for σP ¼ σW ¼ 0:5. E#C is the interactive effect on IGR of random variation in both E and C with their actual marginal distributions

but zero correlation. “Cov EC” is the effect on IGR of covariance between E and C, which measures the storage effect. “Temp” and “Spat”
denote the spatial and temporal components, respectively, of Cov EC and growth-density covariance “GD Cov,” and “Inter” is the
interaction of the spatial and temporal components. Figure made by R script Graphs_HighVariance.R available at https://doi.org/10.

6084/m9.figshare.23926179.
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residents have short-range dispersal, many invader larvae
(those not traveling too far) therefore have relatively few
competitors for vacant sites, increasing invader fitness.

Long-range resident dispersal diminishes or destroys
this advantage. Points at the lower right in Figure 5
reflect parameters causing invader larvae to face compe-
tition from resident larvae produced by far-away resi-
dent parents, in favorable sites, with high fecundity.
Combining this with the reduced intraspecific com-
petition in invader-rich regions, the result is that
invader larvae tend to be in crowded sites, reducing
invader fitness (Figure 6).

Overall, our results do not support any universal gen-
eralization about the relative strengths of storage effect
and growth-density covariance. With equal SDs of varia-
tion in time and in space, either one can be the stronger.
Across the parameter combinations we considered, the
contribution of growth-density covariance to IGR varied
much more widely than the storage effect contributions.
Thus, growth-density covariance had the higher maxi-
mum strength, but for a majority (57%) of parameter

combinations in our simulation study, the contribution
of storage effect was larger than the contribution of
growth-density covariance.

However, a comparison of spatial-versus-temporal
variability mechanisms arguably should group partition
terms differently. Growth-density covariance is inher-
ently spatial, but our storage effect term includes both
temporal and spatial EC covariance. An alternate com-
parison—between temporal component of storage effect,
and the sum of growth-density covariance and spatial
component of storage effect—is shown in Figure 6. The
pattern is the same as in Figure 4, only more pro-
nounced: the average contribution from temporal storage
effect is almost constant, while the total contribution
from the two spatial mechanisms varies in the same
ways, but more strongly. On average, the spatial mecha-
nisms have the wider range and higher average, and were
larger than the contribution from temporal storage effect
at 72% of the parameter combinations. So again, spatial
mechanisms have greater potential strength, but in many
situations are weaker than temporal mechanisms.
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F I GURE 4 Contribution to invader growth rate (IGR) of EC covariance (storage effect, left half of the figure) and growth-density

covariance (right half of the figure), averaged across other parameters, plotted as a function of resident species dispersal scale, for

σP ¼ σW ¼ 0:5. To aid comparison, all plots use the same vertical axis scale. Colors (from light to dark) indicate the length scale of spatial

patchiness (roughly 2, 5, and 12 cells). Columns differ in the value of intraspecific competition parameter a, labeled at top. Rows differ in the

value of invading species dispersal scale, labeled in the leftmost column plot heading. Figure made by R script Graphs_HighVariance.R

available at https://doi.org/10.6084/m9.figshare.23926179.
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DISCUSSION

Our first key finding is that the relative importance of
spatial and temporal coexistence mechanisms is highly
variable, as is the relative strength of the storage effect
and growth-density covariance. While the strength of
temporal mechanisms depended mostly on the temporal
environmental variance, the strength of spatial mecha-
nisms also varied with demographic parameters. Spatial
mechanisms therefore had the greater maximum possible
contribution to IGR, but also the smaller minimum con-
tribution. This outcome was in line with our initial
hypotheses. Unexpectedly, the contribution of spatial

mechanisms could even be negative, opposing coexis-
tence. Thus, intraspecific differences in habitat prefer-
ences do sometimes “overcome the negative impact of
within-species clustering” (Murrell, 2010, p. 1615), but
that is not always the case.

However, those conclusions have important caveats.
First, like prior generalizations, they are about one model
within a particular range of parameter values—a
model where temporal mechanisms are especially strong
(Stump & Vasseur, 2023), as we discuss below. Second,
they are “all else being equal” comparisons, hold-
ing when the temporal and spatial components of
environmentally-driven demographic variation have
equal variance. Third, like most prior studies of similar
questions they are based on two-species interactions,
and results for diverse communities may be different.

Our second key finding, also unexpected, is that indi-
vidual discreteness alters prior conclusions about the
ecological conditions that most favor coexistence based
on spatial variability. Both we and Snyder (2008) find
that spatial variation promotes coexistence via spatial
segregation: in particular, the invader tends to be in sites
where its expected offspring production is high, as
measured by the y-axis in Figure 5. However, the routes
to segregation are different in this study, partly because
of model differences but mostly because we no longer
assume that competition between invader individuals
is always negligible. In particular, Snyder (2008)
(and earlier papers about strictly spatial variation, such
as Snyder & Chesson, 2003) found that both resident and
invader dispersal distances that are shorter than typical
patch sizes promote coexistence, whereas we unexpect-
edly found that only resident dispersal distance matters
very much.

This difference in results occurs because short-ranged
invader dispersal is a double-edged sword in our model.
Short-range dispersal still helps the invader concentrate
in favorable areas, but it also exposes the invader to
increased within-species competition even when it
is globally rare in the community. We expected that
short-range invader dispersal should still benefit invaders
at least a little by enhancing spatial segregation. This
expectation was borne out by growth-density covariance
being largest for intermediate-range invader dispersal
(Figure 4). But overly limited dispersal becomes disad-
vantageous: most strongly when a¼ 1, but even when
a¼ 0:1. Short-range resident dispersal also benefits the
invader in our model, because it promotes spatial
segregation and because larvae produced by distant resi-
dents (which greatly outnumber invader larvae) do not
flood invader-dominated areas.

Individual discreteness also alters the effect of intra-
specific competition. Snyder (2008) found that strong,
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between invader presence (0 or 1 at each site) and expected invader

fitness if present at that site (fitness is total number of recruits

produced at all sites at the next time step). This is a measure of the

degree to which invaders are found in sites where they will have

high fitness (growth-density covariance). x-axis: Average correlation

between the number of invader larvae at a site (after larval

dispersal) and the total number of larvae at that site. This is a

measure of how much competition a typical invader larva will face

in the lottery to occupy a vacant site. The strong negative

relationship shows that escape from larval competition is an

important component of growth-density covariance. The two other

factors having a substantial effect are the mean dispersal distance

of the resident species (indicated by symbol color) and the strength

of intraspecific competition (indicated by symbol size); for both,

larger values have a significant negative effect (linear regression

p<0:001). Pairs of very close points (e.g., at bottom right) are

mostly parameter sets differing only in the value of adult mortality

δ. Figure made by R script Graphs_HighVariance.R available

at https://doi.org/10.6084/m9.figshare.23926179.
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localized within-species adult competition and weak,
spatially extended between-species adult competition
promote coexistence. Residents then experience high
competition in their favorable areas, but have little effect
on distant invaders. Competition kernels in Snyder
(2008) are normalized so that competition is either strong
and local or weak and spatially extended. We assume that
the spatial scale of competition does not vary with
competition strength, so it is difficult to compare results
exactly. Nonetheless, we observed that strong within-
species adult competition instead reduces the ability of
spatial segregation to promote coexistence, by contrast
with Snyder (2008), again because individual discrete-
ness allows intraspecific competition among invaders
Murrell (2010).

One important direction for extending our work is to
study coexistence based on regional rather than strictly
local processes. In the Vellend (2010) classification of
community theories, coexistence in our model is entirely

due to selection: frequency-dependent “fitness” differences
between species due to mechanisms operating at the
α-diversity scale, generated by properties of the local
community. At the β-diversity or metacommunity scale,
where there can be substantial environmental heterogene-
ity among disjunct habitat patches, Mass Effect (or if you
prefer, source-sink dynamics) can allow many species to
coexist (e.g., Amarasekare, 2003; Hart et al., 2017;
Levin, 1976; Luo et al., 2022; Myers & Harms, 2009;
Shmida & Wilson, 1985). In such a setting, rare invaders
concentrated in their preferred patches (or patches with
conditions that an elsewhere dominant competitor can-
not tolerate; Martin & Ghalambor, 2023) may still be far
enough apart to avoid intraspecific competition, possi-
bly removing the limitation that individual discreteness
imposes on spatial coexistence mechanisms in our
single-patch model.

Conversely, the strength of the storage effect in our
model is due in part to EC covariance being “baked in”:
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F I GURE 6 Contribution to invader growth rate (IGR) of temporal component of EC covariance (storage effect, left half of figure) and

spatial coexistence mechanisms (growth-density covariance plus spatial component of EC covariance, right half of figure) averaged across

other parameters, plotted as a function of resident species dispersal scale, for σP ¼ σW ¼ 0:5. To aid comparison, all plots use the same

vertical axis scale. Colors (from light to dark) indicate the length scale of spatial patchiness (roughly 2, 5, and 12 cells)—note that in the left

half of the figure, these curves overplot almost exactly. Columns differ in the value of intraspecific competition parameter a, labeled at top.

Rows differ in the value of invading species dispersal scale, labeled in the leftmost column plot heading. Figure made by R script

Graphs_HighVariance.R available at https://doi.org/10.6084/m9.figshare.23926179.
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if resident adults have a good year their numerous larvae
face stiff competition. Features absent from the lottery
model (such as between-cohort juvenile competition
or rapid environmental change) can weaken the storage
effect (Johnson & Hastings, 2022b; Stump & Vasseur, 2023),
to the point of nonexistence: when studying coexistence
mechanisms in semi-desert shrub communities, we eventu-
ally realized that we had inadvertently built models
where the storage effect is structurally impossible
(Ellner et al., 2016).

So unfortunately, accounting for individual discrete-
ness only magnifies the challenge that “the devil is in the
details.” With a theoretician’s freedom to set the rules,
tilting the table to favor one outcome over another can be
so easy that it happens unintentionally. The most impor-
tant extension of this paper, therefore, would be to
use our general methods in the context of carefully
constructed empirical models for real communities.
Coexistence theory is far from being complete and set-
tled, but perhaps the greatest need now is for more
Modern Coexistence Data, so that questions about coexis-
tence mechanisms can be asked and answered about
more real communities. Time-series data on population
and community dynamics unavoidably accumulate
slowly. To better understand coexistence, we need effec-
tive ways of combining time series with short-term obser-
vations and experiments to characterize and quantify the
mechanisms that maintain community biodiversity.
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