
vol . 204 , no . 2 the amer ican natural i st august 2024
E-Article

To Prosper, Live Long: Understanding the Sources

of Reproductive Skew and Extreme Reproductive

Success in Structured Populations
Robin E. Snyder1,* and Stephen P. Ellner2

1. Case Western Reserve University, Cleveland, Ohio 44106; 2. Cornell University, Ithaca, New York 14853

Submitted September 5, 2023; Accepted March 7, 2024; Electronically published June 7, 2024

Online enhancements: supplemental PDF.
abstract: In many species, a few individuals produce most of
the next generation. How much of this reproductive skew is driven
by variation among individuals in fixed traits, how much by exter-
nal factors, and how much by random chance? And what does it
take to have truly exceptional lifetime reproductive output (LRO)?
In the past, we and others have partitioned the variance of LRO as
a proxy for reproductive skew. Here we explain how to partition
LRO skewness itself into contributions from fixed trait variation,
four forms of “demographic luck” (birth state, fecundity luck, sur-
vival trajectory luck, and growth trajectory luck), and two kinds of
“environmental luck” (birth environment and environment trajec-
tory). Each of these is further partitioned into contributions at dif-
ferent ages. We also determine what we can infer about individuals
with exceptional LRO. We find that reproductive skew is largely
driven by random variation in lifespan, and exceptional LRO gen-
erally results from exceptional lifespan. Other kinds of luck fre-
quently bring skewness down rather than increasing it. In populations
where fecundity varies greatly with environmental conditions, getting
a good year at the right time can be an alternate route to exceptional
LRO, so that LRO is less predictive of lifespan.

Keywords: reproductive skew, lifetime reproductive success, trait
variation, individual stochasticity, environmental variation, Rissa
tridactyla, Anser caerulescens, Fulmarus glacioides, Clinocottus analis,
Falco naumanni, Umbonium costatum, Xenosaurus platyceps, Lo-
matium bradshawii.

Introduction

Even in the absence of social dominance, the distribution of
lifetime reproductive output (LRO) is often highly skewed,
with a few individuals producing most of the offspring
(e.g., Goodwin et al. 2016; Gerzabek et al. 2017; Le Boeuf
* Corresponding author; email: res29@case.edu.
ORCIDs: Snyder, https://orcid.org/0000-0002-6111-0284; Ellner, https://

orcid.org/0000-0002-8351-9734.

American Naturalist, volume 204, number 2, August 2024. q 2024 The University of
The American Society of Naturalists. https://doi.org/10.1086/730557
et al. 2019; Eusemann and Liesebach 2021). Reproductive
skew can have substantial evolutionary consequences. If
the reasons for large reproductive inequality are heritable,
there is a large opportunity for selection. If not, then highly
skewed genotype-independent variation in realized fitness
can change the consequences of genetic drift for outcomes
such as the probability of allele fixation and the mean time
to fixation (Eldon and Stephan 2023; Tuljapurkar and Zuo
2023). Large reproductive skew also has potential manage-
ment implications: if we can predict which individuals are
more likely to dominate reproduction, these are the ones
we should target in an intervention, whether we aim to pre-
serve a population or to extirpate it. We also just marvel at
exceptional individuals and wonder how they came to be
that way.1 Some researchers have looked for variation in
strategy or quality that allows the most successful individ-
uals to dominate reproduction (e.g., Annett and Pierotti
1999; Péron 2023); however, our past work suggests that
exceptional success may be mostly random, resulting from
some combination of rapid early growth or maturation, a
favorable environment at the right time, unusually large
clutch sizes, and a long life (Snyder and Ellner 2018,
2022; Snyder et al. 2021). Even then, we can ask exactly
how an individual needs to be lucky to end up far out on
the reproductive tail, since not all of these forms of luck
may be equally important for having exceptional LRO.

In past work we have shown how to partition the vari-
ance of LRO implied by a density-independent structured
population model into contributions from trait variation,
luck in survival, luck in growth, luck in favorable/unfavorable
environments, and luck in fecundity at different ages
Chicago. All rights reserved. Published by The University of Chicago Press for

1. For example, T. Shaw, “The Oldest Known Common Loons Find Success
at Seney National Wildlife Refuge” (www.fws.gov/story/oldest-known-common
-loons; accessed December 7, 2023).
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(Snyder et al. 2021; Snyder and Ellner 2022). We, like
others, found that trait variation (i.e., variation in any
unchanging life-long attribute, such as genotype, pheno-
type, birth weight, and the location of a sessile organism)
always contributes less—usually much less—to the vari-
ance in LRO than the contribution of random chance
(Steiner and Tuljapurkar 2012; Hartemink and Caswell
2018; Jenouvrier et al. 2018; Snyder and Ellner 2018;
Broekman et al. 2020).2 Luck dominates because of the many
possible trajectories through life: even with identical traits
and a common environment, different individuals will typi-
cally experience a different series of size or stage transitions
and die at different ages, leading to variation in lifetime re-
production. As a result, the highly successful are not neces-
sarily exceptional in any way other than their reproductive
success (Chen et al. 2019; Liu et al. 2019). They’re just lucky.

The variance of LRO measures the breadth of possible
outcomes, but to understand why the distribution of LRO
is so lopsided we need to similarly partition the skewness
of LRO into contributions at different ages from different
kinds of luck. In this article, we show how to do that and
apply the new methods to a set of case studies with
contrasting life histories. We ask what produces the tail
in LRO. To what degree is reproductive skew driven by
trait differences and to what degree by luck? To the extent
that skew is driven by luck, is it luck in survival, in growth,
in environment, in fecundity? And we ask what it takes to
end up in the far-right tail of the distribution. If the right
question is not so much “Why is this individual special?”
as “How did this individual get so lucky?” we can still ask
what kind of luck it takes to be especially successful.

It is important to note that we are analyzing the lives of
individuals, not the output of a cohort. In populations
where temporal variation in environmental conditions
affects demographic rates, we can interpret these results
as representing the distribution of outcomes across a co-
hort of individuals only if each individual in the cohort
experiences their own independent sequence of environ-
ment states. This may be nearly true if environmental var-
iation is spatiotemporal with a fine spatial grain—patchy
fires or local light environments in a forest may be good
examples (Metcalf et al. 2009; Coutts et al. 2021).

As with reproductive variance, we find in empirical
examples that reproductive skew results mostly from luck
rather than from trait differences. Unlike LRO variance,
which can be produced by various forms of luck depending
on life history, reproductive skew is generated mostly by
differences in lifespan. Relatedly, we find that individuals
2. Note that what we have called luck and traits, Caswell and collaborators
have called individual stochasticity and individual heterogeneity, while Tulja-
purkar and collaborators refer to them as dynamic heterogeneity and fixed in-
dividual differences.
with exceptional LRO generally have exceptionally long
lives, although the degree to which LRO constrains lifespan
varies: when fecundity varies substantially with environ-
ment conditions, getting a good year can partially substitute
for a long life. If fecundity varies wildly with environment,
the typical clutch size in an exceptionally good year may be
enough to guarantee exceptional LRO. In that case, being in
the right environment at the right time can provide another
route into the right-hand tail of the LRO distribution.
Methods

Overview

Our approach to partitioning skewness in lifetime out-
comes into contributions from different kinds of luck at dif-
ferent ages is conceptually very similar to our approach for
partitioning variance (Snyder et al. 2021; Snyder and Ellner
2022). We are deriving information about the role of luck
from a demographic model that has been parameterized
from data. The underlying model is a discrete-time density-
independent matrix model, integral projection model
(IPM), or agent-based model incorporating population
structure. While usually used to project entire populations
over time, these models are built from individual state-fate
relationship models that describe what happens to an indi-
vidual over the course of one year (or one time step of the
model) as a function of their current state (e.g., size or
stage). What are their odds of survival? What is their
expected fecundity this year? If they live, what is the prob-
ability distribution for their state or size at the next census?

For our analysis, each time step in the life of an individ-
ual is conceptually divided up into a series of substeps
updating first reproductive output, then survival, then
growth to a new size/stage, and finally the state of the en-
vironment, if the environment is time varying, as shown in
figure 1. As noted in the introduction, if we interpret our
analysis as calculating the distribution of realized out-
comes across a cohort of many individuals (rather than
the probability distribution of possible outcomes for one
individual), we must assume that each individual experi-
ences an environmental sequence that is independent of
its neighbors: we do not yet know how to account for en-
vironments that are correlated across individuals. We then
rewrite the original model, which moves directly from age
a to age a1 1, as a model where these transitions in fecun-
dity, survival, and so on occur separately and sequentially
between ages a and a1 1. This requires expanding the
state space so that the individual state also includes the fol-
lowing information: which of those transitions have you
most recently experienced? The expanded model’s time step
is then a portion of a year. For that expanded model, results
of van Daalen and Caswell (2017) let us compute the first,
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second, and third moments of future LRO and lifespan
given the individual’s current state and thus the moments, var-
iance, and skewness conditional on the individual’s history
up to that moment. Learning what actually happened dur-
ing one more unpredictable transition (e.g., learning that
the individual lived from age 5 to age 6) changes the condi-
tional moments. “Learning what actually happened” is
equivalent to “removing the luck”: chance is replaced by
certainty. Thus, the change in variance or skewness when
we learn what actually happened measures how much the
luck in that transition contributed to lifetime total variance
or skewness. Fecundity luck is ascertained by learning how
many offspring an individual produced at that age, survival
trajectory luck by knowing whether an individual survived
or died at that age, growth trajectory luck by knowing what
size/stage the individual transitioned to, and environment
trajectory luck by knowing the next state of the environ-
ment. To get one characteristic value for the population
of the contribution of each kind of luck at each age rather
than a different value for each individual, we average across
individuals based on the age-dependent state distribution,
including those individuals that are already dead.

Because we found that reproductive skew is largely driven
by luck in survival, we assumed that having exceptionally
large LRO is mostly a matter of living exceptionally long.
To characterize the connection between reproductive suc-
cess and lifespan, we calculate the distribution of lifespan
conditional on achieving a particular LRO: how long do
those in the reproductive tail live? The first step is to ex-
pand the model’s state space so that the individual state
includes the individual’s total reproductive output up to
the present. Defining “success” as having some number
(or at least some number) of offspring, we calculate the
state transition probabilities conditional on achieving suc-
cess (Kemeny and Snell 1960; Snyder and Ellner 2016). By
iterating the state transition matrix, we obtain the proba-
bility of survival to ages 1, 2, 3, ::: and therefore the distri-
bution of lifespan conditional on being successful.
The rest of this section fills in the mathematical details
and provides some computing formulas. If you want
those right now, read on. If not, you can safely skip ahead
to the “Results from Case Studies” section.

Notation and Assumptions

We use the notation that ~m3 denotes skewness, while m3 is the
unscaled third central moment. Skewness is a normalized
form of the third central moment that provides a scale-free
measure of the asymmetry of a probability distribution: for
a random variable X, ~m3(X) p m3(X)=Var(X)3=2 . Because
we use skewness as a measure of a distribution’s asymmetry,
we define skewness to equal zero when the variance is zero
and the standard formula gives 0/0 (undefined).

As always in a discrete-time model, it is necessary to
specify the sequence of events within a time step. Here
we assume the order shown in figure 1: between ages a
and age a1 1, living individuals experience first reproduc-
tion, then risk of mortality, then individual state transition
(“growth”), and finally an update in the environment state
(if that is present in the model). This diagram assumes a
prebreeding census; a postbreeding census would have re-
production occurring last in each time step rather than
first. In section S3 of the supplemental PDF, we describe
the relatively minor changes needed for a postbreeding
census. It is important to note that individuals born within
one time step join the population only at the start of the
next time step, as new age 0 individuals, and after that un-
dergo the depicted sequence of events every year.

We define

w(a) p
E[~m3 Rjall history up to and including reaching age að Þ]:

ð1Þ
On the right-hand side, the ~m3(●) in brackets denotes
the skewness of the conditional distribution of LRO R
given the individual’s entire history up to and including
(1) Reprodu (2) Mortality 

z’

(3) Growth (4) Environment

Figure 1: Assumed sequence of events for partitioning luck by transition type and age. At age a each individual has individual state za and
possibly environment state qa. Within the time step carrying an individual from age a to age a1 1, the order of events is (1) reproduction
between a and a1 1=4, (2) mortality between a1 1=4 and a1 1=2, (3) growth (or state transition) between a1 1=2 and a1 3=4, and
(4) update of environment state between a1 3=4 and a1 1 , in models with environmental variability. In substep 1, za and qa determine
the offspring production Ba at age a, from which a realized value ba is drawn at age a1 1=4, representing some arbitrary point between ages
a and a1 1. In substep 2, after reproduction, each individual either survives (z0a p za) or dies (z0a p “dead”). In substep 3, all surviving
individuals then transition to their subsequent state za11. In substep 4, in models with Markovian environmental variation, all transition
probabilities between ages a and a1 1 are affected by the environment state qa. The final event within each time step is a random transition
to the next environment state qa11.
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reaching age a, including past states and realized clutch
sizes.3 The expectation is the average of that quantity,
across the probability distribution of individual histories
up to and including reaching age a.

Conditioning R on past reproductive output, in addition
to past states, differs from our past work. The variance of a
sum of independent variables is the sum of the variances,
and we assume that clutch sizes at different ages are indepen-
dent conditional on the state trajectory, so the contribution
of fecundity luck to Var(R) is just the sum of age-specific
clutch size variances. Higher moments of sums do not break
down so neatly, so we need to calculate the contribution of
fecundity luck age by age, just like the other forms of luck.
Conditioning on past reproductive output as well as past
states keeps the past and future independent (eq. [4]). To that
end, we let Ba denote clutch size (“births”) at age a so that

R p B0 1 B1 1 B2 1⋯: ð2Þ
Below we use Ba to denote births at each age considered as
a random variable and ba to denote the realized number of
births in a particular life trajectory. Similarly, Za denotes
the individual state at each age considered as a random
value and za the realized state; we use Qa, qa in the same
way for the environment state when that is present in
the model and Ya, ya for the vector of all model state
variables (z, q, and any other state variables in the model).
For some of our calculations the individual state needs to
include k, the individual’s total reproductive output up to
the present. Including k greatly increases the size of tran-
sition probability matrices and creates new opportunities
for indexing errors, so it should be done only when it is es-
sential to answer the question at hand.

We assume that transitions between environments
states, if they occur, are Markovian. The environment
can be temporally autocorrelated, but each year’s environ-
ment can depend only on the previous year’s environment.
Age Partitioning of Skewness Contributions
from Different Luck Types

At birth, an age 0 individual already has some history:
their birth state z0 and birth environment q0. We use
w(21) to denote the unconditional skewness ~m3(R)—
the skewness of LRO R at an imaginary prebirth state
before birth state and birth environment have been
assigned. If there are multiple possible birth states and/
or birth environments, w(21) needs to be computed us-
ing the law of total cumulance and the vector of condi-
3. We use “clutch size” to mean the number of offspring produced by a
single female in one year (or one time step of the original model), regard-
less of taxon.
tional skewness given the birth state and environment
(see sec. S1 in the supplemental PDF).

Our decomposition of LRO skewness is the telescop-
ing sum identity

~m3(R) ≡ w(21) p [w(21) 2 w(0))]
1 [w(0) 2 w(1=4)]
1 [w(1=4) 2 w(1=2)]
1 [w(1=2) 2 w(3=4)]
1 ⋯
1 [w(T 1 3=4) 2 w(T 1 1)]
1 w(T 1 1):

ð3Þ

As T → ∞ the remainder w(T 1 1) → 0, because the
conditional distribution in equation (1) is dominated
by the probability that the individual dies before age T.
If that happens, then R p b1 1 b2 1⋯1 bT , which is
conditionally constant at T 1 1, with zero skewness.
Therefore, w(T 1 1) cannot be larger than the probabil-
ity that the individual is still alive at T times the (finite)
maximum skewness of R as a function of the initial state.
Thus, w(t) → 0 at least geometrically fast, so it is safe to
neglect terms in equation (1) beyond the age at which
nearly all individuals are dead.

In equation (3), the first difference in brackets on the
right-hand side is the change in expected skewness
resulting from knowing birth state z0 and birth environ-
ment q0. The second term is the change resulting from
knowing the first realized fertility f0. The third is the
change resulting from knowing whether the individual
survived to time step 1—and so on.

We now need to evaluate eachw(s). To do that, we create
an extended state space model in which the different demo-
graphic transitions—fecundity update, survival update,
growth update, environment update—occur separately
and sequentially within a unit of “clock time” that advances
individual age from a to a1 1. Going from age a to age
a1 1 now takes four intermediate steps. For maximum
generality, we assume here that individuals are character-
ized by an individual state vector y consisting of their state
(“size”) z, environment q, and number of offspring up to
the current time k (“kids”) and indicate the changes for
models where k or q may be absent from y.

Adding a constant to a random variable does not
change its skewness. Thus, the skewness of lifetime total
reproduction R conditional on past reproduction b0,
b1, :::, ba and states y0, y1, :::, ya is

~m3(Rjb0, b1, :::, ba, y0, y1, :::, ya)

p ~m3

Xa

jp0

bj 1
X
j1a

Bj

" #
jya

 !

p ~m3

X
j1a

Bjjya
 ! ð4Þ
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The important aspect of equation (4) is that even though R
includes past as well as future reproduction, the skewness
of R conditional on an individual’s history up to the pres-
ent depends only on future reproductive success, not on
past reproductive success. The same is true for any inter-
mediate point in our subdivision of the time step. And
computing the skewness of future LRO conditional on
current state in our extended state space is a solved prob-
lem (van Daalen and Caswell 2017). Those calculations do
not require k (reproduction to date) to be a component of
y because za and qa together determine the probability dis-
tribution of future states and reproductive outputs.

Let F and P denote the fecundity and state transition
(i.e., survival and growth) matrices, respectively, of the
original projection matrix A p P1 F. Moments of
LRO are computed from P and the “reward matrices”
Rj (having the same size as A) giving the jth noncentral
moments of the “reward” (number of offspring) associated
with each possible transition, following the methods de-
scribed in van Daalen and Caswell (2017). Reward matrices
are a means to calculate the noncentral moments of the
LRO distribution. The i, jth entry of a reward matrix repre-
sents the “reward” (e.g., mean reproduction, second non-
central moment) associated with the transition from state
j to state i. The Rj are calculated from F using assumptions
about the form of the offspring number distribution, where
the column sums of F give the mean of the distribution as
function of the parent state. We assume that the offspring
number distribution is determined by the current state
only, not by the current and subsequent state,4 so assum-
ing that the i, kth element of a matrix represents transi-
tions from state k to state i, all entries in the kth column
of Rj are equal to the jth moment of the clutch size for a
parent in state k.

Our extended state space has dimension 4# the orig-
inal dimension, to accommodate the four phases of the
time step. Only living states are included, so that we
can directly use formulas for that situation from van
Daalen and Caswell (2017). How we nonetheless ac-
count for the dead is explained after equation (7). If
the original number of living states is n, the first n en-
tries of the state vector are devoted to the state of the in-
dividual at the start of the time period, the second n en-
tries to the state of the individual just after the fecundity
update, the third n entries to the state just after the sur-
vival update, and the last n entries to the state just after
the growth update.
4. The distribution of offspring number can become correlated with fu-
ture states in subtle ways. See the section “Where These Calculations Break
Down and What to Do About It” in Snyder and Ellner (2022) for details.
To create the transition and reward matrices on the ex-
tended state space, we make the following definitions, also
used in Snyder and Ellner (2022).5

1. F● is the matrix (or discretized IPM kernel) that only
updates cumulative offspring number k. If cumulative
offspring number is part of the state variable, the entries
of F● involve the probability distribution for clutch size,
the mean of which is taken from the fecundity matrix F.
If cumulative offspring number is not part of the state var-
iable in the original model, then F● is the identity matrix.

2. S● is the matrix that only updates survival versus
death—there is no change in individual state z. This is
a diagonal matrix with state- and environment-specific
survival probabilities on the diagonal.

3. G● is the matrix that only includes growth (i.e., in-
dividual state transitions), conditional on survival.

4. Q● is the matrix that only updates the environment
state.

Note that Q●G●S●F● p A. The transition matrix on
the extended state space is then

A1 p

0 0 0 Q●

F● 0 0 0
0 S● 0 0
0 0 G● 0

0
BB@

1
CCA, ð5Þ

so that Q●, F●, and so on each act only on one n-component
block of the state vector, and each time we multiply by
A1 we move the nonzero components of the state vec-
tor to the next n-component block, corresponding to up-
dating the system in one of the four intermediate steps
portrayed in figure 1. For example, applying A1 to the
state at the beginning of the time step updates fecundity
and moves the nonzero portions of the state vector from
the first n components to the second n components:
A1((ka, za, qa), 0, 0, 0) p (0, (ka11, za, qa), 0, 0). The corre-
sponding reward matrices are

R1
j p

0 0 0 0
Rj 0 0 0
0 0 0 0
0 0 0 0

0
BB@

1
CCA: ð6Þ

Now we can evaluate skewness at various points in the
update from age a to age a1 1—that is, the various
w(a). We let y denote a possible state in the extended
state space and y0 a possible state at birth. The term
~m1

3 will denote skewness of R as a function of state on
5. The subscript dots are ways of distinguishing the matrices for sur-
vival, growth, and so on that work on the extended state space from those
that work in the original state space.
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the extended state space (and hence potentially finding
skewness partway through a time step), and E~m1

3 (Rjy0)
is the expected skewness of R conditional on the initial
state on the extended state space being y0.

1. The expected skewness at the start of a time period
is

w(a) p E1
ka ,za ,qa~m

1
3 (Rjy0 p ((ka, za, qa), 0, 0, 0)), ð7Þ

where we use E1 to denote a weighted average over the
living states in which the weights sum to the probability
of being alive at that age. The distribution of living states
(ka, za, qa) is Aam0, where m0 is the initial state distribu-
tion, so

w(a) p ~m1
3 (Rjy0 p ((ka, za, qa), 0, 0, 0))TAam0: ð8Þ

2. The expected skewness just after the fecundity up-
date is

w(a1 1=4) p E1
ka11,za ,qa~m

1
3 (Rjy0 p (0, (ka11, za, qa), 0, 0)),

ð9Þ

where the distribution of living states (ka11, za, qa) is
F●Aam0.

3. The expected skewness just after the survival update
is

w(a1 1=2) p E1
ka11,z0a ,qa~m

1
3 (Rjy0 p (0, 0, (ka11, z0a, qa), 0)),

ð10Þ
where the distribution of living states (ka11, z0a, qa) is
S●F●Aam0.

4. The expected skewness just after the growth update
is

w(a1 3=4) p E1
ka11,za11,qa~m

1
3 (Rjy0 p (0, 0, 0, (ka, za11, qa)),

ð11Þ
where the distribution of living states (ka11, za11, qa) is
G●S●F●Aam0.

5. The expected skewness just after the environment
update is the expected skewness at the start of the next
time period, w(a1 1).

Fecundity luck, survival trajectory luck, growth trajec-
tory luck, and environment trajectory luck are the
changes in expected skewness when we make the relevant
demographic transition. So, for example, survival trajec-
tory luck at age a is the change in expected skewness from
just after the fecundity update at age a to just after the sur-
vival update at age a: w(a1 1=4) 2 w(a1 1=2).

The extended state transition matrix A1 corresponds
to the order of events within a time step assumed in fig-
ure 1, but the approach works for any order with minor
changes. For example, with the order growth → repro-
duction → mortality → environment update, we have

A1 p

0 0 0 Q●

G● 0 0 0
0 F● 0 0
0 0 S● 0

0
BB@

1
CCA,

  R1
j p

0 0 0 0
0 0 0 0
0 Rj 0 0
0 0 0 0

0
BB@

1
CCA,

ð12Þ

and the living state distributions are G●Aam0, F●G●Aam0,
and S●F●G●Aam0, respectively, after the growth, fecun-
dity, and mortality updates.

For models without environmental variation, the only
difference is that the time step is divided into three inter-
mediate steps, updating fecundity, survival, and growth.
We walk the reader through this process in section S2 of
the supplemental PDF.
Birth State and Birth Environment Luck

In the partition shown in equation (3), w(21) 2 w(0) is
the change in expected skew resulting from an individual
being assigned a birth state z0 and a birth environment
q0. It represents the total effect of birth state luck and
birth environment luck—that is,

w(2 1) 2 w(0) p ~m3(R)

2 Ez0;q0 [~m3(RjZ0 p z0;Q0 p q0)];

ð13Þ
where the expectation is over the bivariate distribution of
z0 and q0.

If birth state and birth environment are assigned inde-
pendently, then w(21) 2 w(0) can be partitioned into
separate contributions from birth state luck and birth
environment luck. This will always be the case if the en-
vironment is independent and identically distributed
rather than actually depending on past environments. If
the environment is not independent and identically dis-
tributed, it will be true if there is exact mixing at birth—
that is, if the offspring state distribution is the same for
all parents in all environment states.

However, in other cases there is no natural way of choos-
ing an “order of events” for assignment of birth state and
birth environment. Our assumed order of events within
time steps (fig. 1) has reproduction occurring before an en-
vironment update, so for our case studies here we assume
that birth state is assigned first, then birth environment.
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The skewness contributions from birth state z and birth en-
vironment q are then, respectively,

εz p ~m3(R) 2 Ez0[~m3(RjZ0 p z0)];

εq p Ez0[~m3(RjZ0 p z0)]

2 Ez0,q0 [~m3(RjZ0 p z0,Q0 p q0)]:

ð14Þ

Our calculations take as given the distribution of birth
state and environment, but in some populations either or
both of those may depend on the state and environment
of the individual’s parent, say, if good environments or
more robust parents yield larger offspring on average.
In such situations the user has several options. They
can use the distribution of offspring state and environ-
ment for a typical parent (e.g., the parent of a randomly
chosen newborn when the population is at its stationary
stage/state/environment distribution), they can evaluate
and compare the birth state and environment contribu-
tions for different types of parent in different environ-
ments, or they can extend our analysis by adding an age
a p 22 at which the state and environment of the indi-
vidual’s parent is chosen from some relevant distribution.

Determining the Contribution of Traits

If the original model includes variation among individuals
in fixed traits (which we denote x), we measure the total
contribution of traits to skewness by letting trait assignment
be thefirst event represented in our telescoping sum. That is,

~m3(R) p E[~m3(R) 2 ~m3(Rjx)]

1 [~m3(Rjx) 2 ~m3(Rjx, z0)]

1 [~m3(Rjx, z0) 2 ~m3(Rjx, z0, q0)]

1 ⋯:

ð15Þ

To perform this calculation, we suppose that everyone is
born into an undifferentiated ur-state, as we did for birth
state and birth environment. Individuals first acquire a trait
value, then an initial size/stage, then an initial environment.
The change in skewness that comes from conditioning on
the trait value is the total contribution of traits to skewness.

The ur-state skewness w(21) and the terms in the de-
composition of w(21) 2 w(0) are easiest to calculate by
using an extended state space that includes prebirth
states. This is conceptually like the extended transition
matrix in equation (5), in that individuals sequentially ac-
quire their trait value, initial state, and initial environment;
details are given in section S1 of the supplemental PDF.

Calculating the Lifespan Distribution
Conditional on LRO

We will find that survival trajectory luck dominates con-
tributions to the skewness of LRO in our empirical case
studies. To determine whether those with exceptional
LRO are special in part because they live exceptionally
long, we will want to calculate the lifespan distribution
conditional on LRO. To do this, we again subdivide the
time step exactly as in figure 1. Although we are not par-
titioning luck, the order of updates still affects our answer.
This subdivision allows us to ensure that reproduction
happens before survival, as we have assumed. The indi-
vidual state space is expanded to include k, the number
of offspring produced up to the present. For example, if
individuals were originally characterized by size z and en-
vironment q, they are now characterized by z, q, and k.
We then create F●, S●, G●, and Q● matrices for this new,
extended state kernel and assemble them into transition
matrix A1 as in equation (5). LRO is then an aspect of
the individual’s state at death, and we can use previously
developed methods for conditioning transition probabil-
ities on state at death (Snyder and Ellner 2016).

Specifically, we calculate A1 conditional on “success,”
where success is defined as having a given LRO, RT. We
do this by first defining a modified transition kernel with
two absorbing states—either an individual dies with a
value of k equal to RT or higher, or it dies with k ! RT .
We calculate (by standard methods) the probability of
ending in the former absorbing state given that an indi-
viduals’ current state is a transient (nonabsorbing) state
z, qs(z;RT). The probability of having LRO of precisely
RT is then

fs(z;RT) p qs(z;RT) 2 qs(z;RT 1 1): ð16Þ

The kernel conditional on success is then

A1
s (z0, z) p

A1(z0, z)fs(z0;RT)
fs(z;RT)

ð17Þ

(Iosifescu 1980, chap. 3), where we have returned to writ-
ing the kernel as a function of the current state z and the
state at the next time step, z0. Details of these calculations
can be found in Snyder and Ellner (2016).

To determine the lifespan distribution conditional on
success, we repeatedly multiply the initial state distribu-
tion conditional on success by the conditional kernel
A1

s (z0, z). The initial distribution conditional on success
is

m1
s (z;RT) p

m1
0 (z)fs(z;RT)P

um1
0 (u)fs(u;RT)

, ð18Þ

where m1
0 (z) is the (unconditional) distribution of initial

states on the expanded state space (for IPMs, the sum in
the denominator is replaced by an integral). The probability
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that an individual survives to at least age L, conditional on
having an LRO of RT, is then

Pc(LjR p RT) p eT(A1
s )

L
m1

s (z;RT), ð19Þ

where e is a column of 1s. The conditional probability of
having a lifespan of precisely L years is then

P(LjR p RT) p Pc(LjR p RT) 2 Pc(L1 1jR p RT):

ð20Þ
Results from Case Studies

We have applied our methods to several case studies cho-
sen to span a wide range of life history attributes. Basic life
history information about each of the species and popula-
tions is presented in table 1. Some of our case study or-
ganisms have slow, steady reproductive strategies—small
clutch sizes that do not vary much with environmental
conditions—including fulmars (a long-lived sea bird) and
snow geese. For others, fecundity varies moderately or
strongly with the environment, for example, sculpins and
Umbonium, a sea snail. Our case studies include long-lived
organisms like fulmars and kittiwakes and short-lived or-
ganisms like sculpins and Lomatium, a perennial plant. In
two of the models (kittiwakes and fulmars), individuals
are cross classified by an unchanging trait. In kittiwakes
the trait is a latent “quality” variable, with high-quality in-
dividuals having both higher adult survival and higher
adult breeding probability. Fulmars are grouped into three
fixed behavioral syndromes governing survival, breeding
probability, and breeding success.

Our kittiwake model combines a model for average vital
rates from Steiner et al. (2010), with estimates of trait var-
iation and its effects from Cam et al. (2002). We make the
conservative assumption that breeding probability and
survival are perfectly deterministic functions of individual
quality and are therefore perfectly correlated—this is con-
servative for our purposes because it maximizes the poten-
tial impact of trait variation. The fulmar model comes from
Jenouvrier et al. (2022). The other models are taken from
the COMADRE and COMPADRE databases (Salguero-
Gómez et al. 2015; Salguero-Gómez et al. 2016).

We are missing information on clutch size distribu-
tions for most species. Fulmars produce one chick if they
breed successfully, and kittiwakes produce one chick in
their lower fecundity stage or two or three chicks (as-
sumed to have equal probability) in their higher fecundity
stage. For all other case studies, we assume that annual
clutch size follows a Poisson distribution, with reported
fecundities representing expected values.
What Produces the Tail in LRO: Partitioning Skewness

Reproductive skew is drivenmostly by luck, not inherent dif-
ferences between individuals. In previous work, we and
others found that reproductive variance is dominated by
various forms of luck, not trait variation (see the intro-
duction). The same conclusion holds true for skewness in
our current case studies. If we consider the absolute magni-
tudes of contributions to skewness, trait variation repre-
sents only 16% of the total contributions for the fulmars
and 31% for the kittiwakes (figs. 2, 3). Note that trait vari-
ation can increase or decrease reproductive skew.
Unlike reproductive variance, reproductive skew is driven

mostly by variation in lifespan. The dominant contribu-
tion to reproductive variance, Var(R), depends on life his-
tory. For organisms with especially labile growth, such as
a shrub that can grow or shrink, reproductive variance
may be driven by growth trajectory luck (Snyder and
Ellner 2022), while environment trajectory luck typically
drives reproductive variance for those whose demographic
transitions depend strongly on environmental conditions
Table 1: Life history characteristics of case study species
Name

Expected clutch sizes of

most fecund stage

Mean lifespan

(years)
Snow goose (Anser caerulescens)
 .155–.975
 4.6

Woolly sculpin (Clinocottus analis), False Point population
 .02–21.5
 1.3

Southern fulmar (Fulmarus glacioides)
 1
 15.0

Black-legged kittiwake (Rissa tridactyla)
 2.5
 10.8

Umbonium costatum (marine snail with planktonic larvae)
 .04–6.15
 3.7

SI: Lesser kestrel (Falco naumanni)
 .1–.45
 2.4

SI: Lomatium bradshawii from Rose Prairie site 1
 0–2.7
 2.2

SI: Flathead knob-scaled lizard (Xenosaurus platyceps) from tropical site
 2.45
 2.0
Note: SI indicates a species used only in the supplemental PDF. Location is specified if the originating database contains models for multiple locations.
“Expected clutch sizes” is the range of expected clutch sizes across environment states for the most fecund stage.



Partitioning Reproductive Skew E000
(e.g., figs 4, S4; figs. S1–S6 are available online). Survival
trajectory luck dominates reproductive variance for organ-
isms with slow, steady growth and reproduction, such as
trees (Snyder and Ellner 2022) and long-lived birds that
produce one to three chicks per year (e.g., figs. 2, 3, 5). In
contrast, skewness is always driven by survival trajectory
luck: compare the variance and skewness panels in fig-
ures 2–5, S2–S5. Considering the absolute magnitude of
contributions to skewness, the second-largest contribution
in our case studies was at most 59% that of survival trajec-
tory luck (trait variation in kittiwakes), and most were sub-
stantially smaller (figs. 2–5, S2–S5). Survival trajectory luck
represents the contributions that come from an individual
dying or surviving at each age, so the dominance of survival
trajectory luck contributions means that reproductive skew
is driven by randomness in lifespan.
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Figure 2: Variance, third central moment, and skewness of lifetime reproductive output for fulmars. Lines show the contributions of dif-
ferent forms of luck as a function of age. Top left, partition of variance. Top right, partition of third central moment. Bottom, partition of
skewness. The percent contributions are calculated with respect to total skewness, not the sum of the absolute magnitudes of contributions.
Note that we can calculate only the total contribution of fixed traits, not an age partition. Generated by fulmarVarSkewnessPartition.R and
fulmarVarMu3Partition.R (available at https://doi.org/10.5281/zenodo.10798423).

https://doi.org/10.5281/zenodo.10798423
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Differences in lifespan increase reproductive skew, while
other forms of luck decrease it. Growth trajectory luck, en-
vironment trajectory luck, fecundity luck, and birth state
and environment luck can all increase the third central
moment of LRO, and in most cases they do, at least to
some extent (figs. 2–5, S2–S5). However, they also in-
crease the variance of LRO, by enough so that skewness
(which is the third central moment normalized by vari-
ance3/2) is actually decreased. So among all the different
forms of luck, only survival trajectory luck contributes
positively to reproductive skew.
What Does It Take to Get into the LRO Tail?

Partitioning reproductive skew gives us a sense of what
drives the lopsidedness in LRO, but that is not the same
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Figure 3: Variance, third central moment, and skewness of lifetime reproductive output for kittiwakes. Lines show the contributions of
different forms of luck as a function of age. Top left, partition of variance. Top right, partition of third central moment. Bottom, partition of
skewness. The percent contributions are calculated with respect to total skewness, not the sum of the absolute magnitudes of contributions.
Note that we can calculate only the total contribution of fixed traits, not an age partition. Generated by kittiwakeVarSkewnessPartition.R
and kittiwakeMu3SkewnessPartition.R (available at https://doi.org/10.5281/zenodo.10798423).
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as asking what it takes to be extremely successful. What
can we infer about individuals with extremely high LRO?

The dominant contribution of survival trajectory luck
to skewness suggests that a long life is key to success.
Clearly, if an individual can have at most one offspring
per year, then the only way to have a large LRO is to live
a long time, reproducing many times. But other forms of
luck may be able to partially substitute for luck in survival.
If a species has Poisson-distributed clutch sizes with a
large mean (and hence a large variance) or if clutch sizes
in good years are much larger than those in other years,
then an individual might achieve extreme success either
by living a long time or by not living quite as long but in-
stead getting lucky with fecundity or environment.

To explore what we can infer about the extremely suc-
cessful, we calculated the distribution of lifespan condi-
tional on LRO. Figure 6 shows plots for snow geese,
Umbonium, and sculpins. Snow geese have small clutches
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in all years (the expected clutch size in the most fecund
state varies between 0.155 and 0.975), Umbonium has
moderate environmental variation in fecundity (maxi-
mum expected clutch size varies between 0.04 and
6.15), and sculpins are wildly fecund in good years and
rarely reproduce in bad years (maximum expected clutch
size varies between 0.02 and 21.5). Given their slow,
steady reproductive strategy, the only way for snow geese
to achieve exceptional reproductive success is to live ex-
ceptionally long, and this is reflected in the relatively tight
distribution of lifespans. For example, if we know that
an individual had an LRO in the 95th percentile, we are
90% certain that its lifespan was between the 83rd and
97th percentiles. On the other hand, reproductive success
implies less about the lifespan of Umbonium individuals.
An Umbonium with LRO in the 95th percentile is 90%
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likely to have a lifespan between the 74th and 97th per-
centiles. This wider central interval occurs in part because
Umbonium can achieve success by experiencing a good
year rather than by having an extra reproductive bout
or two in average years. Sculpins have such wildly varying
fecundity that there are two routes to exceptional success:
either an individual can live a long time, possibly substi-
tuting a good year for some longevity, or it can get one of
the rare exceptionally good years when it first hits repro-
ductive maturity (as early as age 1) and have the average
number of offspring for that stage and year type, which is
just shy of 15 in the best years. This possibility of hitting
Figure 6: Pr(lifespanjR) for snow geese (top left), Umbonium (top right), and sculpins (bottom right). Note that an individual that dies before
reaching age 1 is assigned a lifespan of 1. Generated by plotSnowgooseLifespanCondLRO3.R, plotUmboniumLifespanCondLRO2.R, and
plotSculpinLifespanCondLRO3.R, which get data from snowgooseLifespanCondLRO.R, umboniumLifespanCondLRO.R, and sculpinLife
spanCondLRO.R (available at https://doi.org/10.5281/zenodo.10798423).

https://doi.org/10.5281/zenodo.10798423
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the environmental jackpot at age 1 is what produces the
second red area at lifespan p 2 and LRO equal to 13–
15 (newborn individuals are age 0, so dying at age 1 means
that lifespan p 2); other routes to LRO in that range are
very unlikely, requiring a long life with several (also un-
common) medium-quality years. If we eliminate environ-
mental variation in fecundity, the corresponding heatmap
for sculpins is very different (fig. S6).

To further explore the effect of environmental varia-
tion in fecundity, we altered the demographic parameters
of the Umbonium model. Figure 7 shows the 90% central
intervals for lifespan for Umbonium with (yellow) and
without (orange) environmental variation in fecundity
(fecundity in each stage is set to its environmental aver-
age). Eliminating the possibility of hitting a jackpot year
does indeed narrow the central interval: if you cannot
achieve extreme success by reproducing in an exception-
ally good year, you have to do it by living longer.

It is also the case that species with shorter lifespans (like
sculpins) have wider central intervals for conditional
lifespan. Similarly, the 90% central interval for kestrels
(yellow in fig. 8) becomes narrower if we modify the model
to have 20% higher survival in all stages (orange). In sec-
tion S4 of the supplemental PDF, we show that an inverse
relationship between mean lifespan and the width of cen-
tral intervals for conditional lifespan (on a percentile scale)
is an expected consequence of a property of the models we
are using—specifically, the property that age-dependent
average survival and fecundity converge with increasing
age to unchanging asymptotic values (Cochran and Ellner
1992). This convergence necessarily results from conver-
gence to the stable-state distribution of the state transition
matrix or kernel, and convergence of age-dependent sur-
vival is often even faster, because survival varies relatively
little among states typical of adults. As a result, lifespan (or
adult lifespan) typically is roughly geometrically distributed.
In the idealized situation where lifespan is geometrically
distributed and mean fecundity is age independent, the
width of a conditional central interval for lifespan given
LRO goes down with mean lifespan roughly in proportion
to 1=(mean lifespan)1=2, all else being equal.
Discussion

In previous work, we used the sleight of hand of citing
empirical evidence for reproductive skew as some of the
motivation for theoretical articles about reproductive var-
iance. In this article, we focused on the defining feature of
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reproductive skew: that a small number of individuals in a
long right tail of the LRO distribution dominate repro-
duction. We use age partitioning to identify the kinds of
luck that contribute to existence of a fat right tail in the
LRO distribution and calculate the lifespan distribution
conditional on LRO to examine what it takes to get into
that tail.

In our case studies, we find that reproductive skew, like
variance, is driven largely by luck rather than trait varia-
tion. In fact, trait variation can actually decrease, rather
than increase, the skewness in LRO. We suspect that trait
variation will generally increase skewness when it reflects
underlying variation in individual “quality,” such that
high-quality individuals have across-the-board better de-
mographic performance, and may decrease skewness
when it reflects life history trade-offs. In our case studies,
the kittiwakes exhibit quality variation: high-quality birds
have both higher survival and higher breeding probabil-
ity. Variation among the fulmars comes from life history
trade-offs. For example, individuals in group 2 are more
likely to skip breeding and have lower juvenile survival
than other groups, but breeders have higher survival.

Unlike reproductive variance, which can be dominated
by luck in survival, growth, or environment depending on
life history, reproductive skew is always dominated by
luck in survival. Extreme reproductive success is mostly
about living a long time. Luck in growth, environment,
and fecundity frequently contribute positively to the third
central moment of LRO, m3(R), but skewness is the third
central moment scaled by the variance (skewness p
m3(R)=Var(R)3=2). The nonsurvival forms of luck contrib-
ute more to variance than to the third central moment,
which decreases skewness.

Knowing that reproductive skew is dominated by luck
in survival, we calculated the distribution of lifespan con-
ditional on LRO. As we raise the threshold for success to
higher and higher percentiles of the LRO distribution, we
find that successful individuals have higher and higher
lifespans, as expected. But how tightly lifespan is con-
strained by LRO depends on life history. In populations
with large mean clutch size in good years, high LRO
can result from getting a good year rather than living an
extra few years, so high LRO is less tightly connected to
long life. The link between exceptional LRO and excep-
tional lifespan was observed to be tighter in longer-lived
species. However, this trend may just result from an often
unrealistic property of the models we analyzed (and of
typical matrix or IPMs without explicit age dependence):
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as individuals age, age-dependent average survival and fe-
cundity become constant, without ever declining because
of senescence. When average lifespan is high, the lucky
few can then live very much longer than their less fortu-
nate peers, and those extra-long lives are then the main
cause of extreme success. We do not yet know whether
the lack of senescence in most stage-structured models
is a serious problem. We have begun to consider examples
where we have LRO data and a conventional senescence-
free fitted matrix or IPM, as well as to compare predic-
tions with observations.

Another important limitation of our analyses is that each
individual is assumed to be an independent realization of
the Markovian trip “from the cradle to the crypt” (Good-
man 1984) implied by the model’s survival, state transition,
and clutch size probability distributions. Variation in out-
comes due to interactions between individuals—for exam-
ple, the establishment and dynamics of social rankings and
their implications—would be included only in the very rare
case where social rank (either static or dynamic) is one of
the attributes by which individuals are classified in the
model. None of our case studies have this feature. For pop-
ulations where social interactions are a major component of
reproductive inequality, the methods here could serve as a
null model analysis, quantifying the inequality that would
develop even in the absence of social interaction effects.

Reproductive skew can have important implications
for evolutionary dynamics, but we do not yet know as
much as we would like. Tuljapurkar and Zuo (2023)
found that the traditional approximation for the fixation
probability of a rare, weakly beneficial allele in terms of
the mean and variance of LRO can be very inaccurate
when the allele-specific LRO distribution is highly skewed
and bimodal. General theory has started to appear, but
to our knowledge it is limited to evolutionary models
with extremely high reproductive skew, either infinite
or tending to infinity along with population size in order
to obtain analytic results. All these models lead to limiting
coalescent processes in which multiple mergers can occur
in a single generation, unlike the Kingman coalescent for
Wright-Fisher models. One line of models, descended
from Eldon and Wakeley (2006), assumes that each indi-
vidual in each generation has a very small probability of
producing a very large number of offspring (some fixed
fraction w of the total population) and otherwise pro-
duces one offspring (e.g., Der et al. 2012; Eldon and
Stephan 2023). The other, descended from Schweinsberg
(2003), assumes that the offspring distribution has a power-
law tail (with p(u) ∼ u2(11a), 1 ! a ≤ 2), implying infi-
nite third moment (e.g., Hallatschek 2018; Okada and
Hallatschek 2021). Constant population size in both cases
is maintained by sampling N offspring at random to form
the next generation.
For both offspring distributions, appropriately scaled
forward-in-time allele dynamics in the large population
limit are a diffusion process with occasional large jumps
when the offspring of one individual make up a substan-
tial fraction of the next generation. Eldon and Stephan
(2023) found that the probability of slightly beneficial rare
alleles fixing is reduced, but among alleles that do fix, the
mean time to fixation is shortened. Our intuition for their
finding is that the allele is likely to fix rapidly if an in-
dividual carrying the allele becomes one of the “lucky
few” with exceptionally high LRO, and otherwise the al-
lele is likely to be lost through drift. Hallatschek (2018)
and Okada and Hallatschek (2021) also found that ex-
treme skew in LRO reduced the fixation probability of
new beneficial mutations, relative to a Wright-Fisher model.
However, none of these studies, nor any others that we
know of, is a controlled experiment comparing outcomes
as LRO skewness is varied with the mean and variance
held constant. We encourage population geneticists to fur-
ther explore the effects of reproductive skew on evolution-
ary dynamics, with more realistic assumptions about the
variance and skewness of the distribution of lifetime re-
productive success. As a simple and possibly tractable
approximation to the LRO variation in the models we
have considered, we suggest offspring distributions with
a substantial probability of zero offspring, while those that
reproduce have a random number of offspring with a
strongly skewed distribution with finite but large variance
and skew.
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