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ABSTRACT: Small particles at the nano- and micron-scale have 107
found many applications made possible by their specific size, size
distribution, and generally large surface-to-volume ratio. Yet,
approaches to systematically designing these particles and their
size distribution based on mechanistic principles—that is, being
able to choose reaction conditions based on an established
mechanism of formation—have so far largely eluded the field.
Herein, we present a methodology that allows for optimizing
reaction conditions in silico, using a well-characterized, prototype
system of iridium nanoparticles as an example. We show that given
a model of nanoparticle formation that we have previously vetted 0 1 2 3 4
against experimental data, statistical estimates for the parameters in
this model also previously obtained, and a suitable optimization
algorithm, we can predict experimental conditions (such as initial concentrations and reaction end times) for which the resulting
particle size distribution both closely matches a desired mean value, and is very narrow—that is, it allows for outcomes that enable
many currently unattainable applications. Moreover, our methodology accomplishes this optimization task while also accounting for
parameter uncertainty. The combination of model, parameter estimates, and optimization algorithm is generic and is applicable to
many other nanoparticle systems as well, as long as a reliable model of the formation of these particles is available. Thus, we
contribute a full analysis workflow where an understanding of kinetics equations is the only prerequisite mathematical knowledge.
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1. INTRODUCTION

Nano- and micron-sized particles have found myriad applica-
tions over the past several decades.'”” Today, the syntheses of
these particles are largely based on experience and trial-and-
error'’ and often result in particles that have a wide range of
sizes. Yet, because physical and chemical properties invariably
depend on the particle size (PS) and particle size distribution
(PSD), there is much to be gained if we can devise rational
approaches to syntheses that produce particles of specific sizes
and size distributions.

There are many practically important reasons for controlling
the average PS and/or PSD since the physical properties of
particles across materials chemistry, science, and indeed nature
are invariably dependent on the average PS and width of the
PSD. For example, for catalytic particles, such as the Ir(0),
particle system exploited herein, reactivity and selectivity (so-
called “structure sensitivity”'""'*) are size dependent; similarly,
for semiconductor particles such as (CdSe),, and (InP),, size
determines their color and thereby possible applications in
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electronics; there are many other examples of particles with

size- and PSD-dependent properties.'” >’

As a consequence of such considerations, one of the grand
challenges of working with nano- and micron-sized particles is
the development of a rational, predictive approach toward the
synthesis of particles with specific sizes or size distributions.
Herein, we describe a methodology for computational
optimization of PSs and size distributions that is based on a
mathematical model of nucleation and formation of iridium
nanoparticles. It utilizes the computational power available
today to replace the traditional (educated) trial-and-error
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Figure 1. A flowchart illustrating our analysis, modeling, and optimization pipeline. Blue: experiments; red: mathematical modeling of the chemical
system; yellow: computational and statistical aspects of modeling; green: optimizing synthesis conditions. This contribution addresses the green

rectangles, whereas our previous work has addressed the others.

approach with a systematic exploration of parameter space,
based on the workflow shown in Figure 1.

Concretely, we present predictive control of PS and PSD
based on a model for the growth of iridium nanoparticles that we
have previously validated using experimental data.”*™*" The
specific model we consider resulted from comparing many
possible models for the formation of Ir(0), nanoparticles, all
rooted in mechanistic insight into the nucleation and growth
process (we call such models “mechanism-enabled (ME)”), and
ruling out those that were not able to describe experimental
observations; all candidate models we considered track the
concentrations of each size of nanoparticles separately (we thus
use the term “population balance” to indicate that we model
population numbers via balance equations). As a consequence,
the model we use for our optimization studies falls into the
category of “ME population balance models (ME-PBM)” that
are able to make very specific predictions not only for size
statistics such as the average PS but indeed for the entire
pSD 2831

While we focus on the ME-PBM class of models in this
contribution, we note that this is not a restriction; any other
accurate model able to predict the number of particles of specific
sizes (i.e., the PSD) would do as well. Indeed, our optimization
approach only requires some function that maps experimental
conditions to a PSD. Hence, other modeling approaches such as
the method of moments,”” the quadrature method of mo-
ments,””** and the exact method of moments™ fit equally well
into our optimization framework. All of these variations of the
method of moments track the statistical moments of the PSD
(e.g., the first moment is the mean value, and the second
moment is the standard deviation) instead of tracking the
number or concentration of particles of all possible sizes. By
using such a reduced description of the PSD, these methods
greatly decrease the computational cost of predicting a PSD
compared to the population balance model we present in
Section 2. However, appropriately connecting the method of
moments with the chemical reactions occurring in synthesis is
difficult and substantially more mathematically complex than
our method. Therefore, we omit further discussion of the
method of moments but suggest the review in ref 34 as an
introduction to this modeling methodology.

Ultimately, whether predictive control of PS and PSD is
possible comes down to the question of whether the system
(represented by our model) is sensitive to those parameters one
can adjust in experimental settings. Herein, we demonstrate that
we can control both the average PS and the PSD to desired
values by adjusting the initial concentrations of the synthesis,
how long the reaction is carried out, and—to obtain even better
results—adjustment of reaction rates that we think can be
achieved through means such as control of temperature, solvent,
and other variables such as the particle-capping ligands
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employed. Excitingly, by demonstrating that the system in
question allows for such optimized, predictive control puts
within reach for the first time a rational approach toward the
synthesis of iridium and other such nanoparticles and makes it
credible that similar approaches can also be used for other widely
used nanoparticle systems.

To the best of our knowledge, the work in ref 36 is the only
other detailed, mathematical approach in the literature
addressing the experimental design of nanoparticle systems to
achieve a desired outcome. The approach outlined in ref 36
requires substantial mathematical sophistication and assump-
tions on the synthesis process (e.g., no agglomeration is taken
into account). The result there is a clever formulation of the
problem which can then be solved efficiently. The challenge with
this approach, however, is that the typical experimentalist in the
nanoparticle community does not have the expertise in their
group required to perform this complex of a mathematical
analysis. Our approach differs in that we allow for arbitrary
reaction dynamics and limit the mathematical expertise required
to that of formulating differential equations from systems of
chemical reactions. This approach matches the level of
mathematical expertise in the nanoparticle community; more
importantly, it is applicable to a far wider range of systems than
the sophisticated approach of ref 36.

The basis for our methodology is (i) the development of a
mechanism-based model that accurately describes the growth of
Ir(0), nanoparticles upon which our study is based (which we
provided in refs 28 and 29), (ii) an approach to use available
experimental data to obtain statistical estimates of the
parameters of the model such as reaction rates, including their
best-fit values and error bars along with higher order moments
(which we provided in refs 30 and 31), and (iii) an optimization
method that systematically varies input experimental conditions
to obtain desired outputs while accounting for the uncertainty in
model parameters; that is, we perform optimization under
uncertainty. It is this last point that is the focus of this paper: we
will provide a computational approach to optimization, and
demonstrate that this approach results in outcomes close to
desired values for PSs or PSDs. As mentioned above, the
methodology we present uses the iridium system as a test case,
but it does not rely on the specifics of the model. Indeed, we
stress that the contribution of this paper is the methodology, not
its application to a specific nanoparticle system.

Concisely, we herein address the following questions, all in the
affirmative:

1. Can we formulate a simulation-based methodology that
optimizes experimental outcomes to match prechosen PS
and PSD, often focused on as narrow a PSD as possible
and considering simulation uncertainty?

. Can we provide an optimization strategy (and associated
software implementation) using an algorithm that

https://doi.org/10.1021/acsanm.4c01373
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researchers who are not experts in mathematics or the
computational sciences can understand and readily use?

3. Can we then actually obtain optimization results for a
known, prototype nanoparticle-formation system as proof
of principle?

These questions address how one would approach the blue
boxes in Figure 1 given that these steps by themselves represent
a gap in the available literature. Ultimately, of course, one would
like to close the workflow (as shown in the figure) into an
iterative process that includes experimental validation of
computational predictions, as well as refinement of the
mathematical model of nanoparticle synthesis. While we
would of course have liked to “close the loop” herein as well,
we will have to leave this to future work: the experimental
realization of the system is outside the range of what the authors’
laboratories can perform these days.

Herein, we introduce the mathematical framework necessary
for our approach in Section 2. This framework includes a brief
discussion of ME-PBM, a presentation of the ordinary
differential equation (ODE) model that arises from ME-PBM,
and the results of the Bayesian inverse problem to characterize
unknown model parameters and their uncertainty. Next, in
Section 3 we describe our formulation of an “optimal” PSD, how
one can compute this quantity, and the algorithm we employ to
find the optimal experimental conditions. Finally, in Section 4
we present numerical results of our optimization procedure and
our associated discussion thereof. We conclude in Section S.

2. MATHEMATICAL MODEL FOR IR(0)y
NANOPARTICLE FORMATION

Computational optimization requires a mathematical model
whose inputs can be systematically altered to observe how its
outputs compare against an objective function that encodes
desired outcomes. For this work, we will use a model for the
nucleation and growth of Ir(0),, nanoparticles for which we have
spent years developing appropriate reaction conditions,””
experimentally characterizing reaction outcomes,”® deriving
mathematical models,”®*” and statistically determining reaction
rates and other parameters of the model by comparing model
outcomes against experimental data.””*" Notably, we have also
spent a large amount of work on rejecting many alternative ideas
for how nucleation and growth could proceed (and therefore
falsified the hypothesis that any of the corresponding models
could be correct because we could show that these models could
not fit the data), along with rejecting some models that did fit the
data but were unnecessarily complicated compared to the
simplest models that fit the data. We refer the reader to ref 29 for
details on this prior work.

In the following, let us therefore give a brief overview of the
system under consideration, along with the model we will use,
and the reaction rates we have inferred by calibrating against
experimental data. That said, we want to stress that everything
we say about optimizing the outcomes of this model is expected
to also hold for other nanoparticle and larger systems; we simply
choose the Ir(0), system investigated herein because it is a
prototype system where all the necessary building blocks are
available to demonstrate model optimization.

2.1. Synthesis of Ir(0), Nanoparticles. The Ir(0),
particles and associated PSDs were prepared using the
reactionstarting with {(1, 5S—COD)Ir' -POM}®" then placing
the system under H, as detailed in ref 39 and the references
therein. Transmission-electron microscopy (TEM) micro-

~ 300[(1,5—COD)Ir - PyW15Nb30g2]%~ 4 750 Hy —
(1)
Ir(0) 390 + ~ 300 O + ~ 300 [PaW15Nb304,)°~ 4 300 HY,

graphs of the Ir(0), nanoparticle product were obtained at
Clemson University.”” Conditions for the TEM sample
preparations were 1.2 mmol {(1, 5—COD)Ir"POM}*~ in
acetone.’” The PSDs were created by measuring and organizing
the PSs into bins at +0.05 nm intervals (i.e., 0.1 nm total; 0.85—
0.94 nm were considered to be 0.9 nm, 0.95—1.04 were
considered to be 1.0 nm, etc.). Four distributions were collected
at 0.918, 1.170, 2.336, and 4.838 h (the original times measured
in seconds, then converted to hours and the correct number of
significant figures indicated), with 246, 61, 150, and 213
particles measured, respectively. The mean sizes and standard
deviations are, respectively, 2.0 + 0.4, 2.4 + 0.6, 2.5 + 0.4, and
2.8 + 0.4 nm. The PSD data were then analyzed by ME
Population Balance Modeling as detailed in our 2019 and 2020
publications.”**’

2.2. Conceptual Model in Pseudoelementary Steps.
Our mathematical models for the nucleation and growth of
Ir(0), nanoparticles are based on “pseudo-elementary” reac-
tions"’ between the original molecular reagents and “classes” of
particles (such as “small” and “large” nanoparticles). The steps
we choose are informed by experimental kinetics and a
mechanistic understanding of the chemical reactions that take
place and are therefore “ME”, using the terminology outlined in
the introduction.

In translating these conceptual models of pseudoelementary
steps into concrete, ODEs, we use a population balance
approach. In other words, we break each class of particles into
concentrations of particles of specific sizes (indexed by the
number of iridium atoms in a particle). The concentrations of
particles of each size (the “populations”) evolve based on
balance relationships that fundamentally encode mass con-
servation; the models are therefore called PBM. In this
subsection, let us discuss the classes of particles we consider,
along with the pseudoelementary steps; we will then discuss the
translation into an ODE model in Sub-section 2.3.

The model we will use herein is based on our findings in ref 29,
and in keeping with the notation from this reference, we will
refer to it as the “3-step mechanism,” even though the first
nucleation process is composed of two steps, steps 0 and 1
below. This mechanism includes the following steps:

0. The dissociation of a ligand-bound precursor into the
precursor itself (in solution) and the ligand;

1. A continuous nucleation mechanism creating the smallest
nanoparticles containing just three iridium atoms from a
precursor;

2. Small particles grow quickly by reaction with the
precursor species;

3. Large particles grow slower by reaction with the precursor
species.

The slowing down of the reaction rate between small and large
particles allows smaller particles to catch up in size with larger
particles, leading to the observed narrow distribution of PSs at
the end of the reaction, despite the fact that small particles are
continuously created.””

The 3-step mechanism, using the notation used in previous
work,” can be expressed in the following form where A is the
precursor, L is the ligand, B indicates the class of “small particles”
and C is the class of “large” ones

https://doi.org/10.1021/acsanm.4c01373
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k
2{{A-L + 2 solv = A(solv), + L},
k

b

k
2A(solv), + A-L = B, + L + 4 solv,
k
AL+B 3 C+1L,

k3
AL+C—->15C+L 2)

Important to note here is the 12 alternative mechanisms we
considered in arriving at the 3-step mechanism above, but that
all alternatives were either unable to predict the observed PSD or
were more complex yet did not lead to better fits than the 3-step
mechanism above.”” As a consequence, the 3-step mechanism
is—according to our evidence—the smallest mechanism
compatible with the data, and we will, therefore, use the 3-step
mechanism as the basis for our optimization work which follows.

2.3. Translation into an ODE Model. The ME-PBM
framework involves translating the mechanistic reaction 2 to a
system of ODEs through the law of mass action. These ODEs
track the concentrations of each chemical species over time. The
chemical species include the precursor, ligand, and associated
molecules created during the nucleation reactions, as well as
particles of each tracked size—that is, particles containing three
iridium atoms, four iridium atoms, etc.””™>! Denoting by A; =
A (t) the concentration of precursor molecules bound to
ligands, A, = A,(t) the concentration of solvated precursor, L =
L(t) the concentration of ligands, and P, = P,(t) fori =3, ..., ] the
concentration of nanoparticles with i iridium atoms (encom-
passing both the “small” and “large” class of particles), this
system then reads as follows

dA J
d_L = —kAS® + RAL — kAAT — AL D BP
t nucleation j=3
growth
dA
S o= kA S — kAL — 2k A AL
dt nucleation
dL ) ]
5 " RAS kAL + 4 2. hP,
nucleation j=3
growth
dp, ,
- = klALAs - :B3ALP3 )
a2l TS
nucleation growth
dp '
3 = AL(ﬂ,-_1Pi—1 - ﬁ,P,) ) 4<i<].

growth
(©)

Since nucleation creates particles with three iridium atoms,
this system of equations starts tracking the concentration of
particles of size i with P;. We only consider particles up to size ] =
2500; this is as a sufliciently large upper bound based on the fact
that our data does not contain particles exceeding 4 nm, along
with an empirical relationship between particle diameter and
number of atoms in a particle.””

The eq 3 contains reaction rate parameters /3, that are related
to the chemical rate constants k,, k; in (2). We account for the
physical fact that growth by monomer addition occurs on the
particle’s surface; hence, we make the assumption that the actual
reaction rate of particle growth is proportional to the number of

surface atoms a particle has. The fraction of surface atoms
relative to the total number of atoms can be approximated as r; =
2.677i7%%, see ref 41, and hence the total number of surface
atoms for a particle containing i total atoms is

o =i )
If we further consider M to be a parameter describing the
cutoff between small and large particles, then we can succinctly

express the reaction rate of particle growth for the specific
reaction

AL+B LB, +L
by
kya, 3<i<M,
Yok, M<i<]) )

which is the parameter used in (3).
The model above is then augmented by initial conditions for
each concentration

AL(t = 0) = A,,
A(t=0) =0,
L(t=0) =POM,,

P(t=0) =0, 3<i<], (6)

where all concentrations have units mol L™}, and where POM
indicates polyoxometalate (the specific ligand used in the
experiments that spawned our work, see ref 29). The
experimental design from which our data are collected
corresponds to Ay = 1.2 X 107 and POM, = 0. Hence, the
parameter estimates used herein, as shown in Table 1 and Figure

Table 1. Statistical Estimates for the Reaction Rate and Size
Cutoff Parameters in the Model (3), as Inferred From
Experimental Data in ref 39

parameter MAP mean 2.5—-97.5% quantile
ke 12x 1073 12x 1073 (1.1-14) x 1073
k, 7.4 % 10° 7.5 % 10° (6.6—8.5) x 10°
k 5.5 X 10° 5.7 x 10° (4.4-7.0) x 10°
k, 20.3 x 10° 19.5 x 10° (82-31.4) x 10°
k; 5.5 % 10° 5.6 X 10° (5.4-5.8) x 10°
M 110 108 102—114

“Using Bayesian inversion. MAP is the “maximum a posteriori” (most
likely) value for each parameter. Mean and two-sigma values are also
provided. The posterior distribution for each parameter is visualized
in Figure 2.

2, originate from these initial concentrations. At the same time,
in the optimization strategy our work uses, we allow for the
initial concentrations of A and L to vary within a wide range of
feasible concentrations; see Section 3.1 for more details.

In summary, (3—6) provides an ODE model that can be used
to predict the concentration P,(t) of particles with i iridium
atoms—that is, the PSD. The model contains a number of
parameters that are summarized in Table 2. In previous work, we
have performed extensive parameter estimation studies based on
experimental data, determining not only best-fit values for each
parameter but statistical distributions that a particular garameter
value is correct, using a Bayesian inversion approach;‘o’}l’42 we
summarize key statistics for these parameters in Table 1 and

https://doi.org/10.1021/acsanm.4c01373
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Figure 2. Probability maps in the form of one- and two-dimensional marginal distributions of the parameters in the 3-step mechanism after performing
Bayesian inversion’”>' The diagonal shows the one-dimensional marginals, that is, the probability that a given parameter value is correct. The lower-
triangular regions show the two-dimensional marginals as indicated by the row and column labels; these plots therefore show the correlation between
estimates for these parameters as inferred from the experimental data used in the Bayesian inversion.’>' Summary statistics for all of these parameters

are also shown in Table 1.

Table 2. List of all Parameters in the ODE Model (3—6),
Along with Their Meaning and Physical Units®

parameter description units
ke forward reaction rate in (2) L?> mol h™!
ky, backward reaction rate in (2) L mol™ h™!
k, nucleation reaction rate in (2) L? mol h™!
k, small particle growth reaction rate Lmol™ h™*
ks large particle growth reaction rate L mol™' h™!
M cut-off size between small and large particles unitless
tend end time of the reaction h
Ay initial precursor concentration mol L™!
POM, initial POM concentration mol L™!

“The first group of parameters, above the horizontal line, corresponds
to the properties of the reaction; the second group are properties of
the experimental setup.

show probability maps in Figure 2. We refer readers unfamiliar
with Bayesian inverse problems to ref 43 for a simple
introduction to the Markov Chain Monte Carlo (MCMC)
approach used to solve these problems, along with some
software packages with implementations of practical MCMC
algorithms.™*~*

3. OPTIMIZATION METHODOLOGY

The goal of this study is to explore whether we can use the model
of the previous section to optimize the results of the reaction

14094

described. More concretely, guided by many practical
applications (current and future), we want to see whether we
can select reaction conditions so that specific nanoPSDs result.

In this and the following section, let us demonstrate that it is
indeed possible to optimize the PSD predicted by the model
introduced in the previous section. In other words, this section
does not only demonstrate that the PSD is sensitive to
experimentally accessible variables such as reactant concen-
trations and the time at which we terminate the reaction, but also
that the sensitivity is sufficiently broad that we can achieve
practically interesting PSDs.

Computational optimization of chemical reactions is a well-
studied subject and we point the reader to a recent review for an
overview of the field.** Moreover, the optimization algorithm we
employ—Bayesian optimization—has started to gain traction in
chemistry optimization problems in recent years.”” > However,
accounting for uncertainty remains an understudied topic in the
nanoparticle community. Experimental data have uncertainty
and mathematical models for the kinetics of nanoparticle
syntheses also have uncertainty, so consideration of these
statistical distributions must be taken to robustly perform
simulations. We demonstrated how to quantify this uncertainty
during parameter estimation in ref 30. Now, the novelty of our
current work is to retain and incorporate this uncertainty
quantification during the optimization process of nanoparticle
synthesis. That is, we now show how one can use quantified
uncertainty in a productive and practical manner.

https://doi.org/10.1021/acsanm.4c01373
ACS Appl. Nano Mater. 2024, 7, 14090—14101
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In the following, let us first introduce the variables we consider
for variation (Section 3.1). We will then describe how we
formulate the objective function, that is the “goal” of the
optimization (Sections 3.2 and 3.3), and finally introduce an
algorithm that finds this optimum (Section 3.4). We will discuss
the results of this algorithm in the following Section 4.

3.1. Experimental Variables. The model described in
Section 2.3 has a number of parameters (summarized in Table
2) that can roughly be subdivided into ones that are specific to
the reaction (reaction rates, the size cutoff between small and
large particles) and ones that are specific to the experimental
conditions (end time of the reaction, initial conditions). For the
former set of parameters, we have obtained estimates for the
physically correct values via a Bayesian inversion approach,” as
shown in Table 1, whereas the latter set corresponds to the
parameter values chosen in the experiment whose measure-
ments we had used for the parameter estimation procedure.

If one were to experimentally optimize the nanoPSDs, the
obvious set of variables that are amenable to adjustment are the
ones in the second category. Specifically, these are

e ¢4 the time at which the reaction is stopped;
e A,: the initial precursor concentration;
e POM,: the initial POM ligand concentration.

In the following, we will group these three parameters under
the name “experimental conditions”. We will show the results of
optimizing these parameters in Section 4.1.

On the other hand, the first group of parameters (namely, k
ky, ky, ky, ks, and M) is specific to the reaction at hand, and so not
immediately accessible to systematic manipulation: They are
what they are for a given experimental setup (characterized, for
example, by the reaction temperature). That said, we will in
Section 4.2 also investigate what happens if we could also make
(some of) these parameters available for manipulation, and
specifically if that allows us to further improve the desired
outcomes of the reactions modeled by our system of ODEs. We
note that adjusting these reaction parameters is often possible,
for example by using the fact that reaction rates are a function of
the temperature; it is also reasonable to assume that at least some
of the reaction rates can be affected by choosing different ligands
binding to the precursor, or other chemical modifications such
as the presence of acids or bases.

In practice, it will likely be difficult to choose all reaction rates
independently. Rather, in the experiments shown in Section 4.2,
we will assume that we have control over the following specific
factors:

e o A multiplier to the k¢ reaction rate. Implementing a
specific value for this factor could be achieved by diluting
the solvent (@ < 1), using a different solvent that acts as a
stronger competing ligand (@ > 1), or changing the
ligand from POM to one of a range of other known
nanoparticle stabilizers;*

e y;: A multiplier to the k; reaction rate. Implementing a
specific value for this factor could be done by adjusting the
temperature the reaction is conducted at, the solvent used
to coordinate to the precursor, the particle-capping
ligands, or other experimental factors. We do not
currently know the temperature and other dependencies
of these reaction rates nor the correlations between
changes in k; to other reaction rates such as k, and k;, but
for the purposes of this proof-of-concept paper, we limit
our study to modifying just k;, while noting that it is
precursor conversion and nucleation (k;) that starts off

the reaction and thus one expects k; to have a significant
effect of the number of particles, initial reaction rate, and
so on.

Below we will refer to asand @y, as “reaction factors” and will
show the results of optimizing particle sizes by changing these
parameters in Section 4.2. We summarize all the experimental
conditions and reaction factors which we optimize over in Table
3, along with the intervals within which we allow these variables
to range.

Table 3. List of all Experimental Variables Used to Optimize
the PSD Along with the Bounds We Constrain the Variables
to be between

variable lower bound upper bound
fond 0.1h 100 h

Ay 1X 107" mol L™! 1 mol L™*
POM, 1X 10" mol L™ 1 mol L™
e 0.1 10

o 0.1 10

3.2. Defining an “Optimal” PSD when Reaction
Parameters are Known. Optimization requires the definition
of an “objective function” that measures the quality of a
predicted outcome of choosing specific inputs. In practice, we
typically choose this function so that its minimum corresponds
to the optimal outcome. In the following, let us denote by 6
those variables we optimize over (i.e., either the experimental
conditions, or the experimental conditions plus the reaction
factors of the previous subsection), and by
K = {k, ky, ky, k,, ky, M} the reaction rates and size cutoff
parameter. Given a concrete set of values for € and K, we can
then use the model of Section 2, (3—6), to predict a PSD
B(t,s 0, K),i=3,.,], at the end time. Recall that
B(t; 6, K) is the concentration of particles composed of exactly
i iridium atoms.

Herein, we seek to determine the inputs that result in an
optimal PSD. There are a variety of ways in which one can define
what it means for a PSD to be “optimal”, but most of them will

include one or both of the following measures:
The mean PS

zizi(;o P(t,.4; 0, K)diameter(i)
% Bltgs 0, K) 7)

Here, diameter (i) is a function that relates a number of atoms in
a particle to its diameter in nanometers (see ref 29. The quantity

(9; 7() =

u(0, K) is appropriate to optimize in applications in which the
specific size of nanoparticles is important—say, because of their
optical properties that are strongly dependent on the size of
particles.” ™"

The standard deviation of the PSD

(9, K)
ZZSOOP(t . 9 W)[d N 2
i=3 Ti\lends V) iameter(i) — u(6, K)]
Z?SOO Pi(tend; 9’ (}()

i=3

(8)

This quantity is appropriate to minimize in applications in

which it is important to have particles with a narrow size range,
or in the extreme case, monodisperse particles.

https://doi.org/10.1021/acsanm.4c01373
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In practice, one often wants both: particles should all have a
very specific size, that is, one wants a specific value for 4(6; K),
and one typically also wants a small value for 6(8; K).

Finally, it would be wasteful for the reaction to not run to
completion. Therefore, we also consider the conversion
inefficiency

COIIVe i 6 AL end’ 6; (K
1S On( (K) y

where A; (t,,4; 0, K) is the precursor concentration when the
reaction is stopped at f,,q and Ay(6) is the initial precursor
concentration. Since the set of optimization variables 8 always
includes Ay, Aq(0) is simply one of the components of 6. Note
that ideally I.yversion = O, implying that all initially present
material has been used up in the reaction, and that smaller values
Of Iynversion € better (in keeping with our goal of minimizing the
objective function).

Given these three goals, the objective (or “cost”) function we
would then like to optimize is of the form

Cdeterministic(e’ 7() = wllﬂ(gr 7() - ﬁl + WZU(Q, 7()
+ w3 conversnon(e 7() (10)

Here, /i is the desired mean PS, and w,, w,, and w; are factors that
allow us to weigh how much we care about each of the three
goals mentioned above. We will choose these weights
heuristically below. The subscript on Cj.ierministic refers to the
fact that we here assume that % is a known value, an assumption
we will loosen in the next subsection.

In this framework, where we know the reaction rates encoded
by K from a prior fit to data, the goal is then to find that set of
control variables 0% .ministic that minimizes C(@, K). In other
words, we seek to solve the following deterministic problem:
Find 0%, cministic SO that

ec?;terministic = arg Ingin Cdeterministic(ef 7() (11)

3.3. Optimization under Uncertainty. As mentioned at
the end of Section 2.3, we not only know the best-fit values for
the parameters K by comparing them with experimental data,
we also previously performed a Bayesian inversion that means
we know the probability distribution (%K) that describes how
likely certain parameter values /K are. Certain aspects of this
probability distribution 7(K) are illustrated in Table 1 and
Figure 2 where we show statistical estimates and marginal
probability distributions for the six parameters in question. In
practice, information about 7(‘K) is available via a large number
of samples K whose distribution matches z(%K).

Given the uncertainty in the reaction parameters K, we
should replace the objective function C(6, K) in (10) by the
statistical expectation value

Cstochastic(g) = [Eﬂ(‘K)[Cdeterministic(ef (]()]

= E golwlu(0, K) — Al + w,0(0, K)
0, K)1

+ W3 conversion
= i gl (0, %) =
+ WZ|E]T(«K*)[U(9, (]()]
+ Wy E(K)[ converswn(al (]()]
(12)

In these expressions, [E; (4 denotes the expectation value

defined for any function f(K) by
Eolf] = [fHO=(ROaK 1)

Because 7z(K) is only known through samples, we
approximate the expectation values above” with Monte Carlo
integration®” via the formula

Eolf1 # %Zf(‘lﬂ)

(14)
where as mentioned, /K is a set of N samples that are distributed

proportional to z(K). That is, we will choose a sufficiently large
number N of samples and then optimize an approximate cost
function based on that defined in (12)

1 N
_Z Cdeterministic(ei 7(1)
NS (15)

In this context, our goal has now changed to the following
optimization under uncertainty problem: Find that set of control
variables 0%, .. that minimizes C,,, 4., (6). In other words, we
seek to solve the following problem: Find 6* so that

0¥ . . =argminC (0
stochastic g 0 stochastlc( ) (16)

Cstochastic(e) =

3.4.Remark 1. Problem (16) minimizes C, (0) defined
in (15), that is, we seek to find the minimum of the average of the
objective functions Cyorminisic (@) K;) over the samples K. This
is often appropriate, but because we do not know which of the
K, is the “true” set of reaction parameters, it is also conceivable

that 6%

- chastic 1S @ POOT choice.” This is frequently addressed by
adding “risk” terms in the definition of C . in (15), see for
example ref 31. We have experimented with this but found it
unnecessary for the work presented here.

3.5. Optimization Algorithm. Equation 16 defines the
optimization problem under uncertainty we would like to solve:
Namely, to find those experimental conditions (“inputs”) € that
minimize the stochastic cost function (i.e, how close the
expected “outputs” are to desired values). In this section, let us
discuss the algorithm that finds this minimizer.

Two key observations about the objective function

stochastic

Chrochastic(0) will drive our choice of algorithm: (i) It is an
expensive function to compute because every evaluation
requires the solution of N forward solves of the ODEs that
describe the progression of the reactions [i.e., the “forward
model” (6)] for each of the samples K we use to represent the
uncertainty in our knowledge of reaction rates. (ii) It is not
practically feasible to compute derivatives of Cyupeic(€) With
regard to the experimental conditions encoded in 6. As a
consequence, we need an algorithm for finding the minimum of
Cstochastic
evaluations it requires, and that is “derivative-free”. In this
work, we use the “Bayesian optimization” framework built into
the Matlab Statistics and Machine Learning Toolbox.”® The
reader can find alternatlve implementations in, for example,
Python®”* and C++°' depending on their software needs.

Bayesian optimization algorlthms(2 ** for finding the

minimizer of a function such as C,g.i(6) evaluate the
objective function at a number of points and then ask (i) where

(0) that is both efficient in how many function
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Figure 3. (Left) Predicted PSD (in blue) corresponding to the original particle synthesis experiment described in ref 39. (right) Predicted PSD (in
blue) that results from optimization when only the experimental conditions are subject to variation. The gray shading indicates the uncertainty in the
PSD due to the fact that we do not actually know reaction parameters exactly, but only their probability distribution 7(K), see Section 2. The blue line

shows the statistical mean of the gray-shaded area for each PS.

in @ space the minimizer likely is, given the knowledge so far
accumulated about C, 4 .i.(6), and (ii) which parts of @ space
have so far been poorly explored and may hold the minimizer. In
other words, the algorithm balances the inefficiency of carefully
exploring the parameter space against the efficiency of only
looking in the most obvious places. The end result after

evaluating C,oaaaic(@) at a number of locations 6 is an

. . e
approximation estochastic
minimizer 6% . along with a certificate of how likely it is that
there are no better minimizers anywhere else in @ space. The

more function evaluations we are willing to allow, the better the
%
approximation 6,

stochastic

We have found the algorithm described above to be very
efficient in approximating 6% ... It is conceivable that
specialized algorithms for optimization under uncertainty—
such as variants of the stochastic gradient method®>~**—could
reduce the computational cost further, provided one can
compute a gradient. Indeed, with substantial effort, one could

also implement methods that compute derivatives of

— typically quite close—of the true

of 0%, 1.0 and the firmer the certificate.

Chrochastic(0) after all,”” generating information necessary for
derivative-based optimization algorithms. In the end, we have
found the computational cost of Bayesian optimization
acceptable, and the effort of implementing different methods
is not necessary to obtain the results we will show in the
following section.

4. RESULTS

Having described in the previous section how we define optimal
outcomes and how we algorithmically find optimal inputs, let us
in the following show what these methods yield. As mentioned
in the introduction, the main goal of our study is to determine
whether the mathematical model we use for the nucleation and
growth of iridium nanoparticles allows for control over both the
size and the size distribution of particles; as we will illustrate
below, the answer to this question is “yes”.

For the experiments we present below, we need to select
weights w; in our cost function (12). Recall that w; weights the
importance of the mean particle value matching the desired PS,
w, weights the importance of having a narrow PSD, and w;
weights the importance of consuming all of the precursor species
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in the reaction. Our choice is heuristic, taking into account that
the resulting weighted terms in (12) need to have the same
physical units. In particular, we choose the w; so that each term in
the objective function (12) scales to approximately a unit value
for a “poor” result. First, we notice that, for the typical
experimental conditions under which our iridium particles are
created, the particles sizes are roughly 2—3 nm and hence
creating particles 1 nm different than ji would be considered a
poor result. Thus, we choose w; = 5. We desire a PSD that is
narrower than the baseline of ref 39 (shown in the left panel of
Figure 3) but do not consider this a poor result; this baseline has
a PSD with a standard deviation ¢ = 4.3 X 107! nm. So we
choose w, = 1 since we consider having a spread twice as wide—
and hence 0 & 1 nm—would certainly be a poor result. Finally,
we choose w3 = 5 so a reaction utilizing 20% of the precursor
species would be considered as bad as a reaction producing a
mean PS 0.2 nm from ji. In summary, the weights in (10) that we
use for our explorations below are w; = 5, w, = 1, w3 = S.

4.1. Experiment 1: Optimizing Experimental Condi-
tions. In the first experiment, we consider optimization of
Chrochastic(0) where 0 = {t..,, Ay, POM,} consists of those
variables that are experimentally easily accessible: namely, the
end time f,4 at which we quench the reaction, the initial
precursor concentration A, and the initial POM concentration
POM,. We recall that for the experiments reported in ref 39—
which we used to determine the reaction parameters K, see
Table 1 and ref 31—we had used t,4 = 4.838 h, Ay = 1.2 X 1073
molL ™, POM, = 0 mol L™". These values resulted in a mean PS
of jt = 2.67 nm and a standard deviation of 6 = 4.3 X 10™' nm.

Let us target a mean PS of i = 1.59 (corresponding to 150
iridium atoms). Utilizing the objective function defined in (15),
the weights discussed in the introduction to this section, and the
algorithm described in Section 3.4, we obtain an optimal PSD as
shown in the right panel of Figure 3.

The optimal experimental conditions that resulted in the
distribution shown in the figure are 0%, q.cic = {fena = 2.815 h, 4,
=1.018 X 10~* mol L™}, POM, = 1.0015 X 10™* mol L™'}. It is
clear from the figure that the optimization has achieved its goal:
Not only is the mean PS g = 1.59 nm (indicated by the green
line) nearly indistinguishable from the desired one ji (indicated
by the red line), but particles also occupy only a fairly narrow size
range, between approximately 1.5 and 2 nm; the standard

https://doi.org/10.1021/acsanm.4c01373
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deviation for the PS is 6= 1.4 X 10™" nm, substantially less than
the baseline results.

At the same time, the reaction conditions chosen by the
algorithm lead to a fairly short reaction time at the end of which
only a relatively small fraction (16.9%) of the precursor has been
converted into nanoparticles—in other words, we quench the
reaction prematurely to avoid particles growing larger than
desired. As a consequence, the concentrations of particles of
various sizes shown in Figure 3 are quite small, on the order of
107" mol/liter for each PS separately. The remaining fraction of
(unused) iridium, defined in (9), is I,version = 0-83.

4.2, Experiment 2: Optimizing Experimental Condi-
tions and Reaction Factors. The results of the previous
section indicate that one can indeed optimize both the mean PS,
and the dispersion of PSs, using only the experimental
conditions. Yet, variations of the iridium system we consider
here may also be amenable to making other parameters
accessible to optimization—see the discussion in Section 3.1.
Specifically, we repeat the experiments of the previous
subsection but consider 6 = {t,.4, Ay POM,, a;, @} where
ays and ay, are multipliers for the k¢ reaction rate and the k;
reaction rates, respectively.

Using this expanded set of optimization variables, and using
the same values for /I and the weighting factors as in the previous
subsection, we obtain an optimal PSD as shown in Figure 4.
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Figure 4. Optimal PSD when optimizing the experimental conditions
tenay Aoy POM,, along with the multipliers o and ay,. This optimization
result consists of a mean PS 1% off of the desired size, >95% of the
particles within +10% of the mean size (i.e., near-monodisperse), and
utilizing the precursor efficiently by converting more than 99.9% of the
iridium to particles.

Comparing this figure with that in Figure 3, it is clear that the
optimization algorithm is able to further minimize the dispersion
of PSs—nearly all particles are now within just 10% of the mean
PS—while maintaining an excellent match to the intended PS.
Numerically, the mean PS is now y = 1.6 nm—only 1% larger
than the desired size—with a standard deviation of 6= 6 X 107>
nm; that is, a a very narrow PSD of only +3.8% (any PSD under
5% being in record territory as discussed in ref 70 on page 6557).
Furthermore, the reaction leads to 1000 times higher
concentrations, with concentrations on the order of 10~/ mol
L™". Finally, the overall conversion inefficiency, defined in (9),
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has now been reduced to .o ersion = 6 X 107°. The experimental
conditions and multipliers that produce this outcome are
0% chastic = Lteng = 404 h, Ag=7.9 X 10"*mol L™, POM, = 1 X
10" mol L™}, a6 = 9.96,0; = 9.65}. Hence, additionally allowing
the reaction conditions to be modified through means to the
conditions listed just above will allow for much more precise
control over the PSD, with our optimization achieving a near-
perfect match to the desired PS, a low-dispersion PSD, and an
efficient experiment in that the reaction is run to completion.

5. CONCLUSIONS

Herein, we have shown that it is possible to optimize the size and
size distribution of nanoparticles given a mechanistic model for
particle formation along with estimates of the reaction rates in
the model. As we have shown, we can then formulate an
optimization problem and solve it with appropriate algorithms,
the results of which produce predictions of PSs that are not only
close to desired values but also narrowly distributed around that
desired value. In other words, our results show that for the
system of iridium particles we consider here, it is possible not
only to control the PS, but also the dispersion of sizes: That is,
we can aspire to use these methods to tailor reaction outcomes
to very specific tasks for which nanoparticles are uniquely suited!

In summary, we have (i) provided an easy-to-implement
approach to optimization of a nanoparticle synthesis and PSD,
(ii) constructed and posted on GitHub the necessary code along
with instructions to install and reproduce our computational
results (see https://github.com/dklong—csu/mepbm), and
thereby (iii) demonstrated proof-of-principle optimization
under uncertainty of a nanoparticle synthesis, whose mathe-
matical methodology is sufficiently general to be applicable also
to other particle syntheses. Our approach is general to nano- and
larger particles by building on a flexible framework for modeling
the concentrations of particles of different sizes, accounting for
statistical noise in the data and mathematical model (Bayesian
inversion), incorporating parameter probability distributions in
the optimization problem (optimization under uncertainty), and
utilizing an accessible global optimization algorithm to
efficiently determine the best experimental design for one’s
desired outcome (Bayesian optimization). Hence, it is
reasonable to anticipate the optimization workflow we presented
in this work to be of great value in optimizing the synthesis of
other particle systems and for experimental checks to validate
our predicted synthesis.

The work we have presented here clearly points to a number
of avenues for future research:

e For the iridium particles we used as a proof-of-principle,
we have identified experimental conditions for which the
model predicts PSDs that are substantially narrower, as
well as much better centered around a desired size, than
the ones we have obtained in previous experiments. A
clear goal for future work would be to experimentally
validate these predictions. It is clear that such an
experimental validation would have made the current
study far more convincing; unfortunately, despite our past
work in this area, this validation is no longer within the
experimental abilities of the authors” laboratories.

e As mentioned before, we have used the iridium
nanoparticle system used herein primarily because of its
excellent characterization. Yet, the optimization approach
of Section 3 is not specific to the iridium system, nor
indeed to the use of models such as the one we have

https://doi.org/10.1021/acsanm.4c01373
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outlined in Section 2. Given a sufficient faithful model of
particle formation, the methods we have described herein
can and should also be applied to other systems.

e In order to address real-world syntheses, optimization
methods need to take constraints on optimization as well
as state variables into account. These include physical
limitations on initial concentrations that are experimen-
tally accessible, limits on temperature ranges, and safety
and cost considerations. We have ignored these for the
purposes of this study, although they are readily included
in the application of the algorithms we have presented. In
practice, most of these constraints are simply lower and
upper bounds on specific optimization variables that are
easily incorporated in the formulations of Sections 3.3 and
3.4, as well as into the algorithms we have used to perform
the actual optimization.

It would also be worthwhile incorporating cost consider-
ations—not just desirable physical and chemical properties—
into the objective function. For example, today’s nanoparticle
syntheses cannot create the narrow size distributions required
for applications, and consequently often need to be microfiltered
at high cost and resultant low yield. In such cases, optimizing PSs
does not only result in more desirable sizes but also results in
cost savings.

e More broadly, our methods to predict optimized
conditions of particle syntheses for a broad class of
particles provide an experimentalist not only with
synthesis conditions that produce a desired outcome.
Rather, these are also appropriate experimental con-
ditions to learn more about the particle formation
mechanisms and that allow, should experimental out-
comes not faithfully match computational predictions, for
the efficient refinement of the underlying mathematical
model.
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B ADDITIONAL NOTES

“Alternative methods for approximating the integral in (') are
possible and can equivalently be used in our framework. For
example, when the forward model f is computationally
demanding, one could use Polynomial Chaos Expansions.”*
One can compute these in a black-box manner in a number of
software packages, for example, in Matlab,**%° Python,47’56 and
C++.Y

bPerhaps a better description of the issue would be to say that if
one were to perform more experiments, one might obtain a
different—and hopefully more localized—probability distribu-
tion Z(‘K). In that case, the optimal parameter &%, .. found for
7(K) may not have been a great choice for #(K).

“The term “Bayesian optimization” describes a set of methods
that take into account how much we believe we know about the
objective function at a point 8, having previously evaluated the
objective function at a set of other points. Except for the fact that
it incorporates “uncertainty” into the optimization process,
“Bayesian optimization” is unrelated to the “Bayesian inverse
problem” we have used to assess how much we know about the
reaction parameters K in Section %,
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