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Meta-Learning Online Control for
Linear Dynamical Systems
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Abstract—In this paper, we consider the problem of finding a

meta-learning online control algorithm that can learn across the

tasks when faced with a sequence of N (similar) control tasks.

Each task involves controlling a linear dynamical system for a

finite horizon of T time steps. The cost function and system

noise at each time step are adversarial and unknown to the

controller before taking the control action. Meta-learning is a

broad approach where the goal is to prescribe an online policy for

any new unseen task exploiting the information from other tasks

and the similarity between the tasks. We propose a meta-learning

online control algorithm for the control setting and characterize

its performance by meta-regret, the average cumulative regret

across the tasks. We show that when the number of tasks

are sufficiently large, our proposed approach achieves a meta-

regret that is smaller by a factor D/D⇤
compared to an

independent-learning online control algorithm which does not

perform learning across the tasks, where D is a problem constant

and D⇤
is a scalar that decreases with increase in the similarity

between tasks. Thus, when the sequence of tasks are similar the

regret of the proposed meta-learning online control is significantly

lower than that of the naive approaches without meta-learning.

We also present experiment results to demonstrate the superior

performance achieved by our meta-learning algorithm.

I. INTRODUCTION

Meta-learning is a powerful paradigm in machine learning
for learning-to-learn new tasks efficiently, e. g., with limited
data [1]. Meta-learning is based on the intuitive idea that if
the new task is similar to previous tasks, it can be learned
very quickly by using the data and knowledge from previously
encountered related tasks. Recently there has been tremendous
progress in practical algorithms for meta-learning [2]–[4] with
impressive performance in many applications such as image
classification [5], natural language processing [6], and robotic
control [7]. These algorithms, however, are in the batch

learning setting, where data sets composed of different tasks
are available for offline training. A meta-model (typically a
neural network) is then trained using these data sets with the
objective of fast adaptation to a new/unseen task at the test
time using only a few data samples corresponding to that new
task. Significantly different from the batch learning setting
which are offline by nature, many learning algorithms have
to operate in an online setting where the data samples are
obtained in a sequential manner. For example, personalized
recommendation systems [8], various applications in robotics
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[9]–[13], demand response management in smart grid [14], and
load balancing in data centers [15] require online learning.

Online convex optimization (OCO) [16], [17] focuses on de-
veloping algorithms for online learning setting where the loss
functions are sequentially revealed and the learner is trained
as well as tested at each round. The standard OCO objective
is to minimize the regret which is defined as the difference
between the cumulative cost incurred by the online algorithm
and the optimal policy from a certain class of policies. Even
though the OCO approach offers a fundamental theoretical
framework to analyze a variety of online learning scenarios,
the existing works do not consider how the past experience
can be used to accelerate adaptation to a new task, which is
the key idea behind meta-learning. There are many works in
the area of online control algorithms for dynamical systems
with uncertain/unknown disturbances, system parameters and
cost functions. The online control literature extends the OCO
approach to problems with dynamics [18]–[21]. However,
these existing works only consider the problem of learning
within a task assuming that the task is fixed. In particular,
they do not consider the possibility of learning across the

tasks when faced with a sequence of similar control tasks.
In this paper, we consider the problem of finding a meta-

learning online control algorithm that learns across the tasks
when faced with a sequence of N (similar) control tasks. Each
task involves controlling a linear dynamical system for T time
steps. The cost function and system noise at each time step
are adversarial and unknown to the algorithm before taking the
control action. The primary role of a meta-learning algorithm
is to prescribe an online control policy for any new unseen task
exploiting the information from prior tasks and the similarity
between the tasks. We characterize the performance of a meta-
learning online control algorithm by meta-regret, the average
(taken over the tasks) cumulative regret across the tasks. Our
goal is to develop a meta-learning online control algorithm
that can achieve superior performance, in theory and practice,
over an independent-learning online control algorithm which
applies a standard online control algorithm to each task
without performing any learning across the tasks.

Our approach is motivated by some recent works in online
meta-learning [22]–[24] which combine the meta-learning idea
with the OCO framework. In [22], the authors extend the
model-agnostic meta-learning (MAML) approach [2] to the
online setting. Their goal is to learn a good meta-policy
parameter that allows fast adaptation to all the previously
seen tasks by taking only a few gradient steps from this
meta-policy parameter. The work that is closest ours is
[23], which proposes the Follow-the-Meta-Regularized-Leader

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TAC.2025.3536839

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Texas A M University. Downloaded on March 04,2025 at 21:27:04 UTC from IEEE Xplore.  Restrictions apply. 



2

(FTMRL) approach. FTMRL learns a meta-intialization for
a task specific OCO algorithm such that the individual task
regret of these algorithms improves with the similarity of the
online tasks. However, these works consider only the online
optimization setting without state evolution. In particular, they
do not consider the more challenging problem of online control
for uncertain dynamical systems.

Our contributions: We consider the problem of developing
a meta-learning online control algorithm for a sequence of
similar control tasks. Each task involves controlling a linear
dynamical system with adversarial cost functions and distur-
bances, which are unknown before taking the control action.
Our algorithm has a two loop structure where the outer loop
performs the meta-learning update to prescribe an initialization
parameter for the task specific online control algorithm used
in the inner loop. We show that when the number of tasks are
sufficiently large the meta-regret of our proposed approach
is smaller by a factor D/D

⇤ compared to an independent-
learning online control algorithm which does not perform
learning across the tasks, where D is a problem constant and
D

⇤ is a scalar that represents the task similarity (D⇤ decreases
with similarity between tasks). Therefore, when the sequence
of tasks are similar, i.e., when D

⇤
⌧ D, we achieve a regret

that is significantly lower than that of the naive approaches
without meta-learning. We also present experiments results
to demonstrate the superior performance of our meta-learning
algorithm.

Our technical contribution lies in expanding the framework
and technical analysis of online control to incorporate meta-
learning. To the best of our knowledge, ours is the first work
that combines the ideas of meta-learning and online control to
develop a learning algorithm with provable guarantees for its
performance. The conference version of this paper presents a
simpler algorithm that assumes the knowledge of D

⇤. In this
version, we introduce a general algorithm that does not require
the knowledge of D⇤.

Related Works:

Online Control: Substantial number of works have been
published in the area of online control [18]–[21], [25]–[27].
Most of these works focus on developing online control algo-
rithms for linear dynamical systems with provable guarantees
for the regret. In our work we make use of the task specific
online control algorithm proposed in [20]. This considers the
control of a known linear dynamic system with adversarial
disturbance and (convex) cost functions and shows that the
proposed algorithm can achieve O(

p
T ) regret for a given task.

Our meta-learning online control algorithm is developed by
extending the task specific online control algorithm proposed
in [20] with an additional outer loop for performing the meta-
learning update and slightly modifying the task specific (inner
loop) update.

Adaptive and Robust Control: Classical adaptive and robust
control literature addresses the problem of control of systems
with parametric, structural, modeling and disturbance uncer-
tainties [28]–[31]. Typically, these classical approaches are
concerned with stability and asymptotic performance guaran-
tees of the systems. Online control literature focuses typically

on the finite time regret performance of the algorithms. This is
one of the key differences compared to the conventional adap-
tive and robust control literature, and it requires combining
techniques from statistical learning, online optimization and
control. In this work, we focus on the online control approach
for developing our meta-learning algorithm.

Notations: Unless otherwise specified k·k denotes the Eu-
clidean norm and the Frobenious norm for vectors and matri-
ces respectively. We use O(·) for the standard big-O notation
while eO(·) denotes the big-O notation neglecting the poly-
log terms. We also use o(·) for the standard little-o notation.
Further, when a function g(n) = on(1), then g(n) ! 0 as
n ! 1. We denote the sequence (xm1 , xm1+1, . . . , xm2)
compactly by xm1:m2 .

II. PROBLEM SETTING

We consider the problem of finding a meta-learning online
control (M-OC) algorithm that learns across the tasks when
faced with a sequence of (similar) control tasks. The sequence
of tasks are denoted as ⌧1, ⌧2, . . . , ⌧N . Each control task ⌧i

involves controlling a linear dynamical system for T time steps
whose system dynamics is given by the equation

xi,t+1 = Aixi,t +Biui,t + wi,t, 1  t  T, (1)

where Ai 2 Rn⇥n and Bi 2 Rn⇥m are the matrices that
paramaterize the system, and xi,t 2 Rn is the state, ui,t 2 Rm

is the action, wi,t 2 Rn is the system noise at time t. For
conciseness we represent the system parameter for task ⌧i as
✓i = [Ai, Bi]. We assume that the systems noise is adversarial.

A control policy ⇡ for task ⌧i selects a control action u
⇡

i,t
at

each time t depending on the available information, resulting
in a sequence of actions u

⇡

i,1:T and the state trajectory x
⇡

i,1:T .
The cumulative cost of a policy ⇡ under the system dynamics
(1) is given by

Ji(⇡) =
TX

t=1

ci,t(x
⇡

i,t
, u

⇡

i,t
), (2)

where ci,t is the cost function for task ⌧i at time t. We assume
that ci,ts are arbitrary convex functions. The typical goal is to
find the optimal policy ⇡

?

i
such that ⇡

?

i
= argmin

⇡
Ji(⇡).

Clearly, computing ⇡
?

i
requires the knowledge of the system

parameter ✓i and the entire sequence of cost functions ci,1:T .
The online control framework considers the more realistic

setting where the future cost functions are not available for
deciding the control action ui,t at time t. More precisely the
policy ⇡i for task ⌧i has only the following information at
each time t for selecting the action ui,t: (i) past and current
state observations xi,1:t, (ii) past control actions ui,1:t�1, (iii)
past cost functions ci,1:t�1. We also assume that the system
parameter ✓i is known to the control policy. The task regret

of the control policy ⇡i for the task ⌧i is defined as

R
i

T
(⇡i) = Ji(⇡i)�min

⇡2⇧
Ji(⇡), (3)

where ⇧ is the class of control policies. The objective is to find
a policy that minimizes the task regret assuming that the task
is fixed. In particular the existing online control algorithms
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do not consider learning across tasks when faced with a
sequences of similar control tasks.

Our goal is to find a meta-policy ⇡
m

that can learn across

the tasks when faced with a sequence of (similar) control

tasks ⌧1, ⌧2, . . . , ⌧N and minimize the task regret for individual

tasks. A meta-policy ⇡
m produces a sequence of task specific

policies ⇡
m
i
, 1  i  N, by learning across the tasks. For

deciding the task specific policy ⇡
m
i

for task ⌧i the meta-policy
⇡
m makes use of the observation available from the previous

tasks: the state observations, cost functions, and task specific
policies for all previous tasks j  i � 1. Since the objective
of the meta-policy is to generate task specific policies which
can do well on individual tasks, the performance of the meta-
policy is characterized by the metric meta-regret, formally
defined as

R
meta
N

(⇡m) =
1

N

NX

i=1

R
i

T
(⇡m

i
). (4)

Our objective is to find a meta-policy that performs better
than an independent-learning online control algorithm which
applies a standard online control algorithm independently to
each task without performing any learning across the tasks.

We make the following assumptions. Please note that the
assumptions stated below are standard in the (task specific)
online control literature [20] and no further assumptions are
made.

Assumption 1 (System Model): (i) The system matrices for
each task are bounded, kAik  A, and kBik  B , where
A and B are constants. (ii) The disturbance at time t of any
task is bounded, kwi,tk  w, where w is a constant.

Assumption 2 (Cost Functions): For all tasks i, 1  i  N

and all time steps t, 1  t  T , (i) the costs functions ci,ts
are convex, (ii) for any x and u with kxk  S, kuk  S,

kci,t(x, u)k  �S
2
, krxci,t(x, u)k, kruci,t(x, u)k  GS,

The above formulation can be extended to the problem of
controlling an output instead of a state just as in [21]. In this
setting ( [21]), the cost function is a function of the output and
the control input, instead of the state and the control input.

III. REVIEW: ONLINE CONTROL ALGORITHM

In this section we give a brief description of the task
specific online control (OC) algorithm proposed in [20]. We
drop the task subscript i because the discussion here is for
a single task. Our meta-learning online control algorithm is
developed by extending the task specific OC algorithm with an
additional outer loop for performing the meta-learning update
and appropriately modifying the task specific (inner loop)
update.

The OC algorithm proposed in [20] uses a control policy
parameterized by two matrices, a fixed matrix K and a time
varying matrix Mt = (M [1]

t
,M

[2]
t

, . . . ,M
[H]
t

). The control
action ut at time t by this OC algorithm is given by

ut = �Kxt +
HX

k=1

M
[k]
t

wt�k. (5)

Thus, the control action is a linear map of the current state and
the past disturbances up to a certain history. This property is

convenient as it permits efficient optimization of the costs.
We note that, since the state is fully observable, the past
disturbances can be precisely estimated using the information
at time t.

The parameter K is selected by the OC algorithm as a
(, �)-strongly stable linear feedback control matrix for the
underlying system. A linear feedback control policy speci-
fied by the gain K is (, �)-strongly stable if there exists
matrices L,H satisfying A � BK = HLH

�1 such that the
following two conditions are met: (i) kLk  1 � �, and (ii)
kKk  , kHk, kH

�1
k  . The OC algorithm considers the

class ⇧ of all (, �)-strongly stable linear feedback controllers
for characterizing its regret performance according to (3).

The OC algorithm uses the framework of Online Convex
Optimization (OCO) to update the parameters Mt at each time
step. The key idea of the algorithm is to design a sequence
of cost functions f1:T in terms of the parameters M1:T while
correctly representing the actual cost incurred by the true cost
functions c1:T . This is achieved by defining an idealized state
st and idealized control input at as follows. The idealized state
st is the state the system would have reached if the controller
had executed the policy with parameters (Mt�H , . . . ,Mt�1)
from time step t � H to time step t � 1, assuming that the
state at t �H is 0. The idealized action at is the action that
would have been executed at time t if the state observed
at time t is st. We can then define the idealized cost as
ft(Mt�H , . . . ,Mt) = ct(st, at).

The complete OC algorithm proposed in [20] is shown in
Algorithm 1. An Online Gradient Descent (OGD) approach
updates the parameters Mt by the gradient of the idealized cost
function. The algorithm requires the specification of a (, �)-
strongly stable matrix K. Such a matrix can be calculated
offline before the task using an Semi-Definite Programming
(SDP) relaxation as described in [32].

Algorithm 1 Online Control (OC) Algorithm
Input: Step size ⌘, parameters B ,, �, T , (, �)-strongly

stable control matrix K

Define H = log T/(log (1/1� �))
Define M = {M = (M [1]

, . . . ,M
[H]) : kM [k]

k  
3
B(1�

�)k}
Define gt(M) = ft(M, . . . ,M)
Initialize M1 2M

for t = 1,. . . ,T do

Choose the action ut = �Kxt +
P

H

k=1 M
[k]
t

wt�k

Observe the new state xt+1, and wt = xt+1�Axt�But

Update Mt+1 = ProjM (Mt � ⌘rgt(Mt))
end

A regret guarantee of Algorithm 1 is provided in [20]:
Theorem 1 (Theorem 5.1, [20]): Suppose Assumptions 1-2

hold, ⌘ = Dp
Gf (Gf/2+LH2)T

, and D = B
3
p
d

�
. Then, under

Algorithm 1,

RT 
3D

p
Gf (Gf/2 + LH2)T

2
+ eO(1), where

L = 2G eDwB
3
, Gf = G eDwHd

✓
2B

3

�
+H

◆
,
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eD =
w(2 +H

2
B

5)

�(1� 2(1� �)H+1)
+

B
3
w

�
.

The notation ⇧ is used as a general notiation for a bench-
mark class of policies. The set M (used above) is a specific
class of control policies as defined in Algorithm 1. In the
regret presented in the paper ⇧ = M. We have made this
clarification in the revised version.

Remark 1 (Diameter of the domain): It can be shown that
[20, Theorem 5.1] the multiplicative constant D in the above
regret bound is the diameter of the domain M of the control
policy parameters, i.e., D = maxM1,M22MkM1 � M2k. In
the next section we show that our meta-learning approach can
significantly reduce this multiplicative constant by learning
across the tasks.

IV. META-LEARNING ONLINE CONTROL ALGORITHM

Our meta-learning online control (M-OC) algorithm builds
on the simple, yet a powerful idea of meta-initialization. In
the standard OC algorithms, the initialization parameter for
the control policy is selected arbitrarily from the domain of
possible parameters. So, inevitably the regret guarantee for
such algorithms includes a multiplicative constant that is of
the order of the radius of the domain (see Remark 1), which
can be very large in many problems. Similarly, when an
independent-learning OC algorithm is applied to a sequence
of tasks the parameters of the control policy for each task are
initialized arbitrarily ignoring the similarities and the benefit of
learning across tasks. When the tasks are similar, the optimal
parameters for the individual tasks are closer to each other, and
the optimal parameters for the earlier tasks in the sequence can
be used to improve the learning in a new upcoming task. Our
M-OC algorithm translates this intuitive idea into providing
a clever initialization for the control policy for the current
task by learning from the previous tasks. This results in a
multiplicative constant (in the regret) that is proportional to
the diameter D

⇤ of a much smaller subset that contains the
parameters of the optimal control policies of the individual
tasks, instead of the diameter of the generic domain. This
scenario is illustrated in Fig. 1, where the diameter D of
the original domain M is significantly larger than D

⇤, which
is the diameter of the smaller set M

⇤ that contains the
optimal parameters corresponding to the similar tasks. Here
the diameter D

⇤ can be interpreted as the similarity of the
sequence of tasks.

The architecture of our M-OC algorithm is given in Fig.
2. The meta-learning in the outer loop provides the meta-
initialization for the task specific OC algorithm in the inner
loop. The control policy for each specific task is of the
same form as the independent learning OC algorithm (5). At
the beginning of any task ⌧i a (, �) stabilizing feedback
gain matrix Ki for the task ⌧i is computed. During the
task the algorithm updates the task specific policy parameters
Mi,t exactly as in Algorithm 1. The control action ui,t is
computed using the parameters Mi,t and the feedback gain
matrix Ki with the same form as the independent learning
OC algorithm (5). The difference between the M-OC algorithm
and Algorithm 1 lies in the initialization of the parameter Mi,1.

M

D

D⇤

M
⇤

Fig. 1. Illustrative figure showing the domain M of the parameters of the
online control policies and the set M⇤ of the optimal parameters of the control
policies corresponding to a set of similar tasks.

Outer Loop: Meta Learner

Meta-Update
M

m
i

Meta-Loss, Li

Inner Loop: Task Specific OC Algorithm

Policy Update

Mi,t

M
?
i�1

System
xi,t+1

Control Policy

ui,t

Fig. 2. Meta-Learning Online Control (M-OC) Algorithm Architecture. Solid
line: within task signals. Dashed line: signals that are constant within a task
but that can change across the tasks.

In particular, Algorithm 1 selects Mi,1 arbitrarily from the
domain M, whereas the outer loop of meta-learner provides
the initialization M

m
i

for each task ⌧i.
Specifically, the inner loop updates the control policy pa-

rameter Mi,t within each task ⌧i by

Mi,t+1 = ProjM (Mi,t �rgi,t(Mi,t)) , Mi,1 = M
m
i
. (6)

In the outer loop, the meta-learner computes the initialization
parameter M

m
i

for the inner loop as follows. Let M
?

i
the

optimal parameter in hindsight for task ⌧i, i.e.,

M
?

i
= argmin

M2M

TX

t=1

gi,t(M). (7)

We note that M?

i
is computable at the end of task ⌧i. Given that

gi,ts are convex functions, finding M
?

i
is a convex optimization

problem, and thus can be solved efficiently. We define the
meta-learner’s loss for task i as

L
i(Mm) =

1

2
kM

m
�M

?

i
k
2
. (8)

The meta-learner performs an online gradient descent step to
find the initialization M

m
i+1 for task ⌧i+1 as

M
m
i+1 = ProjM

✓
M

m
i
�

1

i
rL

i(Mm
i
)

◆
. (9)

We note that performing the naive initialization M
m
i+1 =

M
?

i
does not improve the regret optimally as this will effec-

tively throw away the information from all the previous tasks.
Instead the meta-learner solves an online convex optimization
problem with N steps with the cost function at each step i

given by L
i. Since the online gradient descent approach solves
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this problem efficiently with provable guarantees for the regret
performance, we adapt this approach as the meta-learning
algorithm in the outer loop. We present two variations of the
algorithm: (i) a simpler algorithm which assumes knowledge
of the diameter D

⇤, and (ii) a complete algorithm that does
not require the knowledge of D⇤.

A. Algorithm with the Knowledge of D
⇤

We first present the algorithm with the knowledge of D
⇤

for easier understanding of the idea and the technical analysis.
The key advantage of this assumption is that we can set
the learning rate ⌘ in the inner loop proportional to D

⇤ in
addition to updating the meta-initialization according to (9).
We emphasize that setting ⌘ / D

⇤ is the optimal way to set
the rate, which follows from how ⌘ is set in Theorem 1 for
the independent learning OC algorithm. The assumption of
knowledge of D

⇤ simplifies the algorithm, which otherwise
requires setting the learning rate adaptively. We present the
more general algorithm in the next section. The algorithm with
the knowledge of D⇤ is presented below.

Algorithm 2 Meta-learning Online Control (M-OC-1) Algo-
rithm
Input: Number of tasks N , the diameter D⇤, inner loop step

size ⌘, parameters B ,, �, T

Define M = {M = (M [1]
, . . . ,M

[H]) : kM [k]
k  

3
B(1�

�)k}. Initialize M
m
1 2M arbitrarily

for i = 1,. . . ,N do

For task ⌧i, set the initialization Mi,1 = M
m
i

for the OC
Algorithm (Algorithm 1) in the inner loop

Execute the OC Algorithm (Algorithm 1) for task ⌧i

Compute M
?

i
as in (7)

Update M
m
i+1 as in (8)-(9)

end

We now present our main result which characterizes the
performance of Algorithm 2.

Theorem 2: Suppose Assumptions 1-2 hold, and ⌘ =
D

⇤
p

Gf (Gf/2+LH2)T
. Then, under the M-OC-1 Algorithm (Al-

gorithm 2)

R
meta
N



✓
(GD)2 logN

D⇤N
+

D

2
+D

⇤
◆p

eG2T ,

where, D
2
= 1

N

P
N

i=1

⇣
M

?

i
� fM?

⌘2
, fM? = 1

N

P
N

i=1 M
?

i
,

eG2 = Gf

⇣
Gf

2 + LH
2
⌘

.
Remark 2 (Comparison with independent-learning online

control algorithm): Under our M-OC-1 algorithm, when N

is sufficiently large, the multiplicative constant in the regret
upper bound is approximately equal to D

2 +D
⇤. When the tasks

are similar D
⇤
⌧ D, and by definition D  D

⇤. Therefore,
when the tasks are similar the regret our algorithm achieves is
significantly better compared to the independent learning OC
algorithm. This clearly shows that M-OC-1 is able to learn
across tasks, which by default the independent learning OC
algorithm cannot do. This fact is verified by our numerical
simulations also; see Section V.

Remark 3 (Achievability by meta-learning): We note that
the meta-regret scaling with respect to the duration T of a
control task is eO(

p
T ), which is same as the scaling achieved

by the independent learning OC algorithm. This aspect is
consistent with the existing theoretical results in online meta-
learning [22]–[24]. This is expected, as the meta-learner will
never be able to learn an initialization that does not require
further adaptation, especially, since the cost functions and
the disturbances are arbitrary. Furthermore, as pointed in [23,
Theorem 2.2], even in the simpler OCO setting, reductions to
the multiplicative constant are the best that can be achieved.

Remark 4 (Knowledge of D
⇤

vs M
⇤
): We emphasize that

our algorithm only assumes the knowledge of a scalar D
⇤,

and not of the entire multi-dimensional set M⇤. Assuming the
knowledge of M⇤ is not realistic in most practical problems.

Remark 5 (Extension to Output Feedback): In the output
feedback setting of [21], the cost function is a function of the
output and the control input. The output is an observable and
also the variable to be controlled. This leads to the following
difference in the policy parameter update. The cost ft, in this
case, is a function of the idealized output and the idealized
action, instead of the idealized state and action. This is the
only difference. The rest of the update equations are the same.

B. Algorithm without the Knowledge of D
⇤

In this subsection, we present a general version of our
algorithm which does not assume the knowledge of D

⇤. As
mentioned earlier, without the knowledge of D

⇤, requires
setting the learning rate adaptively.

Our approach is motivated by the idea proposed in [24],
but we present a simpler algorithm which lends itself to a
simpler proof. We set the learning rate for task ⌧i as ⌘ =

Dip
Gf (Gf/2+LH2)T

, where Di is an estimate of the diameter
of the smallest bounding circle of the region M

⇤. We update
Di whenever there is evidence that Di is smaller that D

⇤.
The idea is to start Di from a guess (a small number ✏) of D⇤

and increase this guess by a factor ⇣ > 1 whenever kM?

i
�

fMm
i�1k > Di, where fMm

i
= 1

i

P
i

j=1 M
?

i
. The term kM?

i
�

fMm
i�1k is the deviation of the optimal parameter for a new task

i from the average of the optimal parameters of the previous
tasks. Thus, this term is indicative of how smaller Di is, and
thus can be used to increase Di by comparing with it. In
addition, since fMm

i�1 is equal to the output of the meta-learner
in Eq. (9) with M

m
1 set to zero, we use fMm

i�1 itself as the
meta-initialization for the task ⌧i. The complete algorithm is
shown in Algorithm 3.

We now present our main result which characterizes the
performance of Algorithm 3.

Theorem 3: Suppose Assumptions 1-2 hold, ✏ < D
⇤, and

⇣ = (1+log(T ))/ log(T ). Then, under the M-OC-2 Algorithm
(Algorithm 3)

R
meta
N



✓
(GD)2 logN

D⇤N
+

4D3

✏2N
+

D

2
+D

⇤ + oT (1)

◆p
eG2T

where, D
2
= 1

N

P
N

i=1

⇣
M

?

i
� fM?

⌘2
, fM? = 1

N

P
N

i=1 M
?

i
,

eG2 = Gf

⇣
Gf

2 + LH
2
⌘
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Algorithm 3 Meta-learning Online Control (M-OC-2) Algo-
rithm
Input: Number of tasks N , parameters B ,, �, T, ✏, ⇣ > 1
Define M = {M = (M [1]

, . . . ,M
[H]) : kM [k]

k  
3
B(1�

�)k}. Set Mm
1 to the origin. Initialize D1 = ✏, k = 0.

for i = 1,. . . ,N do

Set ⌘ = Dip
Gf (Gf/2+LH2)T

For task ⌧i, set the initialization Mi,1 = M
m
i

for the OC
Algorithm (Algorithm 1) in the inner loop

Execute the OC Algorithm (Algorithm 1) for task ⌧i

Compute M
?

i
as in (7)

Set Mm
i+1 = 1

i

P
i

j=1 M
?

j

if i > 1 then

if kM
?

i
�M

m
i
k > Di then

k  k + 1
end

end

Di+1 = ⇣
k
✏

end

Remark 6 (Comparison with independent-learning online

control algorithm and M-OC-1 algorithm): Under M-OC-2
algorithm, when N is sufficiently large, the multiplicative
constant in the regret upper bound is approximately equal
to D

2 + D
⇤. We recall from Remark 2 that D  D

⇤

(by definition), and when the tasks are similar D
⇤
⌧ D.

Therefore, when the tasks are similar, we observe that the
regret M-OC-2 achieves is significantly better compared to the
independent learning OC algorithm. We also observe that the
M-OC-2 algorithm has an additional term D

2

✏N
compared to the

M-OC-1 algorithm. This indicates that when the initial guess
✏ is very small, the number of tasks N that M-OC-2 observes
has to be sufficiently large. This is expected as, when ✏ is
much smaller compared to D

⇤ meta-learning will necessarily
require more experience to improve the initial guess Di = ✏.

Please refer to the arxiv version [33] for the proofs of
Theorem 2 and Theorem 3.

V. NUMERICAL EXPERIMENTS

In this section, we present numerical experiments to demon-
strate the benefits of our proposed meta-learning online control
algorithm. We consider only the M-OC-1 algorithm for the
simplicity of illustration. In our experiments, each task ⌧i is
the problem of regulating a linear dynamical system given in
1 with dimensions n = 2,m = 1. The system model Ai in
each task ⌧i is selected as a random matrix: a perturbation
around a nominal matrix. In particular, we set Ai = 1

2nI +
1
5nWi, where Wi is a random matrix with the value of each
element generated uniformly from the interval [0, 1]. This
structure implicitly incorporates the idea of task similarity.
The cost functions ci,ts are selected as quadratic cost functions
ci,t(x, u) = x

>
Qtx+u

>
Rtu, where Qt and Rt are randomly

chosen diagonal matrices with each diagonal element chosen
randomly from the range [0.375, 0.625]. The other parameters
are selected as a = b = w = 1, =

p
nm, � = 0.5.

In our experiments, we compare the performance of our M-
OC algorithm with the following benchmarks:

Fig. 3. Plot of Rmeta
N versus the number for tasks N . The plot shows a patch

of one standard deviation for each controller.

Fig. 4. Plot of logRmeta
N vs log T . The plot shows a patch of one standard

deviation for each controller.

(i) Non-adaptive control algorithm which employs the control
policy ui,t = �Kixt, where Ki is a stabilizing controller
for task ⌧i with system parameter ✓i = [Ai, Bi]. We select
Ki by solving a standard linear matrix inequality (LMI)
for finding a stabilizing controller. We call this non-adaptive
control because the control policy is invariant over the duration
of the control tasks. Moreover, there is no learning across the
tasks.
(ii) Independent-learning online control algorithm employs
the task specific OC algorithm (Algorithm 1) independently to
each control task. While this approach is capable of learning
within a task, it does not perform any meta-learning across
the tasks.

Different from these benchmarks, our M-OC algorithm can
learn within and across the tasks.

Figure 3 shows the meta-regret Rmeta
N

as a function of the
number of tasks N with T = 25 for all tasks. Note that meta-
regret is equivalent to the average (averaged over the tasks)
cumulative regret of the tasks; see (4). Since the non-adaptive
control algorithm and the independent-learning OC algorithm
do not perform any learning across the tasks, their meta-regret
does not improve with the number of tasks. In stark difference,
the meta-regret of our M-OC algorithm decreases with the
number of tasks; see Remark 2 also. This is because our
M-OC algorithm is designed to perform meta-learning across
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the tasks. This clearly demonstrates the superior performance
of the M-OC algorithm over the benchmarks without meta-
learning.

Figure 4 shows the variation of the meta-regret with N = 15
tasks as a function of the duration T of each control task.
We see that, when the task duration is small, the M-OC
outperforms independent learning OC by a notable margin.
This indeed is the very purpose of meta-learning, i.e., to
improve adaptation when the data or experience available for
online learning is limited. The performance of the independent
OC approaches that of M-OC as T becomes large. This is
because, the initialization has an effect only on the shorter
time scales and not on the longer time scales.

VI. CONCLUSION

In this paper, we address the problem of developing a meta-
learning online control algorithm for a sequence of similar
control tasks. We focus on the setting where each task is the
problem of controlling a linear dynamical system with arbi-
trary disturbances and arbitrarily time varying cost functions.
We propose a meta-learning online control algorithm that prov-
ably achieves a superior performance compared to the standard
online control algorithm which does not use meta-learning.
We also present numerical experiments to demonstrate the
superior performance of our algorithm. In the future work, we
plan to extend this approach to the setting where the system
parameters ✓is are also unknown.
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