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Fig. 1. Left: The proposed Gaze-aware Compositional GAN model can leverage the limited gaze annotation
in the lab data and diverse appearance in the unlabeled data. Right: Applications include gaze-annotated
image dataset generation and gaze redirection.

Gaze-annotated facial data is crucial for training deep neural networks (DNNs) for gaze estimation. However,
obtaining these data is labor-intensive and requires specialized equipment due to the challenge of accurately
annotating the gaze direction of a subject. In this work, we present a generative framework to create annotated
gaze data by leveraging the benefits of labeled and unlabeled data sources. We propose a Gaze-aware Composi-
tional GAN that learns to generate annotated facial images from a limited labeled dataset. Then we transfer this
model to an unlabeled data domain to take advantage of the diversity it provides. Experiments demonstrate
our approach’s effectiveness in generating within-domain image augmentations in the ETH-XGaze dataset
and cross-domain augmentations in the CelebAMask-HQ dataset domain for gaze estimation DNN training.
We also show additional applications of our work, which include facial image editing and gaze redirection.

CCS Concepts: » Computing methodologies — Neural networks; Image processing; - Human-centered
computing — Interaction techniques.

Additional Key Words and Phrases: Gaze estimation, synthetic data, GAN, generative, DNN, domain transfer

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

ETRA °24, June 04-07, 2024, Glasgow, United Kingdom

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-XXXX-X/18/06...$15.00

https://doi.org/10.1145/3654706


HTTPS://ORCID.ORG/0000-0002-7853-6708
HTTPS://ORCID.ORG/0000-0002-2929-0115
HTTPS://ORCID.ORG/0000-0003-0229-5722
HTTPS://ORCID.ORG/0000-0001-5648-0910
HTTPS://ORCID.ORG/0000-0001-6069-8787
HTTPS://ORCID.ORG/0000-0002-3620-2582
HTTPS://ORCID.ORG/0000-0002-2329-5484
https://doi.org/10.1145/3654706

ETRA ’24, June 04-07, 2024, Glasgow, United Kingdom Aranjuelo N, et al.

ACM Reference Format:

Nerea Aranjuelo, Siyu Huang, Ignacio Arganda-Carreras, Luis Unzueta, Oihana Otaegui, Hanspeter Pfister,
and Donglai Wei. 2024. Learning Gaze-aware Compositional GAN from Limited Annotations. In . ACM, New
York, NY, USA, Article 1, 16 pages. https://doi.org/10.1145/3654706

1 INTRODUCTION

Gaze estimation is an essential task in computer vision for many applications, including but not
limited to human-computer interaction, virtual reality, and the automotive industry. Recent works
in gaze estimation have demonstrated that Deep Neural Networks (DNNs) are more robust and
accurate than traditional methods [Cheng et al. 2021]. However, obtaining enough quality data is
essential for training DNNs for gaze estimation. Despite the abundance of facial images through the
Internet and open large-scale datasets [Lee et al. 2020], obtaining gaze-annotated images remains a
major challenge. Manually annotating existing images is tedious and prone to errors, as accurately
determining where a person is looking is difficult. Capturing gaze-annotated data is labor-intensive
and typically requires specialized equipment and long capturing sessions, where a volunteer is
asked to direct their gaze to various points [Zhang et al. 2020].

Given the high value of each captured sample, it is crucial to explore alternative methods for
obtaining them. One potential solution is to use synthetic data [Nikolenko 2021]. Data might be
generated using 3D simulated environments. However, this approach involves its own difficulties,
such as the need for additional processes to bridge the gap between the simulated and real data
domains. Synthetic data generation and augmentation using generative models might be a promising
alternative. Generative adversarial networks (GAN) can produce high-quality images with a high
level of realism [Karras et al. 2019] with the added benefit of controlling the generated data by
editing latent input vectors or conditioning the model on some input information [Shu et al. 2021].

In this paper, we present a Gaze-aware Compositional GAN learned from limited annotations. As
shown in Fig. 1, the proposed model can be used for both discriminative tasks like gaze estimation by
synthesizing gaze-annotated facial images and generative tasks like gaze redirection. Our approach
relies on a composition-based gaze-aware generative model to augment a limited annotated dataset.
Our method consists of two stages. First, we train a compositional GAN to generate gaze-aware
images using a small annotated training dataset. Second, we transfer the model to a bigger in-the-
wild unlabeled dataset. Then, we can generate within- and cross-domain new images to augment
the limited annotated data. Our code is available at https://github.com/naranjuelo/GC-GAN.

The main contributions of this paper are:

e We introduce a novel approach for acquiring annotated gaze estimation data from limited
annotations, leveraging the strengths of various labeled and unlabeled data sources.

e We develop a Gaze-aware Compositional GAN that generates realistic synthetic images with
a user-specified gaze direction using a limited annotated dataset. We transfer the gaze-aware
generative model to an unlabeled dataset to exploit the variance of in-the-wild captured data.

e We validate our method by demonstrating its ability to generate previously unseen within-
domain and cross-domain image augmentations that boost the accuracy of a gaze estimation
DNN. We show our method can be used for different applications, such as data generation,
image editing, data augmentation, and gaze redirection.

2 RELATED WORK
2.1 Gaze Estimation from Facial Images

Traditional model-based methods for estimating gaze rely on a 3D eye model and use detected fea-
tures such as the pupil center or the corneal reflections to estimate the gaze [Ishikawa 2004]. Recent
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appearance-based approaches use DNNs to estimate the gaze using images as input [Abdelrahman
et al. 2022; Cheng and Lu 2022; Zhang et al. 2020]. These approaches adapt better to challenging
in-the-wild scenarios but strongly rely on large amounts of varied data for training. Public available
datasets might alleviate this need. Some of these datasets are captured in controlled environments
(e.g., a laboratory) and typically include relatively few subjects but a wide range of balanced gaze
samples [Xia et al. 2020; Zhang et al. 2020]. Datasets obtained in more natural conditions typically
include a wider variety of subjects but lack the controlled wide range of gazes [Kellnhofer et al.
2019; Zhang et al. 2015]. Due to the variability in person-specific appearance and the influence of
the setup (e.g., face perspective), gaze estimation DNNs are frequently fine-tuned before deploy-
ment with some samples captured in the target setup [Arar et al. 2016; Masko 2017; Park et al.
2019]. Typically, this involves a tedious process where users sequentially look at different targets.
Thus, DNNSs are often retrained with a limited number of images. Due to the challenges of getting
accurately gaze-annotated data, synthetic data emerge as an alternative to data capturing.

2.2 Gaze-aware Facial Image Generation

Realistic eye image synthesis has been extensively studied for its importance in various applications.
There are two main approaches: 3D eye modeling and image generation using generative models.

Graphics-based methods produce high-resolution images based on a 3D model of the human
eye region [Wood et al. 2016]. Although gaze directions and head poses can be controlled in these
approaches, using artificial eye texture can make the generated images appear unrealistic and widen
the discrepancies between generated and target data, leading to lower accuracy when training DNNs
with these unrealistic data. Some works propose to reduce the domain discrepancies by leveraging
GANSs to enhance the realism of synthetic samples before using them for DNN training [Shrivastava
et al. 2017]. GazeGAN [Sela et al. 2017] employs unpaired image-to-image translation to transform
images between domains. These methods involve generating synthetic data from 3D models, which
can be time-consuming due to 3D asset design and rendering.

Some recent works use Neural Radiance Fields (NeRFs) [Mildenhall et al. 2021] to synthesize
photoreal images with gaze control. In [Li et al. 2022], mesh-based and volumetric reconstruction
are combined to synthesize the eye region. Still, it lacks modeling of facial expression-induced eye
deformations, requires a complex image capture setup, and struggles with details like eyelashes.

To overcome the aforementioned challenges, our work generates realistic images from latent
vectors using GANs. The state-of-the-art GANs [Brock et al. 2018; Karras et al. 2021] can gen-
erate realistic images without a 3D simulation environment. Our work is inspired by the recent
composition-based generation SemanticStyleGAN [Shi et al. 2022]. Although many of these GANs
focus on facial image generation, gaze-aware data generation remains an unexplored challenge.

2.3 Dataset Generation for Gaze Estimation

Given the limited and hard-to-obtain gaze data, GANs might be convenient to augment the exist-
ing data. Many works have attempted to use GANs to achieve controllable image generation or
editing. This can be tackled by learning a model to manipulate the latent space of a pre-trained
GAN [Hérkonen et al. 2020; Shen et al. 2020] or training with additional supervision to learn a more
disentangled latent space [Deng et al. 2020; Shi et al. 2022]. These works are often applied to face
attributes edition, such as hair or skin, but not gaze direction. Furthermore, most of the generated
images tend to look forward as it is the most common gaze in typical training datasets [Karras
et al. 2019; Lee et al. 2020]. GANs also have limitations, based on what they have seen during
training [Jahanian et al. 2019], so the training data domain influences their generation capabilities.

Specific studies focus on gaze correction or redirection. InterpGaze [Xia et al. 2020] generates
intermediate gaze images given two samples using an encoder, a controller, and a decoder. [Chen
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(a) Gaze-aware Compositional Generator (b) Gaze-aware Discriminator

Fig. 2. The proposed Gaze-aware Compositional GAN model (GC-GAN). Building upon the SemanticStyle-
GAN [Shi et al. 2022], we first group facial components into gaze-related {wy, ..., w;} and gaze-unrelated
{Wit+1,...,wg}. We extend (a) the Local Generators ({gf}i) in the generator and the discriminator D9 to
condition on the input gaze 6.

et al. 2021] also uses an encoder-decoder architecture, followed by a refinement generator. These
works are limited to redirecting the gaze of a cropped eye region. Some works also learn to blend
this crop into the face, such as DeepWarp [Ganin et al. 2016] and GazeGAN [Zhang et al. 2019], but
are constrained to gaze correction or limited movements. EyeGAN [Kaur and Manduchi 2020] uses
a segmentation mask instead of an RGB image to generate an image for a gaze direction. However,
it is limited to tight grayscale eye-crop images. Our approach is not limited to gaze redirection
but allows gaze-aware image generation. Using a composition-based architecture, we can control
specific face components for data augmentation. Finally, combining datasets from different domains
and with different strengths enhances the variability of images our method generates.

3 METHOD

In a typical GAN, a generator model is trained to map a noise vector z to an image x. Our proposed
method learns to generate an eyes’ region image x and a corresponding segmentation mask y given
a vector z and a target gaze direction 6 the eyes should follow, as defined below:

G:(z0) — (x,y), (1)

where y € {0, 1}wa"K , being H and W the image dimensions, and K the number of segmented
face components. Our method allows training on labeled and unlabeled domains, which adds the
challenge of having no annotations to supervise the synthesized images’ gaze in training.

3.1 Gaze-aware Compositional GAN

We have the following three observations: (1) Some facial components are related to the gaze (e.g.,
iris), while others are not (e.g., nose). (2) Our facial image generator needs to be compositional, as
we need the gaze-related facial components to remain the same during the gaze-invariant data
augmentation for the gaze estimation task and to be changed alone during the gaze redirection
editing task. (3) Our discriminator needs to penalize the sample if it doesn’t match the conditioned
gaze direction in addition to being not realistic. Thus, we designed the following model components.

Overall framework.To ensure the composability of our GAN, we base our model on the state-of-
the-art SemanticStyleGAN model [Shi et al. 2022]. We extend SemanticStyleGAN to support effective
gaze conditioning while generating realistic images and learning from labeled and unlabeled
domains. As illustrated in Fig. 2, our Gaze-aware Compositional GAN model (GC-GAN) is divided
into three main components: noise to latent vectors mapping, Gaze-aware Compositional Generator
for image generation, and Gaze-aware Discriminator for discriminating images during training. The
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(a) Gaze-aware Local Generator (GLG) (b) Discriminator (first training stage)

Fig. 3. Architectures of the GC-GAN. Gaze-aware Local Generator (GLG) (a): the red lines are additions
compared to [Shi et al. 2022]. The discriminator in the first training stage (b): outputs from residual blocks
are summed, while features from gaze direction concatenated.

input vector z is mapped to an intermediate latent code w ~ W using an 8-layer MLP to better model
the non-linearity of the data distribution, similar to [Karras et al. 2019]. To obtain a disentangled
latent space for different face components, the latent code w is divided into K local latent codes
and an additional base latent code w??5¢, common for all the face components. These latent codes
are processed by the Gaze-aware Compositional Generator. This module has K generators, each
responsible for generating feature maps for a specific face component given a local latent code wy.
All the output feature maps are fused and fed to the final generator, which generates synthetic
images and the corresponding segmentation masks. During training, the generated images and
masks are fed to the discriminator, as well as real samples from training data. Gaze vectors are also
input to the discriminator when available. The main modules of the model are detailed as follows.

Gaze-aware generator and discriminator. For image generation, as the Render Net is gaze
agnostic, we only need to condition the gaze direction for the Local Generators of gaze-related
facial components, {gf}’1 For gaze-related features, we condition the Local Generators with the
gaze direction feature. We refer to these generators as Gaze-aware Local Generators (GLG). Fig. 3
(left) shows the GLG architecture for a specific facial component k. Each local generator is formed
by modulated 1 X 1 convolution layers with latent code-conditioned weights, and input Fourier
features f, for position encoding. The input latent codes for each local generator are the base
latent code w??*¢, and the face component-specific wy. The latent code wy is divided into shape
and texture latent vectors, w; and wltC [Shi et al. 2022]. The target gaze direction 0 is also input
to the GLGs so that we can control the gaze of generated samples. The input gaze 6 is defined
as yaw and pitch angles (0, 0,), which are fed to a fully connected layer for mapping them to
an adequate 64-dimensional space before fusion. The output of this layer is concatenated to the
component-specific latent vectors, and the extended latent vectors are fed to a series of modulated
1 X 1 convolutions and final fully connected layers. The output of the GLG is a 1-channel pseudo-
depth dj, and 512-channel feature map fi. The hidden layers have 64 channels. The local generators
unrelated to gaze follow the same architecture except for the gaze branch, which we discard.
Regarding the discriminator, our generated samples are discriminated based on the joint distribu-
tion of the image, the mask, and the gaze (Fig. 3, right). For the image and mask, the discriminator
has two convolution branches whose outputs are summed up. Each branch is formed of residual
blocks, similar to [Karras et al. 2019; Shi et al. 2022], which convert the input 256 X 256 images to
4 x 4 feature maps. The mini-batch standard deviation of the summed feature maps is concatenated,
and 3 X 3 kernel convolution is applied before reshaping to a 1-dimensional vector and adding the
data from the gaze. The gaze is included as a third input to the discriminator. A linear layer maps
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the gaze to a 64-dimensional space before being concatenated with feature maps from the dual
branch. These maps are processed by the final linear layer, classifying the input data as real or fake.

Transfer weights

e

Stage 1: Training on labeled data Stage 2: Adaptation to unlabeled data

Fig. 4. Two-stage training: (1) training on limited annotated data, (2) adaptation to unlabeled data.

3.2 Two-stage Training

We first train the GC-GAN model on the labeled data and then transfer the facial appearance from
the unlabeled data with the domain adaptation approach (Fig. 4).

Stage 1: Training on labeled data. During the first stage, the GC-GAN (Section 3.1) is trained by
minimizing the loss

Lsy = MLy + ALy + Ap Ly + ALy + AsLg, (2)
where L; is non-saturating logistic loss [Creswell et al. 2018], L, is R1 regularization loss [Mescheder
et al. 2018], L, is path length regularization loss [Karras et al. 2019], L, and Lg are mask and
segmentation regularization loss [Shi et al. 2022]. Each loss is weighted with the corresponding A
(Section 4). However, due to the limited amount of labeled data, it is hard for such a trained model
to generalize well to new in the wild images that are challenging to have accurate gaze annotations.

Stage 2: Adaptation to unlabeled data. To adapt GANs to the target domain, it is a common
practice to freeze the lower-level layers of the generator module [Benaim and Wolf 2018]. The
challenge here is to find out which module to freeze and, additionally, how to handle the lack of
annotations in the unlabeled domain. In our case, the target domain lacks the label information
that is used in the source domain, which requires the modification of the discriminator model.

Freezing Gaze-aware Compositional Generator. To transfer the model to the appearance distribution
from a new domain, we rely on the hypothesis that samples with the same segmentation mask
share the same gaze direction. A specific latent vector w and input gaze direction 0, fed to the
gaze-aware generators module, results in a fused coarse feature map and mask, which are then
refined in the Render Net. Our goal is that the same latent vector generates images in both dataset
domains that share the same gaze direction and coarse features (e.g., pose), but domain-specific
appearances. For that purpose, we initialize the model with the pretrained weights from the first
stage, freeze the GLG and the first block of the rendering generator, and fine-tune the rest of the
model. Random input gazes are fed to the generator.

“
l

copy I
mask 1

Fig. 5. Stage 2: Adaptation to unlabeled data. The generated image is combined with the mask generated by
the pretrained stage-1 model given the same latent and gaze vectors.

(2,9)
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Modifying Gaze-aware Discriminator. There are no available gaze annotations to use as input along
with real images and masks, so we constrain the gaze requirement by using the segmentation mask.
The discriminator has the same architecture as in Section 3.1 without the input gaze branch. The
discriminator receives real pairs of RGB images and the corresponding segmentation masks, and
the same with synthetic pairs. In the synthetic pairs, we use the synthetic image generated by
the generator given a latent vector w and a target gaze direction 6, but an expected segmentation
mask for that latent vector instead of the generated one. The expected mask is generated by the
previously pretrained model, as shown in Fig. 5. The model trained in the first stage has already
learned how to model the relation between the latent code and the gaze in the generated images.
Consequently, using it to generate the masks for the discriminator’s input pairs forces the learning
GAN to generate images that fit the given masks and, hence, the input gaze direction.

We also add a mask loss Ly, which is minimized together with the same losses as the first stage.
This loss helps to preserve the same generated mask for the same latent vector and, thus, the same
gaze direction. The new mask loss measures the mean squared error between the generated mask
with the updated weights and the mask generated using the pretrained weights given the same
latent and gaze vector. The final loss of the second stage is defined as follows:

Lsp =L + /1ng > (3)

where Lg; are the losses defined in Equation 2 and L, is the mask loss for gaze preservation.

3.3 Applications

Gaze-aware facial image synthesis. The composition-based architecture promotes a disentangled
and interpretable latent space for image editing. After model training, given an intermediate latent
vector w and a target gaze 6 we can generate a synthetic sample. We can redirect the gaze of this
sample by modifying the input gaze direction 6. Regarding the semantic facial components, we can
modify the specific k;;, component by varying the corresponding local latent vector w; or w;. We
use cubic spline interpolation to smoothly move from a local latent vector to a different one.

Data augmentation for gaze estimation. Fig. 6 shows different ways for generating data we
propose: data generation in different domains using the same latent and gaze vector, redirecting
the gaze, and modifying specific facial components.

Image generation in 2 domains Input gaze direction modification Input local latent modification

Al o, | L, L ) L5, - ¢
S EE @8 &Fs | &= @

Fig. 6. Design choices for data augmentation with the trained GC-GAN model.

Gaze-aware facial image editing. To edit the gaze direction of a facial image, we need to map
it to the learned latent space through image inversion. This process involves optimizing a latent
vector to generate an image that closely resembles the desired target image. We use the loss:

Liny, = APLP + AgLg + AL (4)

where the perceptual loss L, measures the high-level similarity between the generated and target
images computing the L2 distance between intermediate image features using a pretrained VGG19
network [Zhang et al. 2018]. The Ly computes the pixel-wise MSE loss between both images. Finally,
the L,, computes the difference between the evaluated latent vector and a mean latent vector to
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prevent significant deviations. The mean latent vector is computed by averaging multiple latent
vectors from random z vectors. All losses are weighted with the corresponding A (Section 4).

4 EXPERIMENTS

We thoroughly examine our proposed framework through qualitative and quantitative experiments
to showcase its effectiveness in generating data augmentations, as well as gaze-controlled images.

4.1 Datasets and Implementation Details

Datasets. We use the ETH-XGaze dataset [Zhang et al. 2020] as the primary source of gaze-labeled
data. It contains images of 110 subjects captured from 18 cameras in a controlled environment.
We randomly select a subset of 8 subjects for training (14,464 images, subject IDs: 0, 3, 28, 29, 52,
55, 81, 83) and 2 for testing (3,920 images, subject IDs: 19, 24) for the four most frontal cameras
(camera IDs: 1, 2, 3, 8). While the ETH-XGaze dataset features a wide and balanced gaze range,
the variety and naturalness of individuals captured in controlled environments may be limited.
To address this limitation, we use the CelebAMask-HQ dataset [Lee et al. 2020] as the unlabeled
dataset, comprising 30,000 in-the-wild celebrity images.

Image crop |8
and
segmentation

Original \
image \ . landmarks

detection mm e

<> >

Fig. 7. Preprocessing of a sample from the CelebAMask-HQ dataset: face and face landmarks are detected
for image normalization and eyes’ region image crop and segmentation.

Data preprocessing. We preprocess the data from the ETH-XGaze and CelebAMask-HQ datasets.
It is common to use image crops containing one or both eyes for gaze estimation DNNs [Masko
2017; Porta et al. 2019; Shrivastava et al. 2017; Sinha et al. 2021]. We use the eyes’ region crop for
our experiments. For models using the entire face, our approach can be extended to the face. We
preprocess the images to get a normalized 256 X 256 eyes’ region image crop and the corresponding
segmentation mask. We first detect the faces in the images [Bazarevsky et al. 2019] and their
face landmarks [Kartynnik et al. 2019]. We normalize each image by rotating it to eliminate any
roll angle due to the head pose, centering it based on the face center, and scaling it to have 1.7
times the eyes’ region width, considering the furthest eye corners horizontally. We define the
face center as the average point considering the average of the eyes’ coordinates and the mouth’s
coordinates. The eyes’ region is the facial image’s upper half. We use the face landmarks to generate
the corresponding segmentation mask, which includes the following categories: background, face,
iris, sclera, eyebrows, and nose. Fig. 7 shows an example for a CelebAMask-HQ dataset sample.

Training. We first train the composition-based GAN with the ETH-X Gaze subset and then transfer
the model in the second stage to the CelebAMask-HQ dataset. We set K to 6 for the considered
number of components in the image. We have 4 non-conditioned local generators (for background,
face, eyebrows and nose) and 2 GLGs (for sclera and iris). Random input gaze angles are fed to the
model during training, sampled from the real gaze range of the labeled data. We set a dimensionality
of 512 for z and w, and the image size is 256 X 256. Similar to StyleGAN2, we use style mixing
regularization [Karras et al. 2019] and leaky ReLU activations. We empirically set the first stage’s A
hyperparameters to A; = 1, 4, = 10, A, = 2, A,, = 100, and As = 500. In the second stage, A, is set to
100. We train our model for 250k iterations in the first stage and 470k iterations in the second. We
use the ADAM optimizer [Kingma and Ba 2014] with f; = 0, §z = 0.99, and 8 as the minibatch. We
implement our framework using PyTorch 1.7 and we use an Nvidia GPU GeForce RTX 3090.
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4.2 Data Augmentation for Gaze Estimation

To assess the effectiveness of our method for data augmentation, we train a gaze estimation DNN
with and without augmented data, respectively, and evaluate the DNN accuracy on the test set.
We consider four configurations: (1) a baseline configuration with common augmentations with
geometric and color modifications (e.g., CLAHE, shift and scale perturbations), (2) a variation of the
baseline configuration that only employs color modifications (e.g., brightness variations), (3) GAN-
based within-domain augmentations, and (4) GAN-based within and cross-domain augmentations.

Regarding the gaze estimation DNN training, we train an off-the-shelf ResNet-50 [He et al. 2016]
as in [Zhang et al. 2020]. We train the DNN on 224 X 224 eyes’ region images to estimate gaze
direction as yaw and pitch angles. We use the ADAM optimizer with a starting learning rate of
le-3, a batch size of 50 and train for 25 epochs with learning rate decay every ten epochs. We select
the best training epoch for testing based on the validation set (15% of the training set). We also
train two other state-of-the-art DNNs to see the suitability of our synthetic data with different
architectures. Specifically, we use the training configurations and implementations provided for
the L2CS [Abdelrahman et al. 2022] and the transformer-based GazeTR [Cheng and Lu 2022].

For GAN-generated augmented samples, we first embed the ETH-XGaze subset samples into
the closest latent vectors. New samples are then generated through iterative modification of
unconditioned face components and redirecting the gaze vector of some of the samples (Section 3.3).
We generate 8,000 synthetic images for the within-domain augmentations and further augment the
training set by an additional 5% with the cross-domain augmentations. We use the same inverted
images’ latent vectors to generate the synthetic images in the CelebAMask-HQ dataset domain.

To evaluate the accuracy of the gaze predictions, we compute the gaze angular error (°) as:

99
Tl g1 ©

where g € R® is the ground-truth gaze and g’ € R® the predicted gaze vector. The trained DNNs
predict pitch and yaw angles, which are converted to 3D vectors (no roll angle [Zhang et al. 2015]).

Table 1 shows the error obtained by the DNN in the test set when trained with the different
augmented sample configurations, as well as when trained without augmentations. While all
augmentations lead to an error drop, the reduction is significantly higher when using GAN-based
augmentations. Additionally, we observe that even though cross-domain augmentations belong to
a different domain, they help to improve the model’s generalization capability.

Lgaze =

Table 1. Error (°) in the ETH-XGaze test set when trained with limited data and different kinds of augmenta-
tions and DNN architectures [Abdelrahman et al. 2022; Cheng and Lu 2022; Zhang et al. 2020].

Augmentation Number of images Error |
ETH-X (r) ETH-X(s) CELEB(s) | ResNet L2CS GazeTR
No Aug 14,464 0 0 4.54 4.07 5.11
Color Aug 14,464 0 0 4.47 3.67 4.89
Color+Geometry Aug 14,464 0 0 4.52 3.39 4.81
Ours (in-domain) 14,464 8,000 0 4.22 3.16 5.04
Ours (in- and cross-domain) 14,464 8,000 1,123 3.86 3.13 4.65

Fig. 8 shows qualitative results of the different augmentations, as evaluated in Table 1. The images
on the left have undergone geometry and color modifications, as used in the baseline augmentations
configuration. The second pair of images are within-domain augmentations for the same subject.
The images on the right depict a pair of synthetic images in the ETH-XGaze and CelebAMask-HQ
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Fig. 8. Different augmentations evaluated for DNN training. Left to right: color and geometric augmentations,
within-domain augmentations, and cross-domain augmentations.

data domains, generated using the same latent vector. It can be observed that despite differing
appearances, images within each pair maintain consistent gaze direction.

4.2.1 Ablation Studies: data generation for gaze estimation DNN training

Data augmentation: in-domain synthesis. We evaluate how varying the number of GAN-
generated augmentations affects the accuracy of the gaze estimation DNN. We repeat the experiment
in Section 4.2 with the DNN from [Zhang et al. 2020], varying the number of synthetic samples
in the training set. Fig. 9a shows the obtained mean error in the estimated gaze for the different
training sets adding within-domain augmentations. When training with no synthetic samples, the
DNN obtains an error of 4.53° in the test set. When we add some synthetic samples to the training
set, the error is similar (4.52°), but as we increase the number of synthetic samples (more than 5,000
images), the error decreases to 3.90°. The error drop shows that the augmentations are helpful.

Data augmentation: cross-domain synthesis. We increase each training set a 5% by selecting the
images with the highest confidence. We compute this confidence score based on the MSE between
the generated masks in both dataset domains. We repeat the DNN training with different sets of
augmented data. Fig. 9b shows the results in the test set when adding within-dataset and cross-
dataset augmentations to the training set. It can be seen that adding cross-dataset augmentations
helps in reducing the error. Adding images from a new domain increases the accuracy of the DNN,
but adding an excessive amount of images does not seem to necessarily lead to further improvement
(the minimum test error is 3.86°, and it is achieved with 9,000 synthetic images).

Error in test set (aug: ETH-XGaze) Error in test set (aug: ETH-XGaze + Celeb)
454~ ——Within-domain 451 Within- and_
gmentations —— cross-domain
4.4 4 —— _No au_g_mentations 4.4 4 augmentations
] in training set @ . .N° au_g_mentations
043 o 4.31 in training set
g g
T 42 S 4.2
= =
,_.g_, 41 cue_ 4.1
4.0 4
4.0 1
391
39 L T T T T T T T
2 4 6 8 10 12 14 4 6 8 10 12 14
Number of synhtetic images (k) Number of synhtetic images (k)
(a) (b)

Fig. 9. Mean error of the gaze estimation DNN (test set) when trained with varying number of synthetic sam-
ples from the ETH-XGaze data distribution (a) and the ETH-XGaze and CelebAMask-HQ data distribution(b).

4.3 Gaze-aware Facial Image Generation

Facial image synthesis. The quality of image synthesis in generative models is evaluated using
metrics such as the Fréchet Inception Distance (FID) [Heusel et al. 2017] and the Inception Score
(IS) [Salimans et al. 2016]. Our models obtain a mean FID of 15.3, and a mean IS of 1.92. As far as we
know, there are no generative models with input latent vector and gaze to compare. Consequently,
we compare these metrics to the state-of-the-art methods for in-the-wild images’ gaze editing.
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DeepWarp and GazeGAN achieve a higher IS (2.89 and 3.10, respectively), while they also present a
much higher FID (106.53 and 30.21, respectively). This suggests that our method can generate more
realistic synthetic images. In addition, existing gaze redirection methods are typically limited to
frontal gaze or gaze between two images, lacking fine-grained control.

As explained in Section 2, instead of training a generative model, we could synthesize facial
images using non-DL approaches, such as graphics-based methods. However, the potential domain
gap between real and synthetic images may limit their effectiveness in training. We generate
8,000 synthetic images using the 3D graphics-based method in [Wood et al. 2016] to evaluate gaze
estimation accuracy when trained with these images compared to GC-GAN-generated ones. We
train the gaze estimation DNN from [Zhang et al. 2020] with the same ETH-XGaze training set
as the experiments in Tab. 1: only ETH-XGaze samples, in-domain and cross-domain synthetic
images (as in Table 1), and additionally images generated using 3D graphics. [Wood et al. 2016] can
produce images for a single eye, so we adjust our images by cropping the right half (left eye) to
ensure equitable training conditions for the DNN. Fig. 10a shows the obtained results in the test set.

Training data ‘ Error |
ETH-XGaze 4.88 >
ETH-XGaze + [Wood et al. 2016] 4.70 F 4 j e
ETH-XGaze + GC-GAN (in-domain) 4.53 » | H
ETH-XGaze + GC-GAN (in-, cross-domain) 451
(@) (b)
Fig. 10. Error in the ETH-XGaze test set (a) for single-eye crops with images generated by a non-DL method

compared to GC-GAN. Samples of each training dataset (b), from left to right: ETH-XGaze, GC-GAN generated
(in-domain), GC-GAN generated (cross-domain), and 3D graphics-based generated [Wood et al. 2016].

The error when training only with original samples (4.88°) is reduced when we add synthetic
samples. However, this drop is higher with images generated with GC-GAN (4.51°). The results
suggest that even though all synthetic images help, GC-GAN-generated ones are more effective.
In addition, our approach learns from a specific data distribution and does not require a 3D
environment, which can be time-consuming due to 3D asset design and rendering. Errors are higher
compared to Tablel (image containing both eyes), probably because of the reduced information.

Facial image editing. The GC-GAN allows selectively changing different face components, such
as the nose, eyebrows, and face shape, while leaving the rest of the image unchanged by modifying
the corresponding local latent vectors. Different semantic facial parts can be edited without training
an additional model to manipulate the latent space of the model, which makes the model more
interpretable for the user. In Fig. 11, we see an example of two synthetic images generated with the
models trained in the first and second stage, given the same latent vector w and gaze direction 6.

e~ #

Fig. 11. Images generated by models of stage 1 and stage 2 given the same gaze 0 and latent vector w.

Next, we generate new augmented samples by editing a local latent vector wy or the input gaze
direction 6 (Section 3.3 ) of the shown samples. Fig. 12 shows some examples generated by the
model trained in the first and second stages, left and right images, respectively. We generate the
images in the first row by modifying the latent vector of the eyebrows. We observe that augmented
samples vary on the eyebrows but preserve the other face components unaltered, including the gaze
direction. We generate the second-row images’ by sampling new local latent vectors for the nose

11
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Fig. 12. Synthetic image augmentations by input latent or gaze vectors’ modification in different domains.

generator and leaving the rest of the inputs the same as in Fig. 11. The images in the last row are
generated by modifying the input gaze 6. Training datasets for DNNs should have enough samples
and be varied and balanced. Consequently, having control over data generation is beneficial.

Gaze direction accuracy. We measure image quality by the IS and FID metrics, but these metrics
do not consider the correctness of the subject’s gaze in the synthetic image. This gaze should be
consistent with the input target gaze to the model. In Section 4.2, we show that the gaze is accurate
enough to help in DNN training. Next, we evaluate the gaze accuracy explicitly. We compute the
gaze error between the input gaze to the model and the gaze estimated by a gaze estimation DNN
on the synthetic sample. To minimize the possible errors of the gaze estimation DNN, we train the
models in the Section 4.2 [Abdelrahman et al. 2022; Cheng and Lu 2022; Zhang et al. 2020] with the
complete ETH-XGaze dataset and keep the two best checkpoints of each one. Then, we compute
the mean of their output as the final gaze estimation for each tested image. We test all the synthetic
images generated as image augmentations in Section 4.2 (in- and cross-domain). Fig 13a shows the
obtained mean error in degrees for each of the four camera perspectives included in the dataset.

The mean error varies with perspective. More frontal perspectives (cameras 1 and 2) present lower
error. Even if the obtained error is small, controlled-gaze image generation in lateral perspectives
seems more challenging for the model. Fig. 13b shows some examples of synthetic images with
arrows representing the gaze direction. Green represents the input target gaze to the GC-GAN, and
red the estimated gaze by the DNN ensemble on the generated image. Despite some differences in
gaze (from left to right, gaze errors: 3.33°, 1.78°, 4.7°, 8.84°), gaze directions are very similar.

Camera ID ‘ 1 ‘ 2 ‘ 3 ‘ 4 H Average V
Mean error (°) | 3.80 | 2.94 | 585 [ 7.73 || 5.08 I
(a) (b)
Fig. 13. Gaze accuracy of synthetic images: (a) error between estimated and input gaze direction to the
GC-GAN and (b) target gaze (green) for image generation and estimated gaze (red) on the generated images
for different cameras (from left to right, camera 1 to 4).

Gaze direction accuracy in other benchmarks. To evaluate gaze accuracy under less controlled
conditions compared to the ETH-X Gaze dataset, we extend the experiment to the MPIIFaceGaze
dataset [Zhang et al. 2015]. Using the same training setup, we train the GC-GAN with data from
13 subjects in this dataset, achieving an FID of 17.66 and an IS of 1.84. As with the ETH-X Gaze
augmented dataset (Section 4.2), we invert the original images to generate an augmented dataset,
which we use to infer the gaze. For the gaze estimation DNN, we train the DNNs ensemble with all
the images in the MPIIFaceGaze dataset and infer the gaze of generated 20,000 images. We obtain
an average error of 5.29°, similar to Fig 13a. In this case, images are not captured in a laboratory and
grouped by cameras. However, we obtain no significant difference between both dataset domains.
Fig. 14a shows examples of a synthetic image in the MPIIFaceGaze data domain with different
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augmentations (nose and gaze modifications). Fig. 14b compares input target gaze to the GC-GAN
(green) and estimated gaze directions by the DNNs ensemble (red) for some generated samples.

i i ISdebl oha

@
Fig. 14. Image augmentations by input latent or gaze vector modification in the MPllFaceGaze data domain
(a). Gaze accuracy in generated images (b): target gaze (green) for image generation and estimated gaze (red)
on the generated images by the GC-GAN.

4.4 Ablation Studies: GC-GAN model training

What modules in Gaze-aware Compositional Generator should freeze during Stage-2?
The generator has several combinations of modules to be frozen. We evaluate gaze transfer when
training with different frozen modules. We qualitatively analyze gaze preservation by generating
multiple pairs of images in both domains given a latent vector.

Table 2. Gaze preservation between domains when different components are frozen, Gaze-aware Local
Generator (GLG) or Render Net (R), and whether mask constraint is applied.

ID GLG R | Mask, | Gaze preservation
1 | shape only X v No
2 v X v No
3 v 1 v No
4 v 2 v Yes
5 v 2 X No

In Table 2, we observe that freezing only the shape-oriented layers in the GLG is not enough, the
weights of the whole GLG need to be preserved. The Render Net R also contains some information
related to the gaze, as it is required to freeze the 2 initial residual blocks to transfer the gaze. It is also
possible to freeze an additional block, but the image quality is worse. Regarding the segmentation
mask constraint (Section 3.2), it is a necessary but not sufficient condition.

Components in Gaze-aware Generators. The GC-GAN design enables independent control of
components and a disentangled latent space. We rely on the hypothesis that if some facial compo-
nents (e.g., nose) are gaze-independent, their generator should learn without gaze conditioning.
To demonstrate this, we retrain the GC-GAN with the ETH-XGaze dataset but modify the Local
Generators so that all of them are gaze-conditioned and have the same architecture as a GLG.

We generate 5 random images with GC-GAN and the fully conditioned model. Then, we vary
the input gaze of each sample to generate new images with 32 different gazes. We analyze how
the images change, expecting only minor differences as only the eyes should vary. Differences are
quantified using the pixel-wise mean absolute error between the original and redirected images.
Separating gaze-related and unrelated generators reduces the error (0.93 versus 1.33). Fig. 15 shows
a sample when varying the gaze. When conditioning all the generators (a), the gaze is entangled
with the pose. The images generated with grouped generators (b) show a disentangled behavior:
the eyes’ appearance changes, but the rest of the image is unaltered.

4.5 Applications for gaze estimation

Our approach offers different potential applications to improve gaze estimation models or proce-
dures. First, GC-GAN allows for combining labeled and unlabeled data sources, enabling training
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Fig. 15. Synthetic images generated by varying the input gaze when all Local Generators are gaze-conditioned
(a) and when generators are grouped as in GC-GAN (b).

with unannotated in-the-wild images. This is particularly valuable given gaze annotations’ labori-
ous and costly nature and the importance of data quantity and variability in training DNNs. Our
method can also be used to enhance the predictability of gaze estimation models by extensive model
evaluation under different conditions. The synthetic images generated with GC-GAN could be used
to evaluate a model’s robustness against image variations and detect potential limitations or biases
when using specific input data (e.g., different facial attributes, gaze distributions, or conditions, like
glasses). This analysis could be used to improve models, predict their performance under different
circumstances, and make their behavior more trustworthy. Additionally, our approach streamlines
calibration by generating new samples within a domain and subject using a smaller image set. This
enhances capturing efficiency and may improve model personalization (e.g., specific subject).

Privacy and ethics. The proposed method may inherit the negative societal impacts of existing
deep generative models, such as improperly generating fake data. However, we believe our proposed
method can be beneficial to build more robust gaze estimation models that guarantee universal
human-computer interaction systems and have a smaller bias to certain people groups for correct
behavior. Different approaches might be used to account for possible model biases or to avoid
improper use. Variational autoencoders might be used to identify possible dataset bias [Amini et al.
2019], which synthetic images could later mitigate. Another possibility to promote responsible
artificial intelligence is the data and model cards [Mitchell et al. 2019; Pushkarna et al. 2022]. Model
cards are designed to accompany models to clarify their intended use, provide a model evaluation in
various conditions (e.g., race, geographic location), or register the provenance of training datasets.

5 CONCLUSION

In this paper, we have presented a novel method to generate annotated gaze data by combining the
strengths of different labeled and unlabeled data sources. First, we train a gaze-aware compositional
GAN that is able to generate realistic synthetic images with specific gaze directions in a labeled
data domain. Then, we transfer this model to an unlabeled data domain to exploit the variance
these data provide. Experiments have shown that our method can be used to augment existing
annotated data for gaze estimation DNN training by generating within-domain and cross-domain
augmentations that boost the DNN accuracy. The presented method does not require 3D virtual
environments to generate synthetic data for DNN training and generates highly realistic samples, as
the distribution of the generated images is learned from the training domain. We have also shown
other applications of our work to facial image editing and gaze redirection. We believe the current
work presents an exciting direction to leverage existing data and improve state-of-the-art computer
vision models from a data-centric perspective. In future work, we will explore incorporating the
camera pose for fine-grained controlled image generation.
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