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Abstract. This research explores practical applications of Transfer
Learning and Spatial Attention mechanisms using pre-trained models
from an open-source simulator, CARLA (Car Learning to Act). The
study focuses on vehicle tracking using aerial images, utilizing transform-
ers and graph algorithms for keypoint detection. The proposed detector
training process optimizes model parameters without heavy reliance on
manually set hyperparameters. The loss function considers both class
distribution and position localization of ground truth data. The study
utilizes a three-stage methodology: pre-trained model selection, fine-
tuning with a custom synthetic dataset, and evaluation using real-world
aerial datasets. The results demonstrate the effectiveness of our syn-
thetic transformer-based transfer learning technique in enhancing object
detection accuracy and localization. When tested with real-world images,
our approach achieved an 88% detection, compared to only 30% when
using YOLOvS8. The findings underscore the advantages of incorporat-
ing graph-based loss functions in transfer learning and position-encoding
techniques, demonstrating their effectiveness in realistic machine learn-
ing applications with unbalanced classes.

Keywords: Vehicle tracking - Aerial images + Transformers - Graph
algorithms for key point detection - CNN - CARLA - Synthetic dataset

1 Research Innovation and Objective(s)

In Machine Learning, a model M with parameters and hyper-parameters would
be described as Y ~ My (@|D), where @ are parameters and H are hyper-
parameters. D represents the training data and Y represents the output (class
labels for vehicles). My represents hyper-parameters which are manually set
that includes learning rate, number of layers, anchors, etc. Hyper-parameters
help optimize to optimize the model to achieve higher mean-average-precision
(MoU). N is the number of training samples which is assumed to be large in
deep learning. The synthetic detector’s objective during training is to find an
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estimate of parameter @ that optimizes a loss function .Z are based on H, then
consequently the estimated training parameters are also dependent on hyper-
parameters. The experimental hyper-parameters such as Non-Maximum Sup-
pression (NMS), are not learnt during training but fixed. In our detector train-
ing process; loss function balances model performance without relying on non-
learnable hyperparameters, ensuring that the model performs well on real data
despite its reliance on synthetic data during training. To increase probability
of prediction the training process should not overly rely of hyper-parameters
as synthetic data pre-training does not easily adapt to a real-world domain.
As a matter of distinction, the results, such as label prediction, are based on
model parameters Y, eq () or some initialized value during training in YOLO,
while our proposed transformer based synthetic detector, the graph is matched
to a constant Ground Truth (GT) using relative input Positional Encoding (K)
and geometric-attention based Object Queries (Q) without any hyper-parameter
tuning assuring one-to-one match during training unlike current popular mod-
els which have many human assumptions and are manually optimized.

2 Introduction

A most popular high performance object detection algorithm designed to detect
and classify objects in images detector, YOLOv8 (You Ouly Look Once ver-
sion 8) [4] has over 3.2 million parameters to learn during training. Further-
more, the choice of optimizer, loss function and size of the input images also
could impact the training process. To address domain adaptation which in this
case is image GT positions in synthetic environment [9] to real-world occurrences
the loss function needs to learn spatial placement of the GT not only localiza-
tion. Otherwise, the number of detected objects [1] will be accurate but not their
positions. To better understand the loss function structure [1,3] we will analyse
the mathematical definitions:

1 * 1 gk
L(putl) = Nl ZLClS(pivpi)+)\N ZLT@g(tiati) (1)
cls reg

features localization

The dataset image features are captured in the first term using class distri-
bution, which is a mixed Gaussian. The second term for positions localization
of the GT are learnt using regression. The first term can be learnt using enough
samples, but the second term may not converge even with large datasets due to
2D regression multi-object accuracy limitations. The simulation to real learning
overview of the dataset is presented in Fig. 1.

The major task is to find a loss function which resolves the deficiencies of
the 2nd regression term due to class imbalance by increasing the accuracy of the
model, it could be done by decreasing false positives [1]. Equation (1) shows how
two-dimensional bounding box used for localization in YOLOv8 [4] compared
to learned object position using the transformer based attention encoder. The
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Fig. 1. Synthetic dataset generations for learning relative object position

transformers have introduced sin(¢) and cos(t) functions to learn horizontal and
vertical spatial information by encoding the values at different angles. Given a
2D image patch as shown in Eq. (6) two sinusoidal functions can be used for
encoding vertical and horizontal angles that determines bounding box position.
The frequency and phase of the sinusoidal functions vary for different positions
over time ¢.

The following sections of this paper provide a comprehensive exploration
of our proposed methodology, experimental setup, results, and discussions.
Section 2 delves into the related work on object tracking frameworks, highlighting
the distinctions between online algorithms and deep-learning model-based algo-
rithms. In Sect. 3, we present our methodology, detailing the process of selecting
pre-trained models, fine-tuning with a custom synthetic dataset, and evaluating
[24] with real-world aerial datasets [10]. Section4 discusses the implementation
of transformers and the integration of graph algorithms for keypoint detection.
Section 5 showcases the experimental results, comparing our approach with state-
of-the-art models like YOLOvVS. Finally, Sect. 6 concludes with a discussion on
the implications of our findings and potential future research directions.

3 Related Work

This section reviews the related work on object tracking frameworks, categorizing
the tracking algorithms into two primary groups due to real-time constraints:
(a) online algorithms and (b) deep-learning model-based algorithms.

In the first category, trackers such as correlation filters [11,13,14,17] update
the features in real-time [12]. However, they can be inefficient, and the online
feature space is limited to data available during tracking. Our work belongs to the
second category [1,15,16,18-21], where tracking algorithms match the target in
the feature space. Since the training of these models is performed offline, they
can be much more efficient and capable of performing inference at higher frames
per second (fps).

The state-of-the-art performance in object detection is based on YOLOvS
[6,25,26] shown in Table1l, which has evolved over the years by continually
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Table 1. Comparison of hyperparameters across YOLO versions

YOLO Version|Learning RateBatch Size Input Image Size (pixels)Epochs/Anchor BoxesNMS Threshold
YOLOv1 0.001 64 448 135 Not Used 0.4
YOLOv2 0.001 64 416 160 5 0.4
YOLOv3 0.001 64 416 273 9 (3 scales) 0.5
YOLOv4 0.001 64 512 500 9 (3 scales) (0.5
YOLOv5s 0.01 16 640 300 9 (3 scales) (0.5
YOLOv5m 0.01 16 640 300 9 (3 scales) (0.5
YOLOv51 0.01 16 640 300 9 (3 scales) (0.5
YOLOv5x 0.01 16 640 300 9 (3 scales) (0.5
YOLOv7 0.01 16 640 500 |12 (3 scales) (0.5

improving its benchmarks. However, this evolution has also resulted in an
increase in the number of parameters in the model representation. A disadvan-
tage of this approach is that these parameters are predetermined before exper-
iments such as anchor boxes, and Non-Maximal Suppression (NMS) thresholds
as shown in Table 1. The set of hyper-parameters to reduce false positives from
Table1 is further tuned for higher accuracy, assuming that the inputs are real
and the target objects are in similar settings.

Current research addresses the gap between the public availability of train-
ing data and data privacy and restriction concerns. In some domains, this gap
necessitates feature engineering using synthetic data. Our work addresses this
issue by using pre-trained data that employs 100% synthetic, perfectly labeled
data. Furthermore, we demonstrate for the first time that our proposed trans-
former model [8] is invariant to any training assumptions as it uses GT positions
instead which leads to higher accuracy when tested on realistic settings using
CARLA pre-trained models. This review includes previous work by the same
authors and other significant studies in the field.

4 Method

The transfer learning task is divided into three stages. First, we focus on pre-
trained model selection. There are several large pre-trained models available,
such as COCO, ImageNet, and VGG16, which serve as a solid starting point for
object detection tasks like ours that involve synthetic data for object tracking
[27]. In our project, we utilize the COCO pre-trained models, which encompass
1000 classes, as a baseline for our specific vehicle classes.

In the next phase, we fine-tune the pre-trained models by utilizing a custom
synthetic dataset generated through the CARLA autonomous car simulator.
This dataset includes vehicles with diverse backgrounds, which helps improve
the model’s adaptability.

The localization is performed in this stage using bounding boxes. The end-to-
end pipeline integrates the COCO classification stage with bounding box local-
ization. Within this stage, the bounding box localization prediction is combined
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with the classification results at each grid location, as explained later in this
section.

Finally, we proceed to the last stage, which entails testing the synthetic model
using real-world aerial datasets [10] containing similar backgrounds. This allows
us to assess the model’s performance in more realistic scenarios.

Overall, our approach involves selecting a pre-trained model, fine-tuning
it with a custom synthetic dataset comprised of vehicles generated from
CARLA, Fig. 2, and ultimately evaluating its effectiveness using real-world aerial
datasets with comparable backgrounds. The detection dataset includes small
objects at various scales and may also have missing classes.

4.1 Pre-trained Models

% =6 ma
courd

1T
Pre-Trained Network Fine Tuning with
coco CARLA Aerial Images

Fig. 2. Fine-Tuning the COCO backbone with synthetic CARLA images

4.2 Transformers

Provided a good backbone like CNN a transformer consists of an encoder and
a decoder. Figure3 illustrates the pipeline for the encoder and decoder with
attention. This pipeline further processes the features learned from pre-trained
CNN networks for the detection task. We will describe how the self-attention
mechanism using the input image matrix. The architecture in Fig.3 uses six
heads to achieve the same generalization of a multi-layer CNN is shown below

Sel f Attention(X); := softmax(At, IXW,u (2)

As we will focus on the attention matrix A which is represented by T x T matrix.

T
The weights of Wkey represent the input pixel position and Xquy consists
of the learnt weights of the global regions in which particular classes occur in

the image.
A=XW,, W, X" (3)

key
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As the above matrix is invariant to bounding box position we add position
encoding which captures the (x,y) cosine similarity in spatial variations for each
location as shown below.

A (X+P)WQTUWkey (X+P)T (4)

Our original CNN loss function shown in Eq. (1) can now be rewritten with
additional transformer attention terms as.

ZLcls pupz +)‘

L(piati) -

cls req

LS L1+

Class—precision GIoU —accuracy (5)

Spatial Pos Encoding + Output Encoding

K —Attention Q—ObjectQueries

4.3 Regression

Using the modified loss function we will explain using the architecture (3) on (X,
Q@ and V) and the earlier Intersection of the Union (GIoU) with GT accuracy
in this section. CNN use GIoU regression and in the case of transfer learning
the spatial locations are finite during training causing lower accuracy. Due to
the location error many pre-trained models with CNN architecture have many
false positives when localizing the objects in the image even when the number
of objects has been identified correctly. The transformer further encodes posi-
tion encoding along with input features which is denoted in the third term (k).
The input image is segmented into tiles as shown in Fig.3 . Each tile’s features
are extracted and encoded with its relative position to other tiles to learn time-
line embedding with varying positions. Using multi-head attention approach we
would vary learning global features from the image tiles separately for each
head. At Fig. 3 the encoder shows multi-scale feature map which handles detec-
tion differently-sized objects.

4.4 Attention-Based Object Queries

As explained in the previous section the encoder can handle multi-scale feature
encoding for various object sizes (K). Further, we will describe how transform-
ers avoid hand-crafted hyperparameter values such as anchors used in CNN.
Our goal is to implement Transfer Learning from synthetic pre-trained model to
real word domains. It is well known [7] that the experimental hyperparameters
cannot be used in Transfer Learning. Transformers avoid this costly mistake by
using an attention-based concept called object queries (Q). After the positional
encoding (K) is added to the encoder’s input, at the encoder further in the pro-
cess at the encoder where attention is given according to what it has learned so
far from previous inputs. This translates to where the most frequently occurring
classes are localized, thus attention at the decoder learns to further learn a rel-
ative embedding instead of a linear regression (GIoU) avoiding any over-fitting
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during training and prediction bounding boxes as shown in Fig. 3. Typically the
value of @) determines the maximum number of objects expected to be in the
input images.

s e R peeprrry P Addemem ]!
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Multi-Head Attention

HE = ] 1 1 Q= TGT + Q-POS; K = MEMORY + 5,205, = MEMORY
i F - T
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e | | ]
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‘Object queries,

Synthetic Images

Fig. 3. Regression of bounding boxes using graph algorithms from synthetic dataset
to real world datasets

4.5 Graph Matching Loss Function

From the previous section, we have learned how to estimate and train k£ and
@ and as these determine the maximum number of objects in a detection. As
discussed earlier CNN produces many false positives when objects are densely
located an attention-based loss function discussed in this section, adds a new
class called the ‘no-object’ class (also called background class) to mitigate using
GT data. We discussed how the training process is different in our loss function
used by the synthetic detector [9]. We use an attention-based model that allows
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us to learn from the training dataset provided at every training epoch of the
underlying structure of the object locations [19]. The variations are learned by
using position embedding transformers [3]. Our loss function with bipartite graph
matching [30] can be represented below ignoring the position encoding (K, Q)
as shown.

N
L(pla tz) = E Lcls pupz + )\ E Lreg tz 5 t + argmin E £match(yi, y/)(z))
cls X Teg N T\ — —
graphmatching
precision accuracy
Synthetic Object Classes &
5 Real Image
3 > 2 g = Predictions,
5 2 § b s
4 g 5 ¥ B B @ bus
Real Aerial e 8 8 @ @B O ©

Images ® cor

@ others

O truck

Fig. 4. Real image inference

The pre-trained model utilizes the modified graph loss function at the Trans-
fer Learning stage, its inference architecture [28] is shown in Fig. 4. The encoder
stage uses the RGB channels and distills the high-level image information fea-
tures using CNN filters with four vehicle classes. The inference for real images
utilizes seven vehicle classes which are detected using the synthetically pre-
trained model based on four vehicle classes. The loss function used here is a
bipartite matching graph between predicted classes and bounding box pairs with
GT data as shown in Fig. 5. The output of the prediction is a true aerial detection
or no-object class as shown in Fig. 5. The loss function used here is a bipartite
matching graph between predicted classes and bounding box pairs with GT data
as shown in Fig. 5. The output of the prediction is a true aerial detection or null-
object class as shown in Fig. 5.
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Fig. 5. Bipartite matching during training synthetic images

5 Results and Discussion

The CARLA [9] setup incorporated the following configuration. A static camera
[5] was strategically positioned directly above the depicted viewpoint, ensuring
a maximum distance of 50 ft. Figure 6 showcases an intersection where vehicles
are required to navigate a four-way with traffic light. Leveraging the CARLA
API, it becomes possible to capture vehicle labels, RGB images, and positional
data during simulation. Throughout the simulation process, the training dataset
is continually saved, effectively capturing screenshots of vehicles as they traverse
the intersection at each simulation clock tick.

5.1 Aerial View Dataset

The dataset, generated as described in the experiment section using CARLA [9],
was split into the following subsets: 7,300 samples for training, 1,500 samples
for validation, and 118 samples for testing. Among these subsets, only the test
images were real, while the training sets were generated using the CARLA sim-
ulator. The transformer model was pre-trained using a resnet-50 CNN backbone
in the architecture. The training set was then converted to COCO JSON for-
mat using RoboFlow [29] for training with the Hugging Face trainer. After 26
epochs, the model achieved an impressive mean Average Precision (mAP) of
0.95. To optimize performance, we employed a modified bipartite loss function
with a single target class, as depicted in Fig.10. On average, each epoch took
approximately seven minutes to complete.
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Fig. 6. A SoftMax loss-trained ImageNet Pre-Trained model consisting of 1000 classes
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Fig. 7. Aerial view synthetic-model trained with attention transformer for a single
target class
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6 Results of Testing with Real Images

In our experimental setup, we employed the final trained snapshot of the trans-
former model that was based on synthetic data, as depicted in Fig.7 with a
single target vehicle class. This allowed us to assess the performance and accu-
racy of transfer learning in a real-world environment. To evaluate the results,
we utilized the COCO evaluator, which calculates the mean average precision
(mAP), as demonstrated in Listing x. The utilization of this evaluation metric
enabled us to assess the model’s efficacy in accurately detecting and localizing
objects in real-world scenarios. It served as a means to compare the perfor-
mance of the transfer-learning model against actual instances encountered in
reality, providing valuable insights into the model’s practical applicability.

Fig. 8. Transformer model using vehicle classes tested with real traffic intersection

6.1 Effects of Class Imbalance

The ‘precision’ term in Eq. (6) determines the synthetic pre-trained model’s
class distribution. By examining the GT for classes such as cars, trucks, buses,
and bicycles, we evaluated the synthetic-to-real predictions generated within an
actual traffic intersection. The average precision per class was found to be
notably low, as illustrated in Fig.9. Notably, the “others” class exhibited high
confidence, while vehicle classes displayed lower confidence levels. This discrep-
ancy can be attributed to class imbalance within the synthetic dataset, leading
to numerous cars being misclassified as the “other” class, as demonstrated in
Fig. 8.
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Fig. 9. Average precision of the vehicle model during testing on real images

Transition from Multi-Class to Single-Class Target. To focus is on the
graph term ‘accuracy’ as defined in the Eq. (6), so we are not re-training our
model to balance the class distribution. Instead we measure the accuracy with-
out increasing false positives using a single class (called target class) making
it invariant to class imbalance. It allows us to evaluate the spatial localization
accuracy terms of the loss function.
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Fig. 10. Loss function uses Sim-To-Real One-Vehicle-Class

Target Pos

The experiments were initially performed on the COCO dataset, which con-
sists of multiple classes. To transition from multi-class tracking [1,2] to single-
class tracking, the model was trained using a single target class, specifically the
“car” class. The training data included street-view, map-view, and aerial satellite
imagery. The performance evaluation on the single-class tracking task indicated
that the model achieved improved accuracy by 88% and robustness compared to
multi-class tracking. This demonstrates from Fig. 11 the effectiveness of training
on a single target class by eliminating any false positives even on unbalanced
datasets.

. TP
Precision = T’P—|——F'P (7)
TP
Recall = ———— (8)

TP+ FN
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Fig. 11. Effectiveness of training on a single target class
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7 Comparison of Model Architectures

In this section, we will conduct a comparative analysis between the widely used
object detector models and our transformer-based model. As we have previ-
ously examined the results of transfer learning with transformers in earlier sec-
tions, we will now focus on evaluating the precision and recall of the YOLOvS8
[4]architecture. Utilizing the same pre-trained MS-COCO model and fine-tuning
it with the CARLA generated dataset, we calculate the precision and recall for
YOLOv8 using Eq. (2) and Eq. (3). The calculated precision and recall values
for YOLOvS8 are presented below, as depicted in Fig. 12.

6 _
6+14

6 —_—
6+14

Precisionrrans = 0.3 (11)

Recallpygns = 0.3 (12)
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Upon comparing the previously obtained precision and recall results from the
transformer-based detector, as determined by Eq. (4) and Eq. (5), with those
of YOLOvVS, it becomes evident that the attention-based transformer model,
incorporating position embedding, is well-suited for the task of transfer learning
with real-world examples in the context of aerial small-object detection. The
proposed approach of using synthetic data generated from a virtual simulator,
combined with position embedding transformers and graph algorithms, shows
promising results in sim-to-real object tracking. By addressing the limitations of
existing detectors and leveraging synthetic data, the developed model achieves
improved accuracy and performance in real-world scenarios. Further research
could focus on refining the synthetic dataset generation process, addressing class
imbalance, and exploring additional techniques to enhance tracking performance.

Fig. 12. Testing the aerial view GT with YOLOv8 model with real images threshold
@0.5

8 Contributions
In this section, we explain the challenges and contributions of the present

work. We present the novelty and significance of our present work Sim-To-
Real Pre-Trained models in Sect. 5. Finally, a brief overview of our transformer
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aerial attention idea, “first ever graph-based loss-function-", and its variants are
given in Sect. 4.5.

8.1 Research Problems Addressed in the Current Paper
The proposed work was envisioned to address the following questions:

— To the best of our knowledge, very few works focused on aerial object detec-
tion and tracking using synthetic pre-trained models.

— The gaps in hyper-parameter and human-crafted features that are hard to
transfer to other domains such as synthetic to practical applications.

— Generating cheap and publicly available aerial dataset for training object
tracking applications in the ‘wild’.

— Accuracy comparison to the current state of the art in object detection models
available for transfer learning.

8.2 Contributions and Future Work

— Generating error-free dataset and vehicle keypoint-annotation using CARLA
simulator for real-time aerial detection.

— Transfer learning of experimental parameters using a novel relative graph
embedding process.

— A novel way to map synthetic vehicle class to real target class enhancing
tracking accuracy.

— Future work to merge tracking into transformers.

9 Conclusion

In this paper, we presented a novel approach for vehicle tracking using aerial
images by leveraging transfer learning and graph-matching spatial attention
from CARLA pre-trained models. Our methodology included selecting a pre-
trained model, fine-tuning it with a custom synthetic dataset, and evaluating
its performance on real-world aerial datasets. The proposed transformer-based
synthetic detector demonstrated significant improvements in object detection
accuracy and localization, achieving an 88% detection rate compared to only
30% with YOLOvS.

The use of graph-based loss functions [22,23] and position-encoding tech-
niques proved to be effective in addressing the challenges associated with unbal-
anced classes and domain adaptation. Our results highlight the potential of incor-
porating synthetic data and advanced machine learning techniques to enhance
real-world applications in vehicle tracking.

Future work will focus on refining the synthetic dataset generation pro-
cess, addressing class imbalance, and exploring additional techniques to further
improve tracking performance. The integration of tracking into transformers and
the development of more sophisticated graph-based loss functions will also be
areas of interest.
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Overall, our study underscores the advantages of using transfer learning and
graph matching spatial attention in machine learning applications, particularly
for tasks involving complex and dynamic environments such as aerial vehicle
tracking. The findings from this research contribute to the advancement of object
detection technologies and open up new avenues for future exploration in the
field.
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