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Abstract

Surface-Enhanced Raman spectroscopy (SERS) is a powerful technique for trace-level
fingerprinting. Recently, layered two-dimensional (2D) materials have gained significant interest
as SERS substrates for providing stable, uniform, and reproducible Raman enhancement with the
potential for trace-level detection. Yet, the development of effective 2D SERS substrates is still
hindered by the lack of fundamental understanding of the coupling mechanism between target
molecules and substrates. Here, we report a systematic excitation-dependent Raman spectroscopy
investigation on the coupling between 2D materials such as SnS2, MoS2, WSe2, and graphene and
small organic molecules like rhodamine 6G (Rh 6G). Strong coupling between SnSz and Rh 6G is
found due to their degenerate excitons through Raman excitation profiles (REP), leading to the
enhancement of Rh 6G vibrational modes that are observable down to 10> M. Our study shows
that exciton coupling in the substrate-adsorbate complex plays a vital role in the Raman

enhancement effect, opening a new route for designing SERS substrates for high sensitivity.
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Introduction

The discovery of the graphene-enhanced Raman scattering (GERS) effect early in 2010 paved the
way for the study of Raman enhancement on two-dimensional (2D) materials.! Since then, the
Raman enhancement effect has been observed on several other layered 2D materials, including
boron nitride,>* black phosphorus,* transition metal dichalcogenides (TMDs),* metal-carbides
(MXenes),” among others.®® In contrast to traditional noble-metal SERS substrates, the enhanced
Raman scattering effect on 2D materials is ascribed to increased molecular polarizability arising
from electronic couplings between the adsorbate and the substrate (chemical enhancement
mechanism — CM) rather than the plasmonic effect (electromagnetic enhancement mechanism —
EM).!12 The atomically flat and chemically inert surfaces and tunable electronic properties of 2D
materials make them ideal platforms for investigating the effects of electronic couplings on the
Raman enhancement, which ultimately offers insight into the enhancement mechanism between the
organic molecules and inorganic semiconductors. Notably, in the leading theory of SERS on
semiconductors described by Lombardi and Birke and their co-workers, strong Raman intensities
are expected when the excitation energy coincides with either a charge-transfer transition (ycr),
molecular absorption (t,,1), Or exciton resonance (Uexc).'> and additional enhancements may be
possible by achieving multiple resonances with the same excitation source.'> While most
enhancement observations on 2D materials have been ascribed to charge-transfer resonances, very
few studies have focused on the effect of achieving dual resonances in the system. Some reports
have hinted at the potential for improving Raman enhancement by aligning exciton resonances to

14,15

charge transfer resonances, ™' yet a systematic study into aligning exciton resonances to molecular

resonances remain under-explored.'® Our research presents a systematic study into Raman
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enhancement by exciton hybridization by probing different u,,; and p.4. alignments, offering new
insights in designing semiconductor-based SERS substrates for trace-level chemical sensing.

In this work, we explore this co-resonance effect on Raman enhancement by selecting an
appropriate system in which resonance with both molecule (y,,;) and 2D material (Uyp mat) are
achieved with the same excitation energy. Recently, 2D SnS: has garnered newfound interest in
light-harvesting applications due to its high carrier mobility,'”'® ranging from photocatalysis,"
photodetectors,?*?! to dye-sensitized solar cells.?>** So far, the application of SnS> as a SERS
substrate 1s still under-explored,>**2¢ despite its chemical stability, non-toxicity, and earth
abundance.?” Here, we showcase 2D SnS: and rhodamine 6G (Rh 6G) as a model platform for
investigating the effects of simultaneously achieving i, and sp mat resonances in the molecule-
substrate complex,'>!3283° Figure 1A, and its potential for trace-level sensing; structures are shown
in Supplementary Figure 1. 2H-SnS:> is an n-type semiconductor with a bandgap around 2.2 - 2.4
eV 3135 (Uexe ~ 2.3 eV) and Rh 6G has an So-So transition at 532 nm*® (p,o) ~ 2.3 eV). Moreover,
Rh 6G has a large Raman cross-section,’” which allows Raman spectra to be acquired even under
off-resonance condition. A comprehensive investigation using excitation-wavelength dependent
Raman measurements reveal exciton hybridization between SnS2 and Rh 6G, leading to a limit of
detection (LOD) of 10°'* M. This phenomenon is further supported by tuning the g o) and ey,
alignments and measuring excitation-wavelength dependent Raman spectra for Rh 6G adsorbed on
MoS2, WSe», and graphene, as well as for Rhodamine B (Rh B) and Rhodamine 123 (Rh 123)

adsorbed on SnSa.

Results
Characterization of Rh 6G Raman enhancement on SnS;
The SERS spectrum of Rh 6G (10~ M) adsorbed on mechanically exfoliated few-layer SnS: crystal

is shown in Figure 1B. In addition to the SnS2 A1z mode at 313 cm™ and the Si peaks at 520.7 and
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~950 cm’!, 15 characteristic Rh 6G peaks are observed. Their frequency and vibrational
assignments are summarized in Supplementary Table 1. Resonance Raman (RR) spectra, especially
when obtained by irradiating into a strong absorption band like the So,0-S1,0 transition in Rh 6G, is
largely influenced by Franck-Condon overlap integrals.’®2° These integrals contribute to the
intensity of a given normal only when there's a difference in the potential energy surfaces between
the ground and excited electronic states. This difference in potential surfaces is evident if the bond
distances between the two states involved in the transition are not the same, such as in carbon-bond
stretching modes.***° In aromatic molecules like Rh 6G, this difference in bond distance is typically
observed for C-C bonds.*! Consequently, it's anticipated that stretching modes associated with the
carbon skeleton will result in the most intense RR bands, and is in agreement with previous
experimental reports.3¢4>4

Moreover, under resonant conditions, it's interesting to note that the C-C bending modes,
i.e., 613 cm™, greatly intensify when compared to off-resonance conditions. This is intriguing
because, typically, vibrations of this nature don't undergo marked changes upon electronic shifts.
This implies that the intensification of the 613 cm™ mode arises from another source, namely
Herzberg-Teller vibronic coupling, a mechanism well-documented in resonance Raman
spectroscopy.® In our research, the C-C in-plane bending mode at 613 cm! is the most pronounced
feature when Rh 6G is deposited on SnS2 under resonance, displaying an intensity about 3 times
stronger than that of the 1361 cm™ mode. This mode-selective enhancement emphasizes the
contribution of vibronic coupling to the SERS spectrum, which is central to the CM theory.
Furthermore, we believe the unusually strong 613 cm™! mode serves as indication of the efficient
vibronic coupling in the Rh 6G/SnS2 system, given the vibronic coupling dependence of this
mode.3

We further investigated the SERS sensitivity of SnS2 by immersion in dilute solutions of Rh

6G with the concentration ranging from 107'* to 10* M as shown in Figure 1C and Supplementary
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Figure 2. At higher concentrations, two characteristic Rh 6G Raman peaks at 613 and 774 cm™ are
observed. Their intensities gradually decrease until only the 613 cm™ mode is present at 1013 M,
which is the LOD we achieved. Supplementary Table 2 presents the LOD for Rhodamine 6G (Rh
6G) adsorbed onto various 2D SERS systems. These systems include semiconducting, metallic, and
doped 2D materials. Currently, SnS2 stands out as the most sensitive pristine 2D semiconductor
SERS substrate for Rh 6G detection. However, we do note metallic 2D substrates (e.g. TaS2, NbSe2
and 1T” WSe2) tend to exhibit superior LOD, suggesting they may rely on a distinct enhancement
mechanism. Nevertheless, the LOD for Rh 6G on SnS: is very promising, on par with the most
sensitive reports so far,*4%47 and even rivals plasmon-based SERS substrates.***

It has been widely reported in the field of Raman enhancement effect on 2D crystals that
few-layered samples offer the highest enhancement factors when compared to their bulk
counterpart,>''¢ due to increased light absorption by the underlying substrate. This phenomenon is
also observed in our study: Supplementary Figure 3 shows the spectra for Rh 6G adsorbed on
different number of layers which are confirmed by atomic force microscopy (AFM)
(Supplementary Figure 4). For instance, the 613 cm™' mode intensity is about 10 times stronger for
a 3L sample than that for an 18L sample. This behavior highlights the thickness-dependent Raman
enhancement effect on SnS: is likely due to optical absorption by the substrate and the layer-
dependent electronic band structure.® Supplementary Figure 5 plots the 613 cm™ peak intensity as
a function of concentration for Rh 6G adsorbed on 3, 11, and 18L SnS: samples. At the lower
concentration regime, the Rh 6G Raman intensity is notably low. As the concentration increases,
there is a pronounced amplification in the Raman intensity, resulting from more Rh 6G interacting
with the SnS substrate. At the even higher concentrations, the Raman intensity reaches a plateau,
which is particularly obvious for the 18 L sample. This plateau suggests a saturation point where
increasing the sample concentration further doesn't result in a proportional increase in Raman

intensity, which is attributed to the “first-layer effect”.’! Nevertheless, the LOD for Rh 6G on 3L
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and 18L SnS: is the same and shows that trace-level detection is consistent even for multilayered
samples.

To better understand the Raman enhancement mechanism of Rh 6G on SnS2 we measured
absorption spectra of liquid exfoliated SnS2 mixed with Rh 6G to probe whether their coupling
gives rise to new optical transitions. Figure 1D shows the absorption spectra of Rh 6G when
dissolved in two distinct solutions with various concentrations from 30 to 377 nM: one comprising
solely of isopropyl alcohol (IPA) and another made of SnS:> dispersed in IPA. In the case of Rh 6G
dissolved in pure IPA (bottom spectra), the absorption baseline starts at zero. These spectra display
two distinct peaks corresponding to the So,0-Si,0 transition at 532 nm (2.33 eV) with a vibronic
shoulder, So,0-S1,1, at 508 nm (2.44 eV). These transitions are characteristic of Rh 6G and provide
a clear benchmark for its identification and characterization.

Turning our attention to the absorption spectra of SnS: (top spectra), there's a noticeable
broad background. Interestingly, this background initiates at an absorption baseline that's elevated
by about 0.1 units in comparison to the IPA solution. This difference in baseline is an important
consideration and is indicative of SnS2's inherent optical properties. In the mixture of Rh 6G and
SnS2, the absorption baseline decreases from 0.1 unit with increasing Rh 6G concentration.
Additionally, the two peaks at 2.33 eV and 2.44 eV are evidence of the presence of Rh 6G in the
mixed solution. An intriguing feature is the presence of isosbestic points at 511 nm and 547 nm in
the Rh 6G/SnS2 mixtures. Isosbestic points, often observed in absorption spectroscopy, mark a
consistent molar absorptivity between two species at specific wavelengths, despite changes in
concentrations.’” In this context, the isosbestic points may serve as evidence for the interaction
between Rh6G and SnS:z. ** We also performed the micro-absorption spectra of dried SnS: flakes
before and after Rh 6G deposition (Supplementary Figure 6), from where we obtain the difference
spectra by subtracting the Rh 6G/SnS2 absorption spectrum from pristine SnS2, which appear

featureless.
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Raman excitation profiles of Rh 6G/SnS; and the exciton hybridization mechanism

While conventional absorption spectroscopy did not yield valuable information about the potential
coupling between SnS2 and Rh 6G, we further performed excitation-dependent Raman
spectroscopy measurements, from which Raman excitation profiles (REPs) are obtained. REPs
were reported particularly useful in probing the coupling in semiconductor-based SERS substrates
because the excitation energies at which resonances occur can be traced to electronic transitions in
the complex.!*¥>* Here, we obtain and compare the REPs of Rh 6G on several different 2D crystals,
including MoS2, WSe2, and graphene, as well as for Rh B and Rh 123 adsorbed on SnS:. In this
work, all REPs were collected with 11 laser lines ranging from 648 to 458 nm (1.91 to 2.70 eV).
Figure 2A shows the typical Raman spectra of Rh 6G (10~ M) adsorbed on SnS2 under 11 laser
excitations. It is clear that the Raman peaks of Rh 6G are strongest when excited under 2.3 - 2.6 eV
lasers and quickly decrease outside this window. Additionally, the relative peak intensities vary in
this resonance window. For example, at 2.33 eV, the 613 cm™' mode is significantly stronger than
the xanthene ring modes in the range of 1350 - 1650 cm™'. However, at 2.54 eV, the 613 cm™ mode
is much weaker. We also note that because of the strong Rh 6G emission, the spectra acquired with
2.33 eV excitation are noisier.

We further plot the REPs for different Rh 6G modes in Figure 2B. The REP intensities are
calibrated to a quartz reference and normalized for easier visualization. It is clearly seen that all Rh
6G modes display a resonance peak at ~2.35 eV (R1) in the REPs, matching well with the So,0-S1,0
absorption of Rh 6G at 2.33 eV.>”* We note the resonance maximum for the bending modes (613,
774 cm) occur at 2.33 eV, whereas for the xanthene ring modes (those above 1350 cm™), the
maxima occur at 2.38 eV. This slight difference in resonance underscores the vibronic character of
the bending modes,*’*5 as well as a possible contribution from conformational distortion of the

xanthene core upon Rh 6G chemisorption® on SnS2. Moreover, an additional resonance peak at
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2.54 eV (R2) is also observed for all modes and is strongest for the xanthene ring. We note the
relative intensity between R2 and R varies depending on the vibrational modes. For example, R> is
as intense as Ri for the 1361 cm™ mode, whereas R> is weaker than R for the 1504 cm™ mode.
While it is clear that R1 matches well with the pgy, g, the origin of Rz at 2.54 eV requires further
analysis.

We verify R2 is a feature of the Rh 6G/SnS2 complex and not the underlying SnS2 substrate
by comparing the REP for the SnS2 A1z mode before and after deposition of Rh 6G, as shown in
Figure 2C. For intrinsic SnS2 sample without Rh 6G deposited, the REP displays a single maximum
at 2.38 eV, suggesting a transition at this energy, matching well with the So,0-S1,0 transition in Rh
6G at 2.33 eV. However, the Aig REP shows increased Raman activity at ~2.54 eV after Rh 6G
deposition, which is at the same energy as Rz, suggesting a synergistic effect between Rh 6G and
SnS2. Recently, Muccianti et al. proposed an exciton hybridization concept for the Raman
enhancement of 3,4,9,10-tetracarboxylic dianhydride (PTCDA) when adsorbed on WSe:."* The
authors argued that hybridization of degenerate excitons in PTCDA and WSe: led to the formation
of new exciton states with different resonant energies. We believe a similar concept applies to the
coupling between Rh 6G and SnS»: degenerate excitons from the molecule (ugrp¢g) and the
substrate (Usps,) couple and hybridize, giving rise to excitons with new resonant energies, as shown
in Figure 2D. The R2 (2.54 eV) resonance peak likely stems from the hybridization of the degenerate
Rh 6G So,0-S1,0 transition and the SnS2 exciton transition (green arrow in Figure 2D), while the Ri
resonance peak stems from the Rh 6G So,0-Si transition (blue arrow in Figure 2D). In the
following, we further discuss other possible origins for R> including light scattering resonance,

charge-transfer resonance, and electronic hybridizations.

Investigation of the resonance peaks
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First, we consider the possible contribution of light scattering resonance to R2. The standard
formalism for Raman scattering intensity is described by three processes: 1) absorption of an
incident photon that excites an electron, 2) interaction between the excited electron with a
vibrational mode (or phonons in crystals), and 3) relaxation of the excited electron to the ground
state, accompanied by the emission of a Raman photon as scattered light. For the Stokes Raman

scattering process, the intensity of normal Raman scattering can be written as:!%¢

(f|Ho—r|b)BIHo—pipla)al Ho—r |i)|?

(EL-Eg-iTq)(EL- Eg - Eyip - iTp)

I(E) =K (1)

where |i), |a), |b), |f) are the initial, two intermediate, and final states, respectively; H._, and
He_yip are the matrix elements for the Hamiltonian of light radiation and electron-vibration

coupling, respectively; Ej, is the energy of incident light, E is the energy of the electron transition,

Eip 1s the energy of the vibrational mode; I, and [}, are damping parameters associated with the
lifetime of the two intermediate states, |a) and |b), respectively. From the denominator in Eq. 1,
there are two instances where maximum Raman intensity can be achieved. The first occurs when
E; = Eq, which corresponds to the incident light resonance, where the energy provided by the
incident light excites an electron from the ground to an excited state. The second case, Ey, = E; +

Eip, occurs when the energy of the incident light matches that of the scattered light. We consider
the possibility of R> stemming from scattered light resonance, as observed previously in REPs of
copper phthalocyanine molecules on graphene.'® The scattered light resonance for vg,3 = 0.08 eV
(Urn 6c = 2.33 V) occurs at 2.41 eV. Likewise, for v;345; = 0.17 eV scattered light resonance is
expected at 2.50 eV, and for vi45¢9 = 0.20 eV, it is expected at 2.53 eV. Evidently, scattered light
resonance is mode-dependent, and the resonance peak position shifts accordingly. However, such
mode-dependent effect is not observed in our Rh 6G/SnS: system, as all Rh 6G REPs show R at

2.54 eV position, suggesting scattered light resonance is not the origin for Ra.
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Second, in the theory of enhanced Raman scattering on semiconductors,'? charge-transfer
(CT) resonances occur between substrate and adsorbate through intensity borrowing from
vibronically coupled states. The band alignment diagram in Figure 1A shows Rh 6G has the lowest
unoccupied molecular orbital (LUMO) at -3.4 eV and the highest occupied molecular orbital
(HOMO) at -5.7 eV, while the conduction band minimum (CBM) and valence band maximum
(VBM) of SnS; are at around -5.0 and -7.3 eV, respectively.’*”%8 In addition to molecular and
exciton resonances, charge-transfer resonances are expected to occur from the SnS2 VB to the Rh
6G LUMO at 3.8 eV and from the Rh 6G HOMO to the SnS2 CB at 0.7 eV — which indicates a
much lower excitation energy could be used to achieve direct charge-transfer resonance.
Nevertheless, because these energies are far outside our excitation window, we do not believe R>
originates from photo-induced CT.

Third, we consider an electronic hybridization concept proposed by Morton and Jensen,* in
which hybridization occurs between the molecule and substrate electronic states. To this end, we
further measure the Rh 6G REPs on 2D MoS2 and WSe2 where Raman enhancement has been
reported>>®-¢ and that have electronic states close to either HOMO or LUMO of Rh 6G. For
example, the MoS2 VBM lies near the Rh 6G HOMO at -5.8 eV, while the WSe2 VBM lies near
the Rh 6G LUMO at -3.6 eV.% Figure 3A shows the Rh 6G/MoS2 REPs overlaid on the Rh 6G
absorption spectrum and scaled for better comparison, where the maximum occurs at 2.38 eV,
matching well with the So,0-S1,0 transition energy. Notably absent, however, is a resonance peak at
2.54 eV. Similarly, for Rh 6G/WSe2 shown in Figure 3B, the REPs also display a maximum at 2.33
eV, corresponding to the So,0-Si,0 transition, and no secondary peak is observed. These results
suggest that electronic hybridization is not responsible for Rz, although it may contribute to the
Raman enhancement for the So0-Si10 transition (around 2.35 eV excitation), as observed in the

literature.®
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Moreover, we also measured the Rh 6G REPs on graphene, a semi-metal that does not
possess a bandgap,” and exciton hybridization is not expected. However, graphene has been
demonstrated to enhance the Rh 6G signals by efficient charge transfers that prevent the
recombination of electrons and holes in Rh 6G and lead to the suppression of the fluorescence,
which allows us to obtain the REPs for Rh 6G. The Rh 6G/graphene REPs shown in Figure 3C
display a main peak at 2.38 eV, which is similar to that in other REPs discussed above. In addition,
a shoulder peak is also observed at 2.47 eV, which matches well with the energy of the So,0-Si.1
transition (i.e., 2.44 eV) measured from the shoulder peak in the absorption spectra (Figure 1D). Of
particular note, the energy of this shoulder peak (i.e., 2.47 eV) in the Rh 6G/graphene REPs is
different from the energy of the Rz peak (i.e., 2.54 eV) in Rh 6G/SnS2 system. Notably, the R> peak
blueshifts by about 0.1 eV, and we attribute it to exciton hybridization between the Rh 6G So,0-S1,0
transition and the exciton in SnSz. Spectra for Rh 6G on MoS2, WSe:, and graphene under various

excitations are shown in Supplementary Figure 7.

Modulation of molecular exciton degeneracy with SnS; exciton
The exciton hybridization in Rh 6G/SnS: system is further confirmed by measuring REPs on SnS2

for molecules with different HOMO-LUMO gaps, i.e., Umo1 # Usns,- Particularly, Rh B and Rh

123 share the same xanthene core structure as Rh 6G but have different py,,;, which allows
adjustment of the degeneracy with ug,g, in the rhodamine/SnS> complex. The typical Raman
spectra for the two rhodamines deposited on SnS2 are shown in Supplementary Figure 8, where
discernible xanthene ring bands are observed between 1190 and 1650 cm™! for all, due to the same
xanthene core structure. The slight differences in the lower frequency portion of the spectra are due
to the vibrational modes related to different functional groups. The vibrational assignments are

given in Supplementary Table 1.
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The absorption spectrum for Rh B in Figure 4A shows the characteristic So,0-S1,0 (Ugrn B)

and So,0-S1,1 transitions at 2.24 and 2.34 eV, respectively. Because uppg < Usns,, hybridization in

Rh B/SnS: is not expected. In fact, the REP of the 1360 cm™ mode of Rh B closely follows the
absorption spectrum, and no feature at the Rz energy is present, nor is a shift in the So,0-S1,1 observed.
Similarly, for Rh 123, the absorption spectrum in Figure 4B shows the So,0-S1.0 (Urp 123) and So,o-
Si1 occur at 2.41 and 2.54 eV, respectively. Hybridization is again not expected since pgpi23 >
Usns,- Consequently, the REP for the 1368 cm™! mode of Rh 123 shows a maximum at 2.41 eV and
a small feature at ~2.5 eV, matching very well with the So,0-S1,0 and So,0-S1,1 transitions of Rh 123,
respectively. Similar trends are observed for other xanthene ring modes (e.g., 1510 and 1647 cm™!
modes, Supplementary Figure 9) in both Rh B and Rh 123. Importantly, in both thodamine cases,
there are no apparent shifts when comparing the peaks in the REPs and their absorption spectra,
which is different from the case of Rh 6G. The diagram in Figure 4C summarizes the exciton
degeneracy for Rh B/SnS2 and Rh 123/SnS», illustrating that the exciton hybridization does not
occur. Therefore, for all three rhodamine analogs, only in the Rh 6G/SnS: case, where the pgpeg =

Usns, and hybridization is possible, a new resonance peak appears in the REP. The results clearly

show that exciton hybridization occurs and plays an important role in Raman enhancement.

Discussion

In summary, we perform a comprehensive investigation on the Raman enhancement effect of
rhodamine molecules on 2D materials using excitation-dependent Raman spectroscopy
measurements. The result suggests that degenerate excitons in Rh 6G and SnS:> lead to strong
coupling between them, causing an exciton hybridization. Particularly, compared to other systems
without proper exciton alignment and no exciton hybridization is expected (e.g., Rh 6G/MoS2, Rh
6G/WSe:, and Rh 6G/graphene), the hybridization in Rh 6G/SnS:2 system leads to the observation

of a new resonance peak at 2.54 eV (R2) in the REPs. The exciton hybridization concept is further
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verified by measuring Rh B and Rh 123 REPs on SnS2, which have uy,q; different from ugys,,

and hybridization is not observed. This control experiment underscores the significance of precise
exciton alignment. While exciton resonance with SnSz can be achieved under 2.33 eV excitation,
the excitons from Rh B and Rh 123 fail to hybridize with SnS: due to misaligned energies. In
instances where both molecular and exciton resonances are congruent — as in the Rh 6G/SnS2
case, hybridization occurs, and is evidenced by the emergence of a new resonance peak in the
REP. Lastly, we interpret the unusually intense C-C-C ring in-plane bending mode (613 cm™!,
Figure 1B) under 2.33 eV as a consequence of the strong coupling — enabled by the exciton
hybridization — which allows an excellent LOD of 107> M to be achieved. This LOD is
comparable to plasmon-enhanced Raman spectroscopy and highlights the importance of efficient
coupling between substrate and adsorbate. Although lower LOD was reported on a couple of
other pristine 2D materials (e.g. TaS2, NbSe2and 1T” WSe2),**%47 we envision improved LOD to
a similar level could be realized by leveraging our understanding on exciton resonance in Raman
enhancement effect. For example, by tailoring the crystal structure of SnS> through defect, strain
and heterostructure engineering, one can change the band alignment with Rh 6G and then the
exciton coupling strength, leading to even higher detection sensitivity. The present work provides
important guidance to the rational design of future SERS substrates for trace-level detection based

on exciton hybridization.

Methods

Preparation of 2D Materials

The bulk crystals of SnS2, MoS2, WSe:, and graphene were purchased from HQ Graphene. The 2D
materials were prepared via mechanical exfoliation and transferred onto cleaned 300 nm SiO2/Si

substrates.
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Atomic Force Microscopy
The number of layers of SnS> was determined by atomic force microscopy (Bruker Dimension

3000) using the tapping mode.

Deposition of Probe Molecules

Rhodamine 6G (Sigma-Aldrich), Rhodamine B (Sigma-Aldrich), and Rhodamine 123 (Sigma-
Aldrich) were dissolved in isopropyl alcohol (IPA) to make 10 M stock solutions (10 mL).
Exfoliated 2D crystals were then submerged in the solution for 2 h and washed several times with
IPA to remove excess molecules. For concentration-dependent studies, Rh 6G solutions, ranging
from 10*to 107'* M, were prepared by serial dilutions from the stock. After soaking for 2 h in the
lowest concentration and washing, Raman spectra were acquired, and the sample was dipped in the

next higher concentration and so on until the maximum concentration.

Optical Measurements

Raman scattering measurements were carried out on a micro-Raman spectrometer (Horiba-JY
T64000) in the triple-grating mode equipped with an 1800 g mm™' grating. Signals were collected
through a 100X objective, and the power was kept <1 mW at the sample with an acquisition time
of 60 s. Excitation-dependent Raman scattering measurements were performed with a series of laser
lines from a Kr'/Ar" ion laser (Coherent Innova 70C Spectrum), ranging from 458 to 647 nm.
Micro-absorption measurements were performed in a custom-built setup, where reflectance and
transmittance spectra were collected. Optical absorption of 10° M Rh 6G, Rh B, and Rh 123
solutions were carried out on a UV-vis spectrophotometer (Agilent CARY 5000). The x-ray
photoelectron spectroscopy measurements were carried out on an integrated X-Ray system

(Thermo Scientific, Nexsa G2).
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Figures

Figure 1 — Characterization of Rh 6G Raman Enhancement on SnS;. (a) Energy band
alignment for Rh 6G and SnSz. (b) Raman spectrum of Rh 6G on SnS: excited with 2.33 eV; peaks
with an asterisk are from the Si substrate. Inset shows schematics for Rh 6G/SnS: and their coupling
through exciton alignment. (¢) Concentration-dependent Raman spectra of Rh 6G on a 3L SnS:2
sample, with 2.33 eV excitation. Spectra shown were baseline corrected for photoluminescence
background. (d) Comparison of absorption spectra for Rh 6G with various concentrations dissolved

in IPA (bottom spectra), and dissolved in SnS2 solution (top spectra).
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Figure 2 — Raman Excitation Profiles for Rh 6G/SnS:. (a) Rh 6G/SnS2 Raman spectra under
different excitation energies, from 1.91 to 2.70 eV. Peaks marked with an asterisk are from the Si
substrate; the Aig peak is from the SnS.. (b) Raman excitation profiles for selected Rh 6G
vibrational modes. Blue shaded area marks the R; resonance peak at 2.35 eV, and in green the R>
resonance peak at 2.54 eV. Inset shows the zoomed in R region for the 613 and 774 cm™! bands.
(¢) REPs of the Aig mode of SnS: before and after Rh 6G deposition. (d) Proposed exciton
hybridization between Rh 6G and SnS:, depicting the new resonant energies. Error bars in (b) and

(¢) represent the standard deviation from measuring multiple samples.
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Figure 3 — REPs for Rh 6G Deposited on Different 2D Materials. REPs for selected vibrational
modes of Rh 6G deposited on MoS2 (a), WSe:z (b), and graphene (¢). The absorption spectrum of
Rh 6G is shown in each plot for comparison. The red dash rectangular labeled regions correspond

to the R> region. Error bars represent the standard deviation from measuring multiple samples.
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Figure 4 — Modulating Exciton Degeneracy in Rhodamine/SnS;. (a) The REP of 1360 cm™
mode from Rh B/SnS:. Note no feature at 2.5 eV is observed. (b) The REP of the 1368 cm™ mode
from Rh 123/SnS>. The absorption spectra of Rh B and Rh 123 are shown in (a) and (b),
respectively, for comparison. The red dash rectangular labeled regions in (a) and (b) correspond to
the R: region. Error bars represent the standard deviation from measuring multiple samples. (c¢)
[lustration showing exciton hybridization between SnS2 and Rh B or Rh 123 does not occur due to

exciton energy misalignment.



