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Abstract—In recent years, the adoption of electric vehicles
(EVs) and variable energy resources such as photovoltaic (PV)
has increased with the desire to reduce reliance on fossil fuels,
decrease emissions, and promote sustainable energy. However,
the increasing adoption of EVs and PVs has introduced un-
precedented challenges to the reliability of power systems. The
challenge lies in the inherent intermittency associated with solar
generation and the uncertainty introduced by the charging load
of EVs on the demand side of power grids. Therefore, it is
indispensable from the perspective of power system operation
and planning to consider the uncertainties associated with the
output power of these resources in the reliability assessment
framework. This paper develops an electric vehicle load model
considering diverse charging station locations, EV types, and
drivers’ behavior. Also, the proposed method integrates the
uncertainty of PV generation through interval prediction utilizing
the K-Nearest Neighbors regressor. A sequential Monte Carlo
simulation is used to analyze the impact of PV interval (forecasted
lower and upper generation profile), EV load (hourly and peak),
line failures, and demographic characteristics associated with
EV on power system reliability. The reliability assessment is
extended to sensitivity analysis and evaluation of the impact of
EV loads and PV generation profiles on the capacity value of
PV generators with different capacities, utilizing the Discrete
Convolution approach. The proposed approach is demonstrated
on the IEEE Reliability Test System and the results show
the effectiveness of the proposed approach in determining the
reliability of the power system by explicitly accommodating PV
uncertainties and the intricacies of EVs.

Index Terms—Composite reliability, electric vehicle, photo-
voltaic, uncertainty.

I. INTRODUCTION

TRADITIONAL electric power systems are designed
based on large central stations and passive, predictable,

and stationary loads. However, this paradigm has been chal-
lenged by the large integration of variable energy resources
(VERs) and the increasing penetration of electric vehicles
(EVs). For instance, the proportion of wind and solar energy
in the U.S. power grid is forecasted to increase from 1% in
2008 to 16% in 2023 [1]. The inherent variability associated
with VERs can cause fluctuations in power generation, con-
sequently impacting the reliability of the entire system. Ad-
ditionally, the U.S. has established an ambitious goal, aiming
for EVs to constitute 50% of total vehicle sales by 2030 [2].
The charging behavior of EVs introduces additional variability
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and uncertainty (both amount and location of EV charging) to
the demand side, which also impacts power system reliability.
With the sharp increase in the penetration of PVs and EVs,
power grids will inevitably face cumulative consequences of
integrating PV systems and EVs [3]. Several studies have
explored the individual impacts of PVs and EVs [4]–[6].
However, there is a limited number of studies examining their
combined effects on the reliability of the power grid. Thus, it
has become indispensable to evaluate power system reliability
considering the uncertainty of EV charging and PV power
generation.

Composite power system reliability methods are primarily
classified into analytical methods and Monte Carlo simulations
(MCS) [7]. Analytical methods can provide an exact reliability
index. However, they suffer from the curse of dimensionality
[8] when assessing the reliability of practical-size systems and
therefore, are less preferred. On the other hand, MCS meth-
ods, including sequential and non-sequential, provide greater
flexibility in modeling uncertainties [9]–[11] and are scalable.
However, they are time-consuming. Both analytical and MCS-
based methods have been implemented in the literature to
conduct power system reliability under PV and EV penetra-
tions. In [12], the reliability of integrated transportation and
electrical power system has been investigated by developing
the model of a bidirectional EV charging station. In [13]–
[15], the effect of EVs on power system load profile along
with the improvement of power system reliability has been
investigated. The impact of EVs using battery exchange mode
on power system reliability has been explored in [16]. The
work in [17] has proposed metrics to assess the influence of
EVs on the reliability of the power grid using sequential MCS.

The impact of VERs on power system reliability has been
extensively studied. For example, the impact of correlations
between wind speed, solar irradiance, and load curve on
composite power system reliability has been investigated in
[18]. A combined reliability assessment and risk analysis
framework have been developed to evaluate the effect of
wind and solar integration on the grid [19]. The impact of
wind power uncertainty on power system reliability has been
studied in [20] along with the development of the wind power
interval forecasting model. In addition, a Bayesian estimation
approach has been used in estimating the parameters of the
wind power point prediction model. An analytical method
has been implemented to evaluate the reliability of the power
system considering PV and energy storage in [21]. In [22], the
capacity outage probability and frequency table (COPAFT) has
been used to model the PV system for reliability assessment
along with the sensitivity analysis of PV location on power
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system reliability. In [23], an analytical-based reliability eval-
uation approach has been proposed considering the integration
of renewable and non-renewable distributed generations with
plug-in hybrid EVs.

The combined impact of EVs and renewable energy sources
like PV on power system reliability considering their uncer-
tainty is crucial to develop a practical basis for their integration
into existing power systems. Also, most of the existing works
have been focused on determining the point value of the
reliability index. However, the computation of the reliability
range is important, as it provides the system operator flexibility
in conducting tasks related to planning for the integration of
renewable sources, scheduling power, and executing dispatch
operations. Moreover, as the penetration of PV increases, it
is essential to evaluate their capacity value under different
loading conditions (with and without EV) and determine their
range considering the forecasted PV interval.

To address this research gap, this paper develops a reliability
evaluation methodology designed to meticulously account for
the uncertainties inherent in renewable generation, particularly
photovoltaic (PV) power, while simultaneously incorporating
the charging load imposed by EVs. This article advances our
work presented in [24] by investigating the impact of peak load
on power system reliability (with and without line failure) and
the impact of different loading conditions and PV generation
profiles on the capacity values of PV. A PV power point
forecasting model is developed using a K-Nearest Neighbors
(kNN) algorithm along with successive interval forecasting.
The PV power interval prediction is conducted for one year to
make it suitable for its integration for power system reliability
assessment. The EV load model is constructed considering
30,000 EVs with different energy consumption per mile and
30 miles as an average daily driving distance along with
consideration of the different locations of charging stations
(i.e., residential and public charging stations). A load demand
model, superimposing IEEE-Reliability Test System (IEEE
RTS) system load and EV load, is constructed. Finally, the
sequential Monte Carlo simulation is utilized to determine the
range of reliability index of the IEEE RTS integrating the
probabilistic prediction model of PV power and the developed
EV load. The range of power system reliability indices is
calculated by taking interval forecasting of PV power into
consideration. Furthermore, the impact of different levels of
EV penetration is also investigated.

The contribution of this article is summarized as follows:
• Developed a model for the hourly, daily, and weekly EV

loads considering 30, 000 EVs with different classes, en-
ergy consumption, driver’s behavior, and diverse charging
locations.

• Developed a PV power interval prediction model that
takes generation uncertainty into consideration and a
real-world dataset collected from Henderson, Nevada is
utilized. The interval prediction model facilitates the
calculation of a range of reliability indices instead of a
point index.

• Conducted extensive case studies investigating the impact
of PV uncertainty, EV growth, generator’s reliability pa-
rameters, and demographic characteristics associated with

EV charging on power system reliability and capacity
value of PV. The significance of such case studies is
to provide future realization and prepare action plans to
improve the reliability of power systems.

The remainder of the paper is organized as follows. Section
II provides a description of the PV power interval forecasting
model and EV load modeling. Section III provides a detailed
explanation of the methodologies involved in this work. Sec-
tion IV shows various test cases on the IEEE RTS reliability
test system along with the determination of the range of
reliability indices and investigation of EV’s impact on power
system reliability and capacity value of PV. Finally, Section V
summarizes the paper and provides concluding remarks.

II. PV POWER INTERVAL PREDICTION MODEL, EV LOAD
MODELING, AND CRITICAL FACTORS

A. PV Power Interval Prediction

The PV generation is associated with randomness and
uncertainty because of their dependence on several envi-
ronmental factors such as temperature and solar irradiance
[25]. These uncertainties related to PV power are the major
reasons for inaccurate point forecasting which in turn leads to
ineffective generation scheduling decisions and risk analysis.
Furthermore, a deterministic point forecast neglects those
uncertainties which are detrimental from the perspective of
safe and reliable operation of the power grid. Therefore, we
develop an interval forecast model that considers uncertainties
in PV power generation. The PV interval forecast provides
the lower and upper bound of PV power at each hour of
the forecasting interval with a certain degree of confidence.
The significance of interval forecasting is that it facilitates
the system operator to calculate the range of power system
reliability. A real-world dataset collected from a PV-installed
site (Henderson, Nevada) is used to obtain the PV profile for
one year. Two scenarios with confidence degrees of 85%, and
95% are taken into consideration to forecast the PV interval
and see the impact of the confidence interval on power system
reliability.

A commonly used non-parametric technique known as K-
Nearest Neighbors (kNN) is adopted in this work for time
series point forecasting and ultimately constructing the inter-
val. Consider a univariate time series data x=(x1, x2, · · · , xn)
where ‘n’ is the number of data points. The kNN algorithm
utilizes ‘p’ lagged values of the data points, Xt=(xt−1, xt−2,
· · · , xt−p) as an input to forecast one step ahead yt = xt, as
shown in Fig. 1. If there are ‘n’ data points, the number of
input-output pairs is n−p+1. The estimation of an output for a
corresponding test data point xts is based on the dissimilarity
computed between the xts and all other xtr, where, xtr

represents training input data points. The Euclidean distance
is used as a measure of dissimilarity which is computed as
follows:

dis(j) = ||xts − xj
tr|| ∀j ∈ 1, · · · , Ntr (1)

where Ntr represents the number of training data points.
Based on the values of distance computed, the ‘k’ nearest

neighbors xtr of xts are identified and the predicted value is
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Fig. 1. Training and Testing Dataset of KNN

computed as the average of their corresponding ytr values. In
the event of a new prediction, the previous forecasted value is
added to the input, and the consequent lagged values with the
added forecasted value is utilized to predict the next value.

Fig. 2. Implementation of kNN Regressor for Interval Prediction

Fig. 2 represents the flowchart for the implementation of
kNN regressor for interval prediction. The process starts with
standardizing and preparing the labeled dataset with the lagged
feature. As the PV profile dataset used in this paper is a
univariate time series, lagged values of the variable to be
forecasted have been used as features for kNN regression. The
prepared dataset is split into the training and testing datasets.
Before training, the kNN model is configured by selecting the
appropriate number of neighbors (k) and a suitable distance
metric. In this study, a distance metric called Euclidean
distance is considered to find the nearest neighbors. The kNN
regressor model is trained to predict the target value based
on the nearest neighbors in the feature space (lagged values).
Utilizing the predicted target values, the standard error (SE),
which measures the variability and uncertainty in the forecast,
is estimated. Next, the confidence level for the interval forecast
is determined and the corresponding z-score is chosen. Finally,
the point forecast, SE, and z-score are utilized to determine
the interval forecast. The prediction interval evaluates the
likelihood that PV generation will fall within a range of values
for a certain proportion of instances. This interval is derived
from the standard error of measurement. In this section, we
report the outcome for a 95% prediction interval and validate
our forecast by confirming that the actual value falls within
the interval range 95% of the time. The power output of PV
was predicted utilizing an 85% and a 95% prediction interval.
Test analysis was conducted over the entire 8,760 hours for a
95% prediction interval to assess the precision of the interval

forecast model. The evaluation indicated a 94.3% accuracy
rate, demonstrating a strong correlation between the forecasted
and actual values. The forecast interval areas for a 24-hour
timeframe are depicted in Fig. 3. Prediction interval enables
consideration of the PV power output variability.
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Fig. 3. PV Power Output Interval Prediction for 24 hours

B. Construction of EV Load Model

It is imperative to have an appropriate model for EV loads,
which can be superimposed with the system load to evaluate
the effect of charging demand on the reliability of the power
system. In this research, we incorporate 30, 000 different types
of EVs from [26], as shown in Table I, along with their cor-
responding consumption per unit distance. The average daily
driving distance of 30 miles is assumed. The proportion of
daily EV charging load in the residential and public charging
stations is considered as 60 to 40 percent. Based on these
numbers, the peak load for the residential and public charging
stations is 199 MW and 132 MW. The EV load profile
developed in [26], along with the hourly, daily, and weekly
load demand for EV charging, is adopted in this study. Factors
such as driver’s behavior, location (residential and public), and
time (weekdays and weekends) are taken into consideration.
The EV load profile is constructed by manipulating the hourly
(weekdays and weekend), daily, and weekly load profile shown
in Fig. 4(a), Fig. 4(b), Fig. 5(a), and Fig. 5(b) respectively.
These loads are expressed as percentages of daily, weekly,
and annual peak loads respectively.

TABLE I
EVS CHARGING CONSUMPTION

EV Class Number KWh/mile
Average Daily

Driving
(mile)

Daily
Consumption

(MWh)
Sedan 18255 0.3225 30 176.62

Mid-Sedan 3582 0.3605 30 38.74
Mid-SUV 3930 0.4375 30 51.58
Full-SUV 4233 0.5075 30 64.48

1) Hourly EV Load: Fig. 4(a) and Fig. 4(b) represent the
hourly EV charging load profile of EV expressed in percentage
of daily peak load. The hourly load profiles of EV charging
loads are constructed based on the data provided in [27]. From
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[27], the charging patterns in residential during the weekdays
and weekends are different whereas the difference in charging
patterns is negligible for public charging stations as illustrated
in Fig. 4(a) and Fig. 4(b).

Fig. 4. EV Load Profile (a) Hourly Load (Weekdays) (b) Hourly Load
(Weekend)

2) Daily EV Peak Load: Fig. 5(a) illustrates the daily
charging peak load of EV expressed in percentage of weekly
loads. The term daily peak load refers to the highest aggregate
power demand from all connected EVs over 24 hours. User
preferences and behavior, such as charging during off-peak
hours or utilizing smart charging systems, can influence the
distribution of the daily peak load. In this work, we adopt the
data provided in [28] which has reported different values of
peak loads during the weekdays and weekends, to construct
the daily peak load profile of EV.

Fig. 5. EV Load Profile (a) Daily Load (b) Weekly Load

3) Weekly EV Peak Load: Fig. 5(b) represents the weekly
peak load expressed in percentage of annual peak load. The
monthly peak load provided in [29] is utilized for four weeks
of the corresponding month. In each quarter, the peak of the
third month is employed to derive the peak of five weeks
rather than four, so as to compensate for the number of days
dissimilarity between the duration of a month and the duration
of four weeks.

C. Critical Factors

The reliability of the power system is influenced by a range
of critical factors, including the load dynamics, characteris-
tics of system components, line constraints, and consumer
behaviors. Several case studies in Section IV are performed
revolving around the following critical factors.

• Consumer behavior and Load Dynamics: Consumers play
a major role in changing the dynamics of the load profile
and demand patterns. For instance, the capacity and tim-
ing of EV charging can significantly impact load profiles.
If a large number of EVs are charged simultaneously
during peak hours, it can strain the system and reduce
reliability.

• Line constraints: Line constraints help ensure that trans-
mission lines do not exceed their operational limits,
which could lead to overheating and potential damage.
By adhering to these constraints, the system avoids line
failures that could disrupt power delivery and compro-
mise reliability.

• Characteristics of system components: Factors such as
mean time to failure (MTTF) and mean time to repair
(MTTR) measures the expected operational time before a
generator fails and the time required to repair a generator
after it fails, respectively. If generators have a large MTTF
and small MTTR, the power system experiences fewer
outages, leading to increased reliability.

III. METHODOLOGIES

A. Network Modeling and Optimization Problem Formulation

Composite power system reliability assessment, which in-
volves heavy computation, requires a suitable DC power flow
model to overcome the issues of computation burden [30].
Furthermore, DC power flow models are sufficiently accurate
for composite power system reliability evaluation. Therefore,
a DC power flow model [31] combined with constraints of
the power balance equation, generation capacity limits, and
transmission line capacity is considered to formulate a linear
programming problem with an objective of minimizing the
amount of load curtailment. The assumptions involved with
the usage of DC power flow along with their limitations are
as follows:

• Voltage Magnitudes are constant: The model assumes
that voltage magnitudes are fixed and do not vary with
changes in power flow. This assumption simplifies the
equations but overlooks the impact of voltage fluctuations
on system reliability.

• Small Angle Approximation: The DC power flow model
assumes that the voltage angle differences between buses
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are small. This allows the use of the approximation
sin(θ) ≈ θ and cos(θ) ≈ 1, which linearizes the power
flow equation.

• Neglecting Reactive Power: Reactive power is not con-
sidered in the DC power flow model. The model does
not account for the requirement of reactive power for
maintaining voltage levels and also ignores the constraints
associated with the reactive power of generator and flows.

• Lossless Transmission lines: The model assumes that
transmission lines are lossless, meaning that line losses
are neglected. This assumption simplifies the power flow
equations but can lead to inaccuracies, especially in
systems with significant line losses.

Consider a transmission network with NB buses and NT

transmission lines. Equation (2) represents the objective func-
tion to minimize the load curtailment Ci at each bus, where,
Ci is the difference between the generation and load at each
bus.

min

{
NB∑
i=1

Ci

}
(2)

subject to:
Bδ +G+ C = L (3)

BTAδ ≤ Tmax (4)

−BTAδ ≤ Tmax (5)

Gmin ≤ G ≤ Gmax (6)

0 ≤ C ≤ L (7)

−π ≤ δ ≤ π (8)

The equality constraint (3) describes the power balance
constraint at each bus, where B(NB×NB) is a bus susceptance
matrix, δ(NB×1) represents vector of angle of bus voltages,
G(NB×1) represents the vector of generator’s power at each
bus, L(NB×1) and C(NB×1) are the vectors of the load and load
curtailment at each bus respectively. The inequality constraints
presented in equations (4) and (5) limit the transmission line
capacity, where BT (NT×NT ) is a transmission line suscep-
tance matrix, A(NB×NB) is the element-node incidence matrix,
Tmax

(NT×1) represents the maximum transmission line capacity
limit. Equation (6) represents the generator’s power constraint,
where Gmin and Gmax are both vectors of size (NB × 1)
representing lower and upper bound of generator power at
each bus. As the load curtailment Ci at each bus is positive
and cannot be more than the respective load Li, Ci is bounded
between zero and the load of the respective bus as given by the
equation (7). The inequality constraint given in (8) represents
the bounds for bus voltage angles.

B. Sequential Monte Carlo Simulation

In this paper, the Sequential Monte Carlo (SMC) approach
is utilized to simulate a sequential time evolution of the system
state and assess the power system reliability. Sequential sim-
ulation approaches can provide additional time-related indices
such as duration and frequency of load loss. SMC approaches
are designed to handle sequential and time-dependent aspects

of power system reliability analysis. In contrast to the non-
sequential methods, SMC can model chains of events and their
probabilistic impacts on system reliability, offering insights
into how a sequence of failures or disturbances propagate
through the system. Moreover, SMC simulation can efficiently
handle large-scale systems and high-dimensional input space
whereas analytical methods suffer from the curse of dimen-
sionality with the large-scale system. Furthermore, SMC cap-
tures uncertainties and variabilities as these are probabilistic
methods in comparison to the deterministic approaches and
analytical methods.

There are two approaches for sequential MCS: (i) the fixed
interval method, and (ii) the next event method. In this work,
the next event method is adopted where the time is advanced
to the occurrence of the next event [32]. Fig. 6 illustrates
the overall flowchart of the proposed approach to evaluate
the reliability of the power system under the penetration of
EV and PV using Sequential MCS. The overall flowchart
summarizes the steps involved in EV load modeling, PV
interval forecast, and simulation under the next event method
of sequential MCS. The simulation is carried out for 100 years
as the considered duration is sufficient for all the scenarios to
converge.
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Fig. 6. Overall Flowchart for the Proposed Approach

Reliability indices such as loss of load probability (LOLP),
expected demand not supplied (EDNS), and loss of load fre-
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quency (LOLF) are evaluated. The description and expression
to determine the reliability indices are described in [24].

C. Discrete Convolution to Evaluate Capacity Value of PV

The capacity value represents the additional load that can
be incorporated into the system following the installation of
a generator while preserving the original system’s reliability.
The capacity value of an added generator is a measure of
its contribution to maintaining the adequacy of generation to
meet the load demand. As PV generation is dependent upon
environmental conditions such as temperature and irradiance,
they are not controllable like conventional generators and
therefore, it is necessary to evaluate their capacity value. In this
study, the discrete convolution technique is used to compute
the capacity value of the added PV generator. The discrete
convolution technique involves constructing probability and
frequency distribution of random variables representing the
total system generation and the total system load. Particularly,
a Capacity Outage Probability and Frequency Table (CO-
PAFT) is constructed which represents the analytical reliability
model. A recursive unit addition algorithm implemented in
this work updates the COPAFT through discrete convolution
of probability and frequency distribution of the new unit
with the existing system [33]. The load model is constructed
utilizing the hourly load profile in the form of the triplet
(Lj , P (L ≥ Lj), F (L ≥ Lj), where, Lj represents the
load, P (L ≥ Lj) represents the probability of load greater
than Lj , and F (L ≥ Lj) represents the cumulative frequency
for load Lj . Finally, the generation reserve margin model is
constructed utilizing the generation and load model to compute
the generation adequacy indices. In this study, the capacity
value of PV is computed based on the LOLP. The steps for
determining the capacity value is as follows:

• Initially, the LOLP for the existing system is computed
without considering the presence of PV, which acts as a
target LOLP after the addition of PV.

• The net load of the system is computed considering the
time series PV generation profile as a negative load. The
LOLP is computed again, which is expected to be lower
than the LOLP computed in Step 1 due to load reduction.

• The net load profile is incremented by a ∆L until the
target LOLP is achieved. The sum of ∆L represents the
capacity value of the added PV.

IV. CASE STUDIES AND RESULTS

The IEEE RTS is used to determine and compare reliability
indices for several scenarios with PVs and EVs. The IEEE RTS
consists of 24 buses, 38 transmission lines, and 32 generators
with their capacity ranging from 12 MW to 400 MW. All
the data required for reliability analysis such as generators’
capacity, loads (hourly, daily, weekly), and transmission line
limits, failure and repair rate of components are obtained
from [34]. For the analysis, the yearly generation profile of
three Pv systems with a maximum capacity of 200 MW, 200
MW, and 100 MW are aggregated and distributed across all
the buses where loads are connected. The first case study
involves the investigation of the impact of different confidence

degrees of PV forecast on the composite reliability of power
systems with a fixed base load of EV. The second case study
determines the impact of different levels of EV penetration on
power system reliability considering a fixed confidence degree
of PV interval forecast. The third case study evaluates the
reliability index under different peak load conditions with the
addition of EV. The fourth case study evaluates the capacity
value of PV and determines its sensitivity to different PV
generation profiles and loading conditions. The final case study
investigates the sensitivity of reliability metrics to change in
generator’s availability.

A. Composite Reliability Evaluation for Different Confidence
Degrees of PV Interval Forecast

The consideration of interval forecast of renewable genera-
tion for reliability assessment is to consider their uncertainty
and variability. Operational reliability assessment using point
forecast provides a fixed set of generation scheduling, which
does not provide flexibility to the system operators. The sig-
nificance of integrating interval forecast for reliability analysis
are: (a) it considers uncertainty, (b) it allows system operators
to calculate the range of reliability indices, (c) it provides
more flexibility in generation planning and scheduling for
operational reliability.

In this case study, PV interval forecast with 85% and 95%
confidence level is integrated with a fixed base load penetration
of EV on the IEEE RTS. The sequential Monte Carlo simula-
tion is used to calculate the LOLP, EDNS, and LOLF. Each of
the reliability indices is calculated considering both the lower
and upper limits of PV forecast and subsequently, the range of
reliability indices is determined. Furthermore, the significance
of this case study is to evaluate the impact of adding PV on
power system reliability and compare it with the reliability of
the original system with and without EV. Table-II illustrates
the value of reliability metrics for different degrees of PV
forecasting confidence interval. The result demonstrates that
the original system without the integration of PV and EV is
more reliable than a system with PV and EV. As the second
scenario in Table-II involves only EV integration, the system
is more stressed because of increasing load. The addition of
PV increases the reliability of the system which can be seen
from the scenarios of system with both EV and PV. In terms
of magnitude, the generation profile of PV associated with the
upper and lower limit of 95% confidence interval is the highest
and lowest respectively in comparison to other considered
scenarios. Therefore, among the PV considered scenarios, the
most reliable system is observed when the upper limit at 95%
confidence interval is taken as the generation profile for PV.

Fig. 7 illustrates the comparison of power system reliability
before and after the integration of PV on the IEEE RTS with
and without EV. The convergence of reliability metrics over
the simulation period is shown for a specific case with 95%
confidence interval of PV forecast. At the beginning of the
simulation, the value of reliability metrics is larger compared
to the value at the final stage of the simulation. However, as the
simulation progresses, the indices converge to their true values.
Furthermore, Fig. 7 provides clear visualization on the range
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TABLE II
COMPARISON AND EVALUATION OF RANGE OF RELIABILITY INDICES FOR

PV INTERVAL FORECAST WITH DIFFERENT CONFIDENCE INTERVAL

System Confidence
Degree (%)

LOLP EDNS
(MW/yr)

LOLF
(Occ/yr)

IEEE-RTS - 0.0013 0.151 1.99
IEEE-RTS with EV - 0.0034 0.487 6.56

95 0.0022 0.2981 6.21IEEE-RTS with EV
& PV (Lower Limit) 85 0.002 0.2591 5.78

85 0.0016 0.2219 5.2IEEE-RTS with EV
& PV (Upper Limit) 95 0.0013 0.1601 4.9

Fig. 7. Comparison of Reliability Indices for Different Degrees of PV Interval
Forecast (a) Convergence of LOLP (b) Convergence of EDNS (c) Convergence
of LOLF

of reliability index under penetration of EVs and PVs. Fig. 7
also illustrates that when the PV output takes the upper limit of
95% confidence interval, the system is able to retain the level
of reliability (in terms of LOLP and EDNS) as in the case of
original IEEE RTS with no PV and EV. The particular result
gives an idea of the additional generation required to retain
the reliability of the original system. The results presented in
Table-II can also be validated through Fig. 7.

B. Composite Reliability Evaluation with Different Levels of
EV Penetration and a Fixed Degree of PV Interval Forecast

1) EV Load Distributed Across all the Load Buses Based
on their Proportion: In this case study, a composite reliability
assessment of IEEE RTS is conducted considering its annual
load profile in hourly granularity with different penetration
levels of EV load. The PV interval forecast with the confidence
degree of 95% is used for all scenarios. Furthermore, the

penetration of EV load is increased with the step of 20% up
to 100% to determine the impact of different levels of EV
charging load on reliability. With such a case study, modern
utilities can prepare for future scenarios of heavy penetration
of EVs. Furthermore, utilities can plan for generation expan-
sion, network reconfiguration, the addition of renewable, etc.
in advance if such realization of future scenarios can be done
early. A key benefit of this case study is that it establishes
a foundation to determine the additional generation needed
to retain the reliability of the system when the system load
increases.

Table-III represents the annual reliability indices for dif-
ferent penetration levels of EV load. The result presented
in Table-III illustrates that the system reliability decreases
as the penetration level of EV increases. As the reliability
metrics such as LOLP, EDNS, and LOLF are all related to
loss of load or curtailments, the higher value indicates a less
reliable system. Furthermore, the reliability indices computed
with a lower interval limit of PV are higher compared to
the values calculated with an upper interval limit. As the
generation profile of PV associated with the upper limit of
the interval forecast is larger compared to that of the lower
limit, the system is more reliable when the upper limit is taken
as the generation profile for PV. Furthermore, the values of
LOLP and EDNS demonstrate significant differences between
any two scenarios; however, the respective difference is not
observed in the case of LOLF. As LOLF is just an indicator
of the frequency of loss of load in a year, two scenarios
with the same value of LOLF can have different amounts of
curtailments per year. Therefore, it is imperative to observe
either LOLP or EDNS combined with LOLF to analyze the
reliability of the system.

2) EV Load Distributed Assuming Demographic Charac-
teristics of Load Buses: In this case study, the EV load
is distributed across all the load buses based on the demo-
graphic characteristics of each of these buses. Here, the term
demographic characteristics is introduced to allocate higher
EV charging tendency to some of the buses. Among 17 load
buses in the IEEE RTS, load buses are categorized into four
categories; Group 1 (1, 2, 5, 7, 8), Group 2 (3, 4, 6, 9, 10),
Group 3 (13, 14, 15, 16), and Group 4 (18, 19, 20). The
distribution of EV load in each group is 40%, 25%, 20%,
and 15% respectively, which depicts the higher EV charging
tendency of Group 1. The significance of this study is to
determine the impact of demographic characteristics on power
system reliability and compare the results with the scenario of
EV load distributed based on the proportion of the bus’s load.
In this case study as well, the 95% PV interval forecast has
been used for the purpose of analysis.

Table-IV represents the annual reliability indices for dif-
ferent penetration levels of EV load along with the dis-
tribution based on the assumed demographic characteristics
of load buses. Comparing the results presented in Table-IV
with Table-III, the system reliability index is found to be
almost similar up to 60% increment in penetration of EV.
However, the impact of EV load distribution based on the
assumed demographic characteristic is significant when the EV
penetration is increased by 80% and 100% of its base load.
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TABLE III
EVALUATION OF RELIABILITY INDICES FOR DIFFERENT PENETRATION LEVELS OF EV

(EV LOAD DISTRIBUTED BASED ON THE PROPORTION OF LOAD BUS)

System PV lower limit (95%) PV upper limit (95%)
LOLP EDNS (MW/yr) LOLF (Occ/yr) LOLP EDNS (MW/yr) LOLF (Occ/yr)

IEEE-RTS with EV 0.0022 0.2981 6.21 0.0013 0.1601 4.9
IEEE-RTS with 1.2*EV 0.0025 0.3178 7.27 0.0019 0.2398 6.84
IEEE-RTS with 1.4*EV 0.0031 0.4473 8.69 0.0024 0.3174 8.38
IEEE-RTS with 1.6*EV 0.0034 0.4614 10.23 0.0029 0.4411 10.12
IEEE-RTS with 1.8*EV 0.0038 0.599 11.82 0.0034 0.4779 10.76
IEEE-RTS with 2.0*EV 0.0047 0.745 12.99 0.0038 0.6067 12.63

TABLE IV
EVALUATION OF RELIABILITY INDICES FOR DIFFERENT PENETRATION LEVEL OF EV

(EV LOAD DISTRIBUTED ASSUMING DEMOGRAPHIC CHARACTERISTICS OF LOAD BUSES)

System PV lower limit (95%) PV upper limit (95%)
LOLP EDNS (MW/yr) LOLF (Occ/yr) LOLP EDNS (MW/yr) LOLF (Occ/yr)

IEEE-RTS with EV 0.0021 0.3046 5.49 0.0011 0.1488 4.2
IEEE-RTS with 1.2*EV 0.0024 0.3248 6.94 0.002 0.2785 6.67
IEEE-RTS with 1.4*EV 0.003 0.4163 8.81 0.0026 0.3916 8.44
IEEE-RTS with 1.6*EV 0.0033 0.4698 10.2 0.003 0.4444 9.6
IEEE-RTS with 1.8*EV 0.0046 0.6754 13.01 0.0036 0.5225 12.86
IEEE-RTS with 2.0*EV 0.0055 0.8454 15.47 0.0045 0.6896 15.24

The reason behind the insignificant difference in the indices up
to 60% increment in EV load can be attributed to the ability
of the impacted transmission line to carry the incremented
power. However, in the case of 80% and 100% EV load
increment, the transmission line capacity is not sufficient to
accommodate the increased power flows. In order to observe
the impact of assumed demographic characteristics-based EV
load distribution, the calculation of the local reliability index
is imperative rather than the calculation of system reliability.

C. Impact of Peak Load on Reliability

In this case study, the annualized index is calculated to
determine the impact of peak load under different penetration
levels of EV. Also, the impact of line failure consideration
on the composite power system reliability is determined as
well. The possibility of line failure impact is more when
calculating annualized indices as the peak load of a yearly
load profile is considered for the analysis. During peak load,
all the transmission lines need to carry the power to fulfill
the demand. However, during light load, even the failure of
a few lines can be compensated through the usage of other
lines. Table V represents the annualized index for IEEE RTS
with and without the consideration of line failure. The second
column in the Table V provides the value of peak loads
under different EV penetrations. Table V clearly illustrates
that the reliability index calculated considering line failure is
larger compared to that of analysis without considering line
failure. The value of all the reliability index increases as the
penetration level of EV increases which can be observed in
Table V. The comparison of the second scenario with base EV
load integration on IEEE RTS in Table V and Table-II shows
that the annualized reliability index is significantly larger than
the corresponding annual index.

D. Capacity Value Evaluation of PV Using Discrete Convo-
lution

In this case study, the capacity value of PV with different
capacities is computed under different loading conditions and
PV generation profiles. Table VI presents the capacity value
of PV with capacity ranging from 0 MW to 300 MW. The
capacity values are in terms of the percentage of installed
capacity. The predicted PV generation profile along with
its lower and upper generation profiles are determined by
scaling the corresponding profiles of 200 MW PV with 95%
confidence interval. The influence of EV load is neglected and
only the IEEE RTS system load is considered to observe the
sole impact of PV generation profile on its capacity value.
Table VI shows that the capacity values calculated based on
the upper generation profile are higher in comparison to the
capacity values calculated based on the predicted and lower
generation profiles. The significance of this particular case
study is to provide the range of capacity value of added PV
to the system operator.

The capacity value of PV depends upon several factors but
the key factor is the coincidence of PV generation profile
with the electricity demand pattern. Controllable units, such as
thermal and hydro units, can be adjusted and scheduled based
on the load demand which assists in achieving high-capacity
values for the respective units. However, variable renewable
generators, such as PV and wind, depend upon environmental
factors and their capacity value also depend on the correlation
of their generation with the load. Table VII illustrates the
difference in the capacity value of PV under different loading
conditions. This case study is conducted based on the scaled
upper PV generation profile of 200 MW with 95% confidence
interval. The capacity value under column III in Table VII is
calculated considering the base load of IEEE RTS whereas
column IV is calculated after the addition of EV load in the
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TABLE V
ANNUALIZED INDEX FOR IEEE RTS WITH AND WITHOUT LINE FAILURE

Without line failure With line failure
System Peak Load (MW) LOLP EDNS (MW/yr) LOLF (Occ/yr) LOLP EDNS (MW/yr) LOLF (Occ/yr)

IEEE RTS 2850 0.0834 14.0186 19.19 0.0992 19.2686 26.53
IEEE RTS with EV 3010 0.2519 34.6829 22.7 0.276 41.423 28.43

IEEE RTS with 1.2*EV 3053.4 0.2824 47.1747 27.18 0.317 57.8232 33.71
IEEE RTS with 1.4*EV 3096.8 0.315 59.644 29.05 0.3343 68.5134 33.6
IEEE RTS with 1.6*EV 3140.2 0.3388 76.6511 33.28 0.3498 83.7082 38.71
IEEE RTS with 1.8*EV 3183.6 0.3514 90.9122 38.44 0.3683 96.2372 44.37
IEEE RTS with 2*EV 3227 0.4198 106.206 44.84 0.4314 112.9503 49.01

TABLE VI
CAPACITY VALUE (% OF INSTALLED CAPACITY) UNDER DIFFERENT PV

GENERATION PROFILE

Capacity
(MW)

CV (%) based
on Predicted

PV profile

CV (%) based
on Predicted

Lower PV
profile (95%)

CV (%) based
on Predicted

Upper PV
profile (95%)

0 0 0 0
20 25 10 30
40 25 15 35
60 28.33 16.67 36.67
80 28.75 17.50 36.25

100 29 17 36
120 29.17 17.50 35.83
140 28.57 17.86 35.71
160 28.75 17.50 35.00
180 28.33 17.22 34.44
200 28.50 17.00 33.50
220 28.18 16.82 33.18
240 27.92 16.67 32.50
260 27.31 16.92 31.92
280 27.14 16.43 31.07
300 27.00 16.33 30.67

base load of IEEE RTS. The penetration of EV load can shift
the load profile of a system and can either increase or decrease
the correlation between the generation profile of PV with the
load profile. In almost all cases, the addition of EV load
decreases the capacity value of the PV which is also shown
through Table VII. The reduction in capacity value is attributed
to the decrease in coincidence between the PV profile and
resultant load profile due to the addition of EV load.

E. Sensitivity Analysis

In this case study, a sensitivity analysis is conducted to
observe the impact of availability parameters of a generator on
power system reliability. The MTTF of the largest generator,
having a capacity of 400 MW and located at bus 21, is
varied, and the corresponding reliability metrics are computed.
Considering the ratio of base MTTF and MTTR as 1 per unit,
the MTTF is varied such that the per unit value is changed
from 0.5 to 1.5 per unit. Table VIII illustrates the sensitivity of
all the reliability metrics to different values of availability of
the largest generator. The result demonstrates that the decrease
in per-unit values increases the downtime and reduces the
system reliability, causing more load curtailment or requiring
additional reserve resources. Conversely, increasing the per-
unit values enhances the system’s reliability and reduces

TABLE VII
CAPACITY VALUE (% OF INSTALLED CAPACITY) WITH AND WITHOUT EV

LOAD

Capacity
Factor

Capacity
(MW)

CV (%)
Based on LOLP

( IEEE RTS load)

CV (%)
Based on LOLP

(IEEE RTS plus EV load)
0 0 0 0

0.1 20 30 35
0.2 40 35 35
0.3 60 36.667 35
0.4 80 36.250 35
0.5 100 36.000 34
0.6 120 35.833 33.333
0.7 140 35.714 32.143
0.8 160 35.000 31.875
0.9 180 34.444 31.111
1 200 33.500 30.000

1.1 220 33.182 29.545
1.2 240 32.500 28.750
1.3 260 31.923 28.077
1.4 280 31.071 27.500
1.5 300 30.667 26.667

load curtailment. This sensitivity analysis can identify critical
components whose reliability has a disproportionate effect on
overall system performance, guiding maintenance strategies,
and investment decisions.

TABLE VIII
SENSITIVITY OF RELIABILITY METRICS TO CHANGE IN GENERATOR’S

AVAILABILITY

Per Unit
(Ratio of MTTF to MTTR) LOLP EDNS

(MW/yr)
LOLF

(Occ/yr)
1.5 0.0007 0.0639 3.29
1.4 0.0008 0.0707 3.56
1.3 0.0009 0.0839 3.82
1.2 0.001 0.1131 4.19
1.1 0.0011 0.1352 4.43
1 0.0013 0.1601 4.9

0.9 0.0016 0.2259 5.41
0.8 0.0018 0.2455 6.14
0.7 0.0019 0.2915 6.38
0.6 0.0021 0.2991 7.25
0.5 0.0024 0.35 8.24

V. CONCLUSION

The paper has conducted a comprehensive reliability anal-
ysis for a power system, considering uncertainties in pho-
tovoltaic (PV) power and the influence of electric vehicles
(EVs). To assess the impact of uncertainty associated with
PV power generation, a PV interval forecasting model was
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developed using the K-Nearest Neighbors (kNN) algorithm.
An hourly, daily, and weekly EV load models were developed
considering different factors such as locations of charging
stations, types of EVs, and drivers’ behavior. Multiple case
studies were conducted to determine the annual and annu-
alized reliability indices under different penetrations of EV
load along with the consideration of forecasted PV interval.
Annual and annualized reliability indices were computed using
Sequential Monte Carlo simulation (MCS) to determine the
impact of PV interval, combined system load (hourly and
peak), line failures, and demographic characteristics associated
with EV. Furthermore, the study was extended to perform sen-
sitivity analysis and determine the impact of different loading
conditions and PV generation profiles on the capacity value
of PVs with different capacities. The calculation of capacity
value was based on loss of load probability (LOLP) and
discrete convolution was utilized. The proposed approach was
demonstrated in the IEEE Reliability Test System. The results
demonstrated the effectiveness of the proposed approach to
conduct a detailed reliability analysis under the consideration
of uncertainties associated with the EV and PV.
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