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Abstract

Call a hereditary family F of graphs strongly persistent if there exists a graphon W
such that in all subgraphons W’ of W, F is precisely the class of finite graphs that have
positive density in W’. Our first result is a complete characterization of the hereditary
families of graphs that are strongly persistent as precisely those that are closed under
substitutions.

We call graphons with the self-similarity property above weakly random. A hered-
itary family F is said to have the weakly random Erdés—Hajnal property (WR) if every
graphon that is a limit of graphs in F has a weakly random subgraphon. Among
families of graphs that are closed under substitutions, we completely characterize the
families that belong to WR as those with “few” prime graphs.

We also extend some of the results above to structures in finite relational languages
by using the theory of theons.

Keywords: Graph limit, theon, quasirandomness.

1 Introduction

The theory of graph quasirandomness implies that quasirandom graphons are the only
graphons W with the self-similarity property that densities of finite graphs are invariant
across subgraphons of W (see [Tho87, CGW89] for graph quasirandomness and [Lov12] for
graphons). An interesting weakening of this property, which we will motivate further below,
is to require only that the family F of finite graphs that have positive density is invariant
across subgraphons of W. We call graphons with this property weakly random. It is natural
to ask which families F can be realized in this way in some weakly random W. Since all
constant graphons are quasirandom, thus also weakly random, three such families are the
cliques, the anti-cliques and the family of all finite graphs. However, there are other fami-
lies that can be realized in this way such as the family F¢, of all cographs, that is, graphs
such that every induced subgraph of size at least 2 can be partitioned into two non-trivial
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parts that are either complete to each other, or empty to each other. Alternatively, F¢, is
precisely the family of finite graphs that are induced subgraphs of some recursive blow-up of
the 4-cycle. Strong persistence of F¢, is seen since the limit W, of the balanced recursive
blow-ups of the 4-cycle is weakly random and realizes the family F¢,.

The work of this paper is to show that this notion of weak randomness supports a rich
structure theory and provides an illuminating way of studying hereditary classes of graphs
based on properties of their limit objects. Before stating our main results, let us further
motivate why the study of weak randomness is both natural and tractable, which begins by
asking what is special about large cliques and anti-cliques.

Recall that the Erdés-Hajnal Conjecture [EH89] says that for any proper hereditary
class of graphs, there exists a constant ¢ > 0 such that any graph of size n in this class
either has a clique or an anti-clique of size n® we will refer to this property of a hereditary
class as the Erd6s—Hajnal property and abbreviate it as EHP (see also [Chul4] for a survey).
In [CM22], we studied a natural variant of this question in the presence of convergence, called
the approximate Erdés—Hajnal property (AEHP), in which we allow for a negligible amount
of non-edges in the almost clique or a negligible amount of edges in the almost anti-clique,
but require it to be linear-sized. The framework of AEHP naturally lends itself to analysis via
limit theory, i.e., graphons [LS06] in the graph case, or more generally, flag algebras [Raz07]
and theons [CR20] in the case of universal theories in finite relational languages.

The aforementioned family F¢, of cographs plays a key role in some of the classical results
on the usual Erdés—Hajnal Conjecture: namely, a consequence of [APS01, Theorem 1.1]
is that any hereditary class that does not contain F-, has EHP. However, this is not a
characterization of EHP as several classes that contain JF¢, still have EHP; easy examples
include perfect graphs and Ps-free graphs (i.e., disjoint unions of cliques) and hard examples
include bull-free graphs [CS08] and Cs-free graphs [CSSS23)].

On the other hand, surprisingly, hereditary classes of graphs with AEHP can be charac-
terized as precisely those that avoid containing F¢,, see [CM22, Theorem 8.10]. In what
follows, it will be more convenient to think about hereditary classes of graphs as the models
of a particular universal first-order theory T of graphs, so a graphon of T is simply a limit
of finite models of 7. This shift in language supports the model theoretic perspective of
studying the theory T' (i.e., a hereditary class of graphs) by studying the variation in the
class of its infinite models (i.e., its graphons). In this language, a universal theory T of
graphs has AEHP if every graphon of 7" has a (large) trivial subgraphon, i.e., an almost clique
or an almost anti-clique, see [CM22, §7] and Definition 2.9.

In the proof of the negative side of the characterization of AEHP for graphs, if all cographs
are models of T, then the limit W, is a graphon of 7. Looking through the lens of weak
randomness, it is clear that W, does not contain trivial subgraphons since both the edge
and the non-edge must persistently have positive density in all subgraphons of W¢,. Part
of the characterization of AEHP involved showing that persistence of the edge and non-edge
implies persistence of every graph in Fg,. Thus, we are led to ask which families arise as
persistent classes of graphons, i.e., families F of graphs that are precisely those that have
positive density in all subgraphons of a given graphon W. A related notion is that of a



strongly persistent class, in which the graphon is further required to be weakly random. A
priori these notions are different since a non-weakly random graphon can have finite graphs
with positive density in only some of its subgraphons.

The first theorem of the present paper is to show the equivalence of strong persistence
and persistence and to characterize such families as precisely those that are closed under
substructures and substitutions (see Definition 3.8). This requires both understanding prop-
erties of substitutions and the construction of appropriate weakly random limits. We prove
this result first for graphs (Theorem 4.4) and then a suitable generalization of it for struc-
tures in arbitrary finite relational languages (Theorem 7.9) after developing suitable exten-
sions of the relevant concepts. The appearance of substitution in this characterization, and
of the related notion of primality in what follows, is not completely unexpected as both
the Erdés—Hajnal property and its approximate version behave very well under substitution
(see [APSO1, Chul4] for EHP and [CM22] for AEHP).

Since cliques and anti-cliques are weakly random, we can extend the picture of AEHP by
defining the class WR as follows: a universal theory of graphs is in AEHP if all its graphons
have trivial subgraphons and a universal theory of graphs is in WR if all its graphons have
weakly random subgraphons. It is immediate that AEHP C WR, it is less immediate but shown
in the present paper that this containment is proper and that not every universal theory is
in WR. Because of the nature and simplicity of the characterization of AEHP for graphs cited
above, it becomes plausible that a characterization of the richer WR class may exist.

In Theorem 5.4, we characterize theories of graphs in WR under the additional natural
assumption of closure under substitution as those that have “few” prime graphs in the sense
that there are no infinite antichains of prime graphs in the induced subgraph partial order,
a condition we call primally almost finite. In one direction, we build on the analysis of
persistence of Theorem 4.4 and in the other direction, the technology of recursive blow-ups
plays a key role. Note that without the assumption of closure under substitutions, it is
obvious that WR is no longer characterized by the primally almost finite condition as, e.g.,
the theory of bipartite graphs is in WR (even in AEHP) but has infinite antichains of prime
graphs.

Many further questions are discussed in the concluding Section 9.

Let us point out that although [CM22] provides a good motivation for the current work, it
is not a pre-requisite for the current paper and we do not rely on any of the results of [CM22]
for our study of weak randomness and the class WR, except for a straightforward characteriza-
tion of subgraphons and sub-objects [CM22, Lemmas 3.3 and 5.8] (see also Section 2 below).
To read the current paper, it will be useful to have some familiarity with the theories of
graphons and theons, but we repeat the relevant definitions and results in Section 2 to set
the notation.

Now we describe the structure of the paper. In Section 2, we review the necessary prelim-
inaries and set notation. Section 3 starts to develop the properties of substitution, primality
and almost finiteness, which we will need for the rest of the paper. Section 4 is devoted to
proving the persistence result for graphs, Theorem 4.4. Section 5 defines the class WR for
graphs and proves the characterization under the assumption of closure under substitutions,



Theorem 5.4. In Section 6, we study how the notions of weak randomness interact with
VC dimension, show that weakly random graphons of proper theories of graphs must be a.e.
{0,1}-valued (Theorem 6.2) and show that primally almost finite families of graphs must
have bounded VC dimension (Theorem 6.10). In Section 7, we prove the general characteri-
zation of strongly persistent classes of structures in finite relational languages (Theorem 7.9).
In the brief Section 8, we point out which results concerning WR generalize easily to finite
relational languages. In the final Section 9, we summarize and discuss some open problems.
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2 Preliminaries

In this section, we establish the notation and background results that will be used throughout
the paper. The core results of the paper are in probabilistic combinatorics, and most of the
results and proofs are stated in that language. Still, there are quite a few points where we
believe the introduction of (simple) model theoretic language is more natural both to explain
our approach and to organize the results, as we shall explain.

We denote the set of non-negative integers by N and the set of positive integers by

N4 d:efN\{O} and given n, k € N, we let [n] o {1,...,n} and let (n)g d:efn(n—l) - (n—k+1)

denote the falling factorial. Given a set V and k € N, we let (V) be the set of injective

functions [k] — V, we let (Z) &of {A C V| |A| = k} be the set of subsets of V of size k,

let () of U?:o (V) and we let r(V') o Uken, (V) be the set of non-empty finite subsets of
V. We will often abuse notation and write n in place of [n] when V' = [n] in some of the
notation.

2.1 Terminology from model theory: structures and theories

In this paper a main object of study is hereditary classes of graphs. These can be seen as
a special case of what are called in model theoretic language “classes of structures in finite
relational languages” or even “universal theories”, and often the greater level of generality
is useful. We now explain all these (quite natural) definitions.

Recall that a family of graphs (up to isomorphism) is called hereditary if it is closed
under induced subgraphs. As an example, consider the triangle-free graphs, and observe the
following. Using R as the binary edge symbol, we can write a set of axioms Ty of first order
logic which capture this class of graphs. First, the theory of graphs T, apn Will say: the edge
relation is symmetric [ VaVy(R(z,y) <= R(y,z)) ] and irreflexive | VaVy(R(z,y) =
x # y) |. To obtain Ty, we add the axiom that there are no triangles [ VaVyVz —(z #
yANy # 2Nz # cAR(z,y) NR(y, z) ANR(x, z)) |. This Try is called a universal theory because
it uses only universal quantifiers, and to a model theorist, this explains the fact that the



axioms still hold on any induced substructure, or in other words, the graphs satisfying the
axioms Try; form a hereditary class. Model theorists consider a set of axioms and the class
of structures satisfying those axioms to be two sides of the same coin, so in logical parlance
we could say we are studying the hereditary family of triangle-free graphs, or equivalently,
we are studying the universal theory Try;.

To motivate the phrase “finite relational languages”, observe that there are other natural
hereditary classes we might want to study, such as: linear orders, tournaments, 3-uniform
hypergraphs; or perhaps the class of hypergraphs on which we have both a graph edge F and
a 3-uniform hyperedge R, and E has no triangles and R has no tetrahedra (i.e., there are no
four vertices such that every three form an R-hyperedge).! The following three definitions
give us the right level of generality. First, we choose our alphabet.

Definition 2.1. A finite relational language L is a set of finitely many symbols Py, ..., P,,
each given with an arity k(P;) € Ny.

Second, when we define a graph G, we present it as a set V' of vertices along with a set
R CV xV of edges, and L-structures just extend this in the obvious way:

Definition 2.2. Given a finite relational language £, an L-structure M is given by:

(a) the data of a set V' (M), called the vertices of M or the domain of M, and

(b) for each P; € L, a subset of V(M)*) that is, the set of k(P;)-tuples on which P
holds. This set is denoted P and called the interpretation of P; in M.

Finally, we make the bridge to theories:?

Definition 2.3. A universal theory T in the language L is a set of axioms (i.e., a set of well
formed formulas of first order logic, using basic logical symbols along with the symbols from

L) in which the only quantifiers are universal. An L-structure M is said to be a model for
T, in symbols M =T, if all the axioms T hold in M .3

Throughout this text, unless explicitly mentioned otherwise, all languages are assumed
to be finite relational languages. We allow? structures to have empty vertex sets and the
unique structure with empty vertex set, called trivial structure, is denoted K,. Given an

L-structure M, V C V(M) and v € V(M), we denote the substructure of M induced by V'

by M|y (i.e., we have V(M) & V and PMIv & pM A VE(P) for every P € £) and we let

def
M —v = My fv}-

We put the following in a convention environment to emphasize its importance:
Convention 2.4. Our substructures and subgraphs will always be induced, but keeping

with the tradition of the fields, we will use the short term “substructure” for the former but
the full term “induced subgraph” for the latter.

LA series of formal examples will be worked out later in this section.

2Observe that each of the hereditary classes listed before Definition 2.1 can be expressed as a class of
models for some appropriate universal axioms using an appropriate £: for instance {<} with k(<) = 2, {R}
with k(R) = 2, {R} with k(R) = 3, and {E, R} with k(E) = 2 and k(R) = 3, respectively.

3Formally defining “M = T” requires an induction on formula complexity, as in [CK90, Chapter 2].

4This may seem curious to model theorists but simplifies our calculations.



In this paper, and elsewhere, the word “structure” and “model” are used interchangeably;
often the first emphasizes the abstract aspect, and the second emphasizes the relation to a
theory. Basic model theory verifies that these work as intended: when T is a universal
theory, the class of models of T is closed under substructures, i.e., is a hereditary class.

4

Convention 2.5. In this paper the phrase “universal theory” will denote both a fixed uni-
versal set of axioms 7" in some fixed finite relational language £, and the class of L-structures
which are models for T', which, as noted, is a hereditary class.

The reader is free to substitute the phrase “hereditary class” for “universal theory”
throughout, keeping in mind the language being used and the appropriate notion of sub-
structure, and Convention 2.4.

Discussion 2.6. If the reader is essentially free to read “universal theory” as “hereditary
class,” why do we introduce this terminology? This indicates a certain change in perspective
which appears to be useful for theorems and proofs. Part of this choice reflects a history of
work in the area, as in the theons of [CR23|. Centrally for the present work, a characteristi-
cally model-theoretic move of “studying all models of a theory” can be seen in the definition
of the class WR and in various aspects of the proofs.

2.2 Counting embeddings of graphs and structures

In order to develop the theory of graph limits (see 2.6 below), one starts by defining labeled
(induced) density of a finite graph H in some other finite graph G. That is, let Tiq(H, G)
be the set of injective maps f: V(H) — V(G) which preserve edges and non-edges, and let

Tina(H, :
def Mﬂ if ’H’ < |G‘7
tina(H,G) = ¢ (IGDmy
0, otherwise.
One also defines the induced density of H in G:
det {U CV(H) | Gly = H}| |H]!
H = = * tin H7 )
p(H,G) ) |Aut(H)| a(H,6)

when |H| < |G| (and defined as 0 otherwise), which gives the normalized number of (un-
labeled) copies. The discussion in the previous subsection suggests an obvious extension of
this definition to the setting of finite relational languages. That is, given finite structures M
and N in a language £, we let Ti,q(M, N) be the set of embeddings of M in N (i.e., the set
of injective maps f: V(M) — V(N) that preserve all relations and their negations) and let

|Tina(M, N)|
tina(M, N) & (INDppg

0, otherwise

if |M| < [N,



be the labeled (induced) density of M in N. We also define the (induced) density of M in N
as the normalized number of substructures of N that are isomorphic to M given by

st {UCV(N) | Nlg=M}| M|
S (jnr) ~ JAut(M)]

|M]

: tind(M7 N)a

when |M| < |N| (and defined as 0 otherwise), where Aut(M) is the group of automorphisms
of M.

Given a universal theory 7" in £ and a set V', we let Ky/[T] be the set of all models M
of T" whose vertex set V(M) is V. Given n € N, we let M,,[T] be the set of models of 7" of
size n up to isomorphism; we typically think of M, [T] as a subset of ICy,[T] by putting one

representative of each isomorphism class in M,,[T]. We also let M|T] & Unen Ma[T7].

2.3 Open interpretations

When comparing hereditary classes it is useful to know when one contains the information of
the other in perhaps a different presentation. As a trivial example, consider the hereditary
class of triangle-free graphs in which the edge relation is called E (k(E) = 2) and the
hereditary class of triangle-free graphs in which the edge relation is called R (k(R) = 2). As
a slightly less trivial example, compare these to the hereditary class of graphs in which each
vertex is either colored red or green, and the green vertices form a triangle-free graph.

This subsection introduces language for addressing such situations by identifying ob-
viously equivalent pieces of hereditary classes. Model theorists will recognize “open” as
meaning “quantifier-free”.

Recall that for universal theories 77 and T3 in finite relational languages £ and Lo,
respectively, an open interpretation (or definition) from Ty to Ty is a function I (denoted
I: T, ~ T,) that maps each predicate symbol P € Ly to an open (i.e., quantifier-free)
formula I(P)(z1,...,zkp)) in Ly and such that for each axiom Vz, F'(Z) of T, we have T3 -
VZ, I(F)(Z) when we declare I to commute with logical connectives. Open interpretations of
the form I: Ty ~» Ty contra-variantly define maps Ky T3] — Ky [T7] for each set V' given by
(I(M) E P(Z)) < (M E I(P)(Z)) for each P € £;. In turn, for an open interpretation
I: Ty ~ Ty, we let I(T3) be the universal theory in the language of T} whose finite models
are precisely those of the form I(M) for some M € M[T5], that is, the axioms of I(T3) are

Vi, ..., Tn, \/ Dopen(I(M)) (21, ..., xn) (n € N),

MeK, [TQ}

where Dgpen(IN) is the open diagram of N, that is, the open formula

/\ xi#xj/\ /\ /\ P(xal,...,xak(m)/\ /\ _|P(x0617""x06k(]3))

1<i<j<n PeclLy \ aePN a€V(N)k(P)\ PN



that completely encodes the quantifier-free type (over @) of the tuple (1,...,n) in N. To
make sense out of Dypen(Ko) (which must be a quantifier-free formula on zero variables), we
allow our formulas to use the tautological truth symbol T so that Dopen(Ky) is defined as T.

An INT-isomorphism (or interdefinition) is an open interpretation I: Ty ~» Ty such that
there exists an open interpretation J: Ty ~~ T3 such that for every set V', the compositions
Jol: Ky[Ty] — Ky[Ty] and IoJ: Ky [T1] — Ky[T1] are the identity maps. Since p(M, N) =
p(I(M),I(N)) whenever I: Ty ~» T3 is an INT-isomorphism and M and N are finite models
of T, we typically do not distinguish between INT-isomorphic universal theories.

2.4 Canonical theories: avoiding the diagonal

When defining graphs we require the edge relation to be irreflexive. In general, a universal
theory T in L is canonical if T entails

VZL’l,...,l‘k(p), (\/l‘l = — ﬁP(f)) (]-)

i#]

for every predicate symbol P € £. By [CR20, Theorem 2.3| (see also [AC14, §2.2]), every
universal theory is INT-isomorphic to some canonical theory and as such, from this point
forward, all theories are assumed to be canonical theories, unless explicitly mentioned oth-
erwise.

We say that a canonical theory T is non-degenerate if it contains some infinite model
(equivalently, if M,,[T] is non-empty for every n € N).

2.5 Examples of theories used in the text

To make more concrete our use of “universal theories” rather than simply hereditary classes
of graphs, in this subsection we lay out some of the main examples used in the text, along
with a useful construction of a canonical theory. We have already seen the theory of graphs
TGraph, and we will say that 7" “is a universal theory of graphs” when T is a universal theory
that is obtained from Tty.pn by adding axioms, that is, its finite models are some hereditary
class of graphs (an obvious example is Tgapn itself, a less obvious one is the theory Ty of
triangle-free graphs).

A second kind of example is the theory of k-hypergraphs T}, typergraph, that is, the canonical
theory with a single symmetric irreflexive® k-ary predicate E. Obviously the theory of graphs

is simply TGraph = T2-Hypergraph- 111 these theories, we denote by K e M, [T, -mypergraph) the

complete k-hypergraph on n vertices (i.e., we have V(K,Sk)) e [n] and pr & ([n])x) and

we let K, def KT(?) be the complete graph on n vertices. Given a k-hypergraph G, we let G
denote the complement hypergraph of G (given by V(G) &of V(G) and E¢ o ([n)x \ EY).

In particular, Kik) is the empty k-hypergraph on n vertices.

5In the sense that the predicate is not true in any non-injective tuple.



Another example of a canonical theory is the theory of (strict) linear orders Tiinorder
i.e., the theory with a binary predicate symbol < and axioms

Vo, =(x < z),
Vf, (1‘1 7é To —> ($1 < ZToViIy < 1‘1)),
VT, (21 < mg AN X9 < T3 — T < X3).

Another useful theory is the theory of permutations Tperm L LinOrder U TLinOrder, Which
is the theory of two (strict) linear orders on the same ground set. Its finite models (up to
isomorphism) are in one-to-one correspondence to usual permutations via S, 3 o — M, €
M [Tpem], where the first order <17 of M, is simply the natural order on [n] and the second
order is given by

(My Ei=3j) < o (i) <o '(j).

Some other examples of theories that can be obtained from T.pn by adding axioms that

will be used are the theory of graphs of agreements of permutations TpermGraph &ty (Tperm),

where I': Tgraph ~ Tperm 18 given by

I(E)(a,y) (£ yA(z <1y &z <2 y)),

the theory of bipartite graphs Tgipartite; Which is obtained from Tyapn by adding the axioms
VZ, = Dopen(Cant1)(Z) for every n € Ny, where C; is the f-cycle graph and the theory of
perfect graphs, which by the Strong Perfect Graph Theorem [CRSTO06], is obtained from
Taraph by adding the axioms Vi, =(Dopen(Cont1)(Z) V Dopen(Cans1)(Z)) for every n > 2.

For every finite relational language £, we let Tx be the pure canonical theory in L, that
is, the theory whose axioms are precisely (1) for each P € L. Unless explicitly mentioned
otherwise, all £L-structures are assumed to be canonical structures, that is, models of T.

Given a family F of models of a canonical theory T, we let Forby(F) be the theory of
models of T that do not have any copies of models in F, that is, Forby(F) is obtained from
T by adding the axioms VZ, 7 Dgpen(F')(Z) for every F' € F (note that if F' = K, then this
formula takes the form =T, which is tautologically false, so Forbr(F) has no models when
Ky e F).

Another simple but useful construction is the following: if F is a family of finite L-

structures that is closed under substructures, then we let Th(F) & Forby, (M[T¢] \ F) be

the unique universal theory (up to reaxiomatization) such that M[Th(F)] = F.

2.6 Basics of graphons and theons

We start here with the language of models before specializing to the case of graphons, which
will be central for an initial segment of the text.

A sequence (N, )qen of finite models of a canonical theory T is called convergent if it is
increasing in the sense that |N,| < |N,y1| for every n € N and if for every M € M|[T],

9



the limit lim,, ., p(M, N,,) exists. Another way of seeing this convergence is that each finite
model N of T corresponds to the point p(—, N) € [0, 1] and convergence of an increasing
sequence (V,)neny amounts to convergence in the (compact metrizable) product topology of
[0, 1]MI7) of the corresponding sequence (p(—, Ny,))nen-

There are essentially two ways to encode limits of convergent sequences. The first is alge-
braically /syntactically: we say that a function ¢: M[T]| — [0, 1] is the limit of a convergent
sequence (N, )nen if ¢(M) = lim, o p(M, N,,) for every M € MIT]. The theory of flag
algebras [Raz07] describes the set Hom™ (A[T], R) of functions that are limits of convergent
sequences as precisely as the ones that induce positive homomorphisms from a particular
commutative R-algebra A[T] to R, but for this work, the unfamiliarized reader can safely
think of Hom™ (A[T],R) as simply a fancy notation for the subset of [0, 1]M[T of all ¢ that
are limits of some convergent sequence. Note that compactness of [0, 1]M"] implies that
Hom™ (A[T],R) is non-empty if and only if 7" is non-degenerate.

For ¢ € Hom™ (A[T],R), the theory of positive models of ¢ is the universal theory Th(¢)
whose finite models are precisely those models M of T' such that ¢(M) > 0, that is, the
axioms of Th(¢) are

V' Dopen(M)(z1,...,2,)  (n€N).

MeKn|T)
#(M)>0

The second way of encoding limits is geometrically /semantically. In the case of graphs,
we can encode limits using a graphon W over an atomless standard probability space €2 =
(X, A, i), that is, W is a symmetric function X x X — [0, 1] measurable in the completion of
the product o-algebra (typically, the space 2 is taken to be [0, 1] equipped with the Lebesgue
measure A, in which case, a graphon is simply a symmetric Lebesgue measurable function
[0,1]> — [0,1]). Given one such graphon W over 2 = (X, A, u) and a finite graph G, the
labeled (induced) density and the (induced) density of G in W are defined respectively as

tua G W) [ I Wi ) [I (-Wa) dul).

xvee ) wEE(G {v,w}eE(G)
def def |G|

where E(Q) & {{v,w} | G E E(v,w)} is the edge set of G and G is the complement of G.

We say that a convergent sequence (H,,),en of graphs converges to W if lim,,,, p(G, H,,) =
ow (G) for every G € M[Tgrapn]. Another way of interpreting t,q(G, W) above is to define
the set Tia(G, W) of labeled (induced) copies of G'in W as

(G W) d:ef{( y) € XV x 0, 1)("%) ‘V{v w} € (V(2G>>,

(.} € E(G) © yomy < W(asu,mw»} 2)

10



def

and note that (G, W) = (u ® A\)(Tina(G,W)). We also use the shorthand Th(W) =
Th(¢w) for the theory of positive graphs of W. Note that when W is {0, 1}-valued, we
can interpret it as the adjacency matrix of a graph with vertex set X and for (z,y) €
XY@ x o, 1)(V<2G)) such that all coordinates of x are distinct, we have (z,y) € Tina (G, W) if
and only if z is an embedding of GG in the graph encoded by the {0, 1}-valued W.

The main theorem of the theory of graphons [LS06] says that graphons precisely encode
limits of convergent graph sequences. Along with the flag algebra description, this can be
easily summarized as Hom™ (A[TGyapn), R) = {éw | W is a graphon}. However, let us note
that different graphons can represent the same limit; for example, for any graphon W over
[0,1], the graphon W' defined by W'(z,y) o W (2x mod 1,2y mod 1) represents the same
limit as W (i.e., we have ¢y = dp).

Another very useful theorem is the Graphon Removal Lemma [Pet13, Theorem 1], which
says that for any graphon W over €, there exists a graphon W’ that differs from W only by a
zero measure set (hence gy = ¢y ) and such that for every G € M[TGraph), if tina (G, W') = 0,
then Tina(G,W') € Dy (q), where

Dy ¥ {(x v (%) _

v ,y) € X x [0, D)\2) | Fo,w eV (v £ wAx, =2y)} (3)
is the diagonal set, that is, the Graphon Removal Lemma says that we only need to change
W in a zero measure set to remove all off-diagonal copies of finite graphs that have zero
density in W.

For the general case, we will use the theory of theons [CR20] (see also [Aus08] and [AC14]

for alternative semantic limits). Given an atomless standard probability space Q = (X, A, )

and a set V', we let &,(Q) & xr() (recall that (V) oo Uren, (‘2)), equipping it with the

completion of the product measure, which is denoted p as well, by abuse.

For a predicate symbol P in a finite relational language £, a P-on over €2 is a measurable
subset of & p)(). An Euclidean structure in L over € is a function A that maps each
predicate symbol P € £ to a P-on Np C Eyp)(Q). If we are further given a finite (canonical)
L-structure K, we define the set of labeled (induced) copies of K in N as

TuaKN)E ()| ) @)7WVe) 0 () (@) Ermy () \Np) |,

PeLl \ aePK ac(V(K))kp)\PE

where for each injection a: [k] — V, a*: Ey(Q2) — &(2) is the contra-variantly defined
“projection” given by

a*(2)a E oy (z € &), A€ r(k)). (4)
Similarly to the graphon case, we let

aei  |K]!

tina (K, N) 2 (T (K, ), ov () = B

. tind(KaN>7
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and we say that a convergent sequence of finite structures (NV,),en converges to N if

limy, 00 p(K, Ny,) = oar(K) for every finite structure K. Similarly, we use the shorthand

Th(N) & Th(gx) for the theory of positive models of AV,

For a canonical theory T in £, a (weak) T-on over ) is an Euclidean structure N in £
over §) such that ¢p/(K) = 0 whenever K is a finite L-structure that is not a model of 7. A
strong T-on over Q is a T-on N such that for every finite £-structure K that is not a model
of T', we have Tina(K,N) € Dy(x)(2), where

Dy(Q) {2z e & Q) | T,w eV, (v # wAzpy = 2iy)} (5)

denotes the diagonal set.

The main theorem of the theory of theons says that theons precisely encode limits of
convergent sequences of models, that is, we have Hom™* (A[T],R) = {¢x | N is a T-on}. In
fact, the easy inclusion of this equality is worth spelling out: given a T-on N over €, for
each n € N, we sample 0 in &,(Q2) according to p and let IN,, be the random element of
K.|T;] given by

V(N,) < [n],
(N, E P(a)) <= a*(0) € Np (PeL,ae ([n})k(p)),

where o*: [k(P)] — [n] is given by (4). It is a straightforward exercise on distribution
concentration to check that with probability 1, the sequence (INy,)nen converges to ¢n. In
particular, this means that any limit ¢ € Hom™ (A[T],R) is also a limit of a sequence of
models (N,)nen that does not omit sizes in the sense that |V,| = n for every n € N.
However, similarly to graphons, different theons can represent the same limit.

Similarly to graphons, another very useful theorem of the theory of theons is the Induced
Euclidean Removal Lemma [CR20, Theorem 3.3], which says that any weak T-on can be
turned into a strong 7-on by changing its peons only on a zero measure set (which in
particular means the two theons represent the same limit). A fortiori, by viewing a 7T-
on N as a Th(N)-on, the Induced Euclidean Removal Lemma implies that there exists a
T-on N’ whose peons differ from those of N only by a zero measure set and such that
Tina (K, N") C Dy(k)(2) whenever tinq(K,N") = 0.

Given an open formula F(zi,...,2,) in £ and an Euclidean structure A/ in £ over €,
the truth set T(F,N) C &,(Q) of F in N is defined inductively as follows.

i Tz =2, N) & €,(9).
i T(x; =2, N) ¥ @, if i # .

def

iii. T(P(xa,,-- ),N) =@, if a: [k(P)] — [n] is not injective.

- Tayp)

iv. T(P(Tays-- - Tayp ) N) L (@)Y (W) if a: [k(P)] — [n] is injective, where o* is as
in (4) for V = [n].
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v. T(—, N') commutes with logical connectives (so e.g., T(=F,N') & £,(Q)\ T(F,N) and

T(EF,V Fy, N) ¥ T(F, N) UT(Fy, N)).

One might argue that items (ii) and (iii) above should be defined as particular subsets of the
diagonal D,,(€2) (see (5)), but since all information is lost in D,,(2) (both in weak and strong
theons), the definition above is just as good but simpler. It is straightforward to check that
for K € K,[T¢], we have Tya(K,N) = T(Dgpen(K), N).

Open interpretations behave very well with the notion of convergence. Furthermore, there
are natural operations in the theories of flag algebras [Raz07, Definition 4 and Theorem 2.6]
and theons [CR20, Remark 6] that capture this action in the limit. Namely, if I: T} ~ T5 is
an open interpretation and (N, ),en is a convergent sequence of finite models of 75 converging
to ¢ € Hom™ (A[T3],R) and to the Ty-on N, then (I(N,))nen is a convergent sequence of
models of T converging to ¢! € Hom™ (A[T}],R) and to the Ty-on I(N) given by

SIM)E DN @(M) (M e MTY)), (6)
MIEM[TQ]
I(M)=M

IN)p ETI(P),N) (PeL)

Given ¢ € Hom™ (A[T],R), a sub-object of ¢ of measure ¢ > 0 is a ¢» € Hom™* (A[T], R)
such that there exist a sequence (N, ),en of models converging to ¢ and sets A, C V(N,)
such that lim,_,o|A,|/|Nn| = ¢ and (N4, )nen converges to ¢. By a small abuse, we may
use theons A/ and H in place of ¢ and/or v, respectively when ¢n = ¢ and ¢y = .
When the underlying theory is Trapn, we will use the more natural name subgraphon for the
concept of sub-object and with a similar abuse, we will use graphons W and W' in place of
¢ and/or 1), respectively when ¢y = ¢ and ¢y = 1.

For simplicity and for later quotation we spell this out:

Definition 2.7 (Subgraphons). Given a graphon W over an atomless standard probability
space (2, a (positive measure) subgraphon W’ of W is a graphon over a space €’ such that
there exist a sequence (H,)en of graphs converging to W and sets U, C V(H,,) such that
limy, 00| Un|/|Hn| > 0 and (Hy, |y, )nen converges to W.

Some useful equivalences are the following.
By [CM22, Lemma 3.3], ¢ € Hom™ (A[TGrapn), R) is a subgraphon of W of measure ¢ > 0
if and only if there exists a measurable function f: X — [0,1] with [ « [ dp = c such that

Y = ¢w|,, where W|; is the graphon over the space (1 aof (X, A, puy) defined by

Byl / £(x) dn( (7)

Wls(a,y) = W(z,y).

More generally, by [CM22, Lemma 5.8], v € Hom™ (A[T],R) is a sub-object of a theon
N over Q = (X, A, ) of measure ¢ > 0 if and only if there exist a measurable function
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f: X — [0,1] with fX f dp = c and a measure-isomorphism F' modulo 0 from the space
Qp = (X, A, puy) given by (7) to  such that ¢ = ¢N|lf’?‘ for the theon N|§" over Q; defined by

NP e S (Qp) |27 €N} (P L),

where 2 € E,(p) () is given by

QjF d:ef rp, 1f‘B|217
B F(xp), if |B|>2.

When the function f in the above is the indicator function 14 of some positive measure
set A C X, we use the shorthands 4 def pa, 4 def Qu,, Wia dof Wiy, and N4 d:ef/\/'H?A
for the concepts above. However, we point out that not every sub-object of A is necessarily
of the form N| for some positive measure set A (see [CR23, Example 45)).

2.7 The approximate Erdos—Hajnal property

We conclude this section by recalling the definition of the approximate Erdés-Hajnal prop-
erty (AEHP) from [CM22, Definition 7.1].

Definition 2.8. A universal theory T in a finite relational language £ has the approximate
Erd6s—Hajnal property (AEHP) if every limit ¢ of T" has a trivial sub-object, i.e., a sub-object
¥ of the form ¢ = ¢, for some T-on N whose peons all have measure in {0,1}.

In particular, the definition above specializes to universal theories of graphs as follows.

Definition 2.9. If 7" is a universal theory of graphs (in other words, if T is a hereditary class
of graphs), then T € AEHP if every graphon that is a limit of T" has a trivial subgraphon, i.e.,
a subgraphon that is either a.e. equal to 0 or a.e. equal to 1.

An equivalent formulation of AEHP (see [CM22, Theorem 7.11]) is that for every convergent
sequence (N, )nen of models of T', there exist sets U, € V(V,,) with lim,, o |U,|/|Ny,| > 0 and
(Nn|u, Jnen converges to a trivial limit. In other words, AEHP for graphs requires linear-sized
almost cliques or almost anti-cliques in the presence of convergence.

The property AEHP was introduced and its graph version was characterized both combi-
natorially and model-theoretically in [CM22].

3 Substitution and primality

A simple operation for graphs that is useful in studying the Erdés—Hajnal property and its
approximate version (AEHP, see Definitions 2.8 and 2.9) is substitution. While for graphs
this operation has received considerable attention [Gia97, APS01, Zve03, CKOS16], we will
need a slight generalization of it for structures in finite relational languages along with some
associated notions (e.g., primality).
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In the graph case, some of the results of this section have appeared in some shape or
another in the literature. As such, in Section 3.1, we state the definitions and the results for
graphs that we will use without proofs but with pointers to their corresponding generaliza-
tions for relational structures that appear in Section 3.2 with proofs. The reader that feels
sufficiently confident in their knowledge of these and is only interested in the graph case may
read Section 3.1 then freely skip the remainder of the section.

3.1 Substitution and primality for graphs

Definition 3.1 (Graph version of Definition 3.8). Given two graphs F; and Fy and v €
V(F}), the substitution of v in Fy by F, is the graph F}~** obtained from the disjoint union
of F} — v with F» by adding all edges of the form {u,w}, where u € V(F}) is a vertex that
is adjacent to v in I} and w is a vertex of I, (see Figure 1 for an example).

U1
U1 V2
Vo w1 wo wy wo
Vo
v wa ws
3 w2 w3 v
V4 3
V4
vo—Fo
F Fy By

Figure 1: Example of a graph substitution.

We say a family F of graphs (up to isomorphism) is closed under substitution if for every
F\,F, € F and every v € V(F,), we have F} " € F. The closure under substitutions of F
is the smallest family S(F) containing F that is closed under substitution.

A graph F is called prime if it is not a substitution of v in F} by F5 for any graphs F}, F
and v € V(Fy) with |Fy|, |Fy] < |F|.

Lemma 3.2 (Graph version of Lemma 3.15). Let F be a non-empty family of graphs (up to
isomorphism) that is closed under substitutions. Then F is closed under induced subgraphs
if and only if F contains the trivial graph K of size 0.

Lemma 3.3 (Graph version of Lemma 3.16). Let Fy, Fy be finite graphs and let v € V (F}).
If F' is an induced subgraph of Ff’_}&, then there exist induced subgraphs Gy and Gy of
Fy and F,, respectively, with v € V(G,) such that F = GV~
Conversely, if G1 and Gy are induced subgraphs of F| and F5, respectively, with v €
V(G,), then GV~ is an induced subgraph of FY' 2.
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Lemma 3.4 (Graph version of Lemma 3.17). If F is a (not necessarily finite) family of
graphs (up to isomorphism), F' € S(F) and P is a prime induced subgraph of F', then P is
an induced subgraph of some F' € F.

Lemma 3.5 (Graph version of Lemma 3.18). Let F be a family of finite graphs (up to
isomorphism) that is closed under substitutions and closed under induced subgraphs and let
P be the set of graphs in F that are prime. Then F = S(P).

Conversely, if P’ is a family of prime finite graphs that is closed under prime induced
subgraphs and F = S(P'), then P’ = P.

Definition 3.6 (Graph version of Definition 3.20). We say that a family of graphs F (up
to isomorphism) is almost finite if F does not contain any infinite antichain in the induced
subgraph partial order. Equivalently, F is almost finite if for every infinite 7' C F, there
exist Fy, Fy € F' such that F} is a proper induced subgraph of F5.

By letting further P be the set of all graphs of F that are prime, we say that F is primally
finite if P is finite and we say that F is primally almost finite if P is almost finite.

Lemma 3.7 (Graph version of Lemma 3.23). The following are equivalent for a family F of
finite graphs (up to isomorphism).
i. The family F is almost finite.

ii. For every sequence (F,)nen in F, there exist n,m € N such that n < m and F, is an
induced subgraph of F,,.

3.2 Substitution and primality for relational structures

Definition 3.8. Given two structures F} and F3 in a finite relational language £ and v €
V(F), a substitution of v in Fy by Fy is an L-structure F' such that there exist functions
fi: V(Fy —v) = V(F) and fo: V(Fy) — V(F) such that

L V(F) =im(fi) Uim(fs),
ii. fy is an embedding of F3 in F,

iii. For every u € V(F3), the extension of f; to a function V(F;) — V(F') that maps v to
f2(u) is an embedding of F} in F'.

We call the substitution F' standard if V(F;) NV (F;) = @ and the functions f; and f, act
identically on their domains (thus V(F) = (V(Fy) \ {v}) UV (F3)). (See Figure 1 for a graph
example.)

The unique substitution F' (up to isomorphism) of v in F; by F; that has the smallest
possible relation sets P¥ (P € L) is called the conservative substitution of v in Fy by Fy and
is denoted FY7*2. If V(F\) NV (Fy) = @, then we can formally define F} > by

V(EP)E (V) \ {o}) UV (B),

v—Foy def

P T = PR Ufoalac PR Aue VI(R)Y,
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for every P € L, where f,: V(F) — V(F3) is the function that acts identically on V' (F;)\{v}
and has f,(v) = u.

We say that a family F of L-structures (up to isomorphism) is strongly closed under
substitutions if for every Fi, Fy € F, every v € V(F}) and every substitution F' of v in Fj
by F, we have F' € F. We say that F is weakly closed under substitutions if for every
Fi, Fy, € F, every v € V(F}), there exists some substitution F' of v in F} by F, such that
F € F. The strong closure under substitutions of F is the smallest family S(F) containing
F that is strongly closed under substitutions.

We say that a finite £-structure F' is primeS if it is not a substitution of v in F} by
F, for any Fy, Iy and v € V(Fy) with |Fy|,|Fy| < |F|. We say that an L-structure F' is
monochromatic if for every unary predicate symbol P € L, we have F E VaVy, P(x) +» P(y),
that is, each unary predicate is either true everywhere or true nowhere in F'.

Example 3.9. To illustrate Definition 3.8, which includes subtleties that do not appear the
case of graphs, suppose H is a family of 3-uniform hypergraphs, with hyperedge R. Suppose
our family contains F, the empty hypergraph on vertices {vy, ve, v3,v4}, and F; is the hyper-
graph on vertices {wy, wq, w3} having a single hyperedge (wy, wy, w3). Suppose we substitute
Fy into Fi by replacing the vertex vy by a copy of F5. In the hypergraph resulting from the
substitution, the vertex set is {w, waq, w3, ve, v3,v4} and the requirements of the substitution
are that there is a hyperedge (wy,ws, ws), and that there is no hyperedge involving exactly
one of the w;’s and exactly two of the v;’s. However, this does not completely determine
a hypergraph, since we haven’t expressed an opinion about hyperedges involving two w;’s
and one v;. Roughly speaking the conservative substitution is the result of saying no to all
additional hyperedges, whereas saying that H is strongly closed under substitution says any
choice on these non-determined hyperedges is represented in the class.

Remark 3.10. Note that if F' is a substitution of v in F; by Fs, then for every unary
predicate symbol P € L, we must have

(F1 E P(v)) = (FyEVx, P(x)),
(F1 E—=P(v)) = (Fy EVz,—=P(z)).

In particular, this means that any F that is weakly closed under substitution can have at
most one structure M; of size 1 (up to isomorphism), all structures F’ of F are monochromatic
and of the same “color” in the sense that for every unary predicate symbol P € £ and every
F € F with |F| > 1, we have M, F Vz, P(x) if and only if F' F Vz, P(x).

Remark 3.11. Note that if F' is a substitution of v in Fy by Fy, then |F| < max{|Fi|, |F5|}

if and only if min{|Fy|, |Fz|} < 1. When F) has a single vertex, then ' = Fy; when F; has

a single vertex, then F' = Fj; and when F5 has no vertices (i.e., F» = Kj), then FF = F} — v.
In particular, this means that every structure of size at most 2 is prime.

Remark 3.12. If all predicates in £ have arity at most 2 (which in particular covers the case
of the theory of graphs), then all substitutions are conservative and the notions of weakly

6This should not to be confused with the notion of prime model/structure of model theory.
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closed under substitutions and strongly closed under substitutions coincide. As such, in
Sections 4, 5 and 6 concerning Tgaph, we will drop the superfluous qualifiers “weakly” and
“strongly” from the terminology.

Remark 3.13. If all predicates have arity at least 3, then the notion of prime structure
completely degenerates: the only prime structures are the unique structures Ky, M; and My
of sizes 0, 1 and 2, respectively. The reason why every structure K of size at least 3 is not
prime is that for any v € V(K) and v € V(M,), K is a substitution of v in My by K —u
since all relations involving v must involve at least two other vertices.

Remark 3.14. If T' is a universal theory such that M([T] is weakly closed under substitution,
then 7' is non-degenerate if and only if M,y[T] # @.

Let us now prove some basic facts about substitutions and primality.

Lemma 3.15. Let F be a non-empty family of L-structures (up to isomorphism) that is
weakly closed under substitutions. Then F is closed under substructures if and only if F
contains the trivial structure K of size 0.

Proof. Follows since a substitution of v in F' by Kj is isomorphic to ' — v. O

Lemma 3.16. Let Fy, Fy be finite L-structures, let v € V(F}).
If F is a substitution of v in Fy by Fy and U C V(F), then there exist sets Uy C V(F})
and Uy C V(F,) with v € Uy such that F|y is a substitution of v in Fi|y, by Fa|u,.
Conversely, if Uy C V(Fy) and Uy C V(F) are such that v € Uy and F' is a substitution
of v in Fi|y, by Fs|u,, then there exist a substitution F' of v in Fy by Fy and a set U C V(F)
such that F|y = F.

Proof. Without loss of generality, by possibly renaming vertices, we can consider only the

case when F'is a standard substitution. Then it is straightforward to check that for U &

(UNV(F))U{v} and U, Lun V(Fy), we have that F|y is a substitution of v in Fi |y, by

F2|U2'

For the second assertion, by possibly renaming vertices, we may suppose without loss
of generality that F” is also a standard substitution. Then it is straightforward to see that
setting U & (Uy \ {v}) U Uy, there exists a standard substitution F' of v in F} by F; such
that F’U = F'. O]

Lemma 3.17. If F is a (not necessarily finite) family of finite L-structures, F' € S(F) and
P is a prime substructure of F', then P is a substructure of some I’ € F.

Proof. The proof is by induction in the minimum length ¢ of a sequence of substitutions
needed to obtain F' from elements of F.

If £ =0, then F' = F’ for some F’' € F, so P is a substructure of F”.

If £ > 0, then F is a substitution of v in M; by M, for some My, My € S(F) and some
v € V(M) such that if the minimum lengths of sequences of substitutions needed to obtain

18



My and M, from elements in F are ¢; and {5, respectively, then ¢; + f5 + 1 = ¢, which in
particular implies £, 5 < /.

Without loss of generality, suppose F' is a standard substitution of v in M; by Ms. By
Lemma 3.16, we know that there exist U; C V(M;) and Uy C V(M) with v € U; such that
P is isomorphic to some substitution of v in M|y, by Ma|y,. Since P is prime, we must have
|P| < max{|U], |Us|}, so by Remark 3.11, either P = M, |y,, P = M,|y, or P = M|y (v},
so P is a substructure of either M; or M, and by inductive hypothesis, it follows that P is
a substructure of some F’ € F. O]

As one might expect, prime structures play a major role in characterizing classes that
are strongly closed under substitutions. This is made precise by the next two lemmas.

Lemma 3.18. Let F be a family of finite L-structures (up to isomorphism) that is strongly
closed under substitutions and closed under substructures and let P be the set of structures
in F that are prime. Then F = S(P).

Conversely, if P’ is a family of prime finite L-structures that is closed under prime
substructures and F = S(P’), then P’ = P.

Proof. Let F' = S(P). It is obvious that 7 C F. Suppose toward a contradiction that
F\F' # @ and let F be an L-structure in F \ F of minimum size.

We claim that F'is prime. Indeed, if not, then F' is a substitution of some v in some F}
by some F, with |Fi|, |F2| < |F|. Since both Fy and F, are proper substructures of F' and
both F and F’ are strongly closed under substitutions and closed under substructures, this
contradicts the minimality of F. Thus F'is prime, so F' € P, which contradicts F' ¢ F'.

For the second assertion, if F is empty, then both P and P’ must also be empty. If F
is not empty, then each P’ € P’ is in F = S(P), so Lemma 3.17 implies that P’ must be
a substructure of some element in P, hence must also be in P as it is closed under prime
substructures (as F is closed under substructures). Similarly, every element of P must be
an element of P’ as the latter is also closed under prime substructures. O

Lemma 3.19. Let T' be a canonical theory in a finite relational language L and let F be the
set of minimal L-structures that are not models of T', that is, the set of all M € M[T]\ M|T]
such that every proper substructure of M is a model of T.

Then MIT] is strongly closed under substitution if and only if F contains only prime
structures.

Proof. For the forward implication, note that if M € M[T;] \ M[T] is not prime, then
it is a substitution of v in M; by M, for some M;, My € M[T,] with |M],|My| < |M]
and v € V(M;). Since M[T] is strongly closed under substitutions, we must have either
M, ¢ M[T] or My ¢ M[T], hence M ¢ F.

For the backward implication, first note that 7" is a reaxiomatization of Forbr, (F). Let
us show that if M is a substitution of v in M; € M[T]| by My € M[T], then M € M|T].
Without loss of generality, let us assume the substitution to be standard so there is the
natural identification of V(M) with (V(M;) \ {v}) UV (Ms).
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Suppose toward a contradiction that M ¢ M[T], that is, there exists F' € F and U C
V(M) such that M|y = F. Since My € M[T], we must have U NV (M;) # @ (otherwise,
F would be a substructure of M) and since M; € M[T|, we must have |U N V(M) >
2 (otherwise, F' would be a substructure of M;). But then F' is a substitution of v in

Ml|(UnV(M1))u{v} by M2|UnV(M2) and since

((UNV (M) U{o} <|UI = [UNV (M) +1 < [U] = [F],
UNV(Mp)| < [U] = |UNV(M)| < |U| = |F],

this contradicts the fact that F' is prime (as it is an element of F). Thus M|[T] is strongly
closed under substitutions. O

Next we cover the notion of an almost finite family of structures and some associated
notions.

Definition 3.20. We say that a family F of L-structures (up to isomorphism) is almost finite
if F does not contain any infinite antichain in the substructure partial order. Equivalently,
F is almost finite if for every infinite 7/ C F, there exist Iy, [y € F’ such that F} is a proper
substructure of F5.

Given a family F of L-structures (up to isomorphism), let P C F be the set of prime
structures in F and P’ C P be the set of monochromatic prime structures in . We say
that F is

i. primally finite, if P is finite,
ii. primally almost finite, if P is almost finite,
iii. monochromatically primally finite, if P’ is finite,
iv. monochromatically primally almost finite, if P’ is almost finite.

Example 3.21. An example of a family of graphs that is primally almost finite, strongly
(equivalently, weakly) closed under substitutions and closed under substructures but is not
primally finite is S({P, | n € N}), where P, is the path on n vertices.

An example of a proper family of graphs that is not primally almost finite, but is strongly
closed under substitutions and closed under substructures is S({ Ko} U{C,, | n > 5}), where
C, is the cycle on n vertices (it is straightforward to check that when n > 5, C,, is prime).

Another very important such example is the family S({G, | n > 6} U {K,}), where
G, is the graph obtained from P, by adding four vertices a,b,c,d and adding the edges
{a,b},{c,d},{a,2},{b,3},{c,n — 2},{d,n — 1}, assuming that V(P,) = [n] in the natural
order of the path (see Figure 2). It is straightforward to check that each G, is prime and
that they are pairwise incomparable in the induced subgraph partial order. Note also that
the paths P, are elements of S({G,, | n > 6} U{Ky}) as P, is a substructure of G,,.

20



a b c d
Gs
1 2 3 4 5 6 7
a b c d
G

Gg

Figure 2: Prime graphs G,, of Example 3.21 that form a family that is not almost finite.

Remark 3.22. A family F of the form F = S(P’) for some almost finite set of prime
structures P’ is not necessarily primally almost finite; this is because the set P of structures
in F that are prime is equal to the set of prime substructures of elements of P’, which may
be a proper superset of P’ (see Lemma 3.17).

As an example, consider the graphs G,, of Example 3.21 and for each n > 6, define the
(prime) graph H,, as the graph obtained from the disjoint union of G, . .., G,, by connecting

all first vertices of the Py inside of G} in a clique (see Figure 3). Obviously, each H, is

an induced subgraph of H,.,, so P’ & {Ko} U{H, | n > 6} is almost finite, but since

{G,, | n>6} CS(P), it follows that S(P’) is not primally almost finite.

The next lemma uses the fact that the substructure partial order on finite structures is
well-founded to provide a useful equivalent formulation of almost finiteness.

Lemma 3.23. The following are equivalent for a family F of finite L-structures (up to
isomorphism).

i. The family F is almost finite.

ii. For every sequence (F),)nen in F, there exist n,m € N such that n < m and F, is a
substructure of F,,.
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Figure 3: Prime graph Hy of Remark 3.22. Even though the family {K,} U {H,, | n > 6} is
almost finite, the family S({K} U {H, | n > 6}) is not primally almost finite.

Proof. We start with the implication (i) = (ii).

If there exist n,m € N with n < m and F, = F,,, then F, is a substructure of F,,.
Suppose then that the F), are pairwise non-isomorphic. Let I be the set of all n € N such
that for every m € N, F},, is not a proper substructure of F,.

We claim that I is finite. Indeed, otherwise, F' < {F, | n € I} would be an infinite
subfamily of F such that for all F, F" € F', F is not a proper substructure of F”.
We now construct inductively a sequence my,...,m; as follows. Let my > max(I).

Given my, if m; ¢ I, then there exists m;;, such that F,,, ,, is a proper substructure of F,,,;

otherwise, we set t & and stop the construction.

Since |Fi11| < |F;| and all structures are finite, the construction above must stop and by
a simple induction, we have that F},, is a proper substructure of F},,,. Finally, since m; € I
and mgy > max(I), we get m; < my.

t

Let us now show the implication (ii) = (i). Let F’ be an infinite subfamily of F and
enumerate it as (Fy,),en without repetitions. Then there exists n,m € N such that n < m

and F,, is a substructure of F;,. Since F,, # F,,, it follows that F;, is a proper substructure
of F,,. O

We end this section with the following proposition that relates the notions of primally
finite and primally almost finite for a family F strongly closed under substitutions and
closed under substructures with the number of subclasses of F that are strongly closed
under substitutions and closed under substructures.

Proposition 3.24. Let F be a family of finite L-structures that is strongly closed under
substitutions and closed under substructures, let S be the set of subfamilies F' of F that
are strongly closed under substitutions and closed under substructures. Then the following

hold.
i. F is primally finite if and only if S is finite.
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ii. F is primally almost finite if and only if S is countable.

Proof. Let P be the set of prime structures of F and let §” be the set of subfamilies P’ C P
that are closed under prime substructures. Then Lemma 3.18 gives a natural bijection
between S and S'.

Since P is finite if and only if S’ is finite, item (i) follows.

The same bijection between & and &’ implies that for item (ii), it is sufficient to show
that P almost finite is equivalent to S’ countable.

Suppose first that P is not almost finite, that is, P contains an infinite (countable)
antichain A C P. Then for each A" C A, let C4 C P be the set of elements of P that are
substructures of some element of A’. Since A is an antichain, it follows that for A, A” C A
distinct, we have C 4 # C4», hence 8’ has cardinality of the continuum.

Suppose now that S’ is uncountable. Let us define by induction in n € N two sequences
(Py)nen and (S))nen with the following properties.

1. &, € &' is uncountable.
2. There exists C € S, such that P, € C.

3. For every C' € S, |, we have P, ¢ C'.

We start by setting S ' S/ Given S, let P, oo Uces: C and for each P € P, we

let S (P) oo {€C € S, | P ¢ C}. Since S, is uncountable, P, is countable and S, C

{Pn} UUpep, S,(P), by the pigeonhole principle, there exists P, € P, such that S, (F,) is

uncountable. Set ), & S! (P,) so that by definition, we have P, € C for some C € §) but

P, & C' for every C' € S, ,,. This concludes the construction.

Since each C € &’ is closed under prime substructures, items (1), (2) and (3) together
imply that for every n < m, P, is not a substructure of P,,, so by Lemma 3.23, we get that
P is not almost finite. O

4 Persistence in graphons

In this section we study the notion of (strongly) persistent families of graphs (Definition 4.1
below). The main objective of this section is to characterize persistence for theories of graphs
in terms of closure under substitution and under induced subgraphs. We also remind the
reader that in this section we drop the qualifiers “weakly” and “strongly” from “closed under

substitutions” as they are superfluous for graphs (see Remark 3.12).
Definition 4.1. Let W be a graphon. The set of positive graphs in W is the set Q(W) o
M[Th(W)] of all finite graphs G' (up to isomorphism) such that ¢w (G) > 0. The set of

persistently positive graphs in W is the set P(W) oo Ny QW'), where the intersection
is over all subgraphons W’ of W. Clearly, P(W) and Q(W) depend only on the limit
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dw € Hom™ (A[Tgrapn], R). Thus, for ¢ € Hom™ (A[Tgrapn], R), we let P(¢) & P(¢y ) and
def

Q(9) = Q(éw) for any graphon W such that ¢ = ¢y .
A graphon W (or the limit ¢y it represents) is called weakly random if P(W) = Q(W).

Equivalently, W is weakly random if Q(W) = Q(W") for every subgraphon W’ of W.

A family of graphs (up to isomorphism) F is called persistent if there exists a graphon
W such that P(W) = F. The family F is called strongly persistent if there exists a weakly
random W such that P(W) = F (which must also equal Q(W)); in this case, we also say
that W (or rather ¢y ) is a universal weakly random limit of F. If T is a universal theory
of graphs, then we say that W is a universal weakly random limit of T if it is a universal
weakly random limit of M|[T].

Obviously, both Q(W) and P(W) are closed under induced subgraphs, Q(W’) C Q(W)
whenever W' is a subgraphon of W, P(W) C Q(W) and every strongly persistent family is
persistent.

Example 4.2. The simplest weakly random graphons are of course the two trivial graphons,
that is, the clique W =1 and the empty graphon W = 0.

The next in line are the non-trivial quasirandom graphons W, = p for some p € (0,1):
this is because just as the trivial graphons, the quasirandom graphons W, also have the
property that the only subgraphon of W, is W, up to zero-measure change. In fact, it is an
immediate consequence of the classic theory of graph quasirandomness [CGW89] that this
property characterizes the quasirandom graphons (see also [SS97, SS03] for related graph
quasirandomness properties); for general theories in finite relational languages, this property
is called UInduce[l] in [CR23] and is a strengthening of the more well-known discrepancy and
clique-discrepancy properties from hypergraph quasirandomness (see [CG90, Chu90, KRS02,
LM15, Towl7, AHCH"18]).

Other examples of weakly random graphons are the recursive blow-up of C} (see Proposi-
tion 5.9) and the graphon of agreements of the quasirandom permuton (see Proposition 5.11).

The following lemma is a simple but very powerful observation about persistent families.

Lemma 4.3. Let W be a graphon over a space Q = (X, A, ). Then P(W) = (1, Q(W]a),
where the intersection is over all positive measure sets A C X.

Proof. Since each W |4 is a subgraphon of W, it is sufficient to show that if H € (], Q(W]a),
then H € P(W). We prove this by the contra-positive: if there exists a subgraphon W’ of
W such that H ¢ Q(W'), then ¢y = ¢y, for some measurable function f: X — [0,1].
Let 4 & {r € X | f(z) > 0}. It is easy to see that Q(W|;) = Q(W|a), thus H ¢
N4 QW ]a). [

The objective of this section is to prove the following theorem that characterizes (strongly)
persistent families in terms of substitutions.

Theorem 4.4. The following are equivalent for a family F of finite graphs (up to isomor-
phism) containing at least one graph of size at least 2.

i. The family F is strongly persistent.
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ii. The family F is persistent.
iii. The family F is closed under substitutions and induced subgraphs.

Example 4.5. As we will see, both the theory Tperect of perfect graphs (Proposition 5.10)
and the theory Tpermarapn Of graphs of agreements of permutations (Proposition 5.12) have
their corresponding M|T] closed under substitutions, hence both these theories have a uni-
versal weakly random graphon (in fact, Proposition 5.11 gives an example for the latter
theory that is very different from the one produced in the proof of Theorem 4.4).

On the negative side, the theory of triangle-free graphs does not have M7 closed under
substitutions (as Ky € M[T] but K5 = Ki7* ¢ MIT]), so it does not have a universal
weakly random graphon.

We will prove Theorem 4.4 through a series of lemmas. As we noted before, the im-
plication (i) == (ii) is trivial. The implication (ii) = (iii) is a corollary of the following
lemma.

Lemma 4.6. If W is a graphon, then P(W) is closed under substitutions and induced
subgraphs.

Proof. 1t is obvious that Ky € P(W), so by Lemma 3.2, it is sufficient to show that P(W)
is closed under substitutions.

Let Fy,F, € P(W) and vy € V(Fy) and let us show that if W’ is a subgraphon of
W, then tyg(F7" W) > 0. Without loss of generality, we suppose V(F) NV (F) = @.
Suppose toward a contradiction that g (F° %2, W’) = 0. By possibly applying the Graphon
Removal Lemma [Pet13, Theorem 1] to W/, we may suppose that the set Tjq(Fro~2 W)
of copies of F{*~*> in W' is contained in the diagonal set Dy, =Py (see (3)).

Since Fy € P(W), we must have ti,q(F1, W) > 0, that is, the set T},q(F1, W) has positive
measure. For every (z,y) € XV F)\vod [0, 1)(‘/(51)), let

Uz,y d:ef {Z € X{’Uo} | ((Q?, Z)ay) € ﬂnd(Fh W/)}

By Fubini’s Theorem, there exists (z,y) € X"\l x [0, 1)(‘/(51)) with all x coordinates
distinct such that U, , has positive measure. Since W[y, , is a subgraphon of W', hence of
W, we must have tinq(Fa, W'|y,,) > 0, which implies that there exists (z,w) € XV x

0.n("<)
2 € Tina(Fy, W'). Thus, the point (Z,7) € XV(

with all z coordinates in U, ,, distinct and distinct from those in x such that

V(F;)O—>F2

1% [0,1)("2 ) defined by

FIUO"FQ

i Ya, if ACV(F vo
et ) Lo, ifveV(F)\ {w}, el wA i VE;; \ {vo}
° Zu, lf vV E V(FQ), Ya A — 2),

YAV (F1))u{ve}s Otherwise.

is a point in Tia(Fy2~F2, W)\ Dy, (pro-r2y, & contradiction. O
1
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To show the final implication (iii) == (i) of Theorem 4.4, we will use the repeating
recursive blow-up relative to an infinite sequence of graphs defined below.

Definition 4.7. Given a sequence V = (V})pen of finite sets with |V;| > 2 for every ¢ € N,
the Cantor probability space corresponding to V is the space QV = (ITeen Vi A, vV), where
A is the Borel g-algebra of the product topology on [],.y V2 and vV is the unique Borel
measure such that vV (K,v) = [[/_y|Vi|~" for every t € N and every o € [[\_, Vi, where
K, v is the basic clopen set given by

Kmv d:ef {T < H‘/g

leN

VKE{O,...,t—l}ﬂ'g:Jg}. (8)

Let G = (Gy,)men be a sequence of finite graphs with |G,,| > 2 for every m € N, we let

the recursive blow-up relative to G be the limit ¢ € Hom™ (A[Tqrapn], R) defined as follows.

We let V' = (Vi)sen be defined by V; oo V(G,) and define the graphon W& over the space

OV by

(9)

WE(z,y) % {1, if v # y and {zy,ye} € E(Go),
0, otherwise,
where ¢ is the first position in which z and y differ. Finally, we define ¢g f owe €
Hom™ (A[TGrapn); R) (see Example 4.10 and Figures 4 and 5 for examples).
We let the repeating recursive blow-up relative to G be the limit ¢, € Hom™ (A[Tgrapn], R)
defined as follows. For each ¢ € N, we let

me & max{m € N | 2™ divides ¢ + 1}, (10)

we let G* & (G, )een and we define ¢, g

Remark 4.8. Since W% is {0, 1}-valued, we can interpret it as a (measurable) graph H with
vertex set QY and the reader familiarized with lexicographic products of graphs should note
that H is simply the infinite lexicographic product of (G,)men-

Remark 4.9. The definition of the numbers m, in (10) guarantees a simple but very useful
property: for every m € N there exist infinitely many ¢ € N with m, = m. In fact, for every
m € N and every £ € N, there exists ¢ € N with ¢ < ¢/ < £+ 2™ such that my = m, that is,
for every m € N, we only need to wait at most 2™ steps to see m in the sequence (my)sen
regardless of where we start.

Example 4.10. If the sequence G consists of only one graph G’ repeated infinitely many
times, then ¢q is the limit of the usual notion of recursive blow-ups of a single graph G’ on
progressively more and more levels.

For example, the limit ¢¢, of recursive blow-ups of Cy used in [CM22, Definition 8.5]
(see Figure 4) is obtained as ¢ (or ¢f) when G is the sequence that is constant equal to
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Figure 4: Approximation of a graphon W over [0, 1] representing the limit ¢¢, of recursive
blow-ups of C, of Example 4.10. The graphon W% has a fractal structure, whose first 3
steps are represented in the picture.

Cy. Alternatively, ¢¢, is also obtained as ¢ for the sequence G’ o (Ky, Ky, Ky, Ko, ...)
that infinitely alternates between the edge graph K, and the non-edge graph K,. Also
alternatively, ¢, is obtained as ¢%, for the sequence G” = (K, K, Ks,...) whose first
element is Ky and all other elements are K, (as (G")* = G").

Let us show a simple structural fact about the Cantor probability space QV.
Lemma 4.11. Let V = (V;)sen be a sequence of finite sets with |V,| > 2 for every ¢ € N and
let A C QV be a set with positive measure. Then for every € > 0, there exists ty € N such
that for every t > to, there exists o € [[,_y Ve such that vV (AN K,yv) > (1 —¢) - vV (K,v),
where

KU,V d:ef {T < Hw

leN

S {O,...,t—l},Tg:Ug}

is the basic clopen set defined in (8).

Proof. Let B be the Boolean algebra generated by C & {Kyv |t €NAo €[], Vi} and

note that every set in B is a finite union of elements of C. In fact, since for every ¢t € N and
every o € [['_y Vi, the collection { K, v | v € Vi} forms a partition of K, v, it follows that
for every B € B, there exists tg € N such that for every t > tg, the set B can be written as

the disjoint union B = UU@B , Ko v where

t—1
def
£y, {a TIv
/=0

Kyyv C B}.
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Namely, we can take any representation of B as a finite union of elements of C and let {5 be
the maximum length of a ¢ used in this representation.

Since B generates the o-algebra A of QV, uniqueness of Carathéodory’s Extension The-
orem implies that for every ¢ > 0, there exists B € B such that V(4 A B) < 6.

We claim that by taking § < VW (A)-€/(1+¢) and tg & ¢4, we get that for every ¢ > to,
there must exist ¢ € Xp,; such that vV (K, \ A) < e- vV (K,v). Suppose not. Then we
have

02V (AAB)> Y VW \A) > > eV (Kyy) =€V (B) > (v (A) - 9),
UEEBJ O'GEB¢

from which we conclude that

1+e€
€

J- > vV (A),
contradicting the definition of 4. Finally, from v¥(K,yv \ A) < e¢- vV (K,y), we conclude
that vV (AN K,v) > (1 —¢€) - vV (K, ) as desired. O

Our next objective is to show that P(¢f) is precisely S({Ko} U {Gn | m € N}). We
start by showing the simpler fact {G,, | m € N} C Q(¢g) € S{ Ko} U{G,, | m € N}) in
Lemma 4.12 below. Clearly this implies the same statement for ¢.

Lemma 4.12. Let G = (Gy,)men be a sequence of finite graphs with |G,,| > 2 for every
m € N. Then {G,, | m € N} C Q(¢¢) € S{Ko} U{G,, | m € N}).

Proof. To see that every G,, has positive density in ¢, simply note that if we take an

arbitrary o € HZ:OI V(Gy) and set z, aof (o,v) for every v € V(G,y,), then x is an embedding
of G,, in W€ and thus

m
G

1nd Gm7 W Z H

:0

hence {G,, | m € N} C Q(¢¢).

To show that Q(¢c) C S({Ko} U{Gy | m € N}), we will prove a slightly stronger
result: let us show that if H is a finite graph such that Tiwa(H, W) € Dy (g, then H €
S({Ko} U{G,, | m € N}). The proof is by induction on |H|.

The first two base cases are when |H| <1 (i.e., H € {Ky, K1}), in which case trivially
He S{Ko} U{Gp | m e N}).

The next base cases are when |H| > 2 and H is prime. In this case, we show that H

must be an induced subgraph of GG,, for some m € N.
Recall that since W is {0, 1}-valued, the set Tina(H, W) \ Dy () is alternatively de-

scribed as the set of pairs (z,y) € (QV)VH) x [0, 1)(V(2H>> such that z is an embedding of H
in W€,
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Fix then one such point (z,y) and let ¢ € N be the length of the longest string o €
Z;é V(Gy) that is common to all coordinates of z, that is, for every v € V(H), we have

For each i € V(Gy), let U; = {v e V(H) | (x,); = i} and let H; & H|y,. Let also

1Y {i € V(Gy) | U; # @}. The structure of W& implies that H is obtained from Gy|; by

substituting each ¢ € I by H;. Since |H;| < |H| for every i € I and H is prime, it follows that
|Gy|7] = |H| and |U;| = 1 for every i € I, that is, the unique function 8: V(H) — V(Gy)
such that v € Ug(,) is an embedding of H in G;. Thus H is an induced subgraph of G;.

We now consider the inductive step when H is not prime. Then H is of the form Fy' 7
for some graphs Fi, Fy and v € V(F;) with |Fy|,|Fy] < |H|. By inductive hypothesis, we
have Fy, Fy € S({Ko} U{G,, | m € N}) and since this set is closed under substitutions we
get H € S{Ko} U{G,, | m € N}). O

Lemma 4.13. Let G = (G,,)men be a sequence of finite graphs with |G,,| > 2 for every
m e N. Then P(d%) = Q(0%) = S({Ko} U {Gr | m € NY).

Proof. By Lemma 4.12; we know that Q(¢f) € S({ Ko} U{G,, | m € N}) and since P(¢f) C
Q(¢g), it is sufficient to prove that S({Ko} U{G,, | m € N}) C P(¢f).

Let H € S{ Ko} U{G,, | m € N}) and let us show that H € P(¢f,) by induction on |H].

The base case is when H is a prime graph. By Lemma 3.4, we know there exists m € N
such that H is an induced subgraph of Gz, so it is sufficient to show that Gz € P(¢f). In
turn, by Lemma 4.3, it is sufficient to show that for every positive measure set A C QV, the
graph G has positive density in the subgraphon W& | 4.

Let € be any positive number with € < 1/|Gz|. By Lemma 4.11, there exists t; € N
such that for every t > to, there exists ot € [[\_V(Gm,) such that V(AN K,ey) >
(1—¢) VW (Kyy).

Let t € N be such that to < t <ty + 2™ and m, = m as provided by Remark 4.9. Let
also

T {T 3 ﬁV(GW)

Since {K,y | 7 € T} partitions K,y into |T| = |G,,,| = |G#| parts of equal measure, it
follows that for every 7 € T', we have

G| — 1

VIANK >l1l—-€e— —r—
v’ (AN T,V)_< € e

) VY (Kyy) > 0.

However, the definition of W implies that if we pick z, € Kyt )y for each v € V(Gg)
V(G#)

(and pick any y € [0, 1)( 2 )), then we get a copy of G in W& and since for every v € G,
we have vV (AN Kty v) > 0 (as (o%,0) € T), it follows that G has positive density in
we

A-
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For the inductive step when H is not prime, we must have H = F} 2 for some graphs
Fy, F, and some v € V(Fy) with |Fy|, |F2| < |H|. Since F; and F; are in P(¢F,) by inductive
hypothesis and P(¢,) is closed under substitutions by Lemma 4.6, it follows that H €
P(d%). 0

We can finally show Theorem 4.4 that says that a family F of graphs with at least one
graph of size at least 2 is strongly persistent if and only if it is persistent if and only if it is
closed under substitutions and under induced subgraphs.

Proof of Theorem 4.4. The implication (i) = (ii) is trivial: every strongly persistent family
is obviously persistent.

For the implication (ii) == (iii), if F = P(W) for some graphon W, then Lemma 4.6
implies that it is closed under substitutions and induced subgraphs.

For the final implication (iii) = (i), by Lemma 3.5, we have F = S(P), where P is the
set of graphs in F that are prime. Since F contains at least one graph of size at least 2, P
must also contain one such graph (since S({ Ko, K1}) = {Ko, K1}).

Let G = (Gyn)men be an enumeration of all graphs in P of size at least 2 (potentially
with repetitions if P is finite). Note that since F = S(P) is closed under induced subgraphs,
it follows that F = S({Ko} U {G,, | m € N}).

By Lemma 4.13, the repeating recursive blow-up ¢ relative to G satisfies P(¢g) =
Q(¢g) = F, hence F is strongly persistent. ]

5 Weak randomness in graphons

Recall that Theorem 4.4 characterizes all universal theories of graphs that contain a uni-
versal weakly random graphon. In this section, we study a related natural question (see
Definition 5.1 below): when does every graphon of a universal theory of graphs contain some
weakly random subgraphon? As mentioned in the introduction, this property is a generaliza-
tion of AEHP (see Definition 2.9). We also remind the reader that in this section we drop the
qualifiers “weakly” and “strongly” from “closed under substitutions” as they are superfluous
for graphs (see Remark 3.12).

Definition 5.1. We say that a universal theory 1" of graphs has the weakly random Erdds—
Hajnal property (abbreviated 7" € WR) if every limit W of T contains a weakly random
subgraphon.

Remark 5.2. Since trivial graphons are weakly random, we obviously have AEHP C WR.
Furthermore, even though it is also natural to ask what is the class of theories that have
some weakly random limit, it is clear that this is precisely the set of non-degenerate universal
theories. This is because Ramsey’s Theorem implies that any non-degenerate theory T of
graphs must either contain arbitrarily large cliques, in which case W =1 is a limit of T', or
contain arbitrarily large anti-cliques, in which case W = 0 is a limit of 7.
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Similarly to Lemma 4.3, the following lemma is a simple but very powerful observation
about weakly random subgraphons.

Lemma 5.3. A graphon W over a space Q = (X, A, u) contains a weakly random sub-
graphon W' if and only if there exists a positive measure set A C X such that W |4 is weakly
random.

Proof. The backward implication follows because W |4 is a subgraphon of W.

For the forward implication, we know that ¢ws = ¢, for some measurable function

f: X —10,1]. Let A o {z € X | f(z) > 0}. We claim that W/, is weakly random. Indeed,

this follows from Lemma 4.3 and since for every B C X of positive ps-measure, we have

QWlalp) = QWls|B). L

Our next main objective is to characterize the class WR under the assumption that the
set of graphs of the theory is closed under substitutions.

Theorem 5.4. Let T be a universal theory of graphs such that M|T] is closed under sub-
stitutions. Then T' € WR if and only if M[T] is primally almost finite.

Before we prove Theorem 5.4 above, let us observe a simple corollary of it.

Corollary 5.5. There exists a universal theory of graphs T with M[T] C M|[TGyapn] and
T ¢ WR.

Proof. The family {C,, | n > 5} of cycles of length at least 5 is a family of prime graphs
that is not almost finite (see Example 3.21). Let F = S({Ko} U{C,, | n > 5}) and since
F is closed under substitutions and induced subgraphs but is not primally almost finite, the

universal theory T Th(F) with M[Th(F)] = F satisfies T ¢ WR by Theorem 5.4. It is
also easy to see that M[T'] C M |[Tcyapn], as for example the prime graph Gg of Example 3.21
is not in M[T| by Lemma 3.4. O

We start by proving the easier direction of Theorem 5.4 in the lemma below. In fact, for
this direction, we do not even need M|[T] to be closed under substitutions.

Lemma 5.6. If T is a universal theory of graphs such that M|T] is primally almost finite,
then T" € WR.

Proof. We prove the lemma by its contra-positive. Suppose T' ¢ WR and let us show that the
set P of graphs of T' that are prime is not almost finite. By Lemma 3.7, it is sufficient to
construct a sequence (R, )nen in P such that for every n,m € N, if n < m, then R, is not
an induced subgraph of R,,.

Since T ¢ WR, there must exist a limit ¢ € Hom™ (A[T],R) of T that does not contain
any weakly random sub-object.

We now construct sequences (¢, )nen of sub-objects of ¢ and (R,),en of prime graphs in
M(T] satisfying:

i. For every n € N, ¢, is a sub-object of ¢,.
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ii. For every n € N, R,, € Q(¢5) \ Q(én+1)-

We construct these sequences inductively as follows.

1. Set ¢ & 4.

2. Given ¢, € Hom™ (A[T],R), since ¢, is a sub-object of ¢, we know that ¢,, is not weakly
random, so there exists G, € Q(¢,) \ P(¢n,). Let P, be the set of induced subgraphs
of G, that are prime. Since by Lemma 4.6, P(¢,) is closed under substitutions and
Gn € S(Pn), there exists R,, € P, \ P(¢,) and since Q(¢,) is closed under induced
subgraphs, we get R, € Q(¢,) \ P(¢,). From the definition of P(¢,), it follows that
there exists a sub-object ¢, 41 of ¢, (hence ¢,1 is also a sub-object of ¢) such that

Rn € Q(¢n) \ Q(¢n+1)

Let now n,m € N be such that n < m. By induction, we know that ¢,, is a sub-object
of ¢ni1, 50 Q(dm) € Q(¢ns1), which in turn implies that R, € Q(¢,) \ Q(¢n). Since
R, € Q(¢n) and Q(¢pn,) is closed under induced subgraphs, it follows that R, is not an
induced subgraph of R,,, concluding the proof. n

For the other side of the characterization of WR, the proposition below shows that under
appropriate hypotheses, the recursive blow-up ¢z of Definition 4.7 is a graphon without any
weakly random subgraphon.

Proposition 5.7. Let R = (R,,)nen be a sequence of prime graphs of size at least 2 such
that for each n € N, there exist at most finitely many m € N such that R, is an induced
subgraph of R,,. Suppose also that [[,.(1 —1/|R,|) = 0. Then ¢r does not contain any
weakly random sub-object.

Let us first give some intuition on the proof of Proposition 5.7. First, note that since all R,,
are prime graphs and ¢g is obtained via a limit of recursive blow-ups, which themselves are
obtained from the R,, via substitutions, it follows that copies of R, in ¢r need to correspond
to copies of R,, inside some R,,. The condition that each R, is contained in at most finitely
many R, then ensures that the restriction of W¥ to basic clopen sets K,y (see (8)) with
|o| large enough do not have any copies of R,,. Thus, for every positive measure set A, there
is some K,y such that R, ¢ Q(WF| Ank,) and AN K,y has positive measure. However,
to use this fact show that ¢z does not contain any weakly random sub-object, we need to
also ensure that every positive measure set A contains at least one R,, (with n depending
on A), so that we conclude that Q(WFE|,) # P(WF|,) since the above argument gives
R, € QWE|4)\ QW] sk, ). This is where the condition [], (1 — 1/|R,|) = 0 comes
in: we will show that any set A avoiding all R, has measure at most [[, (1 —1/|R,]).

Proof. For every t € N, let R be the shifted sequence (R, i¢)nen-
Also, for each t € N, let m; be the maximum m € N such that R; is an induced subgraph
of R,,. Note that for every t € N, by Lemmas 3.3 and 4.12, we have R; € Q(¢rt) \ Q(¢gme+1)

since R, is prime and is not an induced subgraph of any R, with ¢’ > m,”.

In fact, since ¢pm,+1 is a sub-object of ¢pr:, we have Q(¢ppm,+1) S Q(drt).
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To show that ¢r does not contain a weakly random sub-object, by Lemma 5.3, it is
sufficient to show that for every positive measure set A C QY the subgraphon W¥#|, is not
weakly random.

We claim that there ex1sts t € N such that R, € Q(WF|4). Suppose not, let n € N be
large enough so that [ (1 — 1/|R[|) vV (A) (recall from Definition 4.7 that " is the
measure in the underlylng space of W%) and consider the set

n—1

»n { e [[v(re

£=0

V(AN K,y) > 0} :

We claim that for every m € {0,...,n — 2} and every 7 € [[}%,' V(Re), there exists v, €
V(R,,) such that (7, v,) is not a prefix of any element of >. Indeed, otherwise, since mapping
cach v € V(R,,) to an element of K, )y gives an embedding of R,, in W#, we would get

VV(ATWJ(thV)

DV (A) > 0.

tind (R, WEL1) =[]

’UEV(Rm)

Thus, the existence of v, is proved.
Let then ¥* be the set of o € [[}—y V(Ry) such that for every m € {0,...,n — 2}, we
S # 0. Our last claim says that X C 3*. Now it is easy to see that

Ve T (1 L v
=> W(ANK,y) < ZD(KU,V)_HO |R£|)< (A),

oceY oex* /=0

,,,,,

a contradiction. This concludes the proof that there exists ¢ € N such that R, € Q(W%|,).

We will now show that W#|, is not weakly random by showing that there exists a sub-
object of W¥|, in which R; has density zero (so that we conclude P(W¥|4) C Q(WE|4) as
R; is in the latter set but not in the former set).

Since {K,v | o € [, V(Re)} partitions the space Q, there must exist o € [[,%, V (R,
such that vV(A N K,v) > 0 but note that ¢wnr, = ¢pme+s and since Q(Wlank, )
QWlk, ) = Q(¢gm+1) it follows that R, ¢ Q(W|A}1Kmv) as desired.

Therefore ¢pr does not contain any weakly random sub-object. O]

~—

N

Remark 5.8. The product condition [, (1 — 1/|R,|) = 0 in Proposition 5.7 may seem
very unnatural at first. However, it is easy to see that it is necessary for ¢ to not contain

any weakly random sub-object: for example, consider the limit ¢z for the sequence R dof
(Cp215)nen (see Figure 5) and fixing v,, € V(C,2,5) for each n € N| let

def
A= | (V(Cr2i5) \ {vn}).
neN
Note that ¥ (A) = [],cn(1—1/|Cr245|) > 0. On the other hand, since C245—v, = P2y
is the path with n? 4 4 vertices, it is obvious that W¥|, represents the same limit as W
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X

Figure 5: Approximation of a graphon W over [0, 1] representing the limit ¢ of recursive

blow-ups corresponding to the sequence R e (Cr2y5)nen of Remark 5.8. The graphon W
has a fractal structure, whose first 3 steps are represented in the picture.
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for the sequence R’ = (P,244)nen. In turn, by Lemma 4.12, we have
QW) C S{Ko}U{Peys | n € N}) = S({P, | n € N})

and since the family above is primally almost finite, Lemma 5.6 implies that W' contains
a weakly random subgraphon, hence so does W%, In fact, with a bit more effort, one can
also show that W itself is already weakly random, but we omit this proof. We will also see
in Proposition 5.13 that not only does ¢z contain a weakly random sub-object, but we also
have Th(¢g) € WR.

We can now prove Theorem 5.4 that says that a universal theory of graphs T' with M|T]
closed under substitutions and with My|T"] non-empty is in WR if and only if M|[T] is primally
almost finite.

Proof of Theorem 5.4. For the backward direction, if M[T] is primally almost finite, then
by Lemma 5.6, we have T" € WR.

We prove the forward direction by the contra-positive: suppose M|T] is not primally
almost finite, so there exists an infinite antichain {G,, | n € N} of prime graphs of 7', and
without loss of generality, suppose every GG, has size at least 2.

For each n € N, let r, € N, be large enough so that (1 — 1/|G,|)™ < 1/2 and for each

¢ e N, let R, def G, for the unique n € N such that an_:lo T <0< > o Tm. Clearly, for
each ¢ € N, there exist exactly r, values of ¢ € N such that Ry is an induced subgraph of R;.
On the other hand, we have

[ )1 ) <o

leN neN neN

By Proposition 5.7, we know that ¢r does not contain any weakly random sub-object and
by Lemma 4.12, we know that Q(¢r) € S({R¢ | £ € N}) C MIT], so ¢g is a limit of T
without any weakly random sub-object. O]

We conclude this section with some natural examples of universal theories in WR and not
in WR. We start by showing that the universal theory of induced subgraphs of recursive blow-
ups of Cy studied in [CM22, §8] (see Example 4.10 and Figure 4) is the simplest example in
WR \ AEHP.

Proposition 5.9. The limit recursive blow-up ¢¢, of Cy is weakly random. In particular,
the theory T' of induced subgraphs of the recursive blow-ups of Cy satisfies T' € WR \ AEHP.

Proof. Recall from Example 4.10 that the limit ¢¢, recursive blow-up of Cy can be viewed
as the repeating recursive blow-up ¢, for the sequence G” = (Kj, K3, K, ...) whose first
element is K5 and all other elements are K.

There are two ways of seeing that ¢¢, is weakly random. The first is using Lemma 4.13
to conclude that P(¢c,) = Q(¢c,) = S({Ko, K2, K5}). Alternatively, the result follows
directly from the results of [CM22] and Lemma 4.6: by [CM22, Lemma 8.7], we know
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that Q(¢¢,) C S({K&KQ,FQ}), so Lemma 4.6 implies that P(¢c,) can only be one of
S{ Ko, K2}), S({Ko, K2}) or S({Ky, K2, K2}) and since by [CM22, Lemma 8.8] does not

contain trivial subgraphons, the first two cases are ruled out, so P(¢c,) = Q(éc,) =
S({K07K27K2})-

Since the family of induced subgraphs of recursive blow-ups of C is precisely the family
S({Ky, K», K5}), which is primally finite, the fact that T' € WR follows from Theorem 5.4. On
the other hand, ¢¢, does not contain trivial subgraphons (this follows directly from [CM22,
Lemma 8.8] or alternatively from the fact that a trivial subgraphon W must have Q(W)
either equal to S({ Ky, K2}) or S({Ko, K2})), hence T ¢ AEHP. O

Proposition 5.10. The theory Tpeect Of perfect graphs is not in WR. Furthermore, the set
M [Tpertect] is closed under substitutions.

Proof. We first show that M[Tperfect| is closed under substitutions. By the Strong Perfect
Graph Theorem [CRSTO06], we know that a graph G is perfect if and only if both G and its
complement G do not contain any induced odd-cycle of length at least 5.

Let us show that if F}, F, are perfect graphs and v € V(F}), then F7F g also a perfect

graph. Since FY72 = (F7)~ it is sufficient to show that FY 7' does not contain any
induced odd-cycles of length at least 5.

Without loss of generality, let us suppose V(Fy) NV (F,) = &. Suppose toward a con-
tradiction that vy,...,ve 1 forms an induced odd-cycle of FfHFZ with ¢ > 2. Since both Fj
and F, are perfect, this odd-cycle must contain both vertices of F} (that are not v) and F,.
Without loss of generality, suppose v; € V(Fy) for every i € [k] for some k € [2¢ + 1] and
Vg1 € V(F1). Since vgy € V(F)) is adjacent to vy € V(Fy), it follows from the structure
of F{J%FQ that vy is adjacent to all of vy, ..., vg, but since the cycle is induced, this can
only happen if £ = 2 and 2¢ + 1 = 3, a contradiction. Therefore, M[Tperfect] is closed under
substitutions.

By Theorem 5.4, to show that Tperecs & WR, it is sufficient to show that M|[Tperfect] is not
primally almost finite. But recall that the family of graphs {G,, | n > 6} of Example 3.21 is
a family of prime graphs that is not almost finite and since these graphs are bipartite, they
are also perfect. n

Finally, we consider the theory TpermGraph def 1 (Tperm) of graphs of agreements of permu-

tations, where I: Tiraph ~» Tperm 1S given by

I(E)(z,y9) € (@ £y Az <1y oz <)),

The next proposition provides a natural universal weakly random limit of 7TpermGraph as the
graphon of agreements of the quasirandom permuton (see Figure 6). However, we defer its
proof to Section 7 as it will follow as an easy consequence of naturality of weak randomness
(Proposition 7.10(iii)) and the fact that the quasirandom permuton is a universal weakly
random limit of Tpey, (Proposition 7.15).
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Proposition 5.11. The graphon W over [0, 1]? of agreements of the quasirandom permuton
given by

W(z,y) € 1m(2) < m(y) ¢ mlx) < m)),

where 7;: [0,1]%> — [0,1] is the projection onto the ith coordinate, is a universal weakly
random limit of TpermGraph-

Figure 6: Approximation of a graphon W' over [0, 1] representing the same limit as the
graphon W of agreements of the quasirandom permuton of Proposition 5.11. The graphon
W is indirectly defined by W'(F(z), F(y)) = W (z,y) for the standard measure-isomorphism
F from [0,1] to [0,1]* that maps the point (z,y) € [0,1]* to 3",y 47"+ (2~ 2; + y;), where
the binary expansions of z and y are 0.x1z5--- and 0.y1ys - - -, respectively. The graphon
W' has a fractal structure, whose first 3 steps are represented in the picture.

Proposition 5.12. The theory Tpermaraph Of graphs of agreements of permutations is not in
WR. Furthermore, M|TpermGrapn) is closed under substitutions.

Proof. First let us prove that M[TpemGraph] 18 closed under substitutions. Let F,G €
M[TpermGraph); let v € V(F) and without loss of generality, suppose V(F) = [n] and
V(G) = [m] for some n,m € N and 0 € S, and 7 € S, are permutations representing
F and G with {7, j} € E(F) if and only if i < j <> 0(i) < o(j) and analogously for G and 7.

It is now easy to check that F*~% is the graph of agreements of the permutation 7 €

37



Snim—1 defined by

(

o(i), if i <wvand o(i) < o(v),
o(i) +m — 1, if i <vand o(v) < o(i),
7r(i)d:Ef ov)+7(i—v+1)—1, ifv<i<ov+m,
o(i—m+1), ifv+m<iando(i—m+1)<o(v),
lo(i—m+1)+m—1, ifv+m<iando(v) <o(i—m+1).

In fact, the above shows that M [Tpem| is weakly closed under substitutions, s0 M [T peymGraph]
inherits this property.

Now, by Theorem 5.4, it is sufficient to show that M [TpermGraph] 1S not primally almost
finite.

Recall that the family {G, | n > 6} of Example 3.21 is a family of prime graphs that is
not almost finite. We claim that for every even® n > 6, the graph G,, is a graph of agreements
of some permutation. Indeed, G,, is the graph of agreements of the permutation 7, € S, .4
(see Figure 7) given by

(n + 3, if i =1,
n+1, if i =2,
n—1, if 1 =3,
n + 4, if1 =4,
def f|m—1+3, if6<7<nand:iiseven,
(i) = n—i+7, if5<i<n-—1and7is odd,
1, ifi=n+1,
6, ifi=n+2,
4, ifi=n+3,
2 ifi=n+4.

\ 7

For example, the values of 714 (in sequence) are
17,15,13,18,16, 11, 14,9,12,7,10,5,8,3, 1,6, 4, 2.

Thus, M[TpermGrapn] 1S not primally almost finite, hence TpreymGrapn ¢ WR by Theorem 5.4.
]

We conclude this section with an example of a universal theory 7' of graphs that is in WR
essentially because of failure of the product condition of Proposition 5.7.

Proposition 5.13. Consider the sequence of graphs G = (Cy215)nen and let T def Th(¢q) be

the theory of positive models of the recursive blow-up ¢¢ relative to G (see Definition 4.7).
Then T € WR.

81t is also true for odd n, but we only need an infinite subfamily, so even n suffices.
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T14 (Z)

Figure 7: Graph of permutation 4 of proof of Proposition 5.12 represented as points (i.e.,
the set {(i,m14(7)) | i € [14]}). The edges of the corresponding graph of agreements G4 are
represented as lines and the labels indicate the vertices of G14.
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Proof. Let V' = (V,,)nen be given by V,, oo V(Cp245) and let W& be the graphon represen-

tation of ¢g given by (9). Since W< is {0, 1}-valued, we can view it as a continuum-sized
graph H with vertex set QV, consider the family F of all finite graphs that are induced
subgraphs of H.

We claim that F = Q(¢¢). Indeed, we obviously have Q(¢g) C F and any induced

subgraph M € F of H must be an induced subgraph of the (finite) recursive blow-up

def (C5,C6,Co,..nsC .
H),. of pp(C5:Co.Co-Crnzis) o1 some mo € N (see Definition 7.5) hence

m [ H |

|H! ! o1 ’
M) >p(M,H' - " Y>p(M,H ) — . >0
¢G’( )_p( ) mo) ¢G( mo)—p( ’ mo) ]Aut(H{nO)\ H?’L2+5 ’

n=0

so M € Q(éc)-
Let us now show that T € WR. Let ¢ € Hom™"(A[T],R) be an arbitrary limit of 7.

Since M[T| = F, there exists a sequence U = (U, )ney of finite subsets of Q" such that the

sequence of finite graphs (H |y, )nen converges to ¢.
For each k € N and each v € V(Cj2,5), let

Kiw & {0 € | o, =0}

For each n € N, let us construct a sequence (U’r/L,k)keN of subsets of U, inductively as

follows. We set Uy, €' U, and given Uy ;. let v, x be a vertex v € V(Cjz25) that minimizes

U, N Ky (which can be zero) and let U, ., o Ui \ Knp,,; note that

1
Ul 2 (1= i ) O

We also let U}, oo (Mien U, and note that a simple induction gives

Uy 1
ST (1= . 1
\Un|_H i) Y (11)

keN

Note also that the definition of U/ implies that for every k € N, there exists v € V(Ciz2,5)
such that U} N K}, = @, which along with the definition of H implies that H|y, € S({P, |
n € N}), where P, is the path on n vertices.

Let then (H\U@)geN be a convergent subsequence of (H |y )nen such that (U], |/|Uy,|)een
is also convergent and let ¢ € Hom™ (A[T],R) be the limit of (H vz, Jeen- Then (11) implies
that ¢ is a sub-object of ¢ of measure at least [[,.y(1 — 1/(k* 4+ 5)) > 0. But since
H|y;, € S({ P, | n € N}), it follows that Th(4)) is primally almost finite, which by Lemma 5.6
gives Th(¢)) € WR, so ¥ has a weakly random sub-object, hence so does ¢. O
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6 VC dimension and weak randomness

In this section we study how weak randomness and the class WR interact with the notion of
VC dimension. We remind the reader that in this section we drop the qualifiers “weakly”
and “strongly” from “closed under substitutions” as they are superfluous for graphs (see
Remark 3.12).

Recall that for a non-trivial graph G, the Vapnik-Chervonenkis dimension [VC71] (VC di-
mension) of (neighborhoods of) G is the largest size VC(G) of a set U C V(G) that is
shattered by neighborhoods of vertices of G in the sense that for every A C U, there exists
v € V(G) such that Ng(v) N U = A, where Ng(v) o {w € V(G) | G F E(v,w)} is the

neighborhood of v in G. By convention, we also let VC(K) .

Recall also that (the edge relation in) a class of graphs F (or the corresponding universal
theory Th(F)) is said to have bounded VC' dimension if sup{VC(G) | G € F} < oco. In
model theoretic language, the class has NIP (standing for not the independence property).

Finally, recall that by [LS10], a universal theory T of graphs has bounded VC dimension
if and only if all graphons of T' are a.e. {0,1}-valued®. Thus, studying VC dimension is
directly related to studying whether the theory has fractional-valued graphons.

We start with a simple application of the theory of graph persistence developed so far.

Proposition 6.1. If W is a graphon such that there exists a finite graph G with ¢w (G) = 0,
then W has an a.e. {0, 1}-valued subgraphon W'. Furthermore, W’ can be taken of the form
W' =W |4 for some positive measure set A.

Proof. Define a {0, 1}-valued graphon W on the same space as W by

W(Q; ) def 1, if 0 < W(.%,y) < 1,
= 0, if W(x,y) € {0,1}.

Note that a subgraphon W’ of W represented as W|; is a.e. {0, 1}-valued if and only if
Ky ¢ Q(W]|s). Hence, W has an a.e. {0,1}-valued subgraphon if and only if Ky ¢ P(W).

Thus, to prove the proposition, it is sufficient to show that Ky € P(W) implies that every
finite graph G has positive density in W.

Since P(W) is closed under substitutions and induced subgraphs (Lemma 4.6), it follows
that K, € P(W) for every n € N (as K, = Ky7""1). But note that each copy of K, in W
corresponds to points of W whose pairs all have values in (0, 1), hence have strictly fractional
(conditional) probability of yielding edges, thus the fact that K| has positive density in w
implies that G has positive density in W.

For the final part, if W’ = W|; for some function f: X — [0,1], then letting A o {z €
X | f(x) > 0} yields that W|4 is an a.e. {0, 1}-valued subgraphon of W. O

9Let us warn the unfamiliarized reader that even if W is a.e. {0, 1}-valued, its theory of positive graphs
Th(W) is not necessarily of bounded VC dimension. For example, the construction in the proof of Theo-
rem 4.4 always yields a {0, 1}-valued graphon with Th(W) = F, even if F = M|[TGraph), which clearly has
unbounded VC dimension.
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The reader might have noticed that with the notable exception of quasirandom graphons,
all examples of weakly random graphons of Section 5 are {0, 1}-valued. The next proposition
says this is not a coincidence: every universal weakly random limit of a proper (strongly)
persistent class of graphs F (i.e., F € M|[Tgyapn)) must necessarily be {0, 1}-valued.

Theorem 6.2. If W is a weakly random graphon such that there exists a finite graph G
with ¢w (G) = 0, then W is a.e. {0, 1}-valued.

Proof. We prove this by the contra-positive. Suppose W is a weakly random graphon over
some space §) = (X, A, ) that is not a.e. {0,1}-valued. Let us show by induction in |G|
that every finite graph G has ¢w (G) > 0. By possibly applying the Graphon Removal
Lemma [Pet13, Theorem 1], it is enough to show that Tj,q(G, W) € Dy (q).

Obviously ¢w (Ko) = ¢w (K1) = 1. So suppose |G| > 2, let vy € V(G) and H LG — v
Since W is not a.e. {0, 1}-valued, there exists z,, € [0, 1] such that the set

AE Ly e 0,1\ {20} | 0 < Wz, y) < 1}

has positive measure. Since W|4 is a subgraphon of W, W], is also weakly random
and since by induction hypothesis, ¢y (H) > 0 we get that there exists a point (z,w) €

AVH) <0, 1)(‘/(211)) that induces an off-diagonal copy of H in W4 (i.e., we have (z,w) €
Toa(H, W) i
v e
Let us extend (z,w) to a point in XV(%) x [0, 1)< 2) by defining z,, o Ty, and

0 if {vg,u} € E(G),

def |
W{vg,w} = V0 AU .
{vo,w} 1+W(2$OZ), 1f{vo,u}¢E(G),

for every uw € V(H). It is straightforward to check that (z,w) yields an off-diagonal copy of
G in W, concluding the proof. O

Our next objective is to show that for families of graphs F that are closed under substitu-
tions and induced subgraphs, determining whether F has bounded VC dimension is reduced
to determining whether the family of prime graphs of F has bounded VC dimension. To do
so, we need a variation of the definition of VC dimension.

Definition 6.3. Given a non-trivial graph G, the VC' dimension of G (denoted VC'(G)) is
the largest size of a set U C V(G) that is almost shattered by the edge relation of G in the

sense that for every non-empty A C U, there exists v € V(G) such that Ng(v)NU = A\ {v}.

By convention, we also let VC'(Ko) & 0.

Note that the notion of almost shattering is weaker than the notion of shattering in two
points: we only care about sets A that are non-empty proper subsets of U and Ng(v) N U
only needs to match A up to possibly removing v from A. Note that for a non-trivial graph
G, we always have VC'(G) > 1 as any singleton set is almost shattered by the edge relation
of G.
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Lemma 6.4. For a non-trivial graph GG, we have

max{F(n) | n < VC'(G)} < VC(G) < VCU'(G),

t—1
9
(7?) < } ifn >3,
=0 2 n

0, iftn < 2.

where

def | max {t eN

Proof. Since the notion of shattering implies the notion of almost shattering, it follows

trivially that VC(G) < VC'(G).

Let now n < VC'(GQ) and let us show that F'(n) < VC(G). Note that the result is trivial
if n <2as F(0) = F(1) = F(2) =0, so let us suppose n > 3. Since n < VC'(G), we know
that there exists a set U C V(G) of size n that is almost shattered by the edge relation of

G. For each non-empty A C U, let vy € V(G) be such that Ng(va) NU = A\ {va} and let

FEANGoA)NU | @4 AC U}

We claim that for every B C U, there are at most n non-empty sets A C U such that
Ne(va) NU = B. Indeed, since Ng(va) NU = A\ {va}, the set of non-empty A C U with
Ng(va) NU = B must be contained in

{B}u{BU{u} | ueU}.

When B is non-empty, the set above has size at most |U| = n and when B is empty, the set
above has size n + 1 but A cannot be equal to B.

Since there are 2" — 2 non-empty sets A C U, we get |F| > (2" — 2)/n. On the other
hand, by the definition of F(n), we have

F(n)-1
2" — 2 n
f > >
HEEEDY (7).

so by the Sauer-Shelah Lemma [Sau72, She72|, the family F shatters some U’ C U with
|U'| > F(n), thus VC(G) > F(n). O

Remark 6.5. It is easy to see that the function F' of Lemma 6.4 is unbounded. Indeed, if
there was a bound ¢y, € N such that F(n) <ty for every n € N, then we would have

to

2" =12 n
< < (to+1) - n'o
= (f) ey

=0

for every n € N, which is yields a contradiction when n is sufficiently large.

As a corollary of Lemma 6.4, it then follows that a universal theory graphs 7" has bounded
VC dimension if and only if there exists k& € N such that VC'(G) < k for every graph G of
T.
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The next lemma shows that VC' dimension behaves very well with respect to the substi-
tution operation.

Lemma 6.6. Let F; and F, be non-trivial finite graphs and vy € V(F;). Then we have
VC/(F7 ) = max{VC/'(F), VC'(Fy)}.

Proof. Without loss of generality, suppose V (Fy) NV (Fy) = @ and let G & Fro 2 Since
both F; and F; are induced subgraphs of G' (as both F; and F, are non-trivial), it follows
that VC'(G) > max{VC'(Fy), VC'(Fy)}.

To prove the other inequality, let U C V(G) be a set that is almost shattered by the edge
relation of G with |U| = VC'(G).

Suppose first that U C V(F;) for some i € [2]. Then we claim that the edge relation of F;
also almost shatters U. Indeed, if A C U is a non-empty set, then we know that there exists
u € V(G) such that Ng(u)NU = A\ {u}. Since A # @ and A # V(F;) (as A C U C V(F))),
we must have u € V(F;) (as every u € V(F;_;) is either adjacent to all of V(F;) or not
adjacent to all of V(F;)) and thus Np,(u) NU = A\ {u}. Therefore, in this case, we get
VC'(G) < VC'(F;) < max{VC'(F,), VC'(Fy)}.

Suppose then that U € V(F}) and U € V(F3). Then we claim that [U NV (Fy)| = 1.
Suppose not and let v; € UNV (F}) and ve, wy € U NV (Fy) with vy # wy. We consider first

the case when {vg,v1} € E(F}) (recall that v, is the vertex of Fj that is being substituted:
def

G = F7") let A< {0} C U and let u € V(G) be such that Ng(u) NU = A\ {u}. Since
{vo,v1} € E(Fy) and v; ¢ A, we must have u ¢ V(F,) (as every vertex of V' (F3) is adjacent to
vy in G) and since we ¢ A, we must have u ¢ V(F}) (as every vertex of V' (F}) is adjacent to wy
in G), a contradiction. Consider then the case when {vg,v1} ¢ E(F}), let A & {v1,v2} CU
and let u € V(G) be such that Ng(u) N U = A\ {u}. Since {vg,v1} ¢ E(F)) and v; € A,
we must have u ¢ V(F,) and since v € A, we must have u ¢ V(Fy), a contradiction. This
concludes the proof of the claim, that is, we have |U NV (Fy)| = 1.

Let then wy be the unique element of U N V(F3). We now claim that the set U’ o
(U\{wo})U{wo} is almost shattered by the edge relation of F;. Let A" C U’ be a non-empty
set and let

A d:ef A/, if Vo ¢ AI,
(A/ \ {UQ}) @) {’wo}, if Vo € A

Then there exists u € V(G) such that Ng(u) NU = A\ {u}. Consider first the case when

u € V(Fy). Then we have

Ng(u)NU, if wy & Ng(u)NU,

Np (u)NU" = {((NG(U) NU) \ {wo}) U{ve}, if wy e Ng(u)NU,

hence Np (u) NU" = A"\ {u} (as Ng(u) NU = A\ {u}). Consider now the case when
u ¢ V(F1) and note that

Nry(vo) NU" = (Na(u) NU)\ {wo} = AN\ {u, wo} = A"\ {wo}
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since u ¢ A" (as A’ C V(F1)). Thus U’ is almost shattered by the edge relation of F, hence
VC'(G) < VC'(Fy) < max{VC'(Fy), VC'(F»)}. O

The following simple consequence of Lemmas 6.4 and 6.6 (and Remark 6.5) says that when
F = S(F'), then F has bounded VC dimension if and only if 7’ has bounded VC dimension.

Theorem 6.7. Let F and F' be families of finite graphs up to isomorphism and suppose
F = S(F'). Then F has bounded VC dimension if and only if F' has bounded VC dimension.

In particular, if F is a family of finite graphs that is closed under substitutions and
under induced subgraphs and P is the family of all prime graphs of F, then F has bounded
VC dimension if and only if P has bounded VC' dimension.

Proof. By Lemmas 6.4 and 6.6 and Remark 6.5 with a simple induction, we have

sup{VC(F) | F € F} < o0 <= sup{VC'(F) | F € F} <
< sup{VC'(F") | F' € F'} < o0
< sup{VC(F') | F' € F'} < o0,

so the first statement follows.
The second statement follows from the first one along with Lemma 3.5. [

As a direct corollary of Theorem 6.7, it follows that any primally finite family F that is
closed under substitutions and under induced subgraphs has bounded VC dimension. Our
next objective is to show that the same is true in the primally almost finite case. Before we
do so, we need yet another example of a family of prime graphs that is not almost finite.

Example 6.8. For each n > 9 odd, let G/, be the graph obtained from the path on n
vertices P, by adding two vertices a and b adjacent precisely to the fourth and fourth from
last vertices of P,, respectively and connecting all even vertices into a clique (see Figure 8).
Formally, we have

) = [n] U {a,b},
Y i+ 1) e n—1}U{a, 4} U{bn—3}
U{{2i,25} | i,j €[(n—1)/2] Ni#j}.

It is straightforward to check that {G | n > 9 odd} is a family of prime graphs that is
not almost finite.

V(
E

G
(G,

Before we prove the theorem, we need a small consequence of Ramsey’s Theorem.

Lemma 6.9. For every n € N and every graphon W, we have

R(n, n)) ‘17

n

ow (o) + dw () > (

where R(n,n) is the (n,n)-Ramsey number.
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!

Figure 8: Prime graphs G/, of Example 6.8 that form a family that is not almost finite.
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Proof. We have

Gw (K) + ow (Kn) = Z (P(Kpy M) + p(K i, M) - $wr (M)

MEMR(n,n) [TGraph]

. (R(?ZL, n)) ! 3 our (M) = (R(Z’ n)) 71’

MEMR(n,n) [TGraph]

where the inequality follows since at least one n-sized subset of each M € Mg, ) [T Graph)
must induce either K,, or K,, in M. O

Theorem 6.10. Let T' be a universal theory of graphs. If M[T] is primally almost finite,
then the edge relation in T' has NIP (i.e., bounded VC dimension).

In particular, the edge relation in every universal theory of graphs T’ € WR such that
M(T"] is closed under substitutions has NIP.

Proof. The second assertion follows from the first along with Theorem 5.4.

We prove the first assertion by the contra-positive. Since the edge relation in T has
unbounded VC dimension, by [LS10], there exists a graphon W that is a limit of 7" and is not
a.e. {0, 1}-valued. By possibly applying the Graphon Removal Lemma [Pet13, Theorem 1],
we may suppose that every graph G that has an off-diagonal copy in W has positive density
in W.

Our objective is to present a family of prime graphs that is not almost finite and such
that all graphs in this family have an off-diagonal copy in W (thus M|[T] is not primally
almost finite).

For this purpose, we will show that for each n € N with n > 5, one of the following
graphs appears as an off-diagonal copy in W:

i. The graph Gs,_4 of Example 3.21.
ii. The complement Gs,_4 of the graph of Example 3.21.
iii. The graph G, , of Example 6.8.

Since each of these families is a family of prime graphs that is not almost finite (note that
primality is preserved under complementation) and one of them must occur for infinitely
many 7, it will follow that M[T7] is not primally almost finite as desired.

Without loss of generality, let us suppose that the underlying space of W is [0, 1] and let

(w0, 0) € (0,1)% be a Lebesgue density point with respect to £>°-balls of the positive measure

set A L W=1((0,1)) with zo # .

Let € > 0 be such that € < (n - (R(Z’”)))_2 and let 0 > 0 be small enough so that

A(A N Bs(zo, 10)) .
A(Bs(z0, ¥0)) =10
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where Bs(xo, o) is the £*°-ball of radius § centered at (z¢,y). We may also suppose that

9 > 0 is small enough so that (zg — 9,29+ J) and (yo — 6, yo + &) are disjoint subsets of [0, 1].
Consider the set

C = {(2,y) € Bs(wo)" x Bs(yo)" | Vi, j € [n], (wi, ;) € A}.

With a simple union bound, we have

n

A(C) > (1 - n?e) - A(Bs(zo, 30))" > (1— (R<“’”)) ) ABs(eo))'. (12)
Define also

) de n n ("] 74
C d:f {(l',y) € Bé<x0) X Bé(yO) ’ Jdz € [07 1>(2)7 (.’L‘,Z) € 7ﬂind([(n;I/V) UTind<Kn7W)
ATw e [0,1)), (y,w) € Tona(Fon, W) U Tina (K, W)}

By Lemma 6.9, we have

R(n,n -2
ae) = () ABstao )
Putting this together with (12), we conclude that A(C' N C") > 0.

Let then (x,y) € C' N C’ be a point with all coordinates distinct. We now consider four

cases.

Case 1. There exist points z,w € [0, 1)([31) such that (z, 2), (y, w) € Tina(K,, W). In this

2n—4)

case, we construct an off-diagonal copy (Z,7) € [0,1]V(G2=4) x [0, 1)( 57) of the graph

Gon—y of Example 3.21 as follows. Recall that V(Ga,—4) = [2n — 4] U {a, b, ¢, d} and for

convenience of notation, let us make the identifications a Eon — 3, b Lon — 2, c Lon -1

and d & 2n. Then for each 7,7 € V(Gan—y) with i # j, let

- def {Ii/g, if ¢ € [2n] is even,
" Y warye, if i € [2n] is odd,
12{1/24/2}, if i, 7 € [2n] are both even,
o W(i41)/2,(j+1)/2}» if 7, 7 € [2n] are both odd,
Yi.r = N0, if i € [2n] is even, j € [2n] is odd and {i,j} € E(Gap—_4),
\ L W(xi/;’y(jﬂw), if i € [2n] is even, j € [2n] is odd and {7, 5} ¢ E(Gap_4).

The fact that (z,y) € CNC" and all coordinates of (x,y) are distinct guarantees that (Z,7)
is an off-diagonal copy of Ga,_4.
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Case 2. There exist points z,w € [0,1)([31) such that (z,2), (y,w) € Tina(K,, W). In
this case, a construction analogous to the one in case 1 yields an off-diagonal copy of the
complement Go,_4 of the graph of Example 3.21.

Case 3. There exist points z,w € [0, 1)([3]) such that (z,z) € Tina(K,, W) and (y,w) €

/
V(Ganl)

Tina(K,, W). We construct an off-diagonal copy (Z,7) € [0,1]"(@2n-1) x [0, 1)( 5") of the
graph G5, _, of Example 6.8 as follows. Recall that V (G, ;) = [2n — 1] U {a, b} and for

convenience of notation, let us make the identifications a ©on+1and b ¥ 2n+3 (nothing
gets identified with the points 2n and 2n + 2). Then for each i, j € V(GY,,_,) with i # j, let

. def | Tij2s if 1 € [2n — 1] is even,
t Yutry/2, if i€ [2n+ 3] is odd,
(22,2} if 4,7 € [2n — 1] are both even,
w{(i+1)/27(j+1)/2}, if Z,] S [2n + 3] are both Odd,
4 )0, if i € [2n — 1] is even, j € [2n + 3] is odd and {i,j} €
y{i7j} B E<Gl2n71)7
1+ Wiz, 9 e . . . o
(i/2 yUHW), if i € 2n — 1] is even, j € [2n + 3] is odd and {3, j} ¢
2 /
\ E(GQn—l)‘

The fact that (x,y) € CNC”" and all coordinates of (z,y) are distinct guarantees that (Z,y)
is an off-diagonal copy of G5,,_;.

Case 4. There exist points z,w € [0, 1)([3]) such that (7, 2) € Tia(K,, W) and (y,w) €
Tina(K,, W). This case follows from case 3 by swapping the roles of = and y.

Therefore M([T] is not primally almost finite. O

Remark 6.11. The assumption that M[T] is closed under substitution is crucial for the
second part of Theorem 6.10, since, for example, the universal theory Tgipartite Of bipartite
graphs clearly is in AEHP C WR (as every limit contains an empty subgraphon of measure at
least 1/2) but has unbounded VC dimension.

For an example of a theory with unbounded VC dimension that is in WR\ AEHP, let T¢, be
the universal theory of graphs that are induced subgraphs of some (finite) recursive blow-up
of Cy (which has bounded VC dimension by Theorem 6.10 as T¢, is primally finite), let F

be the family of graphs G such that there exists a partition V(G) = AU B such that both

G|a and G|p are models of T¢, and let T &f Th(F) be the corresponding universal theory of

graphs. Obviously, every bipartite graph is a model of T', so T" has unbounded VC dimension.

Since at least one of A or B must have at least half of the vertices, it follows that every
limit of 7" has a subgraphon that is a limit of T, and since T, € WR (by Proposition 5.9),
we get T' € WR. On the other hand, since every model of T¢, is a model of 7" and T, ¢ AEHP
(by [CM22, Lemma 8.8] or Proposition 5.9 again), it follows that 7" ¢ AEHP.
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7 Persistence for universal theories

In this section, we generalize the results of Section 4 on (strongly) persistent classes to
arbitrary universal theories in finite relational languages. Table 1 below contains the corre-
spondence between the theorems and lemmas of Sections 4 and 5 and their generalizations
in this and the next section.

Graph result Universal theory result Drawbacks
Lemma 4.3 Lemma 7.2(i) None.
Theorem 4.4 Theorem 7.9 Persistence (item (iii)) can only be added

to the list of equivalences when all arities
are at most 2.

Lemma 4.6 Lemma 7.3 Requires either that all arities are at
most 2 (item (i)) or weak randomness
(item (ii)).

Lemma 4.12 Lemma 7.6 and When the recursive blow-ups are not con-

Proposition 7.8(i),(ii) servative (see Definitions 7.5 and 7.7),

only partial information is known about
the limit theon.

Lemma 4.13 Proposition 7.8(iii) None.
Lemma 5.3 Lemma 7.2(ii) None.
Theorem 5.4 Propositions 8.2 and 8.4 Backward direction requires all arities to

be at most 2. Forward direction is trivial
if all arities are at least 3.
Lemma 5.6 Proposition 8.2 Requires all arities to be at most 2.
Proposition 5.7 Propositions 7.8(iv) and 8.4 When all arities are at least 3, there are
only finitely many prime structures (see
Remark 3.13).

Table 1: Correspondence between theorems and lemmas of Sections 4 and 5 and their gener-
alizations in Sections 7 and 8. Some generalizations have drawbacks (e.g., extra hypotheses
or the result might be trivial) as pointed out in the third column.

Definition 7.1. Let ¢ € Hom™(A[T,],R). The set of positive L-structures in ¢ is the set
def

Q(¢) = M|Th(¢)] of all finite L-structures M (up to isomorphism) such that ¢(M) > 0.

The set of persistently positive L-structures in ¢ is the set P(¢) o ﬂw Q(v), where the

intersection is over all sub-objects of ¢. We extend these definitions naturally to Euclidean
def def

structures N in £ by Q(N) = Q(¢n) and P(N) = P(dn).

We say that ¢ is weakly random if P(¢) = Q(o).

A family F of finite L-structures (up to isomorphism) is called persistent if there exists
¢ such that P(¢) = F. The family F is called strongly persistent if there exists a weakly
random ¢ such that P(¢) = F (which must also equal Q(¢)); in this case, we also say that
¢ is a universal weakly random limit of F.
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Lemma 7.2. Let N be an Euclidean structure in £ over Q = (X, A, u). Then the following
hold.

i. P(N) =N, QWIY), where the intersection is over all positive measure A € A and
all measure-isomorphisms F' modulo 0 from Q4 to Q (equivalently, we can also use a
single measure-isomorphism F4 modulo 0 for each positive measure A € A).

ii. ¢n has a weakly random sub-object if and only if there exists a positive measure
A € A and a measure-isomorphism F' modulo 0 from 24 to 2 such that ¢N\i is weakly
random.

Proof. Both items follow from the fact that if f: X — [0, 1] is a measurable function with
S </ dp > 0 and F' is a measure-isomorphism modulo 0 from Qf to €, then for A =

{z € X | f(x) > 0} and any measure-isomorphism F modulo 0 from Q4 to , we have
QWIY) = QWVIL). -
Lemma 7.3. The following hold for ¢ € Hom™ (A[T], R).

i. If all predicate symbols of L have arity at most 2, then P(¢) is strongly closed under
substitutions and closed under substructures.

ii. If ¢ is weakly random, then P(¢) is weakly closed under substitutions and closed under
substructures.

Proof. Since obviously Ky € P(¢), by Lemma 3.15, it is sufficient to show the assertions of
closed under substitutions in each item.

Let Iy, Fy € P(¢) and v € V(F}) and let F be the set of standard substitutions of v in
Fi by F.

Note that in item (i), by Remark 3.12, F has a unique element (and the notion of strongly
and weakly closed under substitutions coincide). Thus, in both items, our objective is to
show that F N P(¢) is non-empty.

Let 1) be a sub-object of ¢ and let N be an Euclidean structure in £ over some space
Q= (X, A, p) with ¢pr = 1. We claim that F N Q(¢) is non-empty. Suppose not, that
is, suppose ting(F,N) = 0 for every F' € F. By possibly applying the Induced Euclidean
Removal Lemma [CR20, Theorem 3.3], we may suppose that Ti,q(F,N') C Dy for every
FeF.

Since Fy € P(¢), we must have F; € Q(N), that is, we have tiq(F1, ') > 0. For every
v e X VENEN ot

Ux d:ef {y € X ’ (x7y) S ﬂnd(F17N)}'

By Fubini’s Theorem, there exists x € X™VEDN\{H with all coordinates distinct such that
w(U,) > 0. Let G be a measure-isomorphism modulo 0 from Qg to 2 and since Pprg s

a sub-object of ¢, hence also of ¢, we must have Fy € Q(N§. ), which implies that there
exists z € &y () such that
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a. all coordinates of z are distinct;

b. all coordinates of z are distinct from the coordinates of z;
c. for every v € V(F;), we have zpy € Uy;

d. we have z € Tiq(Fy, N).

Define then the point w € £, by the following procedure.
1. For each A C r(V(F, —v)), let wy o
2. For each A C r(V(F; —v)) and each u € V(F3), let wauqu o T AU} -

3. For each A C r(V(F3)), let wy =
4. Define all other coordinates of w arbitrarily.

Note that all coordinates of w that are indexed by single vertices get defined in items (1)
and (3) and their definitions guarantee that they are distinct from each other, that is, we
have w ¢ Dy . Let then F be the unique L-structure with w € Tiq(F,N). Then items (1)
and (2) ensure that all injections V' (Fy) — V acting identically on V (F; —v) are embeddings
of F in F and item (3) ensures that the injection V' (F3) — V that acts identically on V(F3)
is an embedding of F3 in F. Thus, we must have F' € F.

Therefore, we have showed that for every sub-object 1 of ¢, we have F N Q(v) # &.

In item (i), since F has a single element F, it follows that F' € P(¢), hence P(¢) is
strongly (in this case, equivalently, weakly) closed under substitutions.

In item (ii), since Q(¢0) = P(¢) as ¢ is weakly random, it follows that F N P(¢) # @, so
P(¢) is weakly closed under substitutions. O

The next example shows why the hypotheses of Lemma 7.3 to get P(¢) weakly closed
under substitutions are crucial.

Example 7.4. Consider ¢ € Hom™ (A[T5_gypergraph), R) that is the disjoint union of a clique
and an anti-clique of the same size, that is, ¢ = ¢n for the T mypergraph-on N over [0,1]
given by

NEd:ef{$653

1
max{z 1y, T2, Tz} < 5 0

Since ¢ contains both a clique and an anti-clique of positive measure, it follows that P(¢)

does not contain any models of size at least 3. However, since 75 fypergraph 15 2-categorical,
P(¢) must contain the unique model Ké?’) of size 2. It then follows that P(¢) is not even
weakly closed under substitutions as any substitution of any vertex of Kég) by K2(3) must
have size 3.
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Definition 7.5. Given a finite sequence N = (N, ..., N,,) of finite L-structures with |N;| >

2 for every i € {0,...,n}, a recursive blow-up relative to N is an L-structure R with V' (R) of

17, V(N:) such that for every j € {0,...,n} and every o € [[/—) V(N,), every function
f: V(N;) = V(R) such that f(v)|f,. j-1; = 0 and f(v); = v for every v € V(N;) is an
embedding of N; in R.

The unique recursive blow-up R relative to N that has the smallest possible relation sets
P (P € L) is called the conservative recursive blow-up relative to N and is denoted R".

Formally, it is given by V(RY) & IT—, V(N;) and

i—1
ge[[VN) nae PN
=0

Awewwmﬁeflwmﬁ

l=i+1

prY {<a, 0y, 7D € (VRN e

for every P € L.

Given an infinite sequence N = (N;);en of finite L-structures with |V;| > 2 for every
i € N, a compatible sequence of recursive blow-ups relative to N is a sequence R = (R;);en
such that

i. for every i € N, R; is a recursive blow-up relative to (No, ..., N;);

ii. for every i € N, every function f: V(R;) — V(R;+1) such that f(v)|s
embedding of R; in R;.

.....

compatible).

Lemma 7.6. Let F be a family of finite L-structures that is weakly closed under substitu-
tions and closed under substructures and let N = (N;);en be a sequence in F with |M;| > 2
for every i € N. Then there exists a compatible sequence R = (R;);en of recursive blow-ups
relative to N with R; € F for every i € N.

Proof. We construct the compatible sequence R = (R;);en inductively by setting Ry def Ny

and given R;, we enumerate the vertices of R; as v}, ..., v} , inductively define Fy, ..., F{ by

F} ©r R Tet F},, € F be a standard substitution of v, in Fj by N;;; and set R, def F}.

It is straightforward to check by induction that R is a compatible sequence of recursive
blow-ups relative to N with R; € F for every ¢ € N. m

Definition 7.7. Given an infinite sequence N = (N;);en of finite L-structures with |N;| > 2

for every i € N, we let the conservative recursive blow-up relative to N be the Tp-on NV

defined as follows. We let V' = (V;)sen be defined by V def V(N;) and we define NV over

the Cantor probability space Q¥ = (IT,cy Ve, A, ) (see Definition 4.7) by

P o € Ep)(QY) | 3 € N RV P(i] (),
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where t7(z) € ([]\_, Vo)¥") is given by

t(2); € aplio.y (€ R(P)). (13)

Proposition 7.8. Let R = (R;);en be a compatible sequence of recursive blow-ups relative
to N = (N:)sey and let V = (V;)iex be given by V; & V(NV).
Then R is convergent and the following hold for its limit ¢ € Hom™ (A[T,], R).

i. If R is conservative, then ¢r = ¢prn.

ii. There exists a Tg-on H over QY with ¢p = ¢y
NY CHp C Em (V) \NY ae.

for every P € L, where N = (N;)ien is the sequence of complementary canonical
L-structures given by

VN € v (), PN L (VN \ PV (PeL).

iii. If P(N) is the set of structures M such that there exist infinitely many i € N with
M = N;, then P(N) C P(¢g).

iv. If T],en(1 — 1/|N;]) = 0, then for every positive measure A C QV, there exists i € N
such that ti,q(N;, H|%) > 0 for every measure-isomorphism F modulo 0 from QY to
Qv.

Proof. To show that R is convergent, for each i € N, define the Euclidean structure A/ in £
over QY by

N}, o {z € &wp)(QY) | Ri & P(t] (x))},

where tI'(z) is given by (13), that is, A is the natural “step” Euclidean structure associated
with R; over QY.
First note that since R is compatible, for every i, j € N, we have

ZVV(./\/}’;AN;H)
pPeLl
< Z I/V({x S gk(p)(QV) | da,b € [kZ(P)], (CL # b/\x{a}]{g ..... i} = I{b}|{0 ..... z})})
PeL
k(P 14
<3 ( ! >) Y Ky (14)
PeLc o€lTi—o Ve
KP)N T -
=3 (")) T =0
pPeL £=0
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Therefore, it follows that for every finite £-structure K, the limit lim; o tinq(K, N?) exists.
On the other hand, it is also straightforward to check that for every finite L-structure
K, we have

BT (KN = [Tna (K. RN < 1R = (1Bl < Ose(|Ref#17)
hence we get

lim tinq (K, R;) = lim tinq (K, N,
1—00

71— 00
that is, R = (R;);en is convergent.

Consider now the case when R is conservative. Then the same argument used in (14)
gives

S g a3 () T =0

pPeL pPeL

so item (i) follows.

To prove item (ii), note that (14) implies that for each P € £, the sequence of indicator
functions (Lys; )ien is convergent in L'(Eyp)(QY)), so let fp be their L'-limit. Since fp is
also the a.e. limit of (1 )ien, it must be a.e. {0,1}-valued, so there exists Hp such that
fp = 1y, a.e. Finally, L'-convergence implies that lim; o tina (K, N?) = tina(K, H).

We claim that for every x € N2, there exists iy € N such that x € N} for every i > 4.

i > ip. From the minimality of the conservative recursive blow-ups, we get R' E P(tF(x)),
hence z € N for every i > iy. Since 1, converges a.e. to 1y, we conclude that NY CHp
a.e.

By a symmetric argument, it follows that for every x € NY, there exists i € N such that
z € Eypy(QY) \ N} for every i > ig, from which we conclude that N7 C E,p) (V) \ Hp a.e.
and thus Hp C Eyp) (V) \ N} ace.

Let us now show item (iii). Fix M € P(N) and let us show that M € P(¢gr). By
Lemma 7.2, it is sufficient to show that for every positive measure A C Q" and every
measure-isomorphism F' modulo 0 from QY% to QY we have M € Q(H|%).

Let then € > 0 be such that e < 1/|M|. By Lemma 4.11, there exists t, € N such that
for every t > to, there exists o € [[j_y Vi such that vV (AN K,v) > (1 —e¢)- vV (K,y). Since
M € P(N), there exists t > ¢, such that M = N,. Since {K(,.),v | u € V;} partitions K,y
into |V;| = | M| parts of equal measure, it follows that for every u € V;, we have

M| -1
VV(Aﬂ K(a,u),V) > (1 —€— ‘ |]|W| > -UV<Kg7v) > 0.
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Note now that if z € &, (") is such that zr,y € AN Ky for every u € V;, then
7 € Tina( Ny, H|E). Thus ting(Ny, H|E) > 0, hence M = N; € Q(H]%), as desired.

It remains to show item (iv). Suppose not, that is, suppose that there exist some positive
measure A C Q" and some measure-isomorphism F modulo 0 from QY to Q" such that for
every i € N, we have ti,q(N;, H|%) = 0.

Let n € N be large enough so that [[—, (1 — 1/|N;]) < v (A) and let

n—1
Ed:ef{JGHVi

=0

V(AN K,y) > 0} :

We claim that for every m € {0,...,n — 1} and every 7 € H:r:ll Vi, there exists u, € V,,
such that (7,u,) is not a prefix of any element of . Suppose not, that is, suppose that
there exist m € {0,...,n — 1} and 7 € [[*;" V; such that for every u € V,,, there exists
some 0% € X such that (7,u) is a prefix of o“. But then the set of x € &y, (V) such that
Ty € ANKquy for every u € V, is a positive measure set that is contained in Tinq(Np,, HIL),
contradicting the fact that #,q(N,,, H|%) = 0. Thus the claim is proved.

Let now X* be the set of o € H:.L;Ol Vi such that for every m € {0,...,n — 2}, we have

n—1
1
V(A =) V(ANK.y) <Y v (Key) = (1 - T) < VY (A),
oes oex* i=0 | Nil
a contradiction. Thus, item (iv) is proved. O

Theorem 7.9. The following are equivalent for a family F of finite L-structures (up to
isomorphism) containing at least one structure of size at least 2.

i. The family F is strongly persistent.
ii. The family F is weakly closed under substitutions and closed under substructures.

Furthermore, if all predicate symbols of L have arity at most 2, then the above are also
equivalent to:

iii. The family F is persistent.
Proof. The implication (i) == (ii) follows from Lemma 7.3(ii) as F = P(¢) for some weakly
random ¢ € Hom™ (A[T,], R).

For the implication (ii) = (i), let " be the set of elements of F of size at least 2 and
let N = (N;)ien be an enumeration of all elements of F’ that repeats each element of F’
infinitely often. Since F is weakly closed under substitutions and closed substructures, by
Remark 3.10, it follows that F = F'U{Kj, F1} for some L-structure F} of size 1 (and where
Ky is the trivial L-structure of size 0).
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By Lemma 7.6, there exists a compatible sequence R = (R;);en of recursive blow-ups
relative to N with R; € F for every ¢ € N and by Proposition 7.8(iii), we know that
R converges to some ¢p € Hom™(A[T,],R) such that 7/ = P(N) C P(¢r) and since
P(¢r) is closed under substructures (see Lemma 7.3) and F = F' U { Ky, F }, we must have
F C P(¢r). On the other hand, since R; € F, it follows that P(¢r) C Q(¢r) C F, hence

F = Q(¢r) = P(¢r) as desired.

If all predicate symbols of £ have arity at most 2, then implication (iii) = (ii) follows
from Lemma 7.3(i) as F = P(¢) for some ¢ € Hom™(A[T,],R) and the implication (i) =
(iii) is obvious. O

Again, the assumption of arity at most 2 is crucial for the inclusion of item (iii) in the
equivalence of Theorem 7.9 as illustrated by Example 7.4.

We conclude this section by observing operations that preserve the notions discussed so
far. The next proposition shows naturality of the operators ) and P and of the weak random-
ness property in the sense that the operators P and ) commute with open interpretations
and weak randomness is preserved by open interpretations.

Proposition 7.10. Let I: T7 ~» I3 be an open interpretation. The following hold for
¢ € Hom™ (A[T3], R).

i. We have Q(¢") = 1(Q()).
ii. We have P(¢') = I(P(9)).
iii. If ¢ is weakly random, then so is ¢'.

Proof. Ttem (i) follows directly from the definition of ¢, see (6).

Item (ii) follows directly from item (i) and the fact that if ¢ is a sub-object of ¢, then
! is a sub-object of ¢! and conversely, every sub-object of ¢! is of the form ! for some
sub-object ¥ of ¢.

Item (iii) follows trivially from items (i) and (ii). O

Before we proceed, we recall the notion of couplings and independent couplings of limits
from [CR23, Definitions 2.3, 2.4 and 2.5|, which played a key role in the study of the natural
quasirandomness properties UCouple[¢] and UInduce[/] in that work.

Definition 7.11. Given canonical theories 77 and T5 in finite relational languages £, and
Lo, respectively, the disjoint union T} U T; is the canonical theory in the disjoint union
language £1 U Ly whose axioms are those of T} (about predicate symbols in £1) and those
of Ty (about predicate symbols in L), that is, the models of T} U T, correspond to a model
of T7 and a model of T5 on the same vertex set.

A coupling of ¢; € Hom™ (A[T1],R) and ¢» € Hom™ (A[T3], R) is a limit ¢) € Hom™ (A[T7U
Ty],R) such that ¢; = ¢li for every i € [2], where I;: T; ~ Ty U Ty is the structure-erasing
interpretation that acts identically on predicate symbols of Tj.
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The independent coupling of ¢; € Hom™ (A[T1],R) and ¢ € Hom™ (A[T3], R) is the limit
$1 ® ¢ € Hom™ (A[Ty U Ty),R) given by

e |Aut(M,)] - |Aut(My)|
(M|} |Aut(M)]

(1 ® o) (M) -~ Q1(My) - pa(My),

where M; & I;(M). Alternatively, if N* (i € [2]) is a T;-on over §; with ¢ = ¢;, then we
have ¢; ® ¢ = dpriga2 for the (T7 UTy)-on N @ N? over the product space €; ® Qy given
by

W' @N?)p € {z € Exp)( @ D) | moner) (@) € N}

whenever P € £; (i € [2]), where 7; x(p): Expy (21 ®Q) — Er(p)(£2;) is the natural projection.
The next proposition says that weak randomness is preserved under independent cou-
plings.

Proposition 7.12. If ¢; € Hom™ (A[T}],R) and ¢y € Hom™ (A[T3], R) are weakly random,
then so is their independent coupling ¢1 @ ¢s.

Proof. Let N be a Tj-on over §2; = (X;, A;, i1;) such that ¢; = ¢ and let def Q1 20,. Itis

clear from the definition of ¢; ® ¢ that for every M € M[T} UT;], we have M € Q(¢1 ® ¢»)
if and only if I;(M) € Q(¢1) and Iy(M) € Q(¢2), where I;: T; ~ Ty U Ty (i € [2]) is the
structure-erasing interpretation.

By Lemma 7.2(i), to show that ¢; ® ¢ is weakly random, it is sufficient to show that for
every positive measure A C 2 and every measure-isomorphism F' modulo 0 from Q4 to €2,
we have Q(¢1 ® ¢2) = Q((N' @ N?)[).

Let M € Q(¢1 ® ¢2) and let us show that M € Q((N' ® N?)|4). For each i € [2], let

M; & 1,(M) and let

B {(2,y) € Evan () X Xo | 2 € Tna(Mi, N') A V0 € V(M), (2403, 9) € A}

Our objective is to show that (13 ® ug)(B) > 0. To do so, for each y € Xs, let

Aly) ¥z e X, | (x,y) € A}

and note that Fubini’s Theorem implies that the set

X ©{y e Xy | m(Aly)) >0}

has positive po-measure.
Since ¢, is weakly random, for every y € X, and every measure isomorphism £, modulo

0 from (Q1)ag) to Q1, we have tia(Mr, N? Zy(y)) > 0, thus Fubini’s Theorem gives

(9 1)(B) 2 [ tna M A i (AW)™ dia(y) > 0.

Xo
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For every € Tina(M1,N") C Ev(ar) (1), define the set

B(z) ¥ {y € X, | (z,y) € B} = {y € X5 | Yo € V(M), (z(sy,y) € A}

and note that Fubini’s Theorem again implies that the set
Toa (M, NY) € {2 € Ta (M1 N) | jra(B(w) > 0}

has positive p;-measure. Since ¢s is weakly random, for every = € m(Ml,N 1) and every

measure isomorphism G, modulo 0 from (€23) g(x) to O, we have tind(Mg,./\f?gfx)) > 0, thus
Fubini’s Theorem gives

tina (M, N?(57) - pia(B(2)) M1 dpay () > 0,

End(Mlle)

bina(M, (N 0 N)[E) > /

concluding the proof. O

Remark 7.13. As we mentioned before, weak randomness can be seen as a weakening of
the natural quasirandomness property UInduce[l] of [CR23|. Since UInduce[l] (and more
generally, UInduce[(]) is not preserved under independent couplings, one can consider the
class UInduceg|l] that is the closure of UInduce[l| under independent couplings and open
interpretations and in [CR23, §10], it was asked if any of these classes yields a meaningful
notion of randomness or if they are already “too large”. It was already noted in [CR23] that
the quasirandom permuton (see Proposition 7.15) is in UInduceg[l] for every ¢ € N, and
that even the largest class UInduceg[l] among the UInduceg[¢| does not contain all limits.

Since UInduce|[l] implies weak randomness, from Propositions 7.10(iii) and 7.12 it follows
that every element of UInduceg|l] is weakly random; this further justifies the adjective
“weak” in weak randomness: it is a quasirandomness notion weaker than the weakening
UInducegll] of UInduce[l] that is still meaningful.

Let us point out that there are weakly random limits that are not in UInduceg[1]: namely,
one can show that if W is a universal weakly random {0, 1}-valued graphon of TGyapn (€.8.,
ow = ¢% as in Lemma 4.13 for an enumeration G = (G, )men of all finite graphs of size at
least 2), then ¢ is weakly random but is not in UInduceg[l]. However, since the length of
the proof outweighs its enlightenment value, we omit it.

Recall from Definition 2.8 that a trivial limit ¢ € Hom™ (A[T], R) is any limit of the form
¢ = ¢n for some theon N whose peons all have measure in {0,1}. For general couplings,
the next proposition says that the coupling of a trivial limit with a weakly random limit is
weakly random.

Proposition 7.14. If v is a coupling of a trivial ¢; € Hom™ (A[T3], R) and a weakly random
¢ € Hom™ (A[T3], R), then 1) is weakly random.

Proof. Let L1 and L, be the languages of 17 and T5, respectively.
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Since ¢, is trivial, it follows that £; can be partitioned into £; = £% U £ so that for
every My € Q(¢y) every P € Lq, we have

P _ @, if Pe LY
(V(M))kpy, if P e L].

This implies that if £ is a coupling of some ¢ € Hom™ (A[T3],R) with ¢;, then

Q&) = { M | Ms € Q(¢)}, (15)
where J/\/[\Q € My ,)[Th UTh] is given by
pMz, if P e L,
pMz &) o if Pe L

(V(My))py, if P € L.

Now since ¢, is trivial, ¢ is the only sub-object of ¢, which means that every sub-object
Y’ of 1 is a coupling of ¢; with some sub-object ¢, of ¢. Since ¢ is weakly random, we
have Q(¢5) = Q(¢p2), hence Q(¢') = Q(¢) follows since the right-hand side of (15) is the
same for (&,¢) = (1, ¢2) and (§,() = (¢, ¢,). Therefore ¢ is weakly random. O

As a simple application of Propositions 7.10 and 7.12 above, let us prove Proposition 5.11
that says that the graphon of agreements of the quasirandom permuton (see Figure 6) is a
universal weakly random limit of Tpeymarapn Dy showing that the quasirandom permuton
Yor € Hom™ (A[Tperm), R) has the same property for Tpen. We point the reader interested
in the theories of limits of permutations and quasirandom permutations to [Coo04, KP13,
CKN™20].

Recall that the quasirandom permuton is given by ¥qr dof dpar, where NOR is the
Tperm-on over [0,1]% given by

N E {2 € &(10,1P) | mlrqy) < mlze)} (€ [2),

where 7;: [0,1]*> — [0,1] is the projection onto the ith coordinate.

Proposition 7.15. The quasirandom permuton v{qg is a universal weakly random limit of
TPerm-

Proof. 1t is straightforward to check that Q(¢qr) = M|[Tperm]. On the other hand, g is
the independent coupling 1) ® 1 of the unique limit v € Hom™ (A[TLinorder); R) of the theory
of (strict) linear orders with itself. Since 1) is obviously weakly random (as Tinorder is finitely
categorical), by Proposition 7.12, it follows that ¢qr is weakly random. [

We can now derive Proposition 5.11 that says that the graphon of agreements of the
quasirandom permuton is universal weakly random limit of Tpe;mcraph @8 an easy consequence.
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Proof of Proposition 5.11. The graphon of agreements of the quasirandom permuton repre-

sents the limit ¢ def wéR for the open interpretation I': Traph ~ Tperm given by

I(E)(x,y) d:efx%y/\(x <1y r =<2y,

so ¢ is weakly random by Propositions 7.10(iii) and 7.15.
Finally, Proposition 7.10(i) implies Q(¢) = I(Q(¥qr)) = I(Tperm) = TPermGraph- H

Remark 7.16. It is easy to see that the same permutations used in the proof of Proposi-
tion 5.12 can be used to show that M[Tpem| is closed under substitutions but not primally
almost finite, hence Tpe, ¢ WR. However, let us point out that had we proved only the re-
sult for Tperm, this would not have immediately implied Proposition 5.12 as primality is not
necessarily preserved under open interpretations (even though closure under substitutions
is).

8 What about weak randomness in general?

In this brief section we provide a partial generalization of Theorem 5.4 of Section 5 to
universal theories in finite relational languages. For the easier direction, we will only be able
to generalize Lemma 5.6 when all arities are at most 2 (Proposition 8.2) and even though the
harder direction will generalize directly in Proposition 8.4 below, this naive generalization is
essentially empty when all arities are at least 3, as in this case there are only finitely many
prime structures (see Remark 3.13). It is not clear at this point what form a characterization
of WR should take in the presence of higher arity predicates.

Definition 8.1. We say that a canonical theory 7" in a finite relational language has the
weakly random Erdés—Hajnal property (abbreviated T € WR) if every ¢ € Hom™(A[T], R)
has a weakly random sub-object.

Proposition 8.2. Let L be a finite relational language whose predicate symbols have arity
at most 2 and let T be a canonical theory in L. If M[T| is monochromatically primally
almost finite, then T' € WR.

Proof. We prove this by the contra-positive. Suppose T ¢ WR and let us show that the set P
of monochromatic prime models of 7" is not almost finite. By Lemma 3.23, it is sufficient to
present a sequence (F),)nen of finite monochromatic prime models of 7" such that F,, is not
a substructure of F),,, whenever n < m.

Since T' ¢ WR, there must exist a limit ¢ € Hom™ (A[T],R) that does not contain any
weakly random sub-object.

We now construct a sequence (¢, )nen of sub-objects of ¢ and a sequence (F},),en of finite
prime models of T satisfying the following.

i. For every n € N, ¢, is a sub-object of ¢,,.

ii. For every n € N, F,, € Q(¢,) \ Q(¢nt1)-
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We construct these sequences inductively as follows.

1. We claim that there exists a sub-object ¢g of ¢ such that there exists M; € M;[T| with
¢o(M;) =1 (and thus all M € My[T]\{M,} have ¢po(M) = 0). Indeed, if M; € M, [T]

is such that ¢(M;) > 0 and N is an Euclidean structure over 2 with ¢, = ¢, then

def . .. . .
A = Tia(My, N) is a positive measure set, so for any measure-isomorphism F modulo

0 from €24 to €2, the sub-object ¢q o A satisfies the desired property.

2. Given ¢, € Hom™ (A[T],R), since ¢, is a sub-object of ¢, we know that ¢, is not
weakly random, so there exists N,, € Q(¢,,)\ P(¢,). Let P, be the set of substructures
of N, that are prime. By Lemma 7.3(i), we know that P(¢,) is strongly closed under
substitutions and since N,, € S(P,,), there must exist F,, € P, \ P(¢,) and since Q(¢,,)
is closed under substructures, we get F,, € Q(¢,)\ P(¢,,). From the definition of P(¢,,),
it then follows that there exists a sub-object ¢,.1 of ¢, (hence also of ¢) such that

Fn € Q(d)n) \ Q(an-&-l)‘

Let now n,m € N be such that n < m. By induction, we know that ¢,, is a sub-object of
GOni1, 50 Q(dm) € Q(Ppy1), which in turn implies that F,, € Q(¢,) \ Q(ém). Since Q(¢,) is
closed under substructures and F,,, € Q(¢,,), it follows that F}, is not a substructure of F},.

Finally, since all ¢,, are also sub-objects of ¢y, we must have Q(¢,,) N M;[T] C Q(¢po) N
M, [T] = {M;}. This implies that for every wunary predicate symbol P € L and every
n € N, we have M; F Vz, P(z) if and only if F,, E Vz, P(z) (otherwise, we would have
Q(¢n) N M4 [T] # {M,}). Thus the F,, are monochromatic. O

Lemma 8.3. Let N = (N;);en be a sequence of prime L-structures of size at least 2 such
that for each i € N, there are finitely many j € N such that N; is a substructure of Nj,
let R = (R;)ien be a compatible sequence of recursive blow-ups relative to N and let ¢r €
Hom™ (A[T,],R) be the limit of R. If [],.(1 — 1/|N;|) = 0, then ¢ does not have any

weakly random sub-object.

Proof. Let V and H be as in Proposition 7.8. Suppose toward a contradiction that ¢z has a
weakly random sub-object. By Lemma 7.2, there exists a positive measure set A C Q" and
a measure-isomorphism F modulo 0 from QY to QY such that H|% is weakly random. By
Proposition 7.8(iv), there exists iy € N such that tyq(N;,, H|%) > 0.

Let jo & max{j | N, is a substructure of N;} < oo. Since {K,v | o € [[°, Vi}
partitions QY there must exist o € [/, Vi such that vV (AN K,y) > 0.

From the definition of H, it follows that for every measure-isomorphism F modulo 0 from

Q%mv to Q, we have ¢H|§< L= ¢r for the sequence R’ = (R));en given by R, oo Rjo+1+ilus,
where

Jo+14i
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Note also that R’ is a compatible sequence of recursive blow-ups relative to the shifted
sequence N’ = (N/);en given by N/ oof Njos1+i-

We claim now that tinq( Ny, H@U’V) = 0. Indeed, since N;, is prime, for this density to be
positive, N;, must be a substructure of infinitely many R}, but since R, € S({N; | j > jo+1}),
Lemma 3.17 says that this can only happen if N;, is a substructure of some N; with j > jo+1,
which would contradict the definition of jj.

Finally, this is a contradiction since H|% was assumed to be weakly random but N;, €

QUHIE) \ P(HIE) as vV (AN Kqv) > 0 and tia(Nyy, HIE ) = 0. 0

Proposition 8.4. Let T' be a canonical theory such that M[T| is weakly closed under
substitutions. If T' € WR, then T' is primally almost finite.

Before we prove Proposition 8.4, let us note that it is completely trivial when all arities
are at least 3 as in this case there are only finitely many prime structures by Remark 3.13.

Proof. We prove this by the contra-positive. Suppose {N/ | i € N} is an infinite antichain
of prime models of 7" and without loss of generality, assume every N/ has size at least 2 (as
Mo[T]U M4 [T] is finite).

For each n € N, let r, € N be large enough so that (1 — 1/|V/|)™ < 1/2 and for each
¢eN,let N, € N for the unique n € N such that S T < U< S 7. Clearly, for
each ¢ € N, there exist exactly r, values of ¢t € N such that N, is a substructure of N;. Note

also that
1 1 fm 1
()~ T () <Is-0

LeN meN meN

Since M[T] is weakly closed under substitutions, by Lemma 7.6, there exists a compatible
sequence R = (Ry)een of recursive blow-ups relative to N = (Ny)peny with R, € M[T] for
every { € N, and by Lemma 8.3, the limit ¢ € Hom™(A[T],R) of R does not have any
weakly random sub-object, hence T' ¢ WR. O]

Let us conclude this section by observing operations that preserve WR (at the level of
theories). The next proposition shows naturality (at the level of theories) of WR, that is, it
is preserved by open interpretations.

Proposition 8.5. If I: T ~ T, is an open interpretation and Ty € WR, then I(13) € WR.

Proof. Follows from Proposition 7.10(iii), the fact that every ¢ € Hom™(A[I(T3)],R) is of
the form ¢ = ¢! for some ¢ € Hom™ (A[T3],R) and the fact that if ¢ is a sub-object of ¢,
then ! is a sub-object of ¢! and conversely, every sub-object of ¢! is of the form ! for
some sub-object ¢ of ¢. O]

It is easy to see that WR is not preserved under disjoint unions of theories (see Defini-
tion 7.11): the theory of linear orders Tiinorder Satisfies WR (as it is finitely categorical) but
the theory of permutations Tperm = TLinOrder U1 Linorder dO€s not satisfy WR (see Remark 7.16).
However, the next proposition says that WR at least interacts well with disjoint unions with
theories with AEHP (see Definition 2.8).
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Proposition 8.6. Let T7 and I, be universal theories and suppose 17 € AEHP. Then the
following hold.

i. If Ty € AEHP, then Ty U T, € AEHP.

1. If T2 € WR, then T1 U T2 € WR.

To prove this proposition, we will need the following result from [CR23] on theons rep-
resenting couplings (see Definition 7.11).

Proposition 8.7 ([CR23, Proposition 4.3]). Let v € Hom™ (A[T} U T3], R) be a coupling
of ¢p; € Hom™*(A[T}],R) and ¢, € Hom™'(A[T3],R) and let N'' be a Ti-on over Q such
that ¢1 = ¢n1. Then there exists a (Ty U Ty)-on ‘H over Q ® ) such that ¢ = ¢y and
Hp = Np x Eyp) () for every predicate symbol P in the language of Ty (when we naturally

Proof of Proposition 8.6. Let 1 € Hom™ (A[T} UTy],R) and let I;: T; ~ Ty UT; (i € [2]) be

the structure-erasing interpretation. Then 1 is a coupling of ¢, o Y and ¢, o P2,

Let N'! be a Ty-on over = (X, A, 1) such that ¢; = ¢pn. Since Ty € AEHP, by [CM22,
Theorem 5.11], there exists a positive measure set A C X and a measure-isomorphism F
modulo 0 from €24 to 2 such that ¢,qr is trivial.

Let now #H be the (7} U Ty)-on over ¢ ' 0 ® Q given by Proposition 8.7 and let

W o i @ p be the underlying measure of §2'. Let also A’ P Ax Xandlet ¥ Fe idy
be the measure-isomorphism modulo 0 from €, to €2’ that acts as F' on the first coordinate
and acts identically on the second coordinate.

Suppose Ty € AEHP. Since Iy(H|%) = I,(H)|% is a Ty-on, by [CM22, Theorem 5.11],
there exists a positive /;,-measure set B C X x X such that I,(H)|% |5 is trivial for every

measure-isomorphism F modulo 0 from (€4,)5 to 4.

Set B’ & BN A’ so that B’ is a positive p/-measure set such that Io(H) E?F/ is trivial.

Note now that since Hp = Np x Eypy () for every predicate symbol P in the language of

11, we get ¢11(H)|§$ = ¢N1|£, which is a trivial limit. Since ¢11(H)|§?F’ is a sub-object of ¢N1|§,

it must also be trivial. Hence, ¢ = gbm Forr Must be trivial as it is a coupling of two trivial
B/

Iz

. . Il . ~
limits ¢ = ¢11(H)|§?F’ and QSH@?F,

s - ¢12(H)|§,°F" Thus item (i) is proved.
For item (ii), we make the same construction but taking B C X x X with positive p/y-

measure such that Io(H) |4, |§ is weakly random as guaranteed by 75 € WR. Then ¢) = ¢y must

be weakly random by Proposition 7.14 as it is a coupling of a trivial limit ¢2| o = @ 1L () [P
B’ B’

]

Iz

with a weakly random limit ¢H|ﬁow = QSIz(H)"F'OF/.
B’ B/

9 Conclusion and open problems

In this paper we studied the notion of weak randomness, a weakening of the quasirandomness
property UInduce[l] (see [CR23]). In the language of graphs, a graphon is weakly random if
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the set of finite graphs G having non-zero density is invariant across all subgraphons. In the
more general language of structures, weak randomness requires the limit ¢ € Hom™ (A[T], R)
to be such that for every sub-object 1 of ¢ and every finite structure M, we have ¢(M) > 0
if and only if (M) > 0. We characterized (strongly) persistent families of structures, i.e.,
those that correspond to a theory T that has a universal weakly random limit (that is, a
weakly random ¢ such that Th(¢) = T') as precisely those that are closed under substructures
and weakly closed under substitutions.

We also studied a weakening WR of AEHP. In the language of graphs, WR is a property of a
hereditary class of graphs which requires that every graphon associated to the class contains
a weakly random sub-graphon. We characterized WR for hereditary classes of graphs that
are closed under substitution as precisely those classes which are “primally almost finite”,
meaning that in the partial order on elements of the class given by induced subgraph, there
is no infinite antichain of prime graphs. In the general language of structures, WR requires
every limit of T to contain a weakly random sub-object (see Definitions 2.8, 5.1 and 8.1).
We characterized WR for theories 7' with maximum arity at most 2 and M[T] closed under
substitutions as precisely the set of theories T" that are monochromatically primally almost
finite.

A very natural open problem that was not addressed in this paper is to characterize
weak randomness at the level of objects, that is, to provide an equivalent property to ¢ €
Hom™ (A[T],R) being weakly random. Toward this goal, a natural first step is to ask how
different can two weakly random objects ¢ and 1 be. A first source of difference is obviously
that they can have different persistence sets P(¢) # P(1). On the other hand, if P(¢) =
P(v), then we can attempt to measure their difference based on the sub-object partial

pre-order and it is natural to ask what is the structure of the partially pre-ordered set
def

or = {¢ | P(¢) = Q(¢p) = F} for some (strongly) persistent class F. Obviously, if
F={K,|neN}or F={K,|n e N}, then the set 5 has only one element, but even
for the next simplest case F = S({Ky, Ks, K»}) of induced subgraphs of recursive blow-ups
of Cy, the structure of the partial pre-order on ®r is not clear: does it have incomparable
elements? What about infinite antichains? By Proposition 7.8, if G = (G, )nen in which
each G,, is either Ky or K5 and both Ky and Ko occur infinitely often, then the recursive
blow-up ¢¢ satisfies ¢pg € ®r and we believe that changing the asymptotic proportion of
edges and non-edges in GG should produce incomparable elements of ¢ x.

As we mentioned in the introduction, the approximate Erdés—Hajnal property (AEHP)
is a variation of the usual Erdds—Hajnal property (EHP) that allows for negligible errors,
but requires linear-sized homogeneous sets in the presence of convergence. Since WR is a
weakening of AEHP, we would like to ask the following more abstract question: what is the
polynomial-sized error-free version of WR in the finite? Furthermore, since AEHP implies EHP
and WR is a larger class than AEHP, is it still true that WR implies EHP for graphs? Of course,
this implication must hold if the Erdés—Hajnal Conjecture is true. After the submission
of this paper, Nguyen—Scott—Seymour posted a preprint with a proof of the Erdés—Hajnal
conjecture for classes of graphs with bounded VC dimension [NSS24]. Combining their result
with Theorem 6.10, one concludes that hereditary classes of graphs that are closed under
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substitutions and satisfy WR must necessarily satisfy EHP, so it stands to reason to attempt
to remove the closure under substitutions hypothesis.

As mentioned in Section 8 (see also Table 1), several of the proofs on weak randomness
and the class WR do not generalize very well in the presence of predicates of arity at least 3. It
is natural to ask if we can characterize WR in these cases in the presence of some simplifying
assumption that would replace closure under substitution used in the binary case.

As briefly mentioned before, weak randomness is a weakening of the property UInduce[l]
of [CR23]. Since UInduce[l] is part of a hierarchy of quasirandomness properties UInduce|[(],
one might expect that there exists a hierarchy of weak randomness as well. In turn, it may be
that our difficulty in understanding WR in arity 3 comes from the fact that there is a wide vari-
ety of UInduce[l] limits of 3-hypergraphs and since UInduce[2] for 3-hypergraphons amounts
again to only (full) quasirandom 3-hypergraphons, one might expect that the correspond-
ing WR[2] property in arity 3 defined from an appropriate notion of “weak 2-randomness”
(or more generally WR[¢ — 1] in arity ¢) could be easier to handle. Since the definition of
UInduce|2] is considerably more technical than that of UInduce[l] and our initial attempts
at a weak 2-randomness definition did not yet yield any interesting results, we refrain from
elaborating further.

Finally, in the absence of closure under substitutions, it is obvious that WR is no longer
characterized by the primally almost finite condition: obvious counter-examples include the
theories Tj,<i (T\<k, resp.) of graphs whose clique number (chromatic number, resp.) is
at most k, which clearly satisfy AEHP but are not closed under substitutions when k£ > 2
(as Kj41 € S({K2}) is not a model of Tj,<;, or T\<i). It is possible to upgrade Lemma 5.6
and Proposition 8.2 to also cover the theories T,<; and T, < via an interactive proof (more
precisely, a two-player game in which the first player is attempting to show that some sub-
object 1 must have @)(¢)) monochromatically primally almost finite and the second player is
attempting to deceive the first player), but we leave this result to a future work.
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