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Abstract

Call a hereditary family F of graphs strongly persistent if there exists a graphon W
such that in all subgraphons W 0 of W , F is precisely the class of finite graphs that have
positive density in W 0. Our first result is a complete characterization of the hereditary
families of graphs that are strongly persistent as precisely those that are closed under
substitutions.

We call graphons with the self-similarity property above weakly random. A hered-
itary family F is said to have the weakly random Erdős–Hajnal property (WR) if every
graphon that is a limit of graphs in F has a weakly random subgraphon. Among
families of graphs that are closed under substitutions, we completely characterize the
families that belong to WR as those with “few” prime graphs.

We also extend some of the results above to structures in finite relational languages
by using the theory of theons.

Keywords: Graph limit, theon, quasirandomness.

1 Introduction

The theory of graph quasirandomness implies that quasirandom graphons are the only
graphons W with the self-similarity property that densities of finite graphs are invariant
across subgraphons of W (see [Tho87, CGW89] for graph quasirandomness and [Lov12] for
graphons). An interesting weakening of this property, which we will motivate further below,
is to require only that the family F of finite graphs that have positive density is invariant
across subgraphons of W . We call graphons with this property weakly random. It is natural
to ask which families F can be realized in this way in some weakly random W . Since all
constant graphons are quasirandom, thus also weakly random, three such families are the
cliques, the anti-cliques and the family of all finite graphs. However, there are other fami-
lies that can be realized in this way such as the family FC4 of all cographs, that is, graphs
such that every induced subgraph of size at least 2 can be partitioned into two non-trivial
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parts that are either complete to each other, or empty to each other. Alternatively, FC4 is
precisely the family of finite graphs that are induced subgraphs of some recursive blow-up of
the 4-cycle. Strong persistence of FC4 is seen since the limit WC4 of the balanced recursive
blow-ups of the 4-cycle is weakly random and realizes the family FC4 .

The work of this paper is to show that this notion of weak randomness supports a rich
structure theory and provides an illuminating way of studying hereditary classes of graphs
based on properties of their limit objects. Before stating our main results, let us further
motivate why the study of weak randomness is both natural and tractable, which begins by
asking what is special about large cliques and anti-cliques.

Recall that the Erdős–Hajnal Conjecture [EH89] says that for any proper hereditary
class of graphs, there exists a constant c > 0 such that any graph of size n in this class
either has a clique or an anti-clique of size nc; we will refer to this property of a hereditary
class as the Erdős–Hajnal property and abbreviate it as EHP (see also [Chu14] for a survey).
In [CM22], we studied a natural variant of this question in the presence of convergence, called
the approximate Erdős–Hajnal property (AEHP), in which we allow for a negligible amount
of non-edges in the almost clique or a negligible amount of edges in the almost anti-clique,
but require it to be linear-sized. The framework of AEHP naturally lends itself to analysis via
limit theory, i.e., graphons [LS06] in the graph case, or more generally, flag algebras [Raz07]
and theons [CR20] in the case of universal theories in finite relational languages.

The aforementioned family FC4 of cographs plays a key role in some of the classical results
on the usual Erdős–Hajnal Conjecture: namely, a consequence of [APS01, Theorem 1.1]
is that any hereditary class that does not contain FC4 has EHP. However, this is not a
characterization of EHP as several classes that contain FC4 still have EHP; easy examples
include perfect graphs and P3-free graphs (i.e., disjoint unions of cliques) and hard examples
include bull-free graphs [CS08] and C5-free graphs [CSSS23].

On the other hand, surprisingly, hereditary classes of graphs with AEHP can be charac-
terized as precisely those that avoid containing FC4 , see [CM22, Theorem 8.10]. In what
follows, it will be more convenient to think about hereditary classes of graphs as the models
of a particular universal first-order theory T of graphs, so a graphon of T is simply a limit
of finite models of T . This shift in language supports the model theoretic perspective of
studying the theory T (i.e., a hereditary class of graphs) by studying the variation in the
class of its infinite models (i.e., its graphons). In this language, a universal theory T of
graphs has AEHP if every graphon of T has a (large) trivial subgraphon, i.e., an almost clique
or an almost anti-clique, see [CM22, §7] and Definition 2.9.

In the proof of the negative side of the characterization of AEHP for graphs, if all cographs
are models of T , then the limit WC4 is a graphon of T . Looking through the lens of weak
randomness, it is clear that WC4 does not contain trivial subgraphons since both the edge
and the non-edge must persistently have positive density in all subgraphons of WC4 . Part
of the characterization of AEHP involved showing that persistence of the edge and non-edge
implies persistence of every graph in FC4 . Thus, we are led to ask which families arise as
persistent classes of graphons, i.e., families F of graphs that are precisely those that have
positive density in all subgraphons of a given graphon W . A related notion is that of a
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strongly persistent class, in which the graphon is further required to be weakly random. A
priori these notions are di↵erent since a non-weakly random graphon can have finite graphs
with positive density in only some of its subgraphons.

The first theorem of the present paper is to show the equivalence of strong persistence
and persistence and to characterize such families as precisely those that are closed under
substructures and substitutions (see Definition 3.8). This requires both understanding prop-
erties of substitutions and the construction of appropriate weakly random limits. We prove
this result first for graphs (Theorem 4.4) and then a suitable generalization of it for struc-
tures in arbitrary finite relational languages (Theorem 7.9) after developing suitable exten-
sions of the relevant concepts. The appearance of substitution in this characterization, and
of the related notion of primality in what follows, is not completely unexpected as both
the Erdős–Hajnal property and its approximate version behave very well under substitution
(see [APS01, Chu14] for EHP and [CM22] for AEHP).

Since cliques and anti-cliques are weakly random, we can extend the picture of AEHP by
defining the class WR as follows: a universal theory of graphs is in AEHP if all its graphons
have trivial subgraphons and a universal theory of graphs is in WR if all its graphons have
weakly random subgraphons. It is immediate that AEHP ✓ WR, it is less immediate but shown
in the present paper that this containment is proper and that not every universal theory is
in WR. Because of the nature and simplicity of the characterization of AEHP for graphs cited
above, it becomes plausible that a characterization of the richer WR class may exist.

In Theorem 5.4, we characterize theories of graphs in WR under the additional natural
assumption of closure under substitution as those that have “few” prime graphs in the sense
that there are no infinite antichains of prime graphs in the induced subgraph partial order,
a condition we call primally almost finite. In one direction, we build on the analysis of
persistence of Theorem 4.4 and in the other direction, the technology of recursive blow-ups
plays a key role. Note that without the assumption of closure under substitutions, it is
obvious that WR is no longer characterized by the primally almost finite condition as, e.g.,
the theory of bipartite graphs is in WR (even in AEHP) but has infinite antichains of prime
graphs.

Many further questions are discussed in the concluding Section 9.

Let us point out that although [CM22] provides a good motivation for the current work, it
is not a pre-requisite for the current paper and we do not rely on any of the results of [CM22]
for our study of weak randomness and the class WR, except for a straightforward characteriza-
tion of subgraphons and sub-objects [CM22, Lemmas 3.3 and 5.8] (see also Section 2 below).
To read the current paper, it will be useful to have some familiarity with the theories of
graphons and theons, but we repeat the relevant definitions and results in Section 2 to set
the notation.

Now we describe the structure of the paper. In Section 2, we review the necessary prelim-
inaries and set notation. Section 3 starts to develop the properties of substitution, primality
and almost finiteness, which we will need for the rest of the paper. Section 4 is devoted to
proving the persistence result for graphs, Theorem 4.4. Section 5 defines the class WR for
graphs and proves the characterization under the assumption of closure under substitutions,
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Theorem 5.4. In Section 6, we study how the notions of weak randomness interact with
VC dimension, show that weakly random graphons of proper theories of graphs must be a.e.
{0, 1}-valued (Theorem 6.2) and show that primally almost finite families of graphs must
have bounded VC dimension (Theorem 6.10). In Section 7, we prove the general characteri-
zation of strongly persistent classes of structures in finite relational languages (Theorem 7.9).
In the brief Section 8, we point out which results concerning WR generalize easily to finite
relational languages. In the final Section 9, we summarize and discuss some open problems.

Acknowledgments

We thank two anonymous reviewers for helpful comments.

2 Preliminaries

In this section, we establish the notation and background results that will be used throughout
the paper. The core results of the paper are in probabilistic combinatorics, and most of the
results and proofs are stated in that language. Still, there are quite a few points where we
believe the introduction of (simple) model theoretic language is more natural both to explain
our approach and to organize the results, as we shall explain.

We denote the set of non-negative integers by N and the set of positive integers by

N+
def
= N\{0} and given n, k 2 N, we let [n] def

= {1, . . . , n} and let (n)k
def
= n(n�1) · · · (n�k+1)

denote the falling factorial. Given a set V and k 2 N, we let (V )k be the set of injective

functions [k] ! V , we let
�
V

k

� def
= {A ✓ V | |A| = k} be the set of subsets of V of size k,

let
�
V

k

� def
=
S

k

`=0

�
V

`

�
and we let r(V )

def
=
S

k2N+

�
V

k

�
be the set of non-empty finite subsets of

V . We will often abuse notation and write n in place of [n] when V = [n] in some of the
notation.

2.1 Terminology from model theory: structures and theories

In this paper a main object of study is hereditary classes of graphs. These can be seen as
a special case of what are called in model theoretic language “classes of structures in finite
relational languages” or even “universal theories”, and often the greater level of generality
is useful. We now explain all these (quite natural) definitions.

Recall that a family of graphs (up to isomorphism) is called hereditary if it is closed
under induced subgraphs. As an example, consider the triangle-free graphs, and observe the
following. Using R as the binary edge symbol, we can write a set of axioms TTri of first order
logic which capture this class of graphs. First, the theory of graphs TGraph will say: the edge
relation is symmetric [ 8x8y(R(x, y) () R(y, x)) ] and irreflexive [ 8x8y(R(x, y) =)
x 6= y) ]. To obtain TTri, we add the axiom that there are no triangles [ 8x8y8z ¬(x 6=
y^y 6= z^z 6= x^R(x, y)^R(y, z)^R(x, z)) ]. This TTri is called a universal theory because
it uses only universal quantifiers, and to a model theorist, this explains the fact that the
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axioms still hold on any induced substructure, or in other words, the graphs satisfying the
axioms TTri form a hereditary class. Model theorists consider a set of axioms and the class
of structures satisfying those axioms to be two sides of the same coin, so in logical parlance
we could say we are studying the hereditary family of triangle-free graphs, or equivalently,
we are studying the universal theory TTri.

To motivate the phrase “finite relational languages”, observe that there are other natural
hereditary classes we might want to study, such as: linear orders, tournaments, 3-uniform
hypergraphs; or perhaps the class of hypergraphs on which we have both a graph edge E and
a 3-uniform hyperedge R, and E has no triangles and R has no tetrahedra (i.e., there are no
four vertices such that every three form an R-hyperedge).1 The following three definitions
give us the right level of generality. First, we choose our alphabet.

Definition 2.1. A finite relational language L is a set of finitely many symbols P1, . . . , Pn,
each given with an arity k(Pi) 2 N+.

Second, when we define a graph G, we present it as a set V of vertices along with a set
R ✓ V ⇥ V of edges, and L-structures just extend this in the obvious way:

Definition 2.2. Given a finite relational language L, an L-structure M is given by:

(a) the data of a set V (M), called the vertices of M or the domain of M , and

(b) for each Pi 2 L, a subset of V (M)k(Pi), that is, the set of k(Pi)-tuples on which Pi

holds. This set is denoted PM

i
and called the interpretation of Pi in M .

Finally, we make the bridge to theories:2

Definition 2.3. A universal theory T in the language L is a set of axioms (i.e., a set of well
formed formulas of first order logic, using basic logical symbols along with the symbols from
L) in which the only quantifiers are universal. An L-structure M is said to be a model for
T , in symbols M |= T , if all the axioms T hold in M .3

Throughout this text, unless explicitly mentioned otherwise, all languages are assumed
to be finite relational languages. We allow4 structures to have empty vertex sets and the
unique structure with empty vertex set, called trivial structure, is denoted K0. Given an
L-structure M , V ✓ V (M) and v 2 V (M), we denote the substructure of M induced by V

by M |V (i.e., we have V (M |V )
def
= V and PM |V

def
= PM

\ V k(P ) for every P 2 L) and we let

M � v
def
= M |V (M)\{v}.

We put the following in a convention environment to emphasize its importance:

Convention 2.4. Our substructures and subgraphs will always be induced, but keeping
with the tradition of the fields, we will use the short term “substructure” for the former but
the full term “induced subgraph” for the latter.

1A series of formal examples will be worked out later in this section.
2Observe that each of the hereditary classes listed before Definition 2.1 can be expressed as a class of

models for some appropriate universal axioms using an appropriate L: for instance {<} with k(<) = 2, {R}

with k(R) = 2, {R} with k(R) = 3, and {E,R} with k(E) = 2 and k(R) = 3, respectively.
3Formally defining “M |= T” requires an induction on formula complexity, as in [CK90, Chapter 2].
4This may seem curious to model theorists but simplifies our calculations.
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In this paper, and elsewhere, the word “structure” and “model” are used interchangeably;
often the first emphasizes the abstract aspect, and the second emphasizes the relation to a
theory. Basic model theory verifies that these work as intended: when T is a universal
theory, the class of models of T is closed under substructures, i.e., is a hereditary class.

Convention 2.5. In this paper the phrase “universal theory” will denote both a fixed uni-
versal set of axioms T in some fixed finite relational language L, and the class of L-structures
which are models for T , which, as noted, is a hereditary class.

The reader is free to substitute the phrase “hereditary class” for “universal theory”
throughout, keeping in mind the language being used and the appropriate notion of sub-
structure, and Convention 2.4.

Discussion 2.6. If the reader is essentially free to read “universal theory” as “hereditary
class,” why do we introduce this terminology? This indicates a certain change in perspective
which appears to be useful for theorems and proofs. Part of this choice reflects a history of
work in the area, as in the theons of [CR23]. Centrally for the present work, a characteristi-
cally model-theoretic move of “studying all models of a theory” can be seen in the definition
of the class WR and in various aspects of the proofs.

2.2 Counting embeddings of graphs and structures

In order to develop the theory of graph limits (see 2.6 below), one starts by defining labeled

(induced) density of a finite graph H in some other finite graph G. That is, let Tind(H,G)
be the set of injective maps f : V (H) ! V (G) which preserve edges and non-edges, and let

tind(H,G)
def
=

8
<

:

|Tind(H,G)|

(|G|)|H|

, if |H|  |G|,

0, otherwise.

One also defines the induced density of H in G:

p(H,G)
def
=

|{U ✓ V (H) | G|U
⇠= H}|

�
|H|

|G|

� =
|H|!

|Aut(H)|
· tind(H,G),

when |H|  |G| (and defined as 0 otherwise), which gives the normalized number of (un-
labeled) copies. The discussion in the previous subsection suggests an obvious extension of
this definition to the setting of finite relational languages. That is, given finite structures M
and N in a language L, we let Tind(M,N) be the set of embeddings of M in N (i.e., the set
of injective maps f : V (M) ! V (N) that preserve all relations and their negations) and let

tind(M,N)
def
=

8
<

:

|Tind(M,N)|

(|N |)|M |

, if |M |  |N |,

0, otherwise
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be the labeled (induced) density of M in N . We also define the (induced) density of M in N
as the normalized number of substructures of N that are isomorphic to M given by

p(M,N)
def
=

|{U ✓ V (N) | N |U
⇠= M}|

�
|N |

|M |

� =
|M |!

|Aut(M)|
· tind(M,N),

when |M |  |N | (and defined as 0 otherwise), where Aut(M) is the group of automorphisms
of M .

Given a universal theory T in L and a set V , we let KV [T ] be the set of all models M
of T whose vertex set V (M) is V . Given n 2 N, we let Mn[T ] be the set of models of T of
size n up to isomorphism; we typically think of Mn[T ] as a subset of K[n][T ] by putting one

representative of each isomorphism class in Mn[T ]. We also let M[T ]
def
=
S

n2N Mn[T ].

2.3 Open interpretations

When comparing hereditary classes it is useful to know when one contains the information of
the other in perhaps a di↵erent presentation. As a trivial example, consider the hereditary
class of triangle-free graphs in which the edge relation is called E (k(E) = 2) and the
hereditary class of triangle-free graphs in which the edge relation is called R (k(R) = 2). As
a slightly less trivial example, compare these to the hereditary class of graphs in which each
vertex is either colored red or green, and the green vertices form a triangle-free graph.

This subsection introduces language for addressing such situations by identifying ob-
viously equivalent pieces of hereditary classes. Model theorists will recognize “open” as
meaning “quantifier-free”.

Recall that for universal theories T1 and T2 in finite relational languages L1 and L2,
respectively, an open interpretation (or definition) from T1 to T2 is a function I (denoted
I : T1  T2) that maps each predicate symbol P 2 L1 to an open (i.e., quantifier-free)
formula I(P )(x1, . . . , xk(P )) in L2 and such that for each axiom 8~x, F (~x) of T1, we have T2 `

8~x, I(F )(~x) when we declare I to commute with logical connectives. Open interpretations of
the form I : T1  T2 contra-variantly define maps KV [T2] ! KV [T1] for each set V given by
(I(M) ✏ P (~x)) () (M ✏ I(P )(~x)) for each P 2 L1. In turn, for an open interpretation
I : T1  T2, we let I(T2) be the universal theory in the language of T1 whose finite models
are precisely those of the form I(M) for some M 2 M[T2], that is, the axioms of I(T2) are

8x1, . . . , xn,
_

M2Kn[T2]

Dopen(I(M))(x1, . . . , xn) (n 2 N),

where Dopen(N) is the open diagram of N , that is, the open formula

^

1i<jn

xi 6= xj ^

^

P2L2

0

@
^

↵2PN

P (x↵1 , . . . , x↵k(P )
) ^

^

↵2V (N)k(P )\PN

¬P (x↵1 , . . . , x↵k(P )
)

1

A
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that completely encodes the quantifier-free type (over ?) of the tuple (1, . . . , n) in N . To
make sense out of Dopen(K0) (which must be a quantifier-free formula on zero variables), we
allow our formulas to use the tautological truth symbol > so that Dopen(K0) is defined as >.

An Int-isomorphism (or interdefinition) is an open interpretation I : T1  T2 such that
there exists an open interpretation J : T2  T1 such that for every set V , the compositions
J �I : KV [T2] ! KV [T2] and I �J : KV [T1] ! KV [T1] are the identity maps. Since p(M,N) =
p(I(M), I(N)) whenever I : T1  T2 is an Int-isomorphism and M and N are finite models
of T2, we typically do not distinguish between Int-isomorphic universal theories.

2.4 Canonical theories: avoiding the diagonal

When defining graphs we require the edge relation to be irreflexive. In general, a universal
theory T in L is canonical if T entails

8x1, . . . , xk(P ),

 
_

i 6=j

xi = xj ! ¬P (~x)

!
(1)

for every predicate symbol P 2 L. By [CR20, Theorem 2.3] (see also [AC14, §2.2]), every
universal theory is Int-isomorphic to some canonical theory and as such, from this point
forward, all theories are assumed to be canonical theories, unless explicitly mentioned oth-
erwise.

We say that a canonical theory T is non-degenerate if it contains some infinite model
(equivalently, if Mn[T ] is non-empty for every n 2 N).

2.5 Examples of theories used in the text

To make more concrete our use of “universal theories” rather than simply hereditary classes
of graphs, in this subsection we lay out some of the main examples used in the text, along
with a useful construction of a canonical theory. We have already seen the theory of graphs

TGraph, and we will say that T “is a universal theory of graphs” when T is a universal theory
that is obtained from TGraph by adding axioms, that is, its finite models are some hereditary
class of graphs (an obvious example is TGraph itself, a less obvious one is the theory TTri of
triangle-free graphs).

A second kind of example is the theory of k-hypergraphs Tk -Hypergraph, that is, the canonical
theory with a single symmetric irreflexive

5 k-ary predicate E. Obviously the theory of graphs
is simply TGraph = T2 -Hypergraph. In these theories, we denote by K(k)

n 2 Mn[Tk -Hypergraph] the

complete k-hypergraph on n vertices (i.e., we have V (K(k)
n )

def
= [n] and EK

(k)
n

def
= ([n])k) and

we let Kn

def
= K(2)

n be the complete graph on n vertices. Given a k-hypergraph G, we let G

denote the complement hypergraph of G (given by V (G)
def
= V (G) and EG def

= ([n])k \ EG).

In particular, K
(k)
n

is the empty k-hypergraph on n vertices.

5In the sense that the predicate is not true in any non-injective tuple.
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Another example of a canonical theory is the theory of (strict) linear orders TLinOrder,
i.e., the theory with a binary predicate symbol � and axioms

8x,¬(x � x),

8~x, (x1 6= x2 ! (x1 � x2 _ x2 � x1)),

8~x, (x1 � x2 ^ x2 � x3 ! x1 � x3).

Another useful theory is the theory of permutations TPerm
def
= TLinOrder [ TLinOrder, which

is the theory of two (strict) linear orders on the same ground set. Its finite models (up to
isomorphism) are in one-to-one correspondence to usual permutations via Sn 3 � 7! M� 2

Mn[TPerm], where the first order �
M�

1 of M� is simply the natural order on [n] and the second
order is given by

(M� ✏ i �2 j) () ��1(i) < ��1(j).

Some other examples of theories that can be obtained from TGraph by adding axioms that

will be used are the theory of graphs of agreements of permutations TPermGraph
def
= I(TPerm),

where I : TGraph  TPerm is given by

I(E)(x, y)
def
= (x 6= y ^ (x �1 y $ x �2 y)),

the theory of bipartite graphs TBipartite, which is obtained from TGraph by adding the axioms
8~x,¬Dopen(C2n+1)(~x) for every n 2 N+, where C` is the `-cycle graph and the theory of

perfect graphs, which by the Strong Perfect Graph Theorem [CRST06], is obtained from
TGraph by adding the axioms 8~x,¬(Dopen(C2n+1)(~x) _Dopen(C2n+1)(~x)) for every n � 2.

For every finite relational language L, we let TL be the pure canonical theory in L, that
is, the theory whose axioms are precisely (1) for each P 2 L. Unless explicitly mentioned
otherwise, all L-structures are assumed to be canonical structures, that is, models of TL.

Given a family F of models of a canonical theory T , we let ForbT (F) be the theory of
models of T that do not have any copies of models in F , that is, ForbT (F) is obtained from
T by adding the axioms 8~x,¬Dopen(F )(~x) for every F 2 F (note that if F = K0, then this
formula takes the form ¬>, which is tautologically false, so ForbT (F) has no models when
K0 2 F).

Another simple but useful construction is the following: if F is a family of finite L-

structures that is closed under substructures, then we let Th(F)
def
= ForbTL(M[TL] \ F) be

the unique universal theory (up to reaxiomatization) such that M[Th(F)] = F .

2.6 Basics of graphons and theons

We start here with the language of models before specializing to the case of graphons, which
will be central for an initial segment of the text.

A sequence (Nn)n2N of finite models of a canonical theory T is called convergent if it is
increasing in the sense that |Nn| < |Nn+1| for every n 2 N and if for every M 2 M[T ],
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the limit limn!1 p(M,Nn) exists. Another way of seeing this convergence is that each finite
model N of T corresponds to the point p(�, N) 2 [0, 1]M[T ] and convergence of an increasing
sequence (Nn)n2N amounts to convergence in the (compact metrizable) product topology of
[0, 1]M[T ] of the corresponding sequence (p(�, Nn))n2N.

There are essentially two ways to encode limits of convergent sequences. The first is alge-
braically/syntactically: we say that a function � : M[T ] ! [0, 1] is the limit of a convergent
sequence (Nn)n2N if �(M) = limn!1 p(M,Nn) for every M 2 M[T ]. The theory of flag
algebras [Raz07] describes the set Hom+(A[T ],R) of functions that are limits of convergent
sequences as precisely as the ones that induce positive homomorphisms from a particular
commutative R-algebra A[T ] to R, but for this work, the unfamiliarized reader can safely
think of Hom+(A[T ],R) as simply a fancy notation for the subset of [0, 1]M[T ] of all � that
are limits of some convergent sequence. Note that compactness of [0, 1]M[T ] implies that
Hom+(A[T ],R) is non-empty if and only if T is non-degenerate.

For � 2 Hom+(A[T ],R), the theory of positive models of � is the universal theory Th(�)
whose finite models are precisely those models M of T such that �(M) > 0, that is, the
axioms of Th(�) are

8~x,
_

M2Kn[T ]
�(M)>0

Dopen(M)(x1, . . . , xn) (n 2 N).

The second way of encoding limits is geometrically/semantically. In the case of graphs,
we can encode limits using a graphon W over an atomless standard probability space ⌦ =
(X,A, µ), that is, W is a symmetric function X⇥X ! [0, 1] measurable in the completion of
the product �-algebra (typically, the space ⌦ is taken to be [0, 1] equipped with the Lebesgue
measure �, in which case, a graphon is simply a symmetric Lebesgue measurable function
[0, 1]2 ! [0, 1]). Given one such graphon W over ⌦ = (X,A, µ) and a finite graph G, the
labeled (induced) density and the (induced) density of G in W are defined respectively as

tind(G,W )
def
=

Z

XV (G)

Y

{v,w}2E(G)

W (xv, xw)
Y

{v,w}2E(G)

(1�W (xv, xw)) dµ(x),

�W (G)
def
= p(G,W )

def
=

|G|!

|Aut(G)|
· tind(G,W ),

where E(G)
def
= {{v, w} | G ✏ E(v, w)} is the edge set of G and G is the complement of G.

We say that a convergent sequence (Hn)n2N of graphs converges to W if limn!1 p(G,Hn) =
�W (G) for every G 2 M[TGraph]. Another way of interpreting tind(G,W ) above is to define
the set Tind(G,W ) of labeled (induced) copies of G in W as

Tind(G,W )
def
=

⇢
(x, y) 2 XV (G)

⇥ [0, 1)(
V (G)

2 )
���� 8{v, w} 2

✓
V (G)

2

◆
,

({v, w} 2 E(G) $ y{v,w} < W (xv, xw))

�
(2)
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and note that tind(G,W ) = (µ ⌦ �)(Tind(G,W )). We also use the shorthand Th(W )
def
=

Th(�W ) for the theory of positive graphs of W . Note that when W is {0, 1}-valued, we
can interpret it as the adjacency matrix of a graph with vertex set X and for (x, y) 2

XV (G)
⇥ [0, 1)(

V (G)
2 ) such that all coordinates of x are distinct, we have (x, y) 2 Tind(G,W ) if

and only if x is an embedding of G in the graph encoded by the {0, 1}-valued W .
The main theorem of the theory of graphons [LS06] says that graphons precisely encode

limits of convergent graph sequences. Along with the flag algebra description, this can be
easily summarized as Hom+(A[TGraph],R) = {�W | W is a graphon}. However, let us note
that di↵erent graphons can represent the same limit; for example, for any graphon W over

[0, 1], the graphon W 0 defined by W 0(x, y)
def
= W (2x mod 1, 2y mod 1) represents the same

limit as W (i.e., we have �W = �W 0).
Another very useful theorem is the Graphon Removal Lemma [Pet13, Theorem 1], which

says that for any graphon W over ⌦, there exists a graphon W 0 that di↵ers from W only by a
zero measure set (hence �W = �W 0) and such that for everyG 2 M[TGraph], if tind(G,W 0) = 0,
then Tind(G,W 0) ✓ DV (G), where

DV

def
= {(x, y) 2 XV

⇥ [0, 1)(
V

2) | 9v, w 2 V, (v 6= w ^ xv = xw)} (3)

is the diagonal set, that is, the Graphon Removal Lemma says that we only need to change
W in a zero measure set to remove all o↵-diagonal copies of finite graphs that have zero
density in W .

For the general case, we will use the theory of theons [CR20] (see also [Aus08] and [AC14]
for alternative semantic limits). Given an atomless standard probability space ⌦ = (X,A, µ)

and a set V , we let EV (⌦)
def
= Xr(V ) (recall that r(V )

def
=
S

k2N+

�
V

k

�
), equipping it with the

completion of the product measure, which is denoted µ as well, by abuse.
For a predicate symbol P in a finite relational language L, a P -on over ⌦ is a measurable

subset of Ek(P )(⌦). An Euclidean structure in L over ⌦ is a function N that maps each
predicate symbol P 2 L to a P -on NP ✓ Ek(P )(⌦). If we are further given a finite (canonical)
L-structure K, we define the set of labeled (induced) copies of K in N as

Tind(K,N )
def
=
\

P2L

0

@
\

↵2PK

(↵⇤)�1(NP ) \
\

↵2(V (K))k(P )\P
K

(↵⇤)�1(Ek(P )(⌦) \ NP )

1

A ,

where for each injection ↵ : [k] ! V , ↵⇤ : EV (⌦) ! Ek(⌦) is the contra-variantly defined
“projection” given by

↵⇤(x)A
def
= x↵(A) (x 2 EV (⌦), A 2 r(k)). (4)

Similarly to the graphon case, we let

tind(K,N )
def
= µ(Tind(K,N )), �N (K)

def
=

|K|!

|Aut(K)|
· tind(K,N ),

11



and we say that a convergent sequence of finite structures (Nn)n2N converges to N if
limn!1 p(K,Nn) = �N (K) for every finite structure K. Similarly, we use the shorthand

Th(N )
def
= Th(�N ) for the theory of positive models of N .

For a canonical theory T in L, a (weak) T -on over ⌦ is an Euclidean structure N in L

over ⌦ such that �N (K) = 0 whenever K is a finite L-structure that is not a model of T . A
strong T -on over ⌦ is a T -on N such that for every finite L-structure K that is not a model
of T , we have Tind(K,N ) ✓ DV (K)(⌦), where

DV (⌦)
def
= {x 2 EV (⌦) | 9v, w 2 V, (v 6= w ^ x{v} = x{w})} (5)

denotes the diagonal set.
The main theorem of the theory of theons says that theons precisely encode limits of

convergent sequences of models, that is, we have Hom+(A[T ],R) = {�N | N is a T -on}. In
fact, the easy inclusion of this equality is worth spelling out: given a T -on N over ⌦, for
each n 2 N, we sample ✓ in En(⌦) according to µ and let Nn be the random element of
Kn[TL] given by

V (Nn)
def
= [n],

(Nn ✏ P (↵)) () ↵⇤(✓) 2 NP (P 2 L,↵ 2 ([n])k(P )),

where ↵⇤ : [k(P )] ! [n] is given by (4). It is a straightforward exercise on distribution
concentration to check that with probability 1, the sequence (Nn)n2N converges to �N . In
particular, this means that any limit � 2 Hom+(A[T ],R) is also a limit of a sequence of
models (Nn)n2N that does not omit sizes in the sense that |Nn| = n for every n 2 N.
However, similarly to graphons, di↵erent theons can represent the same limit.

Similarly to graphons, another very useful theorem of the theory of theons is the Induced
Euclidean Removal Lemma [CR20, Theorem 3.3], which says that any weak T -on can be
turned into a strong T -on by changing its peons only on a zero measure set (which in
particular means the two theons represent the same limit). A fortiori, by viewing a T -
on N as a Th(N )-on, the Induced Euclidean Removal Lemma implies that there exists a
T -on N

0 whose peons di↵er from those of N only by a zero measure set and such that
Tind(K,N 0) ✓ DV (K)(⌦) whenever tind(K,N 0) = 0.

Given an open formula F (x1, . . . , xn) in L and an Euclidean structure N in L over ⌦,
the truth set T (F,N ) ✓ En(⌦) of F in N is defined inductively as follows.

i. T (xi = xi,N )
def
= En(⌦).

ii. T (xi = xj,N )
def
= ?, if i 6= j.

iii. T (P (x↵1 , . . . , x↵k(P )
),N )

def
= ?, if ↵ : [k(P )] ! [n] is not injective.

iv. T (P (x↵1 , . . . , x↵k(P )
),N )

def
= (↵⇤)�1(NP ) if ↵ : [k(P )] ! [n] is injective, where ↵⇤ is as

in (4) for V = [n].

12



v. T (�,N ) commutes with logical connectives (so e.g., T (¬F,N )
def
= En(⌦)\T (F,N ) and

T (F1 _ F2,N )
def
= T (F1,N ) [ T (F2,N )).

One might argue that items (ii) and (iii) above should be defined as particular subsets of the
diagonal Dn(⌦) (see (5)), but since all information is lost in Dn(⌦) (both in weak and strong
theons), the definition above is just as good but simpler. It is straightforward to check that
for K 2 Kn[TL], we have Tind(K,N ) = T (Dopen(K),N ).

Open interpretations behave very well with the notion of convergence. Furthermore, there
are natural operations in the theories of flag algebras [Raz07, Definition 4 and Theorem 2.6]
and theons [CR20, Remark 6] that capture this action in the limit. Namely, if I : T1  T2 is
an open interpretation and (Nn)n2N is a convergent sequence of finite models of T2 converging
to � 2 Hom+(A[T2],R) and to the T2-on N , then (I(Nn))n2N is a convergent sequence of
models of T1 converging to �I

2 Hom+(A[T1],R) and to the T1-on I(N ) given by

�I(M)
def
=

X

M
0
2M[T2]

I(M 0)⇠=M

�(M 0) (M 2 M[T1]), (6)

I(N )P
def
= T (I(P ),N ) (P 2 L).

Given � 2 Hom+(A[T ],R), a sub-object of � of measure c > 0 is a  2 Hom+(A[T ],R)
such that there exist a sequence (Nn)n2N of models converging to � and sets An ✓ V (Nn)
such that limn!1|An|/|Nn| = c and (Nn|An

)n2N converges to  . By a small abuse, we may
use theons N and H in place of � and/or  , respectively when �N = � and �H =  .
When the underlying theory is TGraph, we will use the more natural name subgraphon for the
concept of sub-object and with a similar abuse, we will use graphons W and W 0 in place of
� and/or  , respectively when �W = � and �W 0 =  .

For simplicity and for later quotation we spell this out:

Definition 2.7 (Subgraphons). Given a graphon W over an atomless standard probability
space ⌦, a (positive measure) subgraphon W 0 of W is a graphon over a space ⌦0 such that
there exist a sequence (Hn)n2N of graphs converging to W and sets Un ✓ V (Hn) such that
limn!1|Un|/|Hn| > 0 and (Hn|Un

)n2N converges to W 0.

Some useful equivalences are the following.
By [CM22, Lemma 3.3],  2 Hom+(A[TGraph],R) is a subgraphon of W of measure c > 0

if and only if there exists a measurable function f : X ! [0, 1] with
R
X
f dµ = c such that

 = �W |f
, where W |f is the graphon over the space ⌦f

def
= (X,A, µf ) defined by

µf (B)
def
=

1

c

Z

B

f(x) dµ(x), (7)

W |f (x, y)
def
= W (x, y).

More generally, by [CM22, Lemma 5.8],  2 Hom+(A[T ],R) is a sub-object of a theon
N over ⌦ = (X,A, µ) of measure c > 0 if and only if there exist a measurable function
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f : X ! [0, 1] with
R
X
f dµ = c and a measure-isomorphism F modulo 0 from the space

⌦f = (X,A, µf ) given by (7) to ⌦ such that  = �N|
F

f

for the theon N|
F

f
over ⌦f defined by

(N|
F

f
)P

def
= {x 2 Ek(P )(⌦f ) | x

F
2 NP} (P 2 L),

where xF
2 Ek(P )(⌦) is given by

xF

B

def
=

(
xB, if |B| = 1,

F (xB), if |B| � 2.

When the function f in the above is the indicator function A of some positive measure

set A ✓ X, we use the shorthands µA

def
= µ

A
, ⌦A

def
= ⌦

A
, W |A

def
= W |

A
and N|

F

A

def
= N|

F

A

for the concepts above. However, we point out that not every sub-object of N is necessarily
of the form N|

F

A
for some positive measure set A (see [CR23, Example 45]).

2.7 The approximate Erdős–Hajnal property

We conclude this section by recalling the definition of the approximate Erdős–Hajnal prop-
erty (AEHP) from [CM22, Definition 7.1].

Definition 2.8. A universal theory T in a finite relational language L has the approximate
Erdős–Hajnal property (AEHP) if every limit � of T has a trivial sub-object, i.e., a sub-object
 of the form  = �N for some T -on N whose peons all have measure in {0, 1}.

In particular, the definition above specializes to universal theories of graphs as follows.

Definition 2.9. If T is a universal theory of graphs (in other words, if T is a hereditary class
of graphs), then T 2 AEHP if every graphon that is a limit of T has a trivial subgraphon, i.e.,
a subgraphon that is either a.e. equal to 0 or a.e. equal to 1.

An equivalent formulation of AEHP (see [CM22, Theorem 7.11]) is that for every convergent
sequence (Nn)n2N of models of T , there exist sets Un ✓ V (Nn) with limn!1|Un|/|Nn| > 0 and
(Nn|Un

)n2N converges to a trivial limit. In other words, AEHP for graphs requires linear-sized
almost cliques or almost anti-cliques in the presence of convergence.

The property AEHP was introduced and its graph version was characterized both combi-
natorially and model-theoretically in [CM22].

3 Substitution and primality

A simple operation for graphs that is useful in studying the Erdős–Hajnal property and its
approximate version (AEHP, see Definitions 2.8 and 2.9) is substitution. While for graphs
this operation has received considerable attention [Gia97, APS01, Zve03, CKOS16], we will
need a slight generalization of it for structures in finite relational languages along with some
associated notions (e.g., primality).
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In the graph case, some of the results of this section have appeared in some shape or
another in the literature. As such, in Section 3.1, we state the definitions and the results for
graphs that we will use without proofs but with pointers to their corresponding generaliza-
tions for relational structures that appear in Section 3.2 with proofs. The reader that feels
su�ciently confident in their knowledge of these and is only interested in the graph case may
read Section 3.1 then freely skip the remainder of the section.

3.1 Substitution and primality for graphs

Definition 3.1 (Graph version of Definition 3.8). Given two graphs F1 and F2 and v 2

V (F1), the substitution of v in F1 by F2 is the graph F v!F2
1 obtained from the disjoint union

of F1 � v with F2 by adding all edges of the form {u, w}, where u 2 V (F1) is a vertex that
is adjacent to v in F1 and w is a vertex of F2 (see Figure 1 for an example).

v0

v1
v2

v3
v4

F1

w0w1

w2 w3

F2

v1

v2

v3

v4

w0w1

w2 w3

F v0!F2
1

Figure 1: Example of a graph substitution.

We say a family F of graphs (up to isomorphism) is closed under substitution if for every
F1, F2 2 F and every v 2 V (F1), we have F v!F2

1 2 F . The closure under substitutions of F
is the smallest family S(F) containing F that is closed under substitution.

A graph F is called prime if it is not a substitution of v in F1 by F2 for any graphs F1, F2

and v 2 V (F1) with |F1|, |F2| < |F |.

Lemma 3.2 (Graph version of Lemma 3.15). Let F be a non-empty family of graphs (up to
isomorphism) that is closed under substitutions. Then F is closed under induced subgraphs
if and only if F contains the trivial graph K0 of size 0.

Lemma 3.3 (Graph version of Lemma 3.16). Let F1, F2 be finite graphs and let v 2 V (F1).
If F is an induced subgraph of F v!F2

1 , then there exist induced subgraphs G1 and G2 of
F1 and F2, respectively, with v 2 V (G1) such that F ⇠= Gv!G2

1 .
Conversely, if G1 and G2 are induced subgraphs of F1 and F2, respectively, with v 2

V (G1), then Gv!G2
1 is an induced subgraph of F v!F2

1 .
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Lemma 3.4 (Graph version of Lemma 3.17). If F is a (not necessarily finite) family of
graphs (up to isomorphism), F 2 S(F) and P is a prime induced subgraph of F , then P is
an induced subgraph of some F 0

2 F .

Lemma 3.5 (Graph version of Lemma 3.18). Let F be a family of finite graphs (up to
isomorphism) that is closed under substitutions and closed under induced subgraphs and let
P be the set of graphs in F that are prime. Then F = S(P).

Conversely, if P 0 is a family of prime finite graphs that is closed under prime induced
subgraphs and F = S(P 0), then P

0 = P .

Definition 3.6 (Graph version of Definition 3.20). We say that a family of graphs F (up
to isomorphism) is almost finite if F does not contain any infinite antichain in the induced
subgraph partial order. Equivalently, F is almost finite if for every infinite F

0
✓ F , there

exist F1, F2 2 F
0 such that F1 is a proper induced subgraph of F2.

By letting further P be the set of all graphs of F that are prime, we say that F is primally

finite if P is finite and we say that F is primally almost finite if P is almost finite.

Lemma 3.7 (Graph version of Lemma 3.23). The following are equivalent for a family F of
finite graphs (up to isomorphism).

i. The family F is almost finite.

ii. For every sequence (Fn)n2N in F , there exist n,m 2 N such that n < m and Fn is an
induced subgraph of Fm.

3.2 Substitution and primality for relational structures

Definition 3.8. Given two structures F1 and F2 in a finite relational language L and v 2

V (F1), a substitution of v in F1 by F2 is an L-structure F such that there exist functions
f1 : V (F1 � v) ! V (F ) and f2 : V (F2) ! V (F ) such that

i. V (F ) = im(f1) [ im(f2),

ii. f2 is an embedding of F2 in F ,

iii. For every u 2 V (F2), the extension of f1 to a function V (F1) ! V (F ) that maps v to
f2(u) is an embedding of F1 in F .

We call the substitution F standard if V (F1) \ V (F2) = ? and the functions f1 and f2 act
identically on their domains (thus V (F ) = (V (F1)\{v})[V (F2)). (See Figure 1 for a graph
example.)

The unique substitution F (up to isomorphism) of v in F1 by F2 that has the smallest
possible relation sets P F (P 2 L) is called the conservative substitution of v in F1 by F2 and
is denoted F v!F2

1 . If V (F1) \ V (F2) = ?, then we can formally define F v!F2
1 by

V (F v!F2
1 )

def
= (V (F1) \ {v}) [ V (F2),

P F
v!F2
1

def
= P F2 [ {fu � ↵ | ↵ 2 P F1 ^ u 2 V (F2)},
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for every P 2 L, where fu : V (F1) ! V (F2) is the function that acts identically on V (F1)\{v}
and has fu(v) = u.

We say that a family F of L-structures (up to isomorphism) is strongly closed under

substitutions if for every F1, F2 2 F , every v 2 V (F1) and every substitution F of v in F1

by F2, we have F 2 F . We say that F is weakly closed under substitutions if for every
F1, F2 2 F , every v 2 V (F1), there exists some substitution F of v in F1 by F2 such that
F 2 F . The strong closure under substitutions of F is the smallest family S(F) containing
F that is strongly closed under substitutions.

We say that a finite L-structure F is prime
6 if it is not a substitution of v in F1 by

F2 for any F1, F2 and v 2 V (F1) with |F1|, |F2| < |F |. We say that an L-structure F is
monochromatic if for every unary predicate symbol P 2 L, we have F ✏ 8x8y, P (x) $ P (y),
that is, each unary predicate is either true everywhere or true nowhere in F .

Example 3.9. To illustrate Definition 3.8, which includes subtleties that do not appear the
case of graphs, suppose H is a family of 3-uniform hypergraphs, with hyperedge R. Suppose
our family contains F1, the empty hypergraph on vertices {v1, v2, v3, v4}, and F2 is the hyper-
graph on vertices {w1, w2, w3} having a single hyperedge (w1, w2, w3). Suppose we substitute
F2 into F1 by replacing the vertex v1 by a copy of F2. In the hypergraph resulting from the
substitution, the vertex set is {w1, w2, w3, v2, v3, v4} and the requirements of the substitution
are that there is a hyperedge (w1, w2, w3), and that there is no hyperedge involving exactly
one of the wi’s and exactly two of the vj’s. However, this does not completely determine
a hypergraph, since we haven’t expressed an opinion about hyperedges involving two wi’s
and one vj. Roughly speaking the conservative substitution is the result of saying no to all
additional hyperedges, whereas saying that H is strongly closed under substitution says any
choice on these non-determined hyperedges is represented in the class.

Remark 3.10. Note that if F is a substitution of v in F1 by F2, then for every unary
predicate symbol P 2 L, we must have

(F1 ✏ P (v)) =) (F2 ✏ 8x, P (x)),

(F1 ✏ ¬P (v)) =) (F2 ✏ 8x,¬P (x)).

In particular, this means that any F that is weakly closed under substitution can have at
most one structureM1 of size 1 (up to isomorphism), all structures F of F are monochromatic
and of the same “color” in the sense that for every unary predicate symbol P 2 L and every
F 2 F with |F | � 1, we have M1 ✏ 8x, P (x) if and only if F ✏ 8x, P (x).

Remark 3.11. Note that if F is a substitution of v in F1 by F2, then |F |  max{|F1|, |F2|}

if and only if min{|F1|, |F2|}  1. When F1 has a single vertex, then F ⇠= F2; when F2 has
a single vertex, then F ⇠= F1; and when F2 has no vertices (i.e., F2 = K0), then F ⇠= F1 � v.

In particular, this means that every structure of size at most 2 is prime.

Remark 3.12. If all predicates in L have arity at most 2 (which in particular covers the case
of the theory of graphs), then all substitutions are conservative and the notions of weakly

6This should not to be confused with the notion of prime model/structure of model theory.
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closed under substitutions and strongly closed under substitutions coincide. As such, in
Sections 4, 5 and 6 concerning TGraph, we will drop the superfluous qualifiers “weakly” and
“strongly” from the terminology.

Remark 3.13. If all predicates have arity at least 3, then the notion of prime structure
completely degenerates: the only prime structures are the unique structures K0, M1 and M2

of sizes 0, 1 and 2, respectively. The reason why every structure K of size at least 3 is not
prime is that for any u 2 V (K) and v 2 V (M2), K is a substitution of v in M2 by K � u
since all relations involving u must involve at least two other vertices.

Remark 3.14. If T is a universal theory such thatM[T ] is weakly closed under substitution,
then T is non-degenerate if and only if M2[T ] 6= ?.

Let us now prove some basic facts about substitutions and primality.

Lemma 3.15. Let F be a non-empty family of L-structures (up to isomorphism) that is
weakly closed under substitutions. Then F is closed under substructures if and only if F
contains the trivial structure K0 of size 0.

Proof. Follows since a substitution of v in F by K0 is isomorphic to F � v.

Lemma 3.16. Let F1, F2 be finite L-structures, let v 2 V (F1).
If F is a substitution of v in F1 by F2 and U ✓ V (F ), then there exist sets U1 ✓ V (F1)

and U2 ✓ V (F2) with v 2 U1 such that F |U is a substitution of v in F1|U1 by F2|U2 .
Conversely, if U1 ✓ V (F1) and U2 ✓ V (F2) are such that v 2 U1 and F 0 is a substitution

of v in F1|U1 by F2|U2 , then there exist a substitution F of v in F1 by F2 and a set U ✓ V (F )
such that F |U

⇠= F 0.

Proof. Without loss of generality, by possibly renaming vertices, we can consider only the

case when F is a standard substitution. Then it is straightforward to check that for U1
def
=

(U \ V (F1)) [ {v} and U2
def
= U \ V (F2), we have that F |U is a substitution of v in F1|U1 by

F2|U2 .

For the second assertion, by possibly renaming vertices, we may suppose without loss
of generality that F 0 is also a standard substitution. Then it is straightforward to see that

setting U
def
= (U1 \ {v}) [ U2, there exists a standard substitution F of v in F1 by F2 such

that F |U = F 0.

Lemma 3.17. If F is a (not necessarily finite) family of finite L-structures, F 2 S(F) and
P is a prime substructure of F , then P is a substructure of some F 0

2 F .

Proof. The proof is by induction in the minimum length ` of a sequence of substitutions
needed to obtain F from elements of F .

If ` = 0, then F ⇠= F 0 for some F 0
2 F , so P is a substructure of F 0.

If ` > 0, then F is a substitution of v in M1 by M2 for some M1,M2 2 S(F) and some
v 2 V (M1) such that if the minimum lengths of sequences of substitutions needed to obtain
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M1 and M2 from elements in F are `1 and `2, respectively, then `1 + `2 + 1 = `, which in
particular implies `1, `2 < `.

Without loss of generality, suppose F is a standard substitution of v in M1 by M2. By
Lemma 3.16, we know that there exist U1 ✓ V (M1) and U2 ✓ V (M2) with v 2 U1 such that
P is isomorphic to some substitution of v in M1|U1 by M2|U2 . Since P is prime, we must have
|P |  max{|U1|, |U2|}, so by Remark 3.11, either P ⇠= M1|U1 , P ⇠= M2|U2 or P ⇠= M1|U1\{v},
so P is a substructure of either M1 or M2 and by inductive hypothesis, it follows that P is
a substructure of some F 0

2 F .

As one might expect, prime structures play a major role in characterizing classes that
are strongly closed under substitutions. This is made precise by the next two lemmas.

Lemma 3.18. Let F be a family of finite L-structures (up to isomorphism) that is strongly
closed under substitutions and closed under substructures and let P be the set of structures
in F that are prime. Then F = S(P).

Conversely, if P
0 is a family of prime finite L-structures that is closed under prime

substructures and F = S(P 0), then P
0 = P .

Proof. Let F
0 = S(P). It is obvious that F

0
✓ F . Suppose toward a contradiction that

F \ F
0
6= ? and let F be an L-structure in F \ F

0 of minimum size.
We claim that F is prime. Indeed, if not, then F is a substitution of some v in some F1

by some F2 with |F1|, |F2| < |F |. Since both F1 and F2 are proper substructures of F and
both F and F

0 are strongly closed under substitutions and closed under substructures, this
contradicts the minimality of F . Thus F is prime, so F 2 P , which contradicts F /2 F

0.

For the second assertion, if F is empty, then both P and P
0 must also be empty. If F

is not empty, then each P 0
2 P

0 is in F = S(P), so Lemma 3.17 implies that P 0 must be
a substructure of some element in P , hence must also be in P as it is closed under prime
substructures (as F is closed under substructures). Similarly, every element of P must be
an element of P 0 as the latter is also closed under prime substructures.

Lemma 3.19. Let T be a canonical theory in a finite relational language L and let F be the
set of minimal L-structures that are notmodels of T , that is, the set of allM 2 M[TL]\M[T ]
such that every proper substructure of M is a model of T .

Then M[T ] is strongly closed under substitution if and only if F contains only prime
structures.

Proof. For the forward implication, note that if M 2 M[TL] \ M[T ] is not prime, then
it is a substitution of v in M1 by M2 for some M1,M2 2 M[TL] with |M1|, |M2| < |M |

and v 2 V (M1). Since M[T ] is strongly closed under substitutions, we must have either
M1 /2 M[T ] or M2 /2 M[T ], hence M /2 F .

For the backward implication, first note that T is a reaxiomatization of ForbTL(F). Let
us show that if M is a substitution of v in M1 2 M[T ] by M2 2 M[T ], then M 2 M[T ].
Without loss of generality, let us assume the substitution to be standard so there is the
natural identification of V (M) with (V (M1) \ {v}) [ V (M2).
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Suppose toward a contradiction that M /2 M[T ], that is, there exists F 2 F and U ✓

V (M) such that M |U
⇠= F . Since M2 2 M[T ], we must have U \ V (M1) 6= ? (otherwise,

F would be a substructure of M2) and since M1 2 M[T ], we must have |U \ V (M2)| �
2 (otherwise, F would be a substructure of M1). But then F is a substitution of v in
M1|(U\V (M1))[{v} by M2|U\V (M2) and since

|(U \ V (M1)) [ {v}|  |U |� |U \ V (M2)|+ 1 < |U | = |F |,

|U \ V (M2)|  |U |� |U \ V (M1)| < |U | = |F |,

this contradicts the fact that F is prime (as it is an element of F). Thus M[T ] is strongly
closed under substitutions.

Next we cover the notion of an almost finite family of structures and some associated
notions.

Definition 3.20. We say that a family F of L-structures (up to isomorphism) is almost finite

if F does not contain any infinite antichain in the substructure partial order. Equivalently,
F is almost finite if for every infinite F 0

✓ F , there exist F1, F2 2 F
0 such that F1 is a proper

substructure of F2.
Given a family F of L-structures (up to isomorphism), let P ✓ F be the set of prime

structures in F and P
0
✓ P be the set of monochromatic prime structures in F . We say

that F is

i. primally finite, if P is finite,

ii. primally almost finite, if P is almost finite,

iii. monochromatically primally finite, if P 0 is finite,

iv. monochromatically primally almost finite, if P 0 is almost finite.

Example 3.21. An example of a family of graphs that is primally almost finite, strongly
(equivalently, weakly) closed under substitutions and closed under substructures but is not
primally finite is S({Pn | n 2 N}), where Pn is the path on n vertices.

An example of a proper family of graphs that is not primally almost finite, but is strongly
closed under substitutions and closed under substructures is S({K0}[ {Cn | n � 5}), where
Cn is the cycle on n vertices (it is straightforward to check that when n � 5, Cn is prime).

Another very important such example is the family S({Gn | n � 6} [ {K0}), where
Gn is the graph obtained from Pn by adding four vertices a, b, c, d and adding the edges
{a, b}, {c, d}, {a, 2}, {b, 3}, {c, n � 2}, {d, n � 1}, assuming that V (Pn) = [n] in the natural
order of the path (see Figure 2). It is straightforward to check that each Gn is prime and
that they are pairwise incomparable in the induced subgraph partial order. Note also that
the paths Pn are elements of S({Gn | n � 6} [ {K0}) as Pn is a substructure of Gn.

20



1 2 3 4 5 6

a b c d

G6

1 2 3 4 5 6 7

a b c d

G7

1 2 3 4 5 6 7 8

a b c d

G8

Figure 2: Prime graphs Gn of Example 3.21 that form a family that is not almost finite.

Remark 3.22. A family F of the form F = S(P 0) for some almost finite set of prime
structures P 0 is not necessarily primally almost finite; this is because the set P of structures
in F that are prime is equal to the set of prime substructures of elements of P 0, which may
be a proper superset of P 0 (see Lemma 3.17).

As an example, consider the graphs Gn of Example 3.21 and for each n � 6, define the
(prime) graph Hn as the graph obtained from the disjoint union of G6, . . . , Gn by connecting
all first vertices of the Pk inside of Gk in a clique (see Figure 3). Obviously, each Hn is

an induced subgraph of Hn+1, so P
0 def
= {K0} [ {Hn | n � 6} is almost finite, but since

{Gn | n � 6} ✓ S(P 0), it follows that S(P 0) is not primally almost finite.

The next lemma uses the fact that the substructure partial order on finite structures is
well-founded to provide a useful equivalent formulation of almost finiteness.

Lemma 3.23. The following are equivalent for a family F of finite L-structures (up to
isomorphism).

i. The family F is almost finite.

ii. For every sequence (Fn)n2N in F , there exist n,m 2 N such that n < m and Fn is a
substructure of Fm.
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Figure 3: Prime graph H9 of Remark 3.22. Even though the family {K0} [ {Hn | n � 6} is
almost finite, the family S({K0} [ {Hn | n � 6}) is not primally almost finite.

Proof. We start with the implication (i) =) (ii).
If there exist n,m 2 N with n < m and Fn

⇠= Fm, then Fn is a substructure of Fm.
Suppose then that the Fn are pairwise non-isomorphic. Let I be the set of all n 2 N such
that for every m 2 N, Fm is not a proper substructure of Fn.

We claim that I is finite. Indeed, otherwise, F 0 def
= {Fn | n 2 I} would be an infinite

subfamily of F such that for all F, F 0
2 F

0, F is not a proper substructure of F 0.
We now construct inductively a sequence m0, . . . ,mt as follows. Let m0 > max(I).

Given mi, if mi /2 I, then there exists mi+1 such that Fmi+1 is a proper substructure of Fmi
;

otherwise, we set t
def
= i and stop the construction.

Since |Fi+1| < |Fi| and all structures are finite, the construction above must stop and by
a simple induction, we have that Fmt

is a proper substructure of Fm0 . Finally, since mt 2 I
and m0 > max(I), we get mt < m0.

Let us now show the implication (ii) =) (i). Let F 0 be an infinite subfamily of F and
enumerate it as (Fn)n2N without repetitions. Then there exists n,m 2 N such that n < m
and Fn is a substructure of Fm. Since Fn 6= Fm, it follows that Fn is a proper substructure
of Fm.

We end this section with the following proposition that relates the notions of primally
finite and primally almost finite for a family F strongly closed under substitutions and
closed under substructures with the number of subclasses of F that are strongly closed
under substitutions and closed under substructures.

Proposition 3.24. Let F be a family of finite L-structures that is strongly closed under
substitutions and closed under substructures, let S be the set of subfamilies F

0 of F that
are strongly closed under substitutions and closed under substructures. Then the following
hold.

i. F is primally finite if and only if S is finite.
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ii. F is primally almost finite if and only if S is countable.

Proof. Let P be the set of prime structures of F and let S 0 be the set of subfamilies P 0
✓ P

that are closed under prime substructures. Then Lemma 3.18 gives a natural bijection
between S and S

0.
Since P is finite if and only if S 0 is finite, item (i) follows.
The same bijection between S and S

0 implies that for item (ii), it is su�cient to show
that P almost finite is equivalent to S

0 countable.
Suppose first that P is not almost finite, that is, P contains an infinite (countable)

antichain A ✓ P . Then for each A
0
✓ A, let CA0 ✓ P be the set of elements of P that are

substructures of some element of A0. Since A is an antichain, it follows that for A0,A00
✓ A

distinct, we have CA0 6= CA00 , hence S
0 has cardinality of the continuum.

Suppose now that S 0 is uncountable. Let us define by induction in n 2 N two sequences
(Pn)n2N and (S 0

n
)n2N with the following properties.

1. S
0

n
✓ S

0 is uncountable.

2. There exists C 2 S
0

n
such that Pn 2 C.

3. For every C
0
2 S

0

n+1, we have Pn /2 C
0.

We start by setting S
0

0
def
= S

0. Given S
0

n
, let Pn

def
=
S

C2S0
n

C and for each P 2 Pn, we

let S
0

n
(P )

def
= {C 2 S

0

n
| P /2 C}. Since S

0

n
is uncountable, Pn is countable and S

0

n
✓

{Pn} [
S

P2Pn
S

0

n
(P ), by the pigeonhole principle, there exists Pn 2 Pn such that S 0

n
(Pn) is

uncountable. Set S 0

n+1
def
= S

0

n
(Pn) so that by definition, we have Pn 2 C for some C 2 S

0

n
but

Pn /2 C
0 for every C

0
2 S

0

n+1. This concludes the construction.
Since each C 2 S

0 is closed under prime substructures, items (1), (2) and (3) together
imply that for every n < m, Pn is not a substructure of Pm, so by Lemma 3.23, we get that
P is not almost finite.

4 Persistence in graphons

In this section we study the notion of (strongly) persistent families of graphs (Definition 4.1
below). The main objective of this section is to characterize persistence for theories of graphs
in terms of closure under substitution and under induced subgraphs. We also remind the
reader that in this section we drop the qualifiers “weakly” and “strongly” from “closed under
substitutions” as they are superfluous for graphs (see Remark 3.12).

Definition 4.1. Let W be a graphon. The set of positive graphs in W is the set Q(W )
def
=

M[Th(W )] of all finite graphs G (up to isomorphism) such that �W (G) > 0. The set of

persistently positive graphs in W is the set P (W )
def
=
T

W 0 Q(W 0), where the intersection
is over all subgraphons W 0 of W . Clearly, P (W ) and Q(W ) depend only on the limit
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�W 2 Hom+(A[TGraph],R). Thus, for � 2 Hom+(A[TGraph],R), we let P (�)
def
= P (�W ) and

Q(�)
def
= Q(�W ) for any graphon W such that � = �W .

A graphon W (or the limit �W it represents) is called weakly random if P (W ) = Q(W ).
Equivalently, W is weakly random if Q(W ) = Q(W 0) for every subgraphon W 0 of W .

A family of graphs (up to isomorphism) F is called persistent if there exists a graphon
W such that P (W ) = F . The family F is called strongly persistent if there exists a weakly
random W such that P (W ) = F (which must also equal Q(W )); in this case, we also say
that W (or rather �W ) is a universal weakly random limit of F . If T is a universal theory
of graphs, then we say that W is a universal weakly random limit of T if it is a universal
weakly random limit of M[T ].

Obviously, both Q(W ) and P (W ) are closed under induced subgraphs, Q(W 0) ✓ Q(W )
whenever W 0 is a subgraphon of W , P (W ) ✓ Q(W ) and every strongly persistent family is
persistent.

Example 4.2. The simplest weakly random graphons are of course the two trivial graphons,
that is, the clique W ⌘ 1 and the empty graphon W ⌘ 0.

The next in line are the non-trivial quasirandom graphons Wp ⌘ p for some p 2 (0, 1):
this is because just as the trivial graphons, the quasirandom graphons Wp also have the
property that the only subgraphon of Wp is Wp, up to zero-measure change. In fact, it is an
immediate consequence of the classic theory of graph quasirandomness [CGW89] that this
property characterizes the quasirandom graphons (see also [SS97, SS03] for related graph
quasirandomness properties); for general theories in finite relational languages, this property
is called UInduce[1] in [CR23] and is a strengthening of the more well-known discrepancy and
clique-discrepancy properties from hypergraph quasirandomness (see [CG90, Chu90, KRS02,
LM15, Tow17, AHCH+18]).

Other examples of weakly random graphons are the recursive blow-up of C4 (see Proposi-
tion 5.9) and the graphon of agreements of the quasirandom permuton (see Proposition 5.11).

The following lemma is a simple but very powerful observation about persistent families.

Lemma 4.3. Let W be a graphon over a space ⌦ = (X,A, µ). Then P (W ) =
T

A
Q(W |A),

where the intersection is over all positive measure sets A ✓ X.

Proof. Since each W |A is a subgraphon of W , it is su�cient to show that if H 2
T

A
Q(W |A),

then H 2 P (W ). We prove this by the contra-positive: if there exists a subgraphon W 0 of
W such that H /2 Q(W 0), then �W 0 = �W |f

for some measurable function f : X ! [0, 1].

Let A
def
= {x 2 X | f(x) > 0}. It is easy to see that Q(W |f ) = Q(W |A), thus H /2T

A
Q(W |A).

The objective of this section is to prove the following theorem that characterizes (strongly)
persistent families in terms of substitutions.

Theorem 4.4. The following are equivalent for a family F of finite graphs (up to isomor-
phism) containing at least one graph of size at least 2.

i. The family F is strongly persistent.
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ii. The family F is persistent.

iii. The family F is closed under substitutions and induced subgraphs.

Example 4.5. As we will see, both the theory TPerfect of perfect graphs (Proposition 5.10)
and the theory TPermGraph of graphs of agreements of permutations (Proposition 5.12) have
their corresponding M[T ] closed under substitutions, hence both these theories have a uni-
versal weakly random graphon (in fact, Proposition 5.11 gives an example for the latter
theory that is very di↵erent from the one produced in the proof of Theorem 4.4).

On the negative side, the theory of triangle-free graphs does not have M[T ] closed under
substitutions (as K2 2 M[T ] but K3

⇠= Kv!K2
2 /2 M[T ]), so it does not have a universal

weakly random graphon.

We will prove Theorem 4.4 through a series of lemmas. As we noted before, the im-
plication (i) =) (ii) is trivial. The implication (ii) =) (iii) is a corollary of the following
lemma.

Lemma 4.6. If W is a graphon, then P (W ) is closed under substitutions and induced
subgraphs.

Proof. It is obvious that K0 2 P (W ), so by Lemma 3.2, it is su�cient to show that P (W )
is closed under substitutions.

Let F1, F2 2 P (W ) and v0 2 V (F1) and let us show that if W 0 is a subgraphon of
W , then tind(F

v0!F2
1 ,W 0) > 0. Without loss of generality, we suppose V (F1) \ V (F2) = ?.

Suppose toward a contradiction that tind(F
v0!F2
1 ,W 0) = 0. By possibly applying the Graphon

Removal Lemma [Pet13, Theorem 1] to W 0, we may suppose that the set Tind(F
v0!F2
1 ,W 0)

of copies of F v0!F2
1 in W 0 is contained in the diagonal set D

V (F
v0!F2
1 )

(see (3)).

Since F1 2 P (W ), we must have tind(F1,W 0) > 0, that is, the set Tind(F1,W 0) has positive

measure. For every (x, y) 2 XV (F1)\{v0} ⇥ [0, 1)(
V (F1)

2 ), let

Ux,y

def
= {z 2 X{v0} | ((x, z), y) 2 Tind(F1,W

0)}.

By Fubini’s Theorem, there exists (x, y) 2 XV (F1)\{v0}⇥ [0, 1)(
V (F1)

2 ) with all x coordinates
distinct such that Ux,y has positive measure. Since W 0

|Ux,y
is a subgraphon of W 0, hence of

W , we must have tind(F2,W 0
|Ux,y

) > 0, which implies that there exists (z, w) 2 XV (F2) ⇥

[0, 1)(
V (F2)

2 ) with all z coordinates in Ux,y, distinct and distinct from those in x such that

z 2 Tind(F2,W 0). Thus, the point (bx, by) 2 XV (F
v0!F2
1 )

⇥ [0, 1)(
V (F

v0!F2
1 )
2 ) defined by

bxv

def
=

(
xv, if v 2 V (F1) \ {v0},

zv, if v 2 V (F2),
byA

def
=

8
><

>:

yA, if A ✓ V (F1) \ {v0},

wA, if A ✓ V (F2),

y(A\V (F1))[{v0}, otherwise.

is a point in Tind(F
v0!F2
1 ,W 0) \ D

V (F
v0!F2
1 )

, a contradiction.
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To show the final implication (iii) =) (i) of Theorem 4.4, we will use the repeating
recursive blow-up relative to an infinite sequence of graphs defined below.

Definition 4.7. Given a sequence V = (V`)`2N of finite sets with |V`| � 2 for every ` 2 N,
the Cantor probability space corresponding to V is the space ⌦V = (

Q
`2N V`,A, ⌫V ), where

A is the Borel �-algebra of the product topology on
Q

`2N V` and ⌫V is the unique Borel

measure such that ⌫V (K�,V ) =
Q

t�1
`=0|V`|

�1 for every t 2 N and every � 2
Q

t�1
`=0 V`, where

K�,V is the basic clopen set given by

K�,V

def
=

(
⌧ 2

Y

`2N

V`

����� 8` 2 {0, . . . , t� 1}, ⌧` = �`

)
. (8)

Let G = (Gm)m2N be a sequence of finite graphs with |Gm| � 2 for every m 2 N, we let
the recursive blow-up relative to G be the limit �G 2 Hom+(A[TGraph],R) defined as follows.

We let V = (V`)`2N be defined by V`
def
= V (G`) and define the graphon WG over the space

⌦V by

WG(x, y)
def
=

(
1, if x 6= y and {x`, y`} 2 E(G`),

0, otherwise,
(9)

where ` is the first position in which x and y di↵er. Finally, we define �G

def
= �WG 2

Hom+(A[TGraph],R) (see Example 4.10 and Figures 4 and 5 for examples).
We let the repeating recursive blow-up relative to G be the limit �⇤

G
2 Hom+(A[TGraph],R)

defined as follows. For each ` 2 N, we let

m`

def
= max{m 2 N | 2m divides `+ 1}, (10)

we let G⇤ def
= (Gm`

)`2N and we define �⇤

G

def
= �G⇤ .

Remark 4.8. Since WG is {0, 1}-valued, we can interpret it as a (measurable) graph H with
vertex set ⌦V and the reader familiarized with lexicographic products of graphs should note
that H is simply the infinite lexicographic product of (Gm)m2N.

Remark 4.9. The definition of the numbers m` in (10) guarantees a simple but very useful
property: for every m 2 N there exist infinitely many ` 2 N with m` = m. In fact, for every
m 2 N and every ` 2 N, there exists `0 2 N with ` < `0  `+ 2m such that m`0 = m, that is,
for every m 2 N, we only need to wait at most 2m steps to see m in the sequence (m`)`2N
regardless of where we start.

Example 4.10. If the sequence G consists of only one graph G0 repeated infinitely many
times, then �G is the limit of the usual notion of recursive blow-ups of a single graph G0 on
progressively more and more levels.

For example, the limit �C4 of recursive blow-ups of C4 used in [CM22, Definition 8.5]
(see Figure 4) is obtained as �G (or �⇤

G
) when G is the sequence that is constant equal to
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x

y

Figure 4: Approximation of a graphon WC4 over [0, 1] representing the limit �C4 of recursive
blow-ups of C4 of Example 4.10. The graphon WC4 has a fractal structure, whose first 3
steps are represented in the picture.

C4. Alternatively, �C4 is also obtained as �G0 for the sequence G0 def
= (K2, K2, K2, K2, . . .)

that infinitely alternates between the edge graph K2 and the non-edge graph K2. Also
alternatively, �C4 is obtained as �⇤

G00 for the sequence G00 = (K2, K2, K2, . . .) whose first
element is K2 and all other elements are K2 (as (G00)⇤ = G0).

Let us show a simple structural fact about the Cantor probability space ⌦V .

Lemma 4.11. Let V = (V`)`2N be a sequence of finite sets with |V`| � 2 for every ` 2 N and
let A ✓ ⌦V be a set with positive measure. Then for every ✏ > 0, there exists t0 2 N such
that for every t � t0, there exists � 2

Q
t�1
`=0 V` such that ⌫V (A \K�,V ) � (1� ✏) · ⌫V (K�,V ),

where

K�,V

def
=

(
⌧ 2

Y

`2N

V`

����� 8` 2 {0, . . . , t� 1}, ⌧` = �`

)

is the basic clopen set defined in (8).

Proof. Let B be the Boolean algebra generated by C
def
= {K�,V | t 2 N ^ � 2

Q
t�1
`=0 V`} and

note that every set in B is a finite union of elements of C. In fact, since for every t 2 N and
every � 2

Q
t�1
`=0 V`, the collection {K(�,v),V | v 2 Vt} forms a partition of K�,V , it follows that

for every B 2 B, there exists tB 2 N such that for every t � tB, the set B can be written as
the disjoint union B =

S
�2⌃B,t

K�,V where

⌃B,t

def
=

(
� 2

t�1Y

`=0

V`

����� K�,V ✓ B

)
.
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Namely, we can take any representation of B as a finite union of elements of C and let tB be
the maximum length of a � used in this representation.

Since B generates the �-algebra A of ⌦V , uniqueness of Carathéodory’s Extension The-
orem implies that for every � > 0, there exists B 2 B such that ⌫V (A4 B)  �.

We claim that by taking �
def
= ⌫V (A) · ✏/(1 + ✏) and t0

def
= tB, we get that for every t � t0,

there must exist � 2 ⌃B,t such that ⌫V (K�,V \ A)  ✏ · ⌫V (K�,V ). Suppose not. Then we
have

� � ⌫V (A4 B) �
X

�2⌃B,t

⌫V (K�,V \ A) >
X

�2⌃B,t

✏ · ⌫V (K�,V ) = ✏ · ⌫V (B) � ✏(⌫V (A)� �),

from which we conclude that

� ·
1 + ✏

✏
> ⌫V (A),

contradicting the definition of �. Finally, from ⌫V (K�,V \ A)  ✏ · ⌫V (K�,V ), we conclude
that ⌫V (A \K�,V ) � (1� ✏) · ⌫V (K�,V ) as desired.

Our next objective is to show that P (�⇤

G
) is precisely S({K0} [ {Gm | m 2 N}). We

start by showing the simpler fact {Gm | m 2 N} ✓ Q(�G) ✓ S({K0} [ {Gm | m 2 N}) in
Lemma 4.12 below. Clearly this implies the same statement for �⇤

G
.

Lemma 4.12. Let G = (Gm)m2N be a sequence of finite graphs with |Gm| � 2 for every
m 2 N. Then {Gm | m 2 N} ✓ Q(�G) ✓ S({K0} [ {Gm | m 2 N}).

Proof. To see that every Gm has positive density in �G, simply note that if we take an

arbitrary � 2
Q

m�1
`=0 V (G`) and set xv

def
= (�, v) for every v 2 V (Gm), then x is an embedding

of Gm in WG and thus

tind(Gm,W
G) �

mY

`=0

1

|G`|
> 0,

hence {Gm | m 2 N} ✓ Q(�G).

To show that Q(�G) ✓ S({K0} [ {Gm | m 2 N}), we will prove a slightly stronger
result: let us show that if H is a finite graph such that Tind(H,WG) 6✓ DV (H), then H 2

S({K0} [ {Gm | m 2 N}). The proof is by induction on |H|.
The first two base cases are when |H|  1 (i.e., H 2 {K0, K1}), in which case trivially

H 2 S({K0} [ {Gm | m 2 N}).
The next base cases are when |H| � 2 and H is prime. In this case, we show that H

must be an induced subgraph of Gm for some m 2 N.
Recall that since WG is {0, 1}-valued, the set Tind(H,WG) \ DV (H) is alternatively de-

scribed as the set of pairs (x, y) 2 (⌦V )V (H)
⇥ [0, 1)(

V (H)
2 ) such that x is an embedding of H

in WG.
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Fix then one such point (x, y) and let t 2 N be the length of the longest string � 2Q
t�1
`=0 V (G`) that is common to all coordinates of x, that is, for every v 2 V (H), we have

xv|{0,...,t�1} = � and there exist v, w 2 V (H) such that (xv)t 6= (xw)t.

For each i 2 V (Gt), let Ui

def
= {v 2 V (H) | (xv)t = i} and let Hi

def
= H|Ui

. Let also

I
def
= {i 2 V (Gt) | Ui 6= ?}. The structure of WG implies that H is obtained from Gt|I by

substituting each i 2 I by Hi. Since |Hi| < |H| for every i 2 I and H is prime, it follows that
|Gt|I | = |H| and |Ui| = 1 for every i 2 I, that is, the unique function � : V (H) ⇢ V (Gt)
such that v 2 U�(v) is an embedding of H in Gt. Thus H is an induced subgraph of Gt.

We now consider the inductive step when H is not prime. Then H is of the form F v!F2
1

for some graphs F1, F2 and v 2 V (F1) with |F1|, |F2| < |H|. By inductive hypothesis, we
have F1, F2 2 S({K0} [ {Gm | m 2 N}) and since this set is closed under substitutions we
get H 2 S({K0} [ {Gm | m 2 N}).

Lemma 4.13. Let G = (Gm)m2N be a sequence of finite graphs with |Gm| � 2 for every
m 2 N. Then P (�⇤

G
) = Q(�⇤

G
) = S({K0} [ {Gm | m 2 N}).

Proof. By Lemma 4.12, we know that Q(�⇤

G
) ✓ S({K0}[{Gm | m 2 N}) and since P (�⇤

G
) ✓

Q(�⇤

G
), it is su�cient to prove that S({K0} [ {Gm | m 2 N}) ✓ P (�⇤

G
).

Let H 2 S({K0}[ {Gm | m 2 N}) and let us show that H 2 P (�⇤

G
) by induction on |H|.

The base case is when H is a prime graph. By Lemma 3.4, we know there exists bm 2 N
such that H is an induced subgraph of Gbm, so it is su�cient to show that Gbm 2 P (�⇤

G
). In

turn, by Lemma 4.3, it is su�cient to show that for every positive measure set A ✓ ⌦V , the
graph Gbm has positive density in the subgraphon WG

⇤
|A.

Let ✏ be any positive number with ✏ < 1/|Gbm|. By Lemma 4.11, there exists t0 2 N
such that for every t � t0, there exists �t

2
Q

t�1
`=0 V (Gm`

) such that ⌫V (A \ K�t,V ) �

(1� ✏) · ⌫V (K�t,V ).
Let t 2 N be such that t0 < t  t0 + 2bm and mt = bm as provided by Remark 4.9. Let

also

T
def
=

(
⌧ 2

tY

`=0

V (Gm`
)

����� ⌧ |{0,...,t�1} = �t

)
.

Since {K⌧,V | ⌧ 2 T} partitions K�t,V into |T | = |Gmt
| = |Gbm| parts of equal measure, it

follows that for every ⌧ 2 T , we have

⌫V (A \K⌧,V ) �

✓
1� ✏�

|Gbm|� 1

|Gbm|

◆
⌫V (K�t,V ) > 0.

However, the definition of WG
⇤
implies that if we pick xv 2 K(�t,v),V for each v 2 V (Gbm)

(and pick any y 2 [0, 1)(
V (G bm)

2 )), then we get a copy of Gbm in WG
⇤
and since for every v 2 Gbm,

we have ⌫V (A \ K(�t,v),V ) > 0 (as (�t, v) 2 T ), it follows that Gbm has positive density in
WG

⇤
|A.
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For the inductive step when H is not prime, we must have H = F v!F2
1 for some graphs

F1, F2 and some v 2 V (F1) with |F1|, |F2| < |H|. Since F1 and F2 are in P (�⇤

G
) by inductive

hypothesis and P (�⇤

G
) is closed under substitutions by Lemma 4.6, it follows that H 2

P (�⇤

G
).

We can finally show Theorem 4.4 that says that a family F of graphs with at least one
graph of size at least 2 is strongly persistent if and only if it is persistent if and only if it is
closed under substitutions and under induced subgraphs.

Proof of Theorem 4.4. The implication (i) =) (ii) is trivial: every strongly persistent family
is obviously persistent.

For the implication (ii) =) (iii), if F = P (W ) for some graphon W , then Lemma 4.6
implies that it is closed under substitutions and induced subgraphs.

For the final implication (iii) =) (i), by Lemma 3.5, we have F = S(P), where P is the
set of graphs in F that are prime. Since F contains at least one graph of size at least 2, P
must also contain one such graph (since S({K0, K1}) = {K0, K1}).

Let G = (Gm)m2N be an enumeration of all graphs in P of size at least 2 (potentially
with repetitions if P is finite). Note that since F = S(P) is closed under induced subgraphs,
it follows that F = S({K0} [ {Gm | m 2 N}).

By Lemma 4.13, the repeating recursive blow-up �⇤

G
relative to G satisfies P (�⇤

G
) =

Q(�⇤

G
) = F , hence F is strongly persistent.

5 Weak randomness in graphons

Recall that Theorem 4.4 characterizes all universal theories of graphs that contain a uni-
versal weakly random graphon. In this section, we study a related natural question (see
Definition 5.1 below): when does every graphon of a universal theory of graphs contain some
weakly random subgraphon? As mentioned in the introduction, this property is a generaliza-
tion of AEHP (see Definition 2.9). We also remind the reader that in this section we drop the
qualifiers “weakly” and “strongly” from “closed under substitutions” as they are superfluous
for graphs (see Remark 3.12).

Definition 5.1. We say that a universal theory T of graphs has the weakly random Erdős–

Hajnal property (abbreviated T 2 WR) if every limit W of T contains a weakly random
subgraphon.

Remark 5.2. Since trivial graphons are weakly random, we obviously have AEHP ✓ WR.
Furthermore, even though it is also natural to ask what is the class of theories that have
some weakly random limit, it is clear that this is precisely the set of non-degenerate universal
theories. This is because Ramsey’s Theorem implies that any non-degenerate theory T of
graphs must either contain arbitrarily large cliques, in which case W ⌘ 1 is a limit of T , or
contain arbitrarily large anti-cliques, in which case W ⌘ 0 is a limit of T .
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Similarly to Lemma 4.3, the following lemma is a simple but very powerful observation
about weakly random subgraphons.

Lemma 5.3. A graphon W over a space ⌦ = (X,A, µ) contains a weakly random sub-
graphon W 0 if and only if there exists a positive measure set A ✓ X such that W |A is weakly
random.

Proof. The backward implication follows because W |A is a subgraphon of W .

For the forward implication, we know that �W 0 = �W |f
for some measurable function

f : X ! [0, 1]. Let A
def
= {x 2 X | f(x) > 0}. We claim that W |A is weakly random. Indeed,

this follows from Lemma 4.3 and since for every B ✓ X of positive µf -measure, we have
Q(W |A|B) = Q(W |f |B).

Our next main objective is to characterize the class WR under the assumption that the
set of graphs of the theory is closed under substitutions.

Theorem 5.4. Let T be a universal theory of graphs such that M[T ] is closed under sub-
stitutions. Then T 2 WR if and only if M[T ] is primally almost finite.

Before we prove Theorem 5.4 above, let us observe a simple corollary of it.

Corollary 5.5. There exists a universal theory of graphs T with M[T ] ( M[TGraph] and
T /2 WR.

Proof. The family {Cn | n � 5} of cycles of length at least 5 is a family of prime graphs
that is not almost finite (see Example 3.21). Let F = S({K0} [ {Cn | n � 5}) and since
F is closed under substitutions and induced subgraphs but is not primally almost finite, the

universal theory T
def
= Th(F) with M[Th(F)] = F satisfies T /2 WR by Theorem 5.4. It is

also easy to see that M[T ] ( M[TGraph], as for example the prime graph G6 of Example 3.21
is not in M[T ] by Lemma 3.4.

We start by proving the easier direction of Theorem 5.4 in the lemma below. In fact, for
this direction, we do not even need M[T ] to be closed under substitutions.

Lemma 5.6. If T is a universal theory of graphs such that M[T ] is primally almost finite,
then T 2 WR.

Proof. We prove the lemma by its contra-positive. Suppose T /2 WR and let us show that the
set P of graphs of T that are prime is not almost finite. By Lemma 3.7, it is su�cient to
construct a sequence (Rn)n2N in P such that for every n,m 2 N, if n < m, then Rn is not
an induced subgraph of Rm.

Since T /2 WR, there must exist a limit � 2 Hom+(A[T ],R) of T that does not contain
any weakly random sub-object.

We now construct sequences (�n)n2N of sub-objects of � and (Rn)n2N of prime graphs in
M[T ] satisfying:

i. For every n 2 N, �n+1 is a sub-object of �n.
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ii. For every n 2 N, Rn 2 Q(�n) \Q(�n+1).

We construct these sequences inductively as follows.

1. Set �0
def
= �.

2. Given �n 2 Hom+(A[T ],R), since �n is a sub-object of �, we know that �n is not weakly
random, so there exists Gn 2 Q(�n) \ P (�n). Let Pn be the set of induced subgraphs
of Gn that are prime. Since by Lemma 4.6, P (�n) is closed under substitutions and
Gn 2 S(Pn), there exists Rn 2 Pn \ P (�n) and since Q(�n) is closed under induced
subgraphs, we get Rn 2 Q(�n) \ P (�n). From the definition of P (�n), it follows that
there exists a sub-object �n+1 of �n (hence �n+1 is also a sub-object of �) such that
Rn 2 Q(�n) \Q(�n+1).

Let now n,m 2 N be such that n < m. By induction, we know that �m is a sub-object
of �n+1, so Q(�m) ✓ Q(�n+1), which in turn implies that Rn 2 Q(�n) \ Q(�m). Since
Rm 2 Q(�m) and Q(�m) is closed under induced subgraphs, it follows that Rn is not an
induced subgraph of Rm, concluding the proof.

For the other side of the characterization of WR, the proposition below shows that under
appropriate hypotheses, the recursive blow-up �R of Definition 4.7 is a graphon without any
weakly random subgraphon.

Proposition 5.7. Let R = (Rn)n2N be a sequence of prime graphs of size at least 2 such
that for each n 2 N, there exist at most finitely many m 2 N such that Rn is an induced
subgraph of Rm. Suppose also that

Q
n2N(1 � 1/|Rn|) = 0. Then �R does not contain any

weakly random sub-object.

Let us first give some intuition on the proof of Proposition 5.7. First, note that since allRn

are prime graphs and �R is obtained via a limit of recursive blow-ups, which themselves are
obtained from the Rn via substitutions, it follows that copies of Rn in �R need to correspond
to copies of Rn inside some Rm. The condition that each Rn is contained in at most finitely
many Rm then ensures that the restriction of WR to basic clopen sets K�,V (see (8)) with
|�| large enough do not have any copies of Rn. Thus, for every positive measure set A, there
is some K�,V such that Rn /2 Q(WR

|A\K�,V
) and A \K�,V has positive measure. However,

to use this fact show that �R does not contain any weakly random sub-object, we need to
also ensure that every positive measure set A contains at least one Rn (with n depending
on A), so that we conclude that Q(WR

|A) 6= P (WR
|A) since the above argument gives

Rn 2 Q(WR
|A) \ Q(WR

|A\K�,V
). This is where the condition

Q
n2N(1 � 1/|Rn|) = 0 comes

in: we will show that any set A avoiding all Rn has measure at most
Q

n2N(1� 1/|Rn|).

Proof. For every t 2 N, let Rt be the shifted sequence (Rn+t)n2N.
Also, for each t 2 N, let mt be the maximum m 2 N such that Rt is an induced subgraph

of Rm. Note that for every t 2 N, by Lemmas 3.3 and 4.12, we have Rt 2 Q(�Rt)\Q(�Rmt+1)
since Rt is prime and is not an induced subgraph of any Rt0 with t0 > mt

7.

7In fact, since �Rmt+1 is a sub-object of �Rt , we have Q(�Rmt+1) ( Q(�Rt).
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To show that �R does not contain a weakly random sub-object, by Lemma 5.3, it is
su�cient to show that for every positive measure set A ✓ ⌦V , the subgraphon WR

|A is not
weakly random.

We claim that there exists t 2 N such that Rt 2 Q(WR
|A). Suppose not, let n 2 N be

large enough so that
Q

n�1
`=0 (1 � 1/|R`|) < ⌫V (A) (recall from Definition 4.7 that ⌫V is the

measure in the underlying space of WR) and consider the set

⌃
def
=

(
� 2

n�1Y

`=0

V (R`)

����� ⌫
V (A \K�,V ) > 0

)
.

We claim that for every m 2 {0, . . . , n � 2} and every ⌧ 2
Q

m�1
`=0 V (R`), there exists v⌧ 2

V (Rm) such that (⌧, v⌧ ) is not a prefix of any element of ⌃. Indeed, otherwise, since mapping
each v 2 V (Rm) to an element of K(⌧,v),V gives an embedding of Rm in WR, we would get

tind(Rm,W
R
|A) �

Y

v2V (Rm)

⌫V (A \K(⌧,v),V )

⌫V (A)
> 0.

Thus, the existence of v⌧ is proved.
Let then ⌃⇤ be the set of � 2

Q
n�1
`=0 V (R`) such that for every m 2 {0, . . . , n � 2}, we

have v�|{0,...,m�1} 6= �m. Our last claim says that ⌃ ✓ ⌃⇤. Now it is easy to see that

⌫V (A) =
X

�2⌃

⌫V (A \K�,V ) 
X

�2⌃⇤

⌫V (K�,V ) =
n�1Y

`=0

✓
1�

1

|R`|

◆
< ⌫V (A),

a contradiction. This concludes the proof that there exists t 2 N such that Rt 2 Q(WR
|A).

We will now show that WR
|A is not weakly random by showing that there exists a sub-

object of WR
|A in which Rt has density zero (so that we conclude P (WR

|A) ( Q(WR
|A) as

Rt is in the latter set but not in the former set).
Since {K�,V | � 2

Q
mt

`=0 V (R`)} partitions the space ⌦V , there must exist � 2
Q

mt

`=0 V (R`)
such that ⌫V (A \ K�,V ) > 0 but note that �WR|K�,V

= �Rmt+1 and since Q(W |A\K�,V
) ✓

Q(W |K�,V
) = Q(�Rmt+1) it follows that Rt /2 Q(W |A\K�,V

) as desired.
Therefore �R does not contain any weakly random sub-object.

Remark 5.8. The product condition
Q

n2N(1 � 1/|Rn|) = 0 in Proposition 5.7 may seem
very unnatural at first. However, it is easy to see that it is necessary for �R to not contain

any weakly random sub-object: for example, consider the limit �R for the sequence R
def
=

(Cn2+5)n2N (see Figure 5) and fixing vn 2 V (Cn2+5) for each n 2 N, let

A
def
=
Y

n2N

(V (Cn2+5) \ {vn}).

Note that ⌫V (A) =
Q

n2N(1�1/|Cn2+5|) > 0. On the other hand, since Cn2+5�vn ⇠= Pn2+4

is the path with n2 + 4 vertices, it is obvious that WR
|A represents the same limit as WR

0
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x

y

Figure 5: Approximation of a graphon W over [0, 1] representing the limit �R of recursive

blow-ups corresponding to the sequence R
def
= (Cn2+5)n2N of Remark 5.8. The graphon W

has a fractal structure, whose first 3 steps are represented in the picture.
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for the sequence R0 = (Pn2+4)n2N. In turn, by Lemma 4.12, we have

Q(WR
0
) ✓ S({K0} [ {Pn2+4 | n 2 N}) = S({Pn | n 2 N})

and since the family above is primally almost finite, Lemma 5.6 implies that WR
0
contains

a weakly random subgraphon, hence so does WR. In fact, with a bit more e↵ort, one can
also show that WR

0
itself is already weakly random, but we omit this proof. We will also see

in Proposition 5.13 that not only does �R contain a weakly random sub-object, but we also
have Th(�R) 2 WR.

We can now prove Theorem 5.4 that says that a universal theory of graphs T with M[T ]
closed under substitutions and withM2[T ] non-empty is in WR if and only ifM[T ] is primally
almost finite.

Proof of Theorem 5.4. For the backward direction, if M[T ] is primally almost finite, then
by Lemma 5.6, we have T 2 WR.

We prove the forward direction by the contra-positive: suppose M[T ] is not primally
almost finite, so there exists an infinite antichain {Gn | n 2 N} of prime graphs of T , and
without loss of generality, suppose every Gn has size at least 2.

For each n 2 N, let rn 2 N+ be large enough so that (1 � 1/|Gn|)rn  1/2 and for each

` 2 N, let R`

def
= Gn for the unique n 2 N such that

P
n�1
m=0 rm  ` <

P
n

m=0 rm. Clearly, for
each ` 2 N, there exist exactly r` values of t 2 N such that R` is an induced subgraph of Rt.
On the other hand, we have

Y

`2N

✓
1�

1

|R`|

◆
=
Y

n2N

✓
1�

1

|Gn|

◆rn



Y

n2N

1

2
= 0.

By Proposition 5.7, we know that �R does not contain any weakly random sub-object and
by Lemma 4.12, we know that Q(�R) ✓ S({R` | ` 2 N}) ✓ M[T ], so �R is a limit of T
without any weakly random sub-object.

We conclude this section with some natural examples of universal theories in WR and not
in WR. We start by showing that the universal theory of induced subgraphs of recursive blow-
ups of C4 studied in [CM22, §8] (see Example 4.10 and Figure 4) is the simplest example in
WR \ AEHP.

Proposition 5.9. The limit recursive blow-up �C4 of C4 is weakly random. In particular,
the theory T of induced subgraphs of the recursive blow-ups of C4 satisfies T 2 WR \ AEHP.

Proof. Recall from Example 4.10 that the limit �C4 recursive blow-up of C4 can be viewed
as the repeating recursive blow-up �⇤

G00 for the sequence G00 = (K2, K2, K2, . . .) whose first
element is K2 and all other elements are K2.

There are two ways of seeing that �C4 is weakly random. The first is using Lemma 4.13
to conclude that P (�C4) = Q(�C4) = S({K0, K2, K2}). Alternatively, the result follows
directly from the results of [CM22] and Lemma 4.6: by [CM22, Lemma 8.7], we know
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that Q(�C4) ✓ S({K0, K2, K2}), so Lemma 4.6 implies that P (�C4) can only be one of
S({K0, K2}), S({K0, K2}) or S({K0, K2, K2}) and since by [CM22, Lemma 8.8] does not
contain trivial subgraphons, the first two cases are ruled out, so P (�C4) = Q(�C4) =
S({K0, K2, K2}).

Since the family of induced subgraphs of recursive blow-ups of C4 is precisely the family
S({K0, K2, K2}), which is primally finite, the fact that T 2 WR follows from Theorem 5.4. On
the other hand, �C4 does not contain trivial subgraphons (this follows directly from [CM22,
Lemma 8.8] or alternatively from the fact that a trivial subgraphon W must have Q(W )
either equal to S({K0, K2}) or S({K0, K2})), hence T /2 AEHP.

Proposition 5.10. The theory TPerfect of perfect graphs is not in WR. Furthermore, the set
M[TPerfect] is closed under substitutions.

Proof. We first show that M[TPerfect] is closed under substitutions. By the Strong Perfect
Graph Theorem [CRST06], we know that a graph G is perfect if and only if both G and its
complement G do not contain any induced odd-cycle of length at least 5.

Let us show that if F1, F2 are perfect graphs and v 2 V (F1), then F v!F2
1 is also a perfect

graph. Since F v!F2
1

⇠= (F1)v!F2 , it is su�cient to show that F v!F2
1 does not contain any

induced odd-cycles of length at least 5.
Without loss of generality, let us suppose V (F1) \ V (F2) = ?. Suppose toward a con-

tradiction that v1, . . . , v2`+1 forms an induced odd-cycle of F v!F2
1 with ` � 2. Since both F1

and F2 are perfect, this odd-cycle must contain both vertices of F1 (that are not v) and F2.
Without loss of generality, suppose vi 2 V (F2) for every i 2 [k] for some k 2 [2` + 1] and
vk+1 2 V (F1). Since vk+1 2 V (F1) is adjacent to vk 2 V (F2), it follows from the structure
of F v!F2

1 that vk+1 is adjacent to all of v1, . . . , vk, but since the cycle is induced, this can
only happen if k = 2 and 2`+ 1 = 3, a contradiction. Therefore, M[TPerfect] is closed under
substitutions.

By Theorem 5.4, to show that TPerfect /2 WR, it is su�cient to show that M[TPerfect] is not
primally almost finite. But recall that the family of graphs {Gn | n � 6} of Example 3.21 is
a family of prime graphs that is not almost finite and since these graphs are bipartite, they
are also perfect.

Finally, we consider the theory TPermGraph
def
= I(TPerm) of graphs of agreements of permu-

tations, where I : TGraph  TPerm is given by

I(E)(x, y)
def
= (x 6= y ^ (x �1 y $ x �2 y)),

The next proposition provides a natural universal weakly random limit of TPermGraph as the
graphon of agreements of the quasirandom permuton (see Figure 6). However, we defer its
proof to Section 7 as it will follow as an easy consequence of naturality of weak randomness
(Proposition 7.10(iii)) and the fact that the quasirandom permuton is a universal weakly
random limit of TPerm (Proposition 7.15).
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Proposition 5.11. The graphon W over [0, 1]2 of agreements of the quasirandom permuton
given by

W (x, y)
def
= [⇡1(x) < ⇡1(y) $ ⇡2(x) < ⇡2(y)],

where ⇡i : [0, 1]2 ! [0, 1] is the projection onto the ith coordinate, is a universal weakly
random limit of TPermGraph.

x

y

Figure 6: Approximation of a graphon W 0 over [0, 1] representing the same limit as the
graphon W of agreements of the quasirandom permuton of Proposition 5.11. The graphon
W 0 is indirectly defined by W 0(F (x), F (y)) = W (x, y) for the standard measure-isomorphism
F from [0, 1] to [0, 1]2 that maps the point (x, y) 2 [0, 1]2 to

P
i2N+

4�i
· (2 · xi + yi), where

the binary expansions of x and y are 0.x1x2 · · · and 0.y1y2 · · · , respectively. The graphon
W 0 has a fractal structure, whose first 3 steps are represented in the picture.

Proposition 5.12. The theory TPermGraph of graphs of agreements of permutations is not in
WR. Furthermore, M[TPermGraph] is closed under substitutions.

Proof. First let us prove that M[TPermGraph] is closed under substitutions. Let F,G 2

M[TPermGraph], let v 2 V (F ) and without loss of generality, suppose V (F ) = [n] and
V (G) = [m] for some n,m 2 N and � 2 Sn and ⌧ 2 Sm are permutations representing
F and G with {i, j} 2 E(F ) if and only if i < j $ �(i)  �(j) and analogously for G and ⌧ .

It is now easy to check that F v!G is the graph of agreements of the permutation ⇡ 2
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Sn+m�1 defined by

⇡(i)
def
=

8
>>>>>><

>>>>>>:

�(i), if i < v and �(i) < �(v),

�(i) +m� 1, if i < v and �(v) < �(i),

�(v) + ⌧(i� v + 1)� 1, if v  i < v +m,

�(i�m+ 1), if v +m  i and �(i�m+ 1) < �(v),

�(i�m+ 1) +m� 1, if v +m  i and �(v) < �(i�m+ 1).

In fact, the above shows thatM[TPerm] is weakly closed under substitutions, soM[TPermGraph]
inherits this property.

Now, by Theorem 5.4, it is su�cient to show that M[TPermGraph] is not primally almost
finite.

Recall that the family {Gn | n � 6} of Example 3.21 is a family of prime graphs that is
not almost finite. We claim that for every even8 n � 6, the graph Gn is a graph of agreements
of some permutation. Indeed, Gn is the graph of agreements of the permutation ⇡n 2 Sn+4

(see Figure 7) given by

⇡n(i)
def
=

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

n+ 3, if i = 1,

n+ 1, if i = 2,

n� 1, if i = 3,

n+ 4, if i = 4,

n� i+ 3, if 6  i  n and i is even,

n� i+ 7, if 5  i  n� 1 and i is odd,

1, if i = n+ 1,

6, if i = n+ 2,

4, if i = n+ 3,

2, if i = n+ 4.

For example, the values of ⇡14 (in sequence) are

17, 15, 13, 18, 16, 11, 14, 9, 12, 7, 10, 5, 8, 3, 1, 6, 4, 2.

Thus, M[TPermGraph] is not primally almost finite, hence TPermGraph /2 WR by Theorem 5.4.

We conclude this section with an example of a universal theory T of graphs that is in WR

essentially because of failure of the product condition of Proposition 5.7.

Proposition 5.13. Consider the sequence of graphs G = (Cn2+5)n2N and let T
def
= Th(�G) be

the theory of positive models of the recursive blow-up �G relative to G (see Definition 4.7).
Then T 2 WR.

8It is also true for odd n, but we only need an infinite subfamily, so even n su�ces.
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Figure 7: Graph of permutation ⇡14 of proof of Proposition 5.12 represented as points (i.e.,
the set {(i, ⇡14(i)) | i 2 [14]}). The edges of the corresponding graph of agreements G14 are
represented as lines and the labels indicate the vertices of G14.
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Proof. Let V = (Vn)n2N be given by Vn

def
= V (Cn2+5) and let WG be the graphon represen-

tation of �G given by (9). Since WG is {0, 1}-valued, we can view it as a continuum-sized
graph H with vertex set ⌦V , consider the family F of all finite graphs that are induced
subgraphs of H.

We claim that F = Q(�G). Indeed, we obviously have Q(�G) ✓ F and any induced
subgraph M 2 F of H must be an induced subgraph of the (finite) recursive blow-up

H 0

m0

def
= R

(C5,C6,C9,...,C
m

2
0+5) for some m0 2 N (see Definition 7.5) hence

�G(M) � p(M,H 0

m0
) · �G(H

0

m0
) � p(M,H 0

m0
) ·

|H 0

m0
|!

|Aut(H 0
m0

)|
·

 
m0Y

n=0

1

n2 + 5

!|H
0
m0

|

> 0,

so M 2 Q(�G).
Let us now show that T 2 WR. Let � 2 Hom+(A[T ],R) be an arbitrary limit of T .

Since M[T ] = F , there exists a sequence U = (Un)n2N of finite subsets of ⌦V such that the
sequence of finite graphs (H|Un

)n2N converges to �.
For each k 2 N and each v 2 V (Ck2+5), let

Kk,v

def
= {� 2 ⌦V

| �k = v}.

For each n 2 N, let us construct a sequence (U 0

n,k
)k2N of subsets of Un inductively as

follows. We set U 0

n,0
def
= Un and given U 0

n,k
, let vn,k be a vertex v 2 V (Ck2+5) that minimizes

|U 0

n,k
\Kk,v| (which can be zero) and let U 0

n,k+1
def
= U 0

n,k
\Kn,vn,k

; note that

|U 0

n,k+1| �

✓
1�

1

k2 + 5

◆
· |U 0

n,k
|.

We also let U 0

n

def
=
T

k2N U
0

n,k
and note that a simple induction gives

|U 0

n
|

|Un|
�

Y

k2N

✓
1�

1

k2 + 5

◆
> 0. (11)

Note also that the definition of U 0

n
implies that for every k 2 N, there exists v 2 V (Ck2+5)

such that U 0

n
\Kk,v = ?, which along with the definition of H implies that H|U 0

n
2 S({Pn |

n 2 N}), where Pn is the path on n vertices.
Let then (H|U 0

n
`

)`2N be a convergent subsequence of (H|U 0
n
)n2N such that (|U 0

n`
|/|Un`

|)`2N
is also convergent and let  2 Hom+(A[T ],R) be the limit of (H|U 0

n
`

)`2N. Then (11) implies

that  is a sub-object of � of measure at least
Q

k2N(1 � 1/(k2 + 5)) > 0. But since
H|U 0

n
`

2 S({Pn | n 2 N}), it follows that Th( ) is primally almost finite, which by Lemma 5.6
gives Th( ) 2 WR, so  has a weakly random sub-object, hence so does �.
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6 VC dimension and weak randomness

In this section we study how weak randomness and the class WR interact with the notion of
VC dimension. We remind the reader that in this section we drop the qualifiers “weakly”
and “strongly” from “closed under substitutions” as they are superfluous for graphs (see
Remark 3.12).

Recall that for a non-trivial graphG, the Vapnik–Chervonenkis dimension [VČ71] (VC di-
mension) of (neighborhoods of) G is the largest size VC(G) of a set U ✓ V (G) that is
shattered by neighborhoods of vertices of G in the sense that for every A ✓ U , there exists

v 2 V (G) such that NG(v) \ U = A, where NG(v)
def
= {w 2 V (G) | G ✏ E(v, w)} is the

neighborhood of v in G. By convention, we also let VC(K0)
def
= 0.

Recall also that (the edge relation in) a class of graphs F (or the corresponding universal
theory Th(F)) is said to have bounded VC dimension if sup{VC(G) | G 2 F} < 1. In
model theoretic language, the class has NIP (standing for not the independence property).

Finally, recall that by [LS10], a universal theory T of graphs has bounded VC dimension
if and only if all graphons of T are a.e. {0, 1}-valued9. Thus, studying VC dimension is
directly related to studying whether the theory has fractional-valued graphons.

We start with a simple application of the theory of graph persistence developed so far.

Proposition 6.1. If W is a graphon such that there exists a finite graph G with �W (G) = 0,
then W has an a.e. {0, 1}-valued subgraphon W 0. Furthermore, W 0 can be taken of the form
W 0 = W |A for some positive measure set A.

Proof. Define a {0, 1}-valued graphon fW on the same space as W by

fW (x, y)
def
=

(
1, if 0 < W (x, y) < 1,

0, if W (x, y) 2 {0, 1}.

Note that a subgraphon W 0 of W represented as W |f is a.e. {0, 1}-valued if and only if

K2 /2 Q(fW |f ). Hence, W has an a.e. {0, 1}-valued subgraphon if and only if K2 /2 P (fW ).

Thus, to prove the proposition, it is su�cient to show that K2 2 P (fW ) implies that every
finite graph G has positive density in W .

Since P (fW ) is closed under substitutions and induced subgraphs (Lemma 4.6), it follows

that Kn 2 P (fW ) for every n 2 N (as Kn
⇠= Kv!Kn�1

2 ). But note that each copy of Kn in fW
corresponds to points of W whose pairs all have values in (0, 1), hence have strictly fractional

(conditional) probability of yielding edges, thus the fact that K|G| has positive density in fW
implies that G has positive density in W .

For the final part, if W 0 = W |f for some function f : X ! [0, 1], then letting A
def
= {x 2

X | f(x) > 0} yields that W |A is an a.e. {0, 1}-valued subgraphon of W .

9Let us warn the unfamiliarized reader that even if W is a.e. {0, 1}-valued, its theory of positive graphs
Th(W ) is not necessarily of bounded VC dimension. For example, the construction in the proof of Theo-
rem 4.4 always yields a {0, 1}-valued graphon with Th(W ) = F , even if F = M[TGraph], which clearly has
unbounded VC dimension.
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The reader might have noticed that with the notable exception of quasirandom graphons,
all examples of weakly random graphons of Section 5 are {0, 1}-valued. The next proposition
says this is not a coincidence: every universal weakly random limit of a proper (strongly)
persistent class of graphs F (i.e., F ( M[TGraph]) must necessarily be {0, 1}-valued.

Theorem 6.2. If W is a weakly random graphon such that there exists a finite graph G
with �W (G) = 0, then W is a.e. {0, 1}-valued.

Proof. We prove this by the contra-positive. Suppose W is a weakly random graphon over
some space ⌦ = (X,A, µ) that is not a.e. {0, 1}-valued. Let us show by induction in |G|

that every finite graph G has �W (G) > 0. By possibly applying the Graphon Removal
Lemma [Pet13, Theorem 1], it is enough to show that Tind(G,W ) 6✓ DV (G).

Obviously �W (K0) = �W (K1) = 1. So suppose |G| � 2, let v0 2 V (G) and H
def
= G� v0.

Since W is not a.e. {0, 1}-valued, there exists xv0 2 [0, 1] such that the set

A
def
= {y 2 [0, 1] \ {xv0} | 0 < W (xv0 , y) < 1}

has positive measure. Since W |A is a subgraphon of W , W |A is also weakly random
and since by induction hypothesis, �W (H) > 0 we get that there exists a point (z, w) 2

AV (H)
⇥ [0, 1)(

V (H)
2 ) that induces an o↵-diagonal copy of H in W |A (i.e., we have (z, w) 2

Tind(H,W |A)).

Let us extend (z, w) to a point in XV (G)
⇥ [0, 1)(

V (G)
2 ) by defining zv0

def
= xv0 and

w{v0,w}

def
=

8
<

:

0, if {v0, u} 2 E(G),

1 +W (xv0 , zu)

2
, if {v0, u} /2 E(G),

for every u 2 V (H). It is straightforward to check that (z, w) yields an o↵-diagonal copy of
G in W , concluding the proof.

Our next objective is to show that for families of graphs F that are closed under substitu-
tions and induced subgraphs, determining whether F has bounded VC dimension is reduced
to determining whether the family of prime graphs of F has bounded VC dimension. To do
so, we need a variation of the definition of VC dimension.

Definition 6.3. Given a non-trivial graph G, the VC0
dimension of G (denoted VC0(G)) is

the largest size of a set U ✓ V (G) that is almost shattered by the edge relation of G in the
sense that for every non-empty A ( U , there exists v 2 V (G) such that NG(v)\U = A\{v}.

By convention, we also let VC0(K0)
def
= 0.

Note that the notion of almost shattering is weaker than the notion of shattering in two

points: we only care about sets A that are non-empty proper subsets of U and NG(v) \ U
only needs to match A up to possibly removing v from A. Note that for a non-trivial graph
G, we always have VC0(G) � 1 as any singleton set is almost shattered by the edge relation
of G.
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Lemma 6.4. For a non-trivial graph G, we have

max{F (n) | n  VC0(G)}  VC(G)  VC0(G),

where

F (n)
def
=

8
><

>:
max

(
t 2 N

�����

t�1X

i=0

✓
n

i

◆
<

2n � 2

n

)
, if n � 3,

0, if n  2.

Proof. Since the notion of shattering implies the notion of almost shattering, it follows
trivially that VC(G)  VC0(G).

Let now n  VC0(G) and let us show that F (n)  VC(G). Note that the result is trivial
if n  2 as F (0) = F (1) = F (2) = 0, so let us suppose n � 3. Since n  VC0(G), we know
that there exists a set U ✓ V (G) of size n that is almost shattered by the edge relation of
G. For each non-empty A ( U , let vA 2 V (G) be such that NG(vA) \ U = A \ {vA} and let

F
def
= {NG(vA) \ U | ? 6= A ( U}.
We claim that for every B ✓ U , there are at most n non-empty sets A ( U such that

NG(vA) \ U = B. Indeed, since NG(vA) \ U = A \ {vA}, the set of non-empty A ( U with
NG(vA) \ U = B must be contained in

{B} [ {B [ {u} | u 2 U}.

When B is non-empty, the set above has size at most |U | = n and when B is empty, the set
above has size n+ 1 but A cannot be equal to B.

Since there are 2n � 2 non-empty sets A ( U , we get |F| � (2n � 2)/n. On the other
hand, by the definition of F (n), we have

|F| �
2n � 2

n
>

F (n)�1X

i=0

✓
n

i

◆
,

so by the Sauer–Shelah Lemma [Sau72, She72], the family F shatters some U 0
✓ U with

|U 0
| � F (n), thus VC(G) � F (n).

Remark 6.5. It is easy to see that the function F of Lemma 6.4 is unbounded. Indeed, if
there was a bound t0 2 N such that F (n)  t0 for every n 2 N, then we would have

2n � 2

n


t0X

i=0

✓
n

i

◆
 (t0 + 1) · nt0

for every n 2 N, which is yields a contradiction when n is su�ciently large.
As a corollary of Lemma 6.4, it then follows that a universal theory graphs T has bounded

VC dimension if and only if there exists k 2 N such that VC0(G)  k for every graph G of
T .
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The next lemma shows that VC0 dimension behaves very well with respect to the substi-
tution operation.

Lemma 6.6. Let F1 and F2 be non-trivial finite graphs and v0 2 V (F1). Then we have
VC0(F v0!F2

1 ) = max{VC0(F1),VC
0(F2)}.

Proof. Without loss of generality, suppose V (F1) \ V (F2) = ? and let G
def
= F v0!F2

1 . Since
both F1 and F2 are induced subgraphs of G (as both F1 and F2 are non-trivial), it follows
that VC0(G) � max{VC0(F1),VC

0(F2)}.
To prove the other inequality, let U ✓ V (G) be a set that is almost shattered by the edge

relation of G with |U | = VC0(G).
Suppose first that U ✓ V (Fi) for some i 2 [2]. Then we claim that the edge relation of Fi

also almost shatters U . Indeed, if A ( U is a non-empty set, then we know that there exists
u 2 V (G) such that NG(u)\U = A\{u}. Since A 6= ? and A 6= V (Fi) (as A ( U ✓ V (Fi)),
we must have u 2 V (Fi) (as every u 2 V (F3�i) is either adjacent to all of V (Fi) or not
adjacent to all of V (Fi)) and thus NFi

(u) \ U = A \ {u}. Therefore, in this case, we get
VC0(G)  VC0(Fi)  max{VC0(F1),VC

0(F2)}.
Suppose then that U 6✓ V (F1) and U 6✓ V (F2). Then we claim that |U \ V (F2)| = 1.

Suppose not and let v1 2 U \ V (F1) and v2, w2 2 U \ V (F2) with v2 6= w2. We consider first
the case when {v0, v1} 2 E(F1) (recall that v0 is the vertex of F1 that is being substituted:

G = F v0!F2
1 ), let A

def
= {v2} ( U and let u 2 V (G) be such that NG(u)\U = A \ {u}. Since

{v0, v1} 2 E(F1) and v1 /2 A, we must have u /2 V (F2) (as every vertex of V (F2) is adjacent to
v1 inG) and since w2 /2 A, we must have u /2 V (F1) (as every vertex of V (F1) is adjacent to w2

in G), a contradiction. Consider then the case when {v0, v1} /2 E(F1), let A
def
= {v1, v2} ( U

and let u 2 V (G) be such that NG(u) \ U = A \ {u}. Since {v0, v1} /2 E(F1) and v1 2 A,
we must have u /2 V (F2) and since v2 2 A, we must have u /2 V (F1), a contradiction. This
concludes the proof of the claim, that is, we have |U \ V (F2)| = 1.

Let then w0 be the unique element of U \ V (F2). We now claim that the set U 0 def
=

(U \{w0})[{v0} is almost shattered by the edge relation of F1. Let A0 ( U 0 be a non-empty
set and let

A
def
=

(
A0, if v0 /2 A0,

(A0
\ {v0}) [ {w0}, if v0 2 A0.

Then there exists u 2 V (G) such that NG(u) \ U = A \ {u}. Consider first the case when
u 2 V (F1). Then we have

NF1(u) \ U 0 =

(
NG(u) \ U, if w0 /2 NG(u) \ U ,

((NG(u) \ U) \ {w0}) [ {v0}, if w0 2 NG(u) \ U ,

hence NF1(u) \ U 0 = A0
\ {u} (as NG(u) \ U = A \ {u}). Consider now the case when

u /2 V (F1) and note that

NF1(v0) \ U 0 = (NG(u) \ U) \ {w0} = A \ {u, w0} = A0
\ {v0}
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since u /2 A0 (as A0
✓ V (F1)). Thus U 0 is almost shattered by the edge relation of F1, hence

VC0(G)  VC0(F1)  max{VC0(F1),VC
0(F2)}.

The following simple consequence of Lemmas 6.4 and 6.6 (and Remark 6.5) says that when
F = S(F 0), then F has bounded VC dimension if and only if F 0 has bounded VC dimension.

Theorem 6.7. Let F and F
0 be families of finite graphs up to isomorphism and suppose

F = S(F 0). Then F has bounded VC dimension if and only if F 0 has bounded VC dimension.
In particular, if F is a family of finite graphs that is closed under substitutions and

under induced subgraphs and P is the family of all prime graphs of F , then F has bounded
VC dimension if and only if P has bounded VC dimension.

Proof. By Lemmas 6.4 and 6.6 and Remark 6.5 with a simple induction, we have

sup{VC(F ) | F 2 F} < 1 () sup{VC0(F ) | F 2 F} < 1

() sup{VC0(F 0) | F 0
2 F

0
} < 1

() sup{VC(F 0) | F 0
2 F

0
} < 1,

so the first statement follows.
The second statement follows from the first one along with Lemma 3.5.

As a direct corollary of Theorem 6.7, it follows that any primally finite family F that is
closed under substitutions and under induced subgraphs has bounded VC dimension. Our
next objective is to show that the same is true in the primally almost finite case. Before we
do so, we need yet another example of a family of prime graphs that is not almost finite.

Example 6.8. For each n � 9 odd, let G0

n
be the graph obtained from the path on n

vertices Pn by adding two vertices a and b adjacent precisely to the fourth and fourth from
last vertices of Pn, respectively and connecting all even vertices into a clique (see Figure 8).
Formally, we have

V (G0

n
)
def
= [n] [ {a, b},

E(G0

n
)
def
= {{i, i+ 1} | i 2 [n� 1]} [ {a, 4} [ {b, n� 3}

[ {{2i, 2j} | i, j 2 [(n� 1)/2] ^ i 6= j}.

It is straightforward to check that {G0

n
| n � 9 odd} is a family of prime graphs that is

not almost finite.

Before we prove the theorem, we need a small consequence of Ramsey’s Theorem.

Lemma 6.9. For every n 2 N and every graphon W , we have

�W (Kn) + �W (Kn) �

✓
R(n, n)

n

◆�1

,

where R(n, n) is the (n, n)-Ramsey number.
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Figure 8: Prime graphs G0

n
of Example 6.8 that form a family that is not almost finite.
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Proof. We have

�W (Kn) + �W (Kn) =
X

M2MR(n,n)[TGraph]

(p(Kn,M) + p(Kn,M)) · �W (M)

�

✓
R(n, n)

n

◆�1 X

M2MR(n,n)[TGraph]

�W (M) =

✓
R(n, n)

n

◆�1

,

where the inequality follows since at least one n-sized subset of each M 2 MR(n,n)[TGraph]
must induce either Kn or Kn in M .

Theorem 6.10. Let T be a universal theory of graphs. If M[T ] is primally almost finite,
then the edge relation in T has NIP (i.e., bounded VC dimension).

In particular, the edge relation in every universal theory of graphs T 0
2 WR such that

M[T 0] is closed under substitutions has NIP.

Proof. The second assertion follows from the first along with Theorem 5.4.

We prove the first assertion by the contra-positive. Since the edge relation in T has
unbounded VC dimension, by [LS10], there exists a graphon W that is a limit of T and is not
a.e. {0, 1}-valued. By possibly applying the Graphon Removal Lemma [Pet13, Theorem 1],
we may suppose that every graph G that has an o↵-diagonal copy in W has positive density
in W .

Our objective is to present a family of prime graphs that is not almost finite and such
that all graphs in this family have an o↵-diagonal copy in W (thus M[T ] is not primally
almost finite).

For this purpose, we will show that for each n 2 N with n � 5, one of the following
graphs appears as an o↵-diagonal copy in W :

i. The graph G2n�4 of Example 3.21.

ii. The complement G2n�4 of the graph of Example 3.21.

iii. The graph G0

2n�1 of Example 6.8.

Since each of these families is a family of prime graphs that is not almost finite (note that
primality is preserved under complementation) and one of them must occur for infinitely
many n, it will follow that M[T ] is not primally almost finite as desired.

Without loss of generality, let us suppose that the underlying space of W is [0, 1] and let
(x0, y0) 2 (0, 1)2 be a Lebesgue density point with respect to `1-balls of the positive measure

set A
def
= W�1((0, 1)) with x0 6= y0.

Let ✏ > 0 be such that ✏ < (n ·
�
R(n,n)

n

�
)�2 and let � > 0 be small enough so that

�(A \B�(x0, y0))

�(B�(x0, y0))
� 1� ✏,
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where B�(x0, y0) is the `1-ball of radius � centered at (x0, y0). We may also suppose that
� > 0 is small enough so that (x0 � �, x0 + �) and (y0 � �, y0 + �) are disjoint subsets of [0, 1].

Consider the set

C
def
= {(x, y) 2 B�(x0)

n
⇥ B�(y0)

n
| 8i, j 2 [n], (xi, yj) 2 A}.

With a simple union bound, we have

�(C) � (1� n2✏) · �(B�(x0, y0))
n >

 
1�

✓
R(n, n)

n

◆�2
!
�(B�(x0, y0))

n. (12)

Define also

C 0 def
= {(x, y) 2 B�(x0)

n
⇥ B�(y0)

n
| 9z 2 [0, 1)(

[n]
2 ), (x, z) 2 Tind(Kn,W ) [ Tind(Kn,W )

^ 9w 2 [0, 1)(
[n]
2 ), (y, w) 2 Tind(Kn,W ) [ Tind(Kn,W )}.

By Lemma 6.9, we have

�(C 0) �

✓
R(n, n)

n

◆�2

· �(B�(x0, y0))
n.

Putting this together with (12), we conclude that �(C \ C 0) > 0.
Let then (x, y) 2 C \ C 0 be a point with all coordinates distinct. We now consider four

cases.

Case 1. There exist points z, w 2 [0, 1)(
[n]
2 ) such that (x, z), (y, w) 2 Tind(Kn,W ). In this

case, we construct an o↵-diagonal copy (bx, by) 2 [0, 1]V (G2n�4) ⇥ [0, 1)(
V (G2n�4)

2 ) of the graph
G2n�4 of Example 3.21 as follows. Recall that V (G2n�4) = [2n � 4] [ {a, b, c, d} and for

convenience of notation, let us make the identifications a
def
= 2n� 3, b

def
= 2n� 2, c

def
= 2n� 1

and d
def
= 2n. Then for each i, j 2 V (G2n�4) with i 6= j, let

bxi

def
=

(
xi/2, if i 2 [2n] is even,

y(i+1)/2, if i 2 [2n] is odd,

by{i,j}
def
=

8
>>>>><

>>>>>:

z{i/2,j/2}, if i, j 2 [2n] are both even,

w{(i+1)/2,(j+1)/2}, if i, j 2 [2n] are both odd,

0, if i 2 [2n] is even, j 2 [2n] is odd and {i, j} 2 E(G2n�4),

1 +W (xi/2, y(j+1)/2)

2
, if i 2 [2n] is even, j 2 [2n] is odd and {i, j} /2 E(G2n�4).

The fact that (x, y) 2 C \C 0 and all coordinates of (x, y) are distinct guarantees that (bx, by)
is an o↵-diagonal copy of G2n�4.
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Case 2. There exist points z, w 2 [0, 1)(
[n]
2 ) such that (x, z), (y, w) 2 Tind(Kn,W ). In

this case, a construction analogous to the one in case 1 yields an o↵-diagonal copy of the
complement G2n�4 of the graph of Example 3.21.

Case 3. There exist points z, w 2 [0, 1)(
[n]
2 ) such that (x, z) 2 Tind(Kn,W ) and (y, w) 2

Tind(Kn,W ). We construct an o↵-diagonal copy (bx, by) 2 [0, 1]V (G0
2n�1) ⇥ [0, 1)(

V (G0
2n�1)

2 ) of the
graph G0

2n�1 of Example 6.8 as follows. Recall that V (G0

2n�1) = [2n � 1] [ {a, b} and for

convenience of notation, let us make the identifications a
def
= 2n+1 and b

def
= 2n+3 (nothing

gets identified with the points 2n and 2n+ 2). Then for each i, j 2 V (G0

2n�1) with i 6= j, let

bxi

def
=

(
xi/2, if i 2 [2n� 1] is even,

y(i+1)/2, if i 2 [2n+ 3] is odd,

by{i,j}
def
=

8
>>>>>>>><

>>>>>>>>:

z{i/2,j/2}, if i, j 2 [2n� 1] are both even,

w{(i+1)/2,(j+1)/2}, if i, j 2 [2n+ 3] are both odd,

0, if i 2 [2n � 1] is even, j 2 [2n + 3] is odd and {i, j} 2

E(G0

2n�1),

1 +W (xi/2, y(j+1)/2)

2
, if i 2 [2n � 1] is even, j 2 [2n + 3] is odd and {i, j} /2

E(G0

2n�1).

The fact that (x, y) 2 C \C 0 and all coordinates of (x, y) are distinct guarantees that (bx, by)
is an o↵-diagonal copy of G0

2n�1.

Case 4. There exist points z, w 2 [0, 1)(
[n]
2 ) such that (x, z) 2 Tind(Kn,W ) and (y, w) 2

Tind(Kn,W ). This case follows from case 3 by swapping the roles of x and y.

Therefore M[T ] is not primally almost finite.

Remark 6.11. The assumption that M[T ] is closed under substitution is crucial for the
second part of Theorem 6.10, since, for example, the universal theory TBipartite of bipartite
graphs clearly is in AEHP ✓ WR (as every limit contains an empty subgraphon of measure at
least 1/2) but has unbounded VC dimension.

For an example of a theory with unbounded VC dimension that is in WR\AEHP, let TC4 be
the universal theory of graphs that are induced subgraphs of some (finite) recursive blow-up
of C4 (which has bounded VC dimension by Theorem 6.10 as TC4 is primally finite), let F
be the family of graphs G such that there exists a partition V (G) = A [ B such that both

G|A and G|B are models of TC4 and let T
def
= Th(F) be the corresponding universal theory of

graphs. Obviously, every bipartite graph is a model of T , so T has unbounded VC dimension.
Since at least one of A or B must have at least half of the vertices, it follows that every

limit of T has a subgraphon that is a limit of TC4 and since TC4 2 WR (by Proposition 5.9),
we get T 2 WR. On the other hand, since every model of TC4 is a model of T and TC4 /2 AEHP

(by [CM22, Lemma 8.8] or Proposition 5.9 again), it follows that T /2 AEHP.
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7 Persistence for universal theories

In this section, we generalize the results of Section 4 on (strongly) persistent classes to
arbitrary universal theories in finite relational languages. Table 1 below contains the corre-
spondence between the theorems and lemmas of Sections 4 and 5 and their generalizations
in this and the next section.

Graph result Universal theory result Drawbacks
Lemma 4.3 Lemma 7.2(i) None.
Theorem 4.4 Theorem 7.9 Persistence (item (iii)) can only be added

to the list of equivalences when all arities
are at most 2.

Lemma 4.6 Lemma 7.3 Requires either that all arities are at
most 2 (item (i)) or weak randomness
(item (ii)).

Lemma 4.12 Lemma 7.6 and
Proposition 7.8(i),(ii)

When the recursive blow-ups are not con-
servative (see Definitions 7.5 and 7.7),
only partial information is known about
the limit theon.

Lemma 4.13 Proposition 7.8(iii) None.
Lemma 5.3 Lemma 7.2(ii) None.
Theorem 5.4 Propositions 8.2 and 8.4 Backward direction requires all arities to

be at most 2. Forward direction is trivial
if all arities are at least 3.

Lemma 5.6 Proposition 8.2 Requires all arities to be at most 2.
Proposition 5.7 Propositions 7.8(iv) and 8.4 When all arities are at least 3, there are

only finitely many prime structures (see
Remark 3.13).

Table 1: Correspondence between theorems and lemmas of Sections 4 and 5 and their gener-
alizations in Sections 7 and 8. Some generalizations have drawbacks (e.g., extra hypotheses
or the result might be trivial) as pointed out in the third column.

Definition 7.1. Let � 2 Hom+(A[TL],R). The set of positive L-structures in � is the set

Q(�)
def
= M[Th(�)] of all finite L-structures M (up to isomorphism) such that �(M) > 0.

The set of persistently positive L-structures in � is the set P (�)
def
=
T
 
Q( ), where the

intersection is over all sub-objects of �. We extend these definitions naturally to Euclidean

structures N in L by Q(N )
def
= Q(�N ) and P (N )

def
= P (�N ).

We say that � is weakly random if P (�) = Q(�).
A family F of finite L-structures (up to isomorphism) is called persistent if there exists

� such that P (�) = F . The family F is called strongly persistent if there exists a weakly
random � such that P (�) = F (which must also equal Q(�)); in this case, we also say that
� is a universal weakly random limit of F .
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Lemma 7.2. Let N be an Euclidean structure in L over ⌦ = (X,A, µ). Then the following
hold.

i. P (N ) =
T

A
Q(N|

F

A
), where the intersection is over all positive measure A 2 A and

all measure-isomorphisms F modulo 0 from ⌦A to ⌦ (equivalently, we can also use a
single measure-isomorphism FA modulo 0 for each positive measure A 2 A).

ii. �N has a weakly random sub-object if and only if there exists a positive measure
A 2 A and a measure-isomorphism F modulo 0 from ⌦A to ⌦ such that �N|

F

A

is weakly
random.

Proof. Both items follow from the fact that if f : X ! [0, 1] is a measurable function withR
X
f dµ > 0 and F is a measure-isomorphism modulo 0 from ⌦f to ⌦, then for A =

{x 2 X | f(x) > 0} and any measure-isomorphism eF modulo 0 from ⌦A to ⌦, we have

Q(N|
F

f
) = Q(N|

eF
A
).

Lemma 7.3. The following hold for � 2 Hom+(A[TL],R).

i. If all predicate symbols of L have arity at most 2, then P (�) is strongly closed under
substitutions and closed under substructures.

ii. If � is weakly random, then P (�) is weakly closed under substitutions and closed under
substructures.

Proof. Since obviously K0 2 P (�), by Lemma 3.15, it is su�cient to show the assertions of
closed under substitutions in each item.

Let F1, F2 2 P (�) and v 2 V (F1) and let F be the set of standard substitutions of v in
F1 by F2.

Note that in item (i), by Remark 3.12, F has a unique element (and the notion of strongly
and weakly closed under substitutions coincide). Thus, in both items, our objective is to
show that F \ P (�) is non-empty.

Let  be a sub-object of � and let N be an Euclidean structure in L over some space
⌦ = (X,A, µ) with �N =  . We claim that F \ Q( ) is non-empty. Suppose not, that
is, suppose tind(F,N ) = 0 for every F 2 F . By possibly applying the Induced Euclidean
Removal Lemma [CR20, Theorem 3.3], we may suppose that Tind(F,N ) ✓ DV for every
F 2 F .

Since F1 2 P (�), we must have F1 2 Q(N ), that is, we have tind(F1,N ) > 0. For every
x 2 Xr(V (F1))\{{v}}, let

Ux

def
= {y 2 X | (x, y) 2 Tind(F1,N )}.

By Fubini’s Theorem, there exists x 2 Xr(V (F1))\{{v}} with all coordinates distinct such that
µ(Ux) > 0. Let G be a measure-isomorphism modulo 0 from ⌦Ux

to ⌦ and since �N|
G

Ux

is

a sub-object of  , hence also of �, we must have F2 2 Q(N|
G

Ux
), which implies that there

exists z 2 EV (F2) such that
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a. all coordinates of z are distinct;

b. all coordinates of z are distinct from the coordinates of x;

c. for every v 2 V (F2), we have z{v} 2 Ux;

d. we have z 2 Tind(F2,N ).

Define then the point w 2 EV by the following procedure.

1. For each A ✓ r(V (F1 � v)), let wA

def
= xA.

2. For each A ✓ r(V (F1 � v)) and each u 2 V (F2), let wA[{u}

def
= xA[{v}.

3. For each A ✓ r(V (F2)), let wA

def
= zA.

4. Define all other coordinates of w arbitrarily.

Note that all coordinates of w that are indexed by single vertices get defined in items (1)
and (3) and their definitions guarantee that they are distinct from each other, that is, we
have w /2 DV . Let then F be the unique L-structure with w 2 Tind(F,N ). Then items (1)
and (2) ensure that all injections V (F1) ! V acting identically on V (F1�v) are embeddings
of F1 in F and item (3) ensures that the injection V (F2) ! V that acts identically on V (F2)
is an embedding of F2 in F . Thus, we must have F 2 F .

Therefore, we have showed that for every sub-object  of �, we have F \Q( ) 6= ?.
In item (i), since F has a single element F , it follows that F 2 P (�), hence P (�) is

strongly (in this case, equivalently, weakly) closed under substitutions.
In item (ii), since Q( ) = P (�) as � is weakly random, it follows that F \ P (�) 6= ?, so

P (�) is weakly closed under substitutions.

The next example shows why the hypotheses of Lemma 7.3 to get P (�) weakly closed
under substitutions are crucial.

Example 7.4. Consider � 2 Hom+(A[T3 -Hypergraph],R) that is the disjoint union of a clique
and an anti-clique of the same size, that is, � = �N for the T3 -Hypergraph-on N over [0, 1]
given by

NE

def
=

⇢
x 2 E3

���� max{x{1}, x{2}, x{3}} <
1

2

�
.

Since � contains both a clique and an anti-clique of positive measure, it follows that P (�)
does not contain any models of size at least 3. However, since T3 -Hypergraph is 2-categorical,

P (�) must contain the unique model K(3)
2 of size 2. It then follows that P (�) is not even

weakly closed under substitutions as any substitution of any vertex of K(3)
2 by K(3)

2 must
have size 3.
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Definition 7.5. Given a finite sequence N = (N0, . . . , Nn) of finite L-structures with |Ni| �

2 for every i 2 {0, . . . , n}, a recursive blow-up relative to N is an L-structure R with V (R)
def
=Q

n

i=0 V (Ni) such that for every j 2 {0, . . . , n} and every � 2
Q

j�1
i=0 V (Ni), every function

f : V (Nj) ! V (R) such that f(v)|{0,...,j�1} = � and f(v)j = v for every v 2 V (Nj) is an
embedding of Nj in R.

The unique recursive blow-up R relative to N that has the smallest possible relation sets
PR (P 2 L) is called the conservative recursive blow-up relative to N and is denoted RN .

Formally, it is given by V (RN)
def
=
Q

n

i=0 V (Ni) and

PR
N def
=

⇢
(�,↵j, ⌧

j)k(P )
j=0 2 (V (RN))k(P )

���� � 2

i�1Y

`=0

V (N`) ^ ↵ 2 PNi

^ 8j 2 [k(P )], ⌧ j 2
nY

`=i+1

V (N`)

�

for every P 2 L.
Given an infinite sequence N = (Ni)i2N of finite L-structures with |Ni| � 2 for every

i 2 N, a compatible sequence of recursive blow-ups relative to N is a sequence R = (Ri)i2N
such that

i. for every i 2 N, Ri is a recursive blow-up relative to (N0, . . . , Ni);

ii. for every i 2 N, every function f : V (Ri) ! V (Ri+1) such that f(v)|{0,...,i} = v is an
embedding of Ri in Ri+1.

We call R conservative if further Ri = R(N0,...,Ni) (it is easy to see that this is always
compatible).

Lemma 7.6. Let F be a family of finite L-structures that is weakly closed under substitu-
tions and closed under substructures and let N = (Ni)i2N be a sequence in F with |Mi| � 2
for every i 2 N. Then there exists a compatible sequence R = (Ri)i2N of recursive blow-ups
relative to N with Ri 2 F for every i 2 N.

Proof. We construct the compatible sequence R = (Ri)i2N inductively by setting R0
def
= N0

and given Ri, we enumerate the vertices of Ri as vi1, . . . , v
i

ti
, inductively define F i

0, . . . , F
i

ti
by

F i

0
def
= Ri, let F i

j+1 2 F be a standard substitution of vi
j+1 in F i

j
by Ni+1 and set Ri+1

def
= F i

ti
.

It is straightforward to check by induction that R is a compatible sequence of recursive
blow-ups relative to N with Ri 2 F for every i 2 N.

Definition 7.7. Given an infinite sequence N = (Ni)i2N of finite L-structures with |Ni| � 2
for every i 2 N, we let the conservative recursive blow-up relative to N be the TL-on N

N

defined as follows. We let V = (V`)`2N be defined by V`
def
= V (N`) and we define N

N over
the Cantor probability space ⌦V = (

Q
`2N V`,A, ⌫V ) (see Definition 4.7) by

N
N

P

def
= {x 2 Ek(P )(⌦

V ) | 9i 2 N, R(N0,...,Ni) ✏ P (tP
i
(x))},
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where tP
i
(x) 2 (

Q
i

`=0 V`)
k(P ) is given by

tP
i
(x)j

def
= x{j}|{0,...,i} (j 2 [k(P )]). (13)

Proposition 7.8. Let R = (Ri)i2N be a compatible sequence of recursive blow-ups relative

to N = (Ni)i2N and let V = (Vi)i2N be given by Vi

def
= V (Ni).

Then R is convergent and the following hold for its limit �R 2 Hom+(A[TL],R).

i. If R is conservative, then �R = �NN .

ii. There exists a TL-on H over ⌦V with �R = �H

N
N

P
✓ HP ✓ Ek(P )(⌦

V ) \ NN

P
a.e.

for every P 2 L, where N = (N i)i2N is the sequence of complementary canonical
L-structures given by

V (N i)
def
= V (Ni), PN i

def
= (V (Ni))k(P ) \ P

Ni (P 2 L).

iii. If P (N) is the set of structures M such that there exist infinitely many i 2 N with
M ⇠= Ni, then P (N) ✓ P (�R).

iv. If
Q

i2N(1 � 1/|Ni|) = 0, then for every positive measure A ✓ ⌦V , there exists i 2 N
such that tind(Ni,H|

F

A
) > 0 for every measure-isomorphism F modulo 0 from ⌦V

A
to

⌦V .

Proof. To show that R is convergent, for each i 2 N, define the Euclidean structure N i in L

over ⌦V by

N
i

P

def
= {x 2 Ek(P )(⌦

V ) | Ri ✏ P (tP
i
(x))},

where tP
i
(x) is given by (13), that is, N i is the natural “step” Euclidean structure associated

with Ri over ⌦V .
First note that since R is compatible, for every i, j 2 N, we have
X

P2L

⌫V (N i

P
4N

i+j

P
)



X

P2L

⌫V ({x 2 Ek(P )(⌦
V ) | 9a, b 2 [k(P )], (a 6= b ^ x{a}|{0,...,i} = x{b}|{0,...,i})})



X

P2L

✓
k(P )

2

◆
·

X

�2
Q

i

`=0 V`

⌫V (K�,V )
2

=
X

P2L

✓
k(P )

2

◆
·

iY

`=0

|Vi|
�1 i!1

���! 0.

(14)
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Therefore, it follows that for every finite L-structure K, the limit limi!1 tind(K,N i) exists.
On the other hand, it is also straightforward to check that for every finite L-structure

K, we have

��|Ri|
|K|

· tind(K,N i)� |Tind(K,Ri)|
��  |Ri|

|K|
� (|Ri|)|K|  OK(|Ri|

|K|�1)

hence we get

lim
i!1

tind(K,Ri) = lim
i!1

tind(K,N i),

that is, R = (Ri)i2N is convergent.

Consider now the case when R is conservative. Then the same argument used in (14)
gives

X

P2L

⌫V (N i

P
4N

N

P
) 

X

P2L

✓
k(P )

2

◆
·

iY

`=0

|Vi|
�1 i!1

���! 0,

so item (i) follows.

To prove item (ii), note that (14) implies that for each P 2 L, the sequence of indicator
functions ( N

i

P

)i2N is convergent in L1(Ek(P )(⌦V )), so let fP be their L1-limit. Since fP is
also the a.e. limit of ( N

i

P

)i2N, it must be a.e. {0, 1}-valued, so there exists HP such that

fP = HP
a.e. Finally, L1-convergence implies that limi!1 tind(K,N i) = tind(K,H).

We claim that for every x 2 N
N

P
, there exists i0 2 N such that x 2 N

i

P
for every i � i0.

Indeed, if x 2 N
N

P
, then there exists i0 2 N such that R(N0,...,Ni0 ) ✏ P (tP

i0
(x)). The definition

of the conservative recursive blow-ups R(N0,...,Ni) implies that R(N0,...,Ni) ✏ P (tP
i
(x)) for every

i � i0. From the minimality of the conservative recursive blow-ups, we get Ri ✏ P (tP
i
(x)),

hence x 2 N
i

P
for every i � i0. Since N

i

P

converges a.e. to HP
, we conclude that NN

P
✓ HP

a.e.
By a symmetric argument, it follows that for every x 2 N

N

P
, there exists i0 2 N such that

x 2 Ek(P )(⌦V ) \N i

P
for every i � i0, from which we conclude that NN

P
✓ Ek(P )(⌦V ) \HP a.e.

and thus HP ✓ Ek(P )(⌦V ) \ NN

P
a.e.

Let us now show item (iii). Fix M 2 P (N) and let us show that M 2 P (�R). By
Lemma 7.2, it is su�cient to show that for every positive measure A ✓ ⌦V and every
measure-isomorphism F modulo 0 from ⌦V

A
to ⌦V , we have M 2 Q(H|

F

A
).

Let then ✏ > 0 be such that ✏ < 1/|M |. By Lemma 4.11, there exists t0 2 N such that
for every t � t0, there exists � 2

Q
t�1
`=0 V` such that ⌫V (A\K�,V ) � (1� ✏) · ⌫V (K�,V ). Since

M 2 P (N), there exists t � t0 such that M ⇠= Nt. Since {K(�,u),V | u 2 Vt} partitions K�,V

into |Vt| = |M | parts of equal measure, it follows that for every u 2 Vt, we have

⌫V (A \K(�,u),V ) �

✓
1� ✏�

|M |� 1

|M |

◆
· ⌫V (K�,V ) > 0.
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Note now that if x 2 EVt
(⌦V ) is such that x{u} 2 A \ K(�,u),V for every u 2 Vt, then

x 2 Tind(Nt,H|
F

A
). Thus tind(Nt,H|

F

A
) > 0, hence M = Nt 2 Q(H|

F

A
), as desired.

It remains to show item (iv). Suppose not, that is, suppose that there exist some positive
measure A ✓ ⌦V and some measure-isomorphism F modulo 0 from ⌦V

A
to ⌦V such that for

every i 2 N, we have tind(Ni,H|
F

A
) = 0.

Let n 2 N be large enough so that
Q

n�1
i=0 (1� 1/|Ni|) < ⌫V (A) and let

⌃
def
=

(
� 2

n�1Y

i=0

Vi

����� ⌫
V (A \K�,V ) > 0

)
.

We claim that for every m 2 {0, . . . , n� 1} and every ⌧ 2
Q

m�1
i=1 Vi, there exists u⌧ 2 Vm

such that (⌧, u⌧ ) is not a prefix of any element of ⌃. Suppose not, that is, suppose that
there exist m 2 {0, . . . , n � 1} and ⌧ 2

Q
m�1
i=1 Vi such that for every u 2 Vm, there exists

some �u
2 ⌃ such that (⌧, u) is a prefix of �u. But then the set of x 2 EVm

(⌦V ) such that
x{u} 2 A\K�u,V for every u 2 Vm is a positive measure set that is contained in Tind(Nm,H|

F

A
),

contradicting the fact that tind(Nm,H|
F

A
) = 0. Thus the claim is proved.

Let now ⌃⇤ be the set of � 2
Q

n�1
i=0 Vi such that for every m 2 {0, . . . , n � 2}, we have

u�|{0,...,m�1} 6= �m. Our last claim shows that ⌃ ✓ ⌃⇤. Now it is easy to see that

⌫V (A) =
X

�2⌃

⌫V (A \K�,V ) 
X

�2⌃⇤

⌫V (K�,V ) =
n�1Y

i=0

✓
1�

1

|Ni|

◆
< ⌫V (A),

a contradiction. Thus, item (iv) is proved.

Theorem 7.9. The following are equivalent for a family F of finite L-structures (up to
isomorphism) containing at least one structure of size at least 2.

i. The family F is strongly persistent.

ii. The family F is weakly closed under substitutions and closed under substructures.

Furthermore, if all predicate symbols of L have arity at most 2, then the above are also
equivalent to:

iii. The family F is persistent.

Proof. The implication (i) =) (ii) follows from Lemma 7.3(ii) as F = P (�) for some weakly
random � 2 Hom+(A[TL],R).

For the implication (ii) =) (i), let F 0 be the set of elements of F of size at least 2 and
let N = (Ni)i2N be an enumeration of all elements of F 0 that repeats each element of F 0

infinitely often. Since F is weakly closed under substitutions and closed substructures, by
Remark 3.10, it follows that F = F

0
[ {K0, F1} for some L-structure F1 of size 1 (and where

K0 is the trivial L-structure of size 0).
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By Lemma 7.6, there exists a compatible sequence R = (Ri)i2N of recursive blow-ups
relative to N with Ri 2 F for every i 2 N and by Proposition 7.8(iii), we know that
R converges to some �R 2 Hom+(A[TL],R) such that F

0 = P (N) ✓ P (�R) and since
P (�R) is closed under substructures (see Lemma 7.3) and F = F

0
[ {K0, F1}, we must have

F ✓ P (�R). On the other hand, since Ri 2 F , it follows that P (�R) ✓ Q(�R) ✓ F , hence
F = Q(�R) = P (�R) as desired.

If all predicate symbols of L have arity at most 2, then implication (iii) =) (ii) follows
from Lemma 7.3(i) as F = P (�) for some � 2 Hom+(A[TL],R) and the implication (i) =)
(iii) is obvious.

Again, the assumption of arity at most 2 is crucial for the inclusion of item (iii) in the
equivalence of Theorem 7.9 as illustrated by Example 7.4.

We conclude this section by observing operations that preserve the notions discussed so
far. The next proposition shows naturality of the operatorsQ and P and of the weak random-
ness property in the sense that the operators P and Q commute with open interpretations
and weak randomness is preserved by open interpretations.

Proposition 7.10. Let I : T1  T2 be an open interpretation. The following hold for
� 2 Hom+(A[T2],R).

i. We have Q(�I) = I(Q(�)).

ii. We have P (�I) = I(P (�)).

iii. If � is weakly random, then so is �I .

Proof. Item (i) follows directly from the definition of �I , see (6).

Item (ii) follows directly from item (i) and the fact that if  is a sub-object of �, then
 I is a sub-object of �I and conversely, every sub-object of �I is of the form  I for some
sub-object  of �.

Item (iii) follows trivially from items (i) and (ii).

Before we proceed, we recall the notion of couplings and independent couplings of limits
from [CR23, Definitions 2.3, 2.4 and 2.5], which played a key role in the study of the natural
quasirandomness properties UCouple[`] and UInduce[`] in that work.

Definition 7.11. Given canonical theories T1 and T2 in finite relational languages L1 and
L2, respectively, the disjoint union T1 [ T2 is the canonical theory in the disjoint union

language L1

·

[ L2 whose axioms are those of T1 (about predicate symbols in L1) and those
of T2 (about predicate symbols in L2), that is, the models of T1 [ T2 correspond to a model
of T1 and a model of T2 on the same vertex set.

A coupling of �1 2 Hom+(A[T1],R) and �2 2 Hom+(A[T2],R) is a limit  2 Hom+(A[T1[

T2],R) such that �i =  Ii for every i 2 [2], where Ii : Ti  T1 [ T2 is the structure-erasing

interpretation that acts identically on predicate symbols of Ti.
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The independent coupling of �1 2 Hom+(A[T1],R) and �2 2 Hom+(A[T2],R) is the limit
�1 ⌦ �2 2 Hom+(A[T1 [ T2],R) given by

(�1 ⌦ �2)(M)
def
=

|Aut(M1)| · |Aut(M2)|

|M |! · |Aut(M)|
· �1(M1) · �2(M2),

where Mi

def
= Ii(M). Alternatively, if N i (i 2 [2]) is a Ti-on over ⌦i with �N i = �i, then we

have �1 ⌦ �2 = �N 1⌦N 2 for the (T1 [ T2)-on N
1
⌦N

2 over the product space ⌦1 ⌦⌦2 given
by

(N 1
⌦N

2)P
def
= {x 2 Ek(P )(⌦1 ⌦ ⌦2) | ⇡i,k(P )(x) 2 N

i

P
}

whenever P 2 Li (i 2 [2]), where ⇡i,k(P ) : Ek(P )(⌦1⌦⌦2) ! Ek(P )(⌦i) is the natural projection.

The next proposition says that weak randomness is preserved under independent cou-
plings.

Proposition 7.12. If �1 2 Hom+(A[T1],R) and �2 2 Hom+(A[T2],R) are weakly random,
then so is their independent coupling �1 ⌦ �2.

Proof. Let N i be a Ti-on over ⌦i = (Xi,Ai, µi) such that �i = �N i and let ⌦
def
= ⌦1⌦⌦2. It is

clear from the definition of �1⌦�2 that for every M 2 M[T1 [T2], we have M 2 Q(�1⌦�2)
if and only if I1(M) 2 Q(�1) and I2(M) 2 Q(�2), where Ii : Ti  T1 [ T2 (i 2 [2]) is the
structure-erasing interpretation.

By Lemma 7.2(i), to show that �1⌦�2 is weakly random, it is su�cient to show that for
every positive measure A ✓ ⌦ and every measure-isomorphism F modulo 0 from ⌦A to ⌦,
we have Q(�1 ⌦ �2) = Q((N 1

⌦N
2)|F

A
).

Let M 2 Q(�1 ⌦ �2) and let us show that M 2 Q((N 1
⌦ N

2)|F
A
). For each i 2 [2], let

Mi

def
= Ii(M) and let

B
def
= {(x, y) 2 EV (M)(⌦1)⇥X2 | x 2 Tind(M1,N

1) ^ 8v 2 V (M), (x{v}, y) 2 A}.

Our objective is to show that (µ1 ⌦ µ2)(B) > 0. To do so, for each y 2 X2, let

A(y)
def
= {x 2 X1 | (x, y) 2 A}

and note that Fubini’s Theorem implies that the set

eX2
def
= {y 2 X2 | µ1(A(y)) > 0}

has positive µ2-measure.
Since �1 is weakly random, for every y 2 eX2 and every measure isomorphism eFy modulo

0 from (⌦1)A(y) to ⌦1, we have tind(M1,N 1
|
eFy

A(y)) > 0, thus Fubini’s Theorem gives

(µ1 ⌦ µ2)(B) �

Z

eX2

tind(M1,N
1
|
eFy

A(y)) · µ1(A(y))
|M | dµ2(y) > 0.
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For every x 2 Tind(M1,N 1) ✓ EV (M)(⌦1), define the set

B(x)
def
= {y 2 X2 | (x, y) 2 B} = {y 2 X2 | 8v 2 V (M), (x{v}, y) 2 A}

and note that Fubini’s Theorem again implies that the set

gTind(M1,N
1)

def
= {x 2 Tind(M1,N

1) | µ2(B(x)) > 0}

has positive µ1-measure. Since �2 is weakly random, for every x 2 gTind(M1,N 1) and every

measure isomorphism eGx modulo 0 from (⌦2)B(x) to ⌦2, we have tind(M2,N 2
|
eGx

B(x)) > 0, thus
Fubini’s Theorem gives

tind(M, (N 1
⌦N

2)|F
A
) �

Z

gTind(M1,N
1)

tind(M2,N
2
|
eGx

B(x)) · µ2(B(x))|M | dµ1(x) > 0,

concluding the proof.

Remark 7.13. As we mentioned before, weak randomness can be seen as a weakening of
the natural quasirandomness property UInduce[1] of [CR23]. Since UInduce[1] (and more
generally, UInduce[`]) is not preserved under independent couplings, one can consider the
class UInduce⌦[`] that is the closure of UInduce[`] under independent couplings and open
interpretations and in [CR23, §10], it was asked if any of these classes yields a meaningful
notion of randomness or if they are already “too large”. It was already noted in [CR23] that
the quasirandom permuton (see Proposition 7.15) is in UInduce⌦[`] for every ` 2 N+ and
that even the largest class UInduce⌦[1] among the UInduce⌦[`] does not contain all limits.

Since UInduce[1] implies weak randomness, from Propositions 7.10(iii) and 7.12 it follows
that every element of UInduce⌦[1] is weakly random; this further justifies the adjective
“weak” in weak randomness: it is a quasirandomness notion weaker than the weakening
UInduce⌦[1] of UInduce[1] that is still meaningful.

Let us point out that there are weakly random limits that are not in UInduce⌦[1]: namely,
one can show that if W is a universal weakly random {0, 1}-valued graphon of TGraph (e.g.,
�W = �⇤

G
as in Lemma 4.13 for an enumeration G = (Gm)m2N of all finite graphs of size at

least 2), then � is weakly random but is not in UInduce⌦[1]. However, since the length of
the proof outweighs its enlightenment value, we omit it.

Recall from Definition 2.8 that a trivial limit � 2 Hom+(A[T ],R) is any limit of the form
� = �N for some theon N whose peons all have measure in {0, 1}. For general couplings,
the next proposition says that the coupling of a trivial limit with a weakly random limit is
weakly random.

Proposition 7.14. If  is a coupling of a trivial �1 2 Hom+(A[T1],R) and a weakly random
�2 2 Hom+(A[T2],R), then  is weakly random.

Proof. Let L1 and L2 be the languages of T1 and T2, respectively.
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Since �1 is trivial, it follows that L1 can be partitioned into L1 = L
0
1 [ L

1
1 so that for

every M1 2 Q(�1) every P 2 L1, we have

PM1 =

(
?, if P 2 L

0
1,

(V (M1))k(P ), if P 2 L
1
1.

This implies that if ⇠ is a coupling of some ⇣ 2 Hom+(A[T2],R) with �1, then

Q(⇠) = {cM2 | M2 2 Q(⇣)}, (15)

where cM2 2 MV (M2)[T1 [ T2] is given by

P
cM2 def

=

8
><

>:

PM2 , if P 2 L2,

?, if P 2 L
0
1,

(V (M2))k(P ), if P 2 L
1
1.

Now since �1 is trivial, �1 is the only sub-object of �1, which means that every sub-object
 0 of  is a coupling of �1 with some sub-object �0

2 of �2. Since �2 is weakly random, we
have Q(�0

2) = Q(�2), hence Q( 0) = Q( ) follows since the right-hand side of (15) is the
same for (⇠, ⇣) = ( ,�2) and (⇠, ⇣) = ( 0,�0

2). Therefore  is weakly random.

As a simple application of Propositions 7.10 and 7.12 above, let us prove Proposition 5.11
that says that the graphon of agreements of the quasirandom permuton (see Figure 6) is a
universal weakly random limit of TPermGraph by showing that the quasirandom permuton
 QR 2 Hom+(A[TPerm],R) has the same property for TPerm. We point the reader interested
in the theories of limits of permutations and quasirandom permutations to [Coo04, KP13,
CKN+20].

Recall that the quasirandom permuton is given by  QR
def
= �NQR , where N

QR is the
TPerm-on over [0, 1]2 given by

N
QR
�i

def
= {x 2 E2([0, 1]

2) | ⇡i(x{1}) < ⇡i(x{2})} (i 2 [2]),

where ⇡i : [0, 1]2 ! [0, 1] is the projection onto the ith coordinate.

Proposition 7.15. The quasirandom permuton  QR is a universal weakly random limit of
TPerm.

Proof. It is straightforward to check that Q( QR) = M[TPerm]. On the other hand,  QR is
the independent coupling  ⌦ of the unique limit  2 Hom+(A[TLinOrder],R) of the theory
of (strict) linear orders with itself. Since  is obviously weakly random (as TLinOrder is finitely
categorical), by Proposition 7.12, it follows that  QR is weakly random.

We can now derive Proposition 5.11 that says that the graphon of agreements of the
quasirandom permuton is universal weakly random limit of TPermGraph as an easy consequence.
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Proof of Proposition 5.11. The graphon of agreements of the quasirandom permuton repre-

sents the limit �
def
=  I

QR for the open interpretation I : TGraph  TPerm given by

I(E)(x, y)
def
= x 6= y ^ (x �1 y $ x �2 y),

so � is weakly random by Propositions 7.10(iii) and 7.15.
Finally, Proposition 7.10(i) implies Q(�) = I(Q( QR)) = I(TPerm) = TPermGraph.

Remark 7.16. It is easy to see that the same permutations used in the proof of Proposi-
tion 5.12 can be used to show that M[TPerm] is closed under substitutions but not primally
almost finite, hence TPerm /2 WR. However, let us point out that had we proved only the re-
sult for TPerm, this would not have immediately implied Proposition 5.12 as primality is not
necessarily preserved under open interpretations (even though closure under substitutions
is).

8 What about weak randomness in general?

In this brief section we provide a partial generalization of Theorem 5.4 of Section 5 to
universal theories in finite relational languages. For the easier direction, we will only be able
to generalize Lemma 5.6 when all arities are at most 2 (Proposition 8.2) and even though the
harder direction will generalize directly in Proposition 8.4 below, this naive generalization is
essentially empty when all arities are at least 3, as in this case there are only finitely many
prime structures (see Remark 3.13). It is not clear at this point what form a characterization
of WR should take in the presence of higher arity predicates.

Definition 8.1. We say that a canonical theory T in a finite relational language has the
weakly random Erdős–Hajnal property (abbreviated T 2 WR) if every � 2 Hom+(A[T ],R)
has a weakly random sub-object.

Proposition 8.2. Let L be a finite relational language whose predicate symbols have arity
at most 2 and let T be a canonical theory in L. If M[T ] is monochromatically primally
almost finite, then T 2 WR.

Proof. We prove this by the contra-positive. Suppose T /2 WR and let us show that the set P
of monochromatic prime models of T is not almost finite. By Lemma 3.23, it is su�cient to
present a sequence (Fn)n2N of finite monochromatic prime models of T such that Fn is not
a substructure of Fm whenever n < m.

Since T /2 WR, there must exist a limit � 2 Hom+(A[T ],R) that does not contain any
weakly random sub-object.

We now construct a sequence (�n)n2N of sub-objects of � and a sequence (Fn)n2N of finite
prime models of T satisfying the following.

i. For every n 2 N, �n+1 is a sub-object of �n.

ii. For every n 2 N, Fn 2 Q(�n) \Q(�n+1).
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We construct these sequences inductively as follows.

1. We claim that there exists a sub-object �0 of � such that there exists M1 2 M1[T ] with
�0(M1) = 1 (and thus all M 2 M1[T ]\{M1} have �0(M) = 0). Indeed, if M1 2 M1[T ]
is such that �(M1) > 0 and N is an Euclidean structure over ⌦ with �N = �, then

A
def
= Tind(M1,N ) is a positive measure set, so for any measure-isomorphism F modulo

0 from ⌦A to ⌦, the sub-object �0
def
= �N|

F

A

satisfies the desired property.

2. Given �n 2 Hom+(A[T ],R), since �n is a sub-object of �, we know that �n is not
weakly random, so there exists Nn 2 Q(�n)\P (�n). Let Pn be the set of substructures
of Nn that are prime. By Lemma 7.3(i), we know that P (�n) is strongly closed under
substitutions and since Nn 2 S(Pn), there must exist Fn 2 Pn \P (�n) and since Q(�n)
is closed under substructures, we get Fn 2 Q(�n)\P (�n). From the definition of P (�n),
it then follows that there exists a sub-object �n+1 of �n (hence also of �) such that
Fn 2 Q(�n) \Q(�n+1).

Let now n,m 2 N be such that n < m. By induction, we know that �m is a sub-object of
�n+1, so Q(�m) ✓ Q(�n+1), which in turn implies that Fn 2 Q(�n) \Q(�m). Since Q(�m) is
closed under substructures and Fm 2 Q(�m), it follows that Fn is not a substructure of Fm.

Finally, since all �n are also sub-objects of �0, we must have Q(�n) \M1[T ] ✓ Q(�0) \
M1[T ] = {M1}. This implies that for every unary predicate symbol P 2 L and every
n 2 N, we have M1 ✏ 8x, P (x) if and only if Fn ✏ 8x, P (x) (otherwise, we would have
Q(�n) \M1[T ] 6= {M1}). Thus the Fn are monochromatic.

Lemma 8.3. Let N = (Ni)i2N be a sequence of prime L-structures of size at least 2 such
that for each i 2 N, there are finitely many j 2 N such that Ni is a substructure of Nj,
let R = (Ri)i2N be a compatible sequence of recursive blow-ups relative to N and let �R 2

Hom+(A[TL],R) be the limit of R. If
Q

i2N(1 � 1/|Ni|) = 0, then �R does not have any
weakly random sub-object.

Proof. Let V and H be as in Proposition 7.8. Suppose toward a contradiction that �R has a
weakly random sub-object. By Lemma 7.2, there exists a positive measure set A ✓ ⌦V and
a measure-isomorphism F modulo 0 from ⌦V

A
to ⌦V such that H|

F

A
is weakly random. By

Proposition 7.8(iv), there exists i0 2 N such that tind(Ni0 ,H|
F

A
) > 0.

Let j0
def
= max{j | Ni0 is a substructure of Nj} < 1. Since {K�,V | � 2

Q
j0

`=0 V`}
partitions ⌦V , there must exist � 2

Q
j0

`=0 V` such that ⌫V (A \K�,V ) > 0.

From the definition of H, it follows that for every measure-isomorphism eF modulo 0 from

⌦V

K�,V
to ⌦V , we have �

H|
eF
K� ,V

= �R0 for the sequence R0 = (R0

i
)i2N given by R0

i

def
= Rj0+1+i|Ui

,

where

Ui

def
=

(
⌧ 2

j0+1+iY

`=0

V`

����� ⌧ |{0,...,j0} = �

)
.
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Note also that R0 is a compatible sequence of recursive blow-ups relative to the shifted

sequence N 0 = (N 0

i
)i2N given by N 0

i

def
= Nj0+1+i.

We claim now that tind(Ni0 ,H|
eF
K�,V

) = 0. Indeed, since Ni0 is prime, for this density to be
positive, Ni0 must be a substructure of infinitely manyR0

i
, but sinceR0

i
2 S({Nj | j � j0+1}),

Lemma 3.17 says that this can only happen if Ni0 is a substructure of some Nj with j � j0+1,
which would contradict the definition of j0.

Finally, this is a contradiction since H|
F

A
was assumed to be weakly random but Ni0 2

Q(H|
F

A
) \ P (H|

F

A
) as ⌫V (A \K�,V ) > 0 and tind(Ni0 ,H|

eF
K�,V

) = 0.

Proposition 8.4. Let T be a canonical theory such that M[T ] is weakly closed under
substitutions. If T 2 WR, then T is primally almost finite.

Before we prove Proposition 8.4, let us note that it is completely trivial when all arities
are at least 3 as in this case there are only finitely many prime structures by Remark 3.13.

Proof. We prove this by the contra-positive. Suppose {N 0

i
| i 2 N} is an infinite antichain

of prime models of T and without loss of generality, assume every N 0

i
has size at least 2 (as

M0[T ] [M1[T ] is finite).
For each n 2 N, let rn 2 N+ be large enough so that (1 � 1/|N 0

i
|)rn  1/2 and for each

` 2 N, let N`

def
= N 0

n
for the unique n 2 N such that

P
n�1
m=0 rm  ` <

P
n

m=0 rm. Clearly, for
each ` 2 N, there exist exactly r` values of t 2 N such that N` is a substructure of Nt. Note
also that

Y

`2N

✓
1�

1

|N`|

◆
=
Y

m2N

✓
1�

1

|N 0
m
|

◆rm



Y

m2N

1

2
= 0.

Since M[T ] is weakly closed under substitutions, by Lemma 7.6, there exists a compatible
sequence R = (R`)`2N of recursive blow-ups relative to N = (N`)`2N with R` 2 M[T ] for
every ` 2 N, and by Lemma 8.3, the limit �R 2 Hom+(A[T ],R) of R does not have any
weakly random sub-object, hence T /2 WR.

Let us conclude this section by observing operations that preserve WR (at the level of
theories). The next proposition shows naturality (at the level of theories) of WR, that is, it
is preserved by open interpretations.

Proposition 8.5. If I : T1  T2 is an open interpretation and T2 2 WR, then I(T2) 2 WR.

Proof. Follows from Proposition 7.10(iii), the fact that every � 2 Hom+(A[I(T2)],R) is of
the form � =  I for some  2 Hom+(A[T2],R) and the fact that if  is a sub-object of �,
then  I is a sub-object of �I and conversely, every sub-object of �I is of the form  I for
some sub-object  of �.

It is easy to see that WR is not preserved under disjoint unions of theories (see Defini-
tion 7.11): the theory of linear orders TLinOrder satisfies WR (as it is finitely categorical) but
the theory of permutations TPerm = TLinOrder[TLinOrder does not satisfy WR (see Remark 7.16).
However, the next proposition says that WR at least interacts well with disjoint unions with
theories with AEHP (see Definition 2.8).
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Proposition 8.6. Let T1 and T2 be universal theories and suppose T1 2 AEHP. Then the
following hold.

i. If T2 2 AEHP, then T1 [ T2 2 AEHP.

ii. If T2 2 WR, then T1 [ T2 2 WR.

To prove this proposition, we will need the following result from [CR23] on theons rep-
resenting couplings (see Definition 7.11).

Proposition 8.7 ([CR23, Proposition 4.3]). Let  2 Hom+(A[T1 [ T2],R) be a coupling
of �1 2 Hom+(A[T1],R) and �2 2 Hom+(A[T2],R) and let N

1 be a T1-on over ⌦ such
that �1 = �N 1 . Then there exists a (T1 [ T2)-on H over ⌦ ⌦ ⌦ such that  = �H and
HP = NP ⇥ Ek(P )(⌦) for every predicate symbol P in the language of T1 (when we naturally
identify Ek(P )(⌦⌦ ⌦) with Ek(P )(⌦)⇥ Ek(P )(⌦)).

Proof of Proposition 8.6. Let  2 Hom+(A[T1 [ T2],R) and let Ii : Ti  T1 [ T2 (i 2 [2]) be

the structure-erasing interpretation. Then  is a coupling of �1
def
=  I1 and �2

def
=  I2 .

Let N 1 be a T1-on over ⌦ = (X,A, µ) such that �1 = �N 1 . Since T1 2 AEHP, by [CM22,
Theorem 5.11], there exists a positive measure set A ✓ X and a measure-isomorphism F
modulo 0 from ⌦A to ⌦ such that �N 1|F

A

is trivial.

Let now H be the (T1 [ T2)-on over ⌦0 def
= ⌦ ⌦ ⌦ given by Proposition 8.7 and let

µ0 def
= µ ⌦ µ be the underlying measure of ⌦0. Let also A0 def

= A ⇥ X and let F 0 def
= F ⌦ idX

be the measure-isomorphism modulo 0 from ⌦0

A0 to ⌦0 that acts as F on the first coordinate
and acts identically on the second coordinate.

Suppose T2 2 AEHP. Since I2(H|
F

0
A0) = I2(H)|F

0
A0 is a T2-on, by [CM22, Theorem 5.11],

there exists a positive µ0

A0-measure set B ✓ X ⇥X such that I2(H)|F
0

A0 |
eF
B
is trivial for every

measure-isomorphism eF modulo 0 from (⌦0

A0)B to ⌦0

A0 .

Set B0 def
= B \ A0 so that B0 is a positive µ0-measure set such that I2(H)| eF�F

0
B0 is trivial.

Note now that since HP = NP ⇥ Ek(P )(⌦) for every predicate symbol P in the language of
T1, we get �I1(H)|F

0
A0

= �N 1|F
A

, which is a trivial limit. Since �
I1(H)|

eF�F 0
B0

is a sub-object of �N 1|F
A

,

it must also be trivial. Hence,  = �
H|

eF�F 0
B0

must be trivial as it is a coupling of two trivial

limits �I1

H|
eF�F 0
B0

= �
I1(H)|

eF�F 0
B0

and �I2

H|
eF�F 0
B0

= �
I2(H)|

eF�F 0
B0

. Thus item (i) is proved.

For item (ii), we make the same construction but taking B ✓ X ⇥X with positive µ0

A0-

measure such that I2(H)|F
0

A0 |
eF
B
is weakly random as guaranteed by T2 2 WR. Then  = �H must

be weakly random by Proposition 7.14 as it is a coupling of a trivial limit �I1

H|
eF�F 0
B0

= �
I1(H)|

eF�F 0
B0

with a weakly random limit �I2

H|
eF�F 0
B0

= �
I2(H)|

eF�F 0
B0

.

9 Conclusion and open problems

In this paper we studied the notion of weak randomness, a weakening of the quasirandomness
property UInduce[1] (see [CR23]). In the language of graphs, a graphon is weakly random if
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the set of finite graphs G having non-zero density is invariant across all subgraphons. In the
more general language of structures, weak randomness requires the limit � 2 Hom+(A[T ],R)
to be such that for every sub-object  of � and every finite structure M , we have �(M) > 0
if and only if  (M) > 0. We characterized (strongly) persistent families of structures, i.e.,
those that correspond to a theory T that has a universal weakly random limit (that is, a
weakly random � such that Th(�) = T ) as precisely those that are closed under substructures
and weakly closed under substitutions.

We also studied a weakening WR of AEHP. In the language of graphs, WR is a property of a
hereditary class of graphs which requires that every graphon associated to the class contains
a weakly random sub-graphon. We characterized WR for hereditary classes of graphs that
are closed under substitution as precisely those classes which are “primally almost finite”,
meaning that in the partial order on elements of the class given by induced subgraph, there
is no infinite antichain of prime graphs. In the general language of structures, WR requires
every limit of T to contain a weakly random sub-object (see Definitions 2.8, 5.1 and 8.1).
We characterized WR for theories T with maximum arity at most 2 and M[T ] closed under
substitutions as precisely the set of theories T that are monochromatically primally almost
finite.

A very natural open problem that was not addressed in this paper is to characterize
weak randomness at the level of objects, that is, to provide an equivalent property to � 2

Hom+(A[T ],R) being weakly random. Toward this goal, a natural first step is to ask how
di↵erent can two weakly random objects � and  be. A first source of di↵erence is obviously
that they can have di↵erent persistence sets P (�) 6= P ( ). On the other hand, if P (�) =
P ( ), then we can attempt to measure their di↵erence based on the sub-object partial
pre-order and it is natural to ask what is the structure of the partially pre-ordered set

�F

def
= {� | P (�) = Q(�) = F} for some (strongly) persistent class F . Obviously, if

F = {Kn | n 2 N} or F = {Kn | n 2 N}, then the set �F has only one element, but even
for the next simplest case F = S({K0, K2, K2}) of induced subgraphs of recursive blow-ups
of C4, the structure of the partial pre-order on �F is not clear: does it have incomparable
elements? What about infinite antichains? By Proposition 7.8, if G = (Gn)n2N in which
each Gn is either K2 or K2 and both K2 and K2 occur infinitely often, then the recursive
blow-up �G satisfies �G 2 �F and we believe that changing the asymptotic proportion of
edges and non-edges in G should produce incomparable elements of �F .

As we mentioned in the introduction, the approximate Erdős–Hajnal property (AEHP)
is a variation of the usual Erdős–Hajnal property (EHP) that allows for negligible errors,
but requires linear-sized homogeneous sets in the presence of convergence. Since WR is a
weakening of AEHP, we would like to ask the following more abstract question: what is the
polynomial-sized error-free version of WR in the finite? Furthermore, since AEHP implies EHP
and WR is a larger class than AEHP, is it still true that WR implies EHP for graphs? Of course,
this implication must hold if the Erdős–Hajnal Conjecture is true. After the submission
of this paper, Nguyen–Scott–Seymour posted a preprint with a proof of the Erdős–Hajnal
conjecture for classes of graphs with bounded VC dimension [NSS24]. Combining their result
with Theorem 6.10, one concludes that hereditary classes of graphs that are closed under
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substitutions and satisfy WR must necessarily satisfy EHP, so it stands to reason to attempt
to remove the closure under substitutions hypothesis.

As mentioned in Section 8 (see also Table 1), several of the proofs on weak randomness
and the class WR do not generalize very well in the presence of predicates of arity at least 3. It
is natural to ask if we can characterize WR in these cases in the presence of some simplifying
assumption that would replace closure under substitution used in the binary case.

As briefly mentioned before, weak randomness is a weakening of the property UInduce[1]
of [CR23]. Since UInduce[1] is part of a hierarchy of quasirandomness properties UInduce[`],
one might expect that there exists a hierarchy of weak randomness as well. In turn, it may be
that our di�culty in understanding WR in arity 3 comes from the fact that there is a wide vari-
ety of UInduce[1] limits of 3-hypergraphs and since UInduce[2] for 3-hypergraphons amounts
again to only (full) quasirandom 3-hypergraphons, one might expect that the correspond-
ing WR[2] property in arity 3 defined from an appropriate notion of “weak 2-randomness”
(or more generally WR[` � 1] in arity `) could be easier to handle. Since the definition of
UInduce[2] is considerably more technical than that of UInduce[1] and our initial attempts
at a weak 2-randomness definition did not yet yield any interesting results, we refrain from
elaborating further.

Finally, in the absence of closure under substitutions, it is obvious that WR is no longer
characterized by the primally almost finite condition: obvious counter-examples include the
theories T!k (T�k, resp.) of graphs whose clique number (chromatic number, resp.) is
at most k, which clearly satisfy AEHP but are not closed under substitutions when k � 2
(as Kk+1 2 S({K2}) is not a model of T!k or T�k). It is possible to upgrade Lemma 5.6
and Proposition 8.2 to also cover the theories T!k and T�k via an interactive proof (more
precisely, a two-player game in which the first player is attempting to show that some sub-
object  must have Q( ) monochromatically primally almost finite and the second player is
attempting to deceive the first player), but we leave this result to a future work.
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