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Abstract
Kalai conjectured that if P is a simplicial d-polytope that has no missing faces of
dimension d−1, then the graph of P and the space of affine 2-stresses of P determine
P up to affine equivalence. We propose a higher-dimensional generalization of this
conjecture: if 2 ≤ i ≤ d/2 and P is a simplicial d-polytope that has no missing faces
of dimension ≥ d − i + 1, then the space of affine i-stresses of P determines the
space of affine 1-stresses of P . We prove this conjecture for (1) k-stacked d-polytopes
with 2 ≤ i ≤ k ≤ d/2 − 1, (2) d-polytopes that have no missing faces of dimension
≥ d − 2i + 2, and (3) flag PL (d − 1)-spheres with generic embeddings (for all
2 ≤ i ≤ d/2). We also discuss several related results and conjectures. For instance,
we show that if P is a simplicial d-polytope that has no missing faces of dimension
≥ d − 2i + 2, then the (i − 1)-skeleton of P and the set of sign vectors of affine
i-stresses of P determine the combinatorial type of P . Along the way, we establish
the partition of unity of affine stresses: for any 1 ≤ i ≤ (d − 1)/2, the space of
affine i-stresses of a simplicial d-polytope as well as the space of affine i-stresses of
a simplicial (d − 1)-sphere (with a generic embedding) can be expressed as the sum
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of affine i-stress spaces of vertex stars. This is analogous to Adiprasito’s partition of
unity of linear stresses for Cohen–Macaulay complexes.

Keywords Affine stresses · Rigidity theory · Simplicial polytopes · Flag spheres ·
Missing faces · Partition of unity

Mathematics Subject Classification 05E45 · 13F55 · 52B05 · 52C25

1 Introduction

1.1 Partition of Unity

One of the central problems in the theory of face numbers of simplicial complexes is
how the information about the local structure of a complex (i.e., properties of the links,
or equivalently of the stars) can be used to provide the information about the entire
complex. Results of this nature include, among others, McMullen’s integral formula
that expresses the (sums of the) h-numbers of a pure simplicial complex in terms of
the h-numbers of vertex links [23, 36], Kalai’s observation that a simplicial sphere
of dimension at least four is stacked if and only if all of its links are stacked [16],
and Bagchi and Datta’s μ- and σ -numbers and their applications [9, 27]. The most
recent major development on this front is Adiprasito’s partition of unity [2, 3] that
allows us to express linear stress spaces of a Cohen–Macaulay complex (w.r.t. certain
embeddings) as the sums of linear stress spaces of vertex stars. This is a fundamental
result that has already served as an ingredient in several exciting recent breakthroughs,
see, for instance [1–3].

The first goal of this paper is to establish several partition-of-unity-type results for
affine stresses. We defer all definitions to the following sections and for now merely
mention that linear stress spaces of a simplicial complex � can be thought of as Weil
dual of (the graded components of) an artinian reduction of the Stanley–Reisner ring
of �. Similarly, affine stress spaces are Weil dual of an artinian reduction modded out
by one additional linear form: typically, the sum of the variables.

Assume � is a (d − 1)-dimensional simplicial complex (e.g., a simplicial sphere)
with vertex set V . Specifying an artinian reduction of the Stanley–Reisner ring of �

is equivalent to choosing a d-embedding of �—amap p from V to R
d . There are two

most common types of embeddings used in the literature. If� is the boundary complex
of a convex polytope P , then one can take p to be the natural embedding given by
the position vectors of vertices of P . The second model is to consider embeddings
satisfying certain genericity assumptions. Themildest assumption is to require that the
images of vertices of every facet are linearly or affinely independent. This, however,
is insufficient in many settings, especially those related to Lefschetz properties. So,
instead, one considers a (very) generic embedding, namely, any map such that the
multiset of coordinates of vertices is algebraically independent over Q. Both models
are extensively used in geometric combinatorics. For instance, both models play a
prominent role in the celebrated g-theorem—the theorem that characterizes f -vectors
of simplicial spheres. This theoremwas first proved for the case of simplicial polytopes
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by Billera and Lee [12] (sufficiency) and Stanley [34] (necessity); additional proofs
of necessity were found by McMullen [24, 25] and then by Fleming and Karu [14].
A recent breakthrough by Adiprasito [2], Papadakis and Petrotou [33], Adiprasito,
Papadakis, and Petrotou [5], and Karu and Xiao [18] settles the case of spheres; all
available proofs of this case use generic embeddings.

In this paper, we establish the partition of unity of affine stresses in the following
two cases:

• The spaces of affine 1-stresses of strongly connected simplicial complexes (of
dimension≥ 2)w.r.t. embeddings satisfying theproperty that the images of vertices
of any two adjacent facets are affinely independent; see Theorem 4.1. This includes
the class of normal pseudomanifolds with generic embeddings.

• The spaces of affine i-stresses of simplicial d-polytopes with natural embeddings
and simplicial (d−1)-sphereswith generic embeddings (for all 1 ≤ i ≤ (d−1)/2);
see Theorem 4.4 for the case of PL spheres and Theorem A.1 in the Appendix for
all other cases.

The proof of the second result is based on the g-theorem for polytopes and spheres.
Specifically, we rely on the fact that certain Artinian reductions of the Stanley–Reisner
rings (over R) of simplicial polytopes and spheres satisfy the hard Lefschetz property;
see the end of Sect. 3.1 for precise statements and references.

1.2 Affine Stresses and Kalai’s Conjectures

Wewill now describe our main results related to affine stresses and Kalai’s reconstruc-
tion conjectures. Let � be a simplicial complex with vertex set V and consider the
polynomial ring R[xv : v ∈ V ] whose variables correspond to vertices of �. While
we defer most of definitions to later sections, we should mention that spaces of linear
and affine stresses of � w.r.t. a d-embedding p are certain homogeneous subspaces
of R[xv : v ∈ V ]. Specifically, the space of affine 1-stresses of � consists of linear
forms

∑
v∈V avxv whose coefficients (av : v ∈ V ) form affine dependencies of the

p-images of vertices of �. This means that when � is the boundary complex of a
simplicial d-polytope P with its natural embedding, the space of affine 1-stresses of
� contains the same information as the Gale diagram of P . Consequently, one may
think of the spaces of affine i-stresses of polytopes as higher-dimensional analogs of
Gale diagrams.

Affine 2-stresses take their origin in the theory of framework rigidity of graphs. They
were extensively used by Kalai [16] to provide an alternative proof of the celebrated
Lower Bound Theorem of Barnette [10, 11] as well as to characterize the minimizers.
The theory of higher linear and affine stresses was developed in the works of Lee [21]
and Tay et al. [37, 38]. Their main motivation for initiating this theory was the hope
of using higher stresses to resolve the g-conjecture. This dream was finally realized
by Adiprasito in [2]. Other recent applications of linear and affine stresses to the f -
vector theory and especially to the lower-bound-type questions include [1, 4, 19, 30],
to name just a few; see also the results on the g-vectors of flag PL spheres in this paper.
We encourage the reader to think of further potential applications of spaces of affine
stresses. Are there applications similar in spirit to those of usual Gale diagrams?
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Motivated by the connection between affine 1-stresses and Gale diagrams, Kalai
proposed the following reconstruction conjectures involving higher affine stresses.
Recall that two simplicial d-polytopes P and Q have the same combinatorial type if
their boundary complexes are isomorphic; furthermore, P, Q ⊂ R

d have the same
affine type if there is an invertible affine transformation R

d → R
d that maps P to Q.

Conjecture 1.1 Let d ≥ 4, 2 ≤ i ≤ d/2, and let P be a simplicial d-polytope. Then
the (i − 1)-skeleton of P (as an abstract simplicial complex) and the space of affine
i-stresses of P determine the combinatorial type of P.

Conjecture 1.2 Let d ≥ 4, let 2 ≤ i ≤ d/2, and let P be a simplicial d-polytope.

1. If P has no missing (d − 1)-faces, then the graph of P and the space of affine
2-stresses of P determine P up to affine equivalence.

2. More generally, if P has no missing faces of dimension≥ d− i +1, then the space
of affine i-stresses of P determines P up to affine equivalence.

Conjectures 1.1 and the first part of Conjecture 1.2 are due to Kalai: Conjecture 1.1
was posited in [17] and Conjecture 1.2(1) was privately communicated to us and
recorded in [31]. The second part of Conjecture 1.2 is a generalization of the first part:
in addition to being stated for a general i , knowing the (i − 1)-skeleton is not part of
the assumptions. (It is still an open problemwhether any simplicial d-polytope P with
no missing faces of dimension ≥ d − i + 1 has the property that every (i − 1)-face of
P participates in an affine i-stress on P; see Conjecture 3.3 below.)

That the graph and the space of affine 2-stresses determine the combinatorial type
of a d-polytope P (for d ≥ 4) was verified in [31]. One does not even need to know
the entire space of affine 2-stresses: knowing the sign vectors of affine 2-stresses is
enough. Furthermore, Cruickshank, Jackson, and Tanigawa [13, Thms. 1.7 and 8.4]
recently proved the first part of Conjecture 1.2 for polytopes whose vertices have
generic coordinates.

Here, we use our partition of unity theorems to establish several results around
these conjectures. Most notably, we prove the following:

• If d ≥ 4 and P is any simplicial d-polytope that has no missing faces of dimension
≥ d − 2, then the space of affine 2-stresses of P determines the affine type of P;
see Theorem 5.1.

• More generally, let 1 ≤ j < i ≤ d/2. If� is either (1) a simplicial d-polytope that
has no missing faces of dimension ≥ d − 2i + 2, or (2) a flag PL (d − 1)-sphere
with a generic embedding, then the space of affine i-stresses of � determines the
space of affine j-stresses of �; see Theorem 6.3.

• If 2 ≤ i ≤ d/2 and P is any simplicial d-polytope that has no missing faces of
dimension ≥ d − 2i + 2, then the (i − 1)-skeleton of P and the set of sign vectors
of affine i-stresses of P determine the combinatorial type of P; see Theorem 6.8.

• If 1 ≤ i ≤ k ≤ d/2 − 1, � is a k-stacked simplicial (d − 1)-sphere that has
no missing faces of dimension ≥ d − i + 1, and p is a d-embedding of � that
satisfies certain mild genericity assumptions, then the space of affine i-stresses of
� determines the space of affine 1-stresses of �; see Theorem 7.1.
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It is worth emphasizing that p and � (or p and P) are not part of the data. The point
of the above results is that as long as p and � satisfy certain assumptions, we can
recover the space of affine 1-stresses of � (and sometimes of affine j-stresses for all
1 ≤ j < i) solely from the space of affine i-stresses of �. In particular, in the above
cases, knowing the space of affine i-stresses of (�, p) is enough to determine p itself
up to an invertible affine transformation.

Similarly to [13, 31], to treat the case of i = 2, we mainly use the language and
tools from the rigidity theory of frameworks. (However, it should be pointed out that
[13] also employs tools from global rigidity. In particular, the main ingredient in the
proof of [13, Thm. 8.4] is an ingeneous extension of the Fogelsanger decomposition
theorem to global rigidity; see [13, Thm. 1.4].) To treat the case of general i , we work
with (higher) affine and linear stress spaces. One idea behind the proofs is that if a
simplicial d-polytope P has no large missing faces and τ is an (i − j − 1)-face of P ,
then iteratively taking partial derivatives with respect to the variables corresponding
to all vertices of τ provides a surjection from the space of affine i-stresses of P to the
space of affine j-stresses of the star of τ . The partition of unity then allows us to show
that when P has no large missing faces, the space of affine dependencies of vertices
of P is determined by the space of affine i-stresses of P .

In view of our results, it is tempting to posit one more conjecture whose j =
1 case recovers Conjecture 1.2. For a more precise version of this conjecture, see
Conjecture 3.6; for an analogous result on linear stresses, see part 2 of Theorem 3.4.

Conjecture 1.3 Let 1 ≤ j < i ≤ d/2. Let P be a simplicial d-polytope whose
boundary complex has no missing faces of dimension ≥ d − i + 1. Then the space of
affine i-stresses of P, Sa

i (P), determines the space of affine j-stresses of P, Sa
j (P).

It is also tempting to posit an analogous conjecture for affine stresses of simplicial
spheres w.r.t. generic embeddings. The restriction on missing faces in Conjectures 1.2
and 1.3 is unavoidable. Indeed, if P is an (i − 1)-stacked polytope that is not ( j −
1)-stacked, then Sa

i (P) is the zero space while Sa
j (P) is a non-zero space, and so

Conjecture 1.3 does not hold in this case. Similarly, one can slightly perturb the
vertices of such P to obtain another polytope P ′ with the property that P ′ and P are
combinatorially but not affinely equivalent; this is despite the fact that Sa

i (P) = 0 =
Sa
i (P ′).

1.3 Organization of the Paper

The rest of the paper is structured as follows. In Sect. 2, we review several definitions
and results related to polytopes and simplicial complexes, such as simplicial spheres
and normal pseudomanifods;we also discuss combinatorial properties of these objects.
In Sect. 3, we provide a brief introduction to the theory of stress spaces followed by the
discussion of the partition of unity of linear stresses and related results. Then in Sect. 4
together with the Appendix, we establish the partition of unity of affine stresses for
several important classes of complexes, see Theorems 4.1, 4.4, and A.1. These tools
allow us to proveKalai’s conjectures and their extensions in several cases. Specifically,
Sect. 5 is devoted to reconstructing affine types of complexes that have no missing
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faces of dimension ≥ d − 2 from the spaces of affine 2-stresses; see Theorem 5.1.
Sections6 and 7 focus on reconstructing affine and combinatorial types from higher
affine stresses; see Theorems 6.3, 6.8, and 7.1. Along the way, we provide various
applications of the tools developed in the paper, most notably of Lemma 6.2. One
such application is Theorem 6.5; it asserts that in the class of flag PL (d − 1)-spheres,
the octahedral sphere has component-wise minimal g-vector.

2 Preliminaries on Polytopes, Spheres, and Pseudomanifolds

A polytope P ⊆ R
d is the convex hull of a finite set of points in R

d . The dimension of
P is the dimension of the affine span of P . For brevity, we say that P is a d-polytope
if P is d-dimensional. If the vertices of P are affinely independent, then P is called a
(geometric) simplex.

Assume P ⊆ R
d is a d-polytope. A hyperplane H ⊆ R

d is a supporting hyperplane
of P if P is contained in one of the two closed half-spaces determined by H . A (proper)
face of P is the intersection of P with any supporting hyperplane of P . A face of a
polytope is by itself a polytope and each polytope has only finitely many faces. We
say that P is simplicial if all of its (proper) faces are simplices.

If v is a vertex of P , then the vertex figure of P at v, denoted P/v, is the polytope
obtained by intersecting P with a hyperplane H that has v on one side and all other
vertices of P on the other side. (While the resulting polytope does depend on our
choice of H , its combinatorial type does not.) In general, if F is a face of P , then the
quotient of P by F, P/F , is obtained from P by iteratively taking vertex figures at the
vertices in F .

An (abstract) simplicial complex � with vertex set V = V (�) is a non-empty
collection of subsets of V that is closed under inclusion and contains all singletons:
{v} ∈ � for all v ∈ V . The elements of � are called faces of �. A face F of � is an
i-face or a face of dimension i if |F | = i + 1. For instance, 0-faces are vertices and
1-faces are edges. (To simplify notation, for faces that are vertices and edges, we write
v instead of {v} and uv instead of {u, v}.) The dimension of� is max{dim F : F ∈ �}.
A set F ⊆ V is a missing face of � if F is not a face of �, but every proper subset
σ of F is a face of �. The dimension of a missing face F is defined as |F | − 1. A
complex � is flag if all missing faces of � are 1-dimensional.

Two important examples of simplicial complexes on vertex set V are the (abstract)
(|V | − 1)-simplex V := {τ : τ ⊆ V } and the boundary complex of V , ∂V . The latter
complex consists of all faces of V but V itself.

When studying a simplicial complex�, one often considers the following subcom-
plexes of �. The subcomplex of � induced by W ⊆ V (�) consists of all faces of �

that are contained in W . The i-skeleton of �, Skeli (�), is the set of all faces of � of
dimension at most i . The 1-skeleton of � is also called the graph of �. If F is a face
of �, then the antistar of F is � − F := {τ ∈ � : F � τ }. Furthermore, the star of
F and the link of F in � are defined by

st (F) = st (F,�) := {σ ∈ � : σ ∪ F ∈ �} and
lk (F) = lk (F,�) := {σ ∈ st (F) : σ ∩ F = ∅}.
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If� and� are simplicial complexes on disjoint vertex sets, their join is the simplicial
complex � ∗ � = {σ ∪ τ : σ ∈ � and τ ∈ �}. When � = {∅, u} consists of a single
vertex, we write � ∗ � as u ∗ �; this complex is the cone over � with apex u. Thus,
for a vertex v of �, st(v,�) = v ∗ lk(v,�).

Each simplicial complex� admits a geometric realization ‖�‖ that contains a geo-
metric i-simplex for each i-face of �. Conversely, each geometric simplicial complex
D corresponds to an abstract simplicial complex whose faces are vertex sets of faces
of D. For instance, any simplicial d-polytope P gives rise to an abstract simplicial
complex ∂P called the boundary complex of P: the faces of ∂P are the vertex sets of
all (proper) faces of P . With this definition in hand, it is easy to see that for a vertex
v of P , the boundary complex of P/v is lk(v, ∂P) and, similarly, for any face F , the
boundary complex of P/F , is lk(F, ∂P).

We say that � is a PL (d − 1)-sphere if it is PL homeomorphic to the boundary
complex of a d-simplex. Similarly, a PL d-ball is a simplicial complex PL homeo-
morphic to a d-simplex. The PL spheres (balls) belong to a larger class of complexes
called simplicial spheres (balls): � is a simplicial (d − 1)-sphere (simplicial d-ball,
respectively) if ‖�‖ is homeomorphic to a (d − 1)-sphere (d-ball, respectively). It
is worth noting that while all simplicial 3-spheres are PL, there are many non-PL
(d − 1)-spheres for d ≥ 6.

An even larger class of simplicial complexes is that of homology spheres (homology
balls, respectively). Let k be a field. (We usually consider k = Z/2Z or k = R.) A
(d − 1)-dimensional simplicial complex � is a k-homology (d − 1)-sphere (or a
homology sphere over k) if for every face F of �, including the empty face, the
simplicial k-homology of the link of F coincides with that of a (d − 1− |F |)-sphere.
A d-dimensional simplicial complex � is a k-homology d-ball if (1) the simplicial
k-homology of � coincides with that of a d-ball, (2) for every nonempty face F of �,
the link of F has the k-homology of a (d − |F |)-sphere or a (d − |F |)-ball, and (3)
the boundary complex of �, i.e., the set of all faces whose links have the k-homology
of balls, is a k-homology (d − 1)-sphere. It is important to note that the classes of PL
and homology spheres are closed under taking links. On the other hand, the links of
simplicial spheres are homology spheres (over any field) but not necessarily simplicial
spheres.

We are now in a position to define an even larger class of normal pseudomanifolds.
This requires a bit of preparation. A simplicial complex � is called pure if all facets
(i.e., maximal under inclusion faces) of � have the same dimension. If � is a pure
(d − 1)-dimensional simplicial complex, then (d − 2)-faces of � are called ridges;
two facets of such � are adjacent if they share a common ridge. A pure complex
� is strongly connected if every two facets of � can be connected by a sequence of
pairwise adjacent facets of �.

Let � be a pure simplicial complex. We say that � is a pseudomanifold without
boundary if every ridge of� is in exactly two facets. Similarly,� is a pseudomanifold
with boundary if every ridge is in at most two facets and there exists a ridge that is
contained in only one facet. The boundary of�, ∂�, is defined as the subcomplex of�
generated by all the ridges that are contained in only one facet. A pseudomanifold (with
or without boundary) is called normal if the link of every face of codimension at least
two is connected. Any normal pseudomanifold (with or without boundary) is strongly
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connected. Examples of normal pseudomanifolds include homology spheres and balls.
Also, antistars of nonempty faces of normal pseudomanifolds without boundary are
examples of normal pseudomanifolds with boundary.

Let� be a normal pseudomanifoldwith boundary. A faceG of� is called aminimal
interior face of � if G /∈ ∂� but ∂G is a subcomplex of ∂�. We denote by I(�) the
collection of all minimal interior faces of �. We will need the following elementary
lemma.

Lemma 2.1 Let � be a normal pseudomanifold without boundary and F a face of �.
If σ is a minimal interior face of � − F, then there exists H ⊆ F such that σ ∪ H is
a missing face of �.

Proof Throughout this proof, the links are computed in � and � is suppressed from
notation.Wewrite σ as σ ′′ ∪σ ′ where σ ′′ = σ ∩F and σ ′ = σ\σ ′′. Since ∂(�−F) =
∂F ∗ lk(F) and since σ is a minimal interior face of � − F , it follows that σ has the
following properties: (1) σ ∈ � but σ is not a subset of F (and so σ ′ �= ∅); (2) σ is
not a face of ∂F ∗ lk(F), but ∂σ is a subcomplex of ∂F ∗ lk(F). We conclude that σ ′
is a missing face of lk F . Thus, σ ′ ∪ F is not a face of � but ∂σ ′ ∗ F is a subcomplex
of �. Now, since σ is a face of � but σ ∪ F is not a face, there must exist a minimal
under inclusion subset H of F\σ ′′ such that σ ∪ H is not a face of �; in particular,
H is nonempty. The set σ ∪ H is then a desired missing face of �. ��

We close this subsection with a few combinatorial properties related to spheres. Let
� be a PL (d − 1)-sphere. If � contains an induced subcomplex A ∗ ∂B, where A
is a j-subset of V (�) and B is a (d − j + 1)-subset of V (�), then we can perform
a bistellar flip on � by replacing A ∗ ∂B with ∂A ∗ B. The resulting complex �′ is
another PL (d − 1)-sphere. We call this operation a j-flip. In particular, the vertex
sets of � and �′ are identical except in the cases of j = 1 and j = d: in the former
case, � has one more vertex (the vertex of A) and in the latter case, �′ has one more
vertex (the vertex of B). The following theorem of Pachner [32] gives an alternative
definition of PL spheres.

Theorem 2.2 Any PL (d − 1)-sphere can be obtained from the boundary complex of
a d-simplex by a sequence of bistellar flips.

A (d − 1)-dimensional simplicial complex � is shellable if its facets can be linearly
ordered as F1, F2, . . . , Fk in such a way that for all 2 ≤ i ≤ k, the subcomplex
Fi ∩ (∪ j<i Fj ) is pure (d − 2)-dimensional. Such an ordering of facets is called a
shelling of �. Equivalently, F1, F2, . . . , Fk is a shelling of � if for all i ≤ k, the
collection of faces of Fi that are not faces of ∪ j<i Fj has a unique minimal element.
This unique minimal face is called the restriction face of Fi and is denoted by r(Fi ).
We say that Fi is a shelling step of type m if r(Fi ) is of size m.

If � is a (d − 1)-dimensional simplicial complex or a d-polytope, we define fi (�)

as the number of i-dimensional faces of �, where −1 ≤ i ≤ d − 1. The h-numbers
of � are obtained from the f -numbers by the following linear transformation:
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h j (�) =
j∑

i=0

(−1) j−i
(
d − i

d − j

)

fi−1(�), for all 0 ≤ j ≤ d.

We also let g0(�) = 1 and g j (�) = h j (�) − h j−1(�) for 1 ≤ j ≤ �d/2�. The h-
numbers and g-numbers of boundary complexes of simplicial polytopes have various
interesting interpretations. For now, we only mention the following classical result;
see [42, Chap. 8].

Theorem 2.3 The boundary complex of a simplicial polytope is shellable. Further-
more, the h-number hi is exactly the number of shelling steps of type i .

3 Paving theWay: The Spaces of Linear and Affine Stresses

3.1 Stresses and h- and g-Numbers

We start by reviewing several notions and results related to linear and affine stresses.
For more details we refer the reader to [20, 21] and [37, 38].

Let� be a simplicial complex on the vertex set V = V (�). Amap p : V (�) → R
d

is called a d-embedding of �. In particular, if � is a graph, then (�, p) is called a d-
framework. For W ⊆ V (�), write p(W ) = {p(v) : v ∈ W } (considered as a multiset
if there are repetitions).

Let X = X(V ) = {xv : v ∈ V } be a set of variables with one variable for each
vertex and let R[X ] be the polynomial ring over the real numbers in variables X .
Denote by Mi (V ) the set of all squarefree monomials of degree i in X(V ). Each
variable xv acts on R[X ] by ∂

∂xv
; for brevity, we will denote this operator by ∂xv . More

generally, if μ = xv1 · · · xvs ∈ R[X ] is a monomial, then define ∂μ : R[X ] → R[X ]
by ρ �→ ∂xvs

· · · ∂xv1
(ρ), and if �(X) = ∑

v∈V �vxv is a linear form in R[X ], then
define

∂�(X) : R[X ] → R[X ] by ρ �→
∑

v∈V
�v · ∂xvρ =

∑

v∈V
�v

∂ρ

∂xv

.

Given a d-embedding p of �, consider the (d + 1) × |V | matrix whose columns
are labeled by the vertices of � and the column corresponding to v ∈ V consists
of the vector p(v) augmented by a one in the last position. The i-th row of this
matrix, θ i = [θiv]v∈V , gives rise to a linear form θi = ∑

v∈V θivxv . In particular,
θd+1 = ∑

v∈V xv . We denote by
(p) or simply by
 the sequence (θ1, . . . , θd , θd+1)

of these forms.
For a monomial μ ∈ R[X ], the support of μ is supp(μ) = {v ∈ V : xv|μ}. A

homogeneous polynomial λ = λ(X) = ∑
μ λμμ ∈ R[X ] of degree k is called a linear

k-stress on (�, p) if it satisfies the following conditions:

• Every (non-zero) term λμμ of λ is supported on a face of �: supp(μ) ∈ �, and
• ∂θi λ = 0 for all i = 1, . . . , d.
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A linear k-stress λ on (�, p) that also satisfies ∂θd+1λ = 0 is called an affine k-stress. It
is immediate from the definitions that the sets of linear k-stresses and affine k-stresses
on � form vector spaces (over R), denoted by S�

k (�, p) and Sa
k (�, p). Furthermore,

for all k, Sa
k (�, p) is the kernel of ∂θd+1 : S�

k (�, p) → S�
k−1(�, p).

Before proceeding, let us take a moment to discuss the space of affine 1-stresses in
a bit more detail. By definition, an affine 1-stress on (�, p) is a linear form a(x) =∑

v∈V avxv such that ∂θi a(x) = 0 for all i = 1, . . . , d, d+1. In other words, a(x) is an
affine 1-stress if and only if

∑
v∈V θivav = 0 for all i = 1, . . . , d and

∑
v∈V av = 0.

That is, a(x) is an affine 1-stress if and only if the vector of coefficients of a(x),
(av : v ∈ V ), is an affine dependence of the point configuration {p(v) : v ∈ V }. This
discussion leads to two observations. First, it follows that Sa

1 (�, p) = Sa
1 (�, p′)

precisely when (�, p) and (�, p′) have the same space of affine dependencies, which
happens if and only if p′ is obtained from p by an invertible affine transformation. In
such a case we say that (�, p) and (�, p′) have the same affine type. Second, since the
Gale diagram of a polytope P ⊂ R

d is any basis of the space of affine dependencies
of the vertex set of P , it also follows that when (�, p) is the boundary complex of
a simplicial d-polytope P with its natural embedding, the space Sa

1 (�, p) contains
exactly the same information as the Gale diagram of P .

It is known (see [21]) that the dimensions of S�
k (�, p) and Sa

k (�, p) coin-
cide with the dimensions of the k-th graded components of R[�]/(θ1, . . . , θd) and
R[�]/(θ1, . . . , θd , θd+1), respectively; hereR[�] is the Stanley–Reisner ring of�. In
particular, if � is a Cohen–Macaulay complex of dimension d − 1 (e.g., a simplicial
ball or sphere) and p is a d-embedding such that for every facet F of �, the multiset
p(F) is linearly independent, then dim S�

k (�, p) = hk(�) for all 0 ≤ k ≤ d; see
[35].

As was mentioned in the introduction, we will mainly work with simplicial poly-
topes and simplicial spheres (or even homology spheres) using natural embeddings
in the former case and generic embeddings in the latter. Specifically, if P is a sim-
plicial d-polytope, we let p be the natural d-embedding of � = ∂P given by the
position vectors of vertices of P . If � is a homology (d −1)-sphere, then we consider
a d-embedding p with the property that the multiset of coordinates of the points p(v),
v ∈ V (�), is algebraically independent overQ. Such an embedding is called a generic
embedding of �. The following result is a crucial step in the proof of the g-theorem;
it provides arguably the most important interpretation of the g-numbers of simplicial
polytopes [14, 24, 25, 34] and spheres [2, 5, 18, 33].

Theorem 3.1 Let (�, p) be either the boundary complex of a simplicial d-polytope
with its natural embedding p, or a Z/2Z-homology (d − 1)-sphere with a generic
embedding p, and let 1 ≤ i ≤ �d/2�. Then θd+1 is a Lefschetz element, that is, the
linear map ∂θd+1 : S�

i (�, p) → S�
i−1(�, p) is surjective. (In fact, if d = 2i − 1, it is

an isomorphism.) In particular,

dim Sa
i (�, p) = dim S�

i (�, p) − dim S�
i−1(�, p) = gi (�).
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3.2 The Cone Lemma and Supports of Affine Stresses

Let λ = ∑
μ λμμ be either a k-linear or a k-affine stress on (�, p). We say that λ

is supported on a subcomplex � of � if every monomial of λ is supported on a face
of �. For instance, ∂xvλ is a (k − 1)-stress supported on st(v,�). Let F ∈ � be a
(k − 1)-face. To simplify notation, we write xF := ∏

v∈F xv and λF := λxF , and call
λF the weight of F in λ or the weight assigned to F by λ. If λF �= 0, we say that F
participates in λ or that F is in the support of λ. We refer to (λF : F ∈ �, |F | = k)
as the squarefree part of λ. It is known that a k-stress is uniquely determined by its
squarefree part, see [21].

One of very useful results on linear and affine stress spaces is the cone lemma [21,
38]. The version below discusses affine stresses. Let � be any (d − 2)-dimensional
simplicial complex (not necessarily a sphere) with a (d − 1)-embedding p′ and let
� be the cone over � with a d-embedding p. The f -numbers of � can be easily
expressed in terms of the f -numbers of �; for instance, the h- and g-vectors of � and
� coincide. This naturally leads to the question of how the stress spaces Sa

i (�, p′)
and Sa

i (�, p) are related (for appropriately chosen p and p′). The following lemma
[31, Lem. 3.2], originally due to Lee (see [21, Thm. 7]), provides an answer.

Lemma 3.2 Let � be a simplicial complex with an embedding p′. Let � = v ∗ � be
the cone over � with an embedding p such that p(v) is the origin in R

d and for all

u ∈ V (�), p(u) =
[
au p′(u)

au

]

for some nonzero au ∈ R. Then

1. there exists an isomorphism φk : Sa
k (�, p) → Sa

k (�, p′).
2. Furthermore, any affine k-stressω′ on (�, p′) lifts to an affine k-stressω on (�, p)

with the property that for every (k − 1)-face F ∈ �, ω′
F = ( ∏

u∈F au
)
ωF .

A few remarks are in order. The space of affine stresses is unaffected by Euclidean
motions and scalings. Thus, we can always assume that the p-image of the cone
vertex is the origin. Furthermore, the above lemma applies to vertex links and stars
of a simplicial d-polytope P ,

(
(lk(v, ∂P), p′), (st(v, ∂P), p)

)
. Here p is the natural

embedding of ∂P and p′ is the natural embedding of ∂(P/v) in a hyperplane H
that separates p(v) from the rest of the vertices of P . Using Euclidean motions and
scalings, we can assume that p(v) is the origin and H is given by the equation xd = 1.
Hence part 2 of Lemma 3.2 implies that for every (k − 1)-face F ∈ lk(v, ∂P), ω′

F
and ωF have the same sign. We refer to [31, Cor. 3.3] for a more precise and general
statement.

We end this subsection with a conjecture on supports of affine stresses. In [41], it
is shown that if d ≥ 4, � is a simplicial (d − 1)-sphere that has no missing faces of
dimension≥ d−1, and p is a generic d-embedding of�, then every edge participates
in some affine 2-stress on (�, p). Hence in this case, the graph of � is determined by
the space of affine 2-stresses. This motivates the following conjecture:

Conjecture 3.3 Let 2 ≤ i ≤ d/2. Let � be the boundary complex of a simplicial
d-polytope with its natural embedding p, or a simplicial (d−1)-sphere (or more gen-
erally, a normal (d−1)-pseudomanifold without boundary)with a generic embedding
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p. In both cases, assume also that � has no missing faces of dimension ≥ d − i + 1.
Then every (i − 1)-face of � participates in some affine i-stress on (�, p). In partic-
ular, the space of affine i-stresses determines the (i − 1)-skeleton of �.

3.3 The Partition of Unity of Linear Stresses

Our original motivation for this paper came in part from the following result on linear
stresses of spheres. Recall thatMi (V ) is the set of all squarefree monomials of degree
i in X(V ).

Theorem 3.4 Let � be a homology (d − 1)-sphere (over some field) and let p be a
d-embedding of � such that the p-images of vertices of any facet G ∈ � are linearly
independent. Then the following holds.

1. For all 1 ≤ i ≤ d − 1 and k ≤ d − i ,

S�
i (�, p) =

∑

v∈V (�)

S�
i (st(v), p) =

∑

F∈�, |F |=k

S�
i (st(F), p).

2. Furthermore, for all 1 ≤ j < i ≤ d,

S�
j (�, p) = span

{
∂μω : ω ∈ S�

i (�, p), μ ∈ Mi− j (V (�))
}

= span
{
∂xFω : ω ∈ S�

i (�, p), F ∈ �, |F | = i − j
}
.

For shellable spheres, this result is due to Lee [21, Thm. 16]: Lee only proved
part 2 of the statement, but since for a stress ω on the entire complex, ∂xFω is a
stress supported on the star of F (it is 0 if F is not a face), part 1 is an immediate
consequence of part 2. For general homology spheres (in fact, for general Cohen–
Macaulay complexes), part 1 was proved by Adiprasito [2, Lem. 3.4], see also [1, 3].
In words, part 1 asserts that any linear i-stress on� can be written as the sum of linear
i-stresses supported on the stars. This property is known as the partition of unity of
linear stresses. Since we could not find the proof of part 2 in the literature, we provide
it here for completeness.

Proof of part 2 Let � be a homology (d − 1)-sphere and let F be an (i − j − 1)-face
of �. Then S�

i (� − F, p) is a subspace of S�
i (�, p), and this subspace is precisely

the kernel of the map ∂xF : S�
i (�, p) → S�

j (st(F), p). Hence we have the following
exact sequence:

0 → S�
i (� − F, p) → S�

i (�, p)
∂xF−→ S�

j (st(F), p).

Since � − F , �, and st(F) are (d − 1)-dimensional Cohen–Macaulay complexes,
the dimensions of the three spaces in the sequence are hi (� − F), hi (�), and
h j (st(F)) = h j (lk(F)), respectively. Since for every k, fk−1(�) = fk−1(� − F) +
fk−(i− j)−1(lk(F)), it follows easily that hi (�) = hi (� − F) + h j (lk(F)) (cf. [8,
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Lem. 4.1]). We conclude that the right-most map in this sequence, ∂xF : S�
i (�, p) →

S�
j (st(F), p), must be onto. Thus

span
{
∂xFω : ω ∈ S�

i (�, p), F ∈ �, |F | = i − j}}

=
∑

F∈�, |F |=i− j

S�
j (st(F), p) = S�

j (�, p),

where the last step is by part 1. The result follows. ��
The cone lemma yields the following variation of Theorem 3.4. We will use it in

Sect. 7.

Corollary 3.5 Let� be a homology (k−1)-sphere, let F be a (d−k−1)-simplex, and
let � = F ∗ �. Let p be a d-embedding of � such that p(H) is linearly independent
for every facet H ∈ �. Then for all 1 ≤ i ≤ k − 1 and t ≤ k − i , S�

i (�, p) =
∑

G∈�, |G|=t S�
i (st(G, �), p). Furthermore, for all 1 ≤ j < i ≤ k, S�

j (�, p) =
span

{
∂μω : ω ∈ S�

i (�, p), μ ∈ Mi− j (V (�))
}
.

Proof Theorem 3.4 and the cone lemma for linear stresses [21] imply that

S�
i (�, p) = S�

i (F ∗ �, p) =
∑

G∈�, |G|=t

S�
i (F ∗ st(G,�), p)

=
∑

G∈�, |G|=t

S�
i (st(G, �), p).

For the second statement, observe that if G ∈ �, then � − G = F ∗ (� − G) is a
(d − 1)-dimensional Cohen–Macaulay complex. The rest of the proof is identical to
that of part 2 of Theorem 3.4. ��

Part 2 of Theorem 3.4 provides a structural result on spaces of linear stresses of
spheres. This result alongwith Conjectures 1.2 and 1.3 suggest that an analogous state-
ment might hold for affine stresses. To this end, we propose the following conjecture.

Conjecture 3.6 Let (�, p) be either the boundary complex of a simplicial d-polytope
with its natural embedding p, or a Z/2Z-homology (d − 1)-sphere with a generic
embedding p. If � has no missing faces of dimension ≥ d − i + 1, then for all
1 ≤ j < i ≤ d/2,

Sa
j (�, p) = span

{
∂μω : ω ∈ Sa

i (�, p), μ ∈ Mi− j (V (�))
}
.

4 The Partition of Unity of Affine Stresses

The goal of this section is to establish two versions of the partition of unity of affine
stresses. Since we only work with the stress spaces on (�, p) and never explicitly
use the associated 
 (as in Sect. 3), to avoid confusion, from now on, we will write c
instead of θd+1 to denote

∑
v∈V (�) xv .
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Theorem 4.1 Let d ≥ 3. Let � be a strongly connected (d − 1)-dimensional complex
with an embedding p in R

d such that the p-images of vertices of any two adjacent
facets are affinely independent. Then Sa

1 (�, p) = ∑
G∈�,dimG=d−3 Sa

1 (st(G), p). In
particular, Sa

1 (�, p) = ∑
v∈V (�) Sa

1 (st(v), p).

Proof If � has at most d + 1 vertices, then Sa
1 (�, p) and Sa

1 (st(G), p) are the zero
spaces for all faces G ∈ �, and the claim holds. Thus, assume that� has at least d+2
vertices, and hence, at least three facets. Pick an ordering F1, F2, . . . , Fm of the facets
of � that satisfies the following property: for every i ≥ 1, Fi+1 is adjacent to at least
one facetwith a smaller index. Such anordering exists because� is strongly connected.
Label the vertices of F1 ∪ F2 by v1, . . . , vd+1. Let 3 ≤ i1 < i2 < · · · < ig1(�) ≤ m

be the indices such that for all 1 ≤ j ≤ g1(�), the size of V (∪i j−1
k=1 Fk) is smaller than

the size of V (∪i j
k=1Fk); label the new vertex introduced at step i j by vd+1+ j .

Let 1 ≤ j ≤ g1(�). By the defining property of our ordering, there exists t < i j
such that Ft is adjacent to Fi j . If t = 1, we take s = 2 and notice that Fs = F2 is
adjacent to Ft = F1. If t > 1, then again by the defining property of our ordering, there
exists s < t such that Fs and Ft are adjacent. In either case, the complex Fs ∪ Ft ∪ Fi j
contains d +2 vertices, among them vd+1+ j ∈ Fi j \(Fs ∪ Ft ). Thus (Fs ∪ Ft ∪ Fi j , p)
supports a non-trivial affine 1-stress ω j . Also, since Fs and Ft are adjacent, the p-
images of thed+1vertices of Fs∪Ft are affinely independent. It follows thatω j assigns
a nonzero weight to vd+1+ j and zero weights to all vk for k > d + 1 + j . Therefore,
the affine 1-stresses ω1, . . . , ωg1(�) are linearly independent, and hence span Sa

1 (�).
The result follows since ω j is supported on the star of G j := Fs ∩ Ft ∩ Fi j which is
a face of dimension ≥ d − 3. ��

Applying the above theorem to the boundary complex of a simplicial polytope P
with its natural embedding, we obtain the following

Corollary 4.2 Let d ≥ 3 and let� be the boundary complex of a simplicial d-polytope
P with its natural embedding p. Then

Sa
1 (�, p)=

∑

G∈�
dimG=d−3

Sa
1 (st(G), p), and hence, Sa

1 (�, p)=
∑

v∈V (�)

Sa
1 (st(v), p).

Remark 4.3 Let � be a normal (d − 1)-pseudomanifold with boundary and let p be
a d-embedding of � such that the p-images of vertices of any facet of � are linearly
independent. Assume also that � is not a simplex. Then using the same ideas as in the
proof of Theorem 4.1, one easily shows that S�

1(�, p) = ∑
R S�

1(st(R), p), where the
sum is over interior ridges of �. Since every interior ridge contains a minimal interior
face, we also obtain that S�

1(�, p) = ∑
F∈I(�) S�

1(st(F), p).

Our second result is about the partition of unity of higher affine stresses.

Theorem 4.4 Let 2 ≤ i ≤ (d − 1)/2 and let � be a PL (d − 1)-sphere with a generic
d-embedding p. Then Sa

i (�, p) = ∑
v∈V (�) Sa

i (st(v), p).
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Proof Recall that by Pachner’s theorem, any PL (d − 1)-sphere � can be obtained
from the boundary complex of a d-simplex by a sequence of bistellar flips. Hence, to
prove our statement, it suffices to show that if �′ is obtained from � by a j-flip (for
any 1 ≤ j ≤ d) and � satisfies the statement of the theorem, then so does �′. For the
rest of the proof, we let p be a generic embedding of V (� ∪ �′) and we suppress p
from our notation.

By Theorem 13 in [21], for 1 ≤ k ≤ d,

⎧
⎪⎨

⎪⎩

S�
k (�′) ⊕ S�

k (∂(A ∪ B)) = S�
k (�) if j < d − j + 1 and j ≤ k ≤ d − j,

S�
k (�′) = S�

k (∂(A ∪ B)) ⊕ S�
k (�) if j > d − j + 1 and d − j + 1 ≤ k ≤ j − 1,

S�
k (�′) = S�

k (�) otherwise.

For a simplicial complex � with a face G and a vertex u, we write ωG,� to denote
an affine i-stress on � with G in the support and we write ωu,G,� to denote an affine
i-stress on st(u, �) with G in the support. Recall our convention that c := ∑

v xv .
Since d ≥ 2i and since � and �′ are PL (d − 1)-spheres with generic embeddings,
Theorem 3.1 implies that the following maps are surjective:

S�
i (�)

∂c−→ S�
i−1(�), S�

i (�
′) ∂c−→ S�

i−1(�
′).

Furthermore, the space S�
m(∂(A ∪ B)) is 1-dimensional for all 0 ≤ m ≤ d, and so the

map ∂c : S�
i (∂(A ∪ B)) → S�

i−1(∂(A ∪ B)) is an isomorphism. Consequently,

⎧
⎪⎨

⎪⎩

Sa
i (�′) ⊕ span{ωA,�} = Sa

i (�) if i = j,

Sa
i (�′) = Sa

i (�) ⊕ span{ωB,�′ } if i = d − j + 1,

Sa
i (�′) = Sa

i (�) otherwise.

For a vertex v ∈ A and j �= 1, lk(v,�′) is obtained from lk(v,�) by a ( j − 1)-flip
(A\v) ∗ ∂B �→ ∂(A\v) ∗ B. For a vertex v ∈ B and j �= d, lk(v,�′) is obtained
from lk(v,�) by a j-flip A ∗ ∂(B\v) �→ ∂A ∗ (B\v). Finally for every v /∈ A ∪ B,
lk(v,�) = lk(v,�′). Since vertex links of � and �′ are PL (d − 2)-spheres and
d − 1 ≥ 2i , the same argument as above (combined with the cone lemma) implies
that

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Sa
i (st(v,�′)) ⊕ span{ωv,A\v,�} = Sa

i (st(v,�)) if v ∈ A and i = j − 1,

Sa
i (st(v,�′)) ⊕ span{ωv,A,�} = Sa

i (st(v,�)) if v ∈ B and i = j,

Sa
i (st(v,�′)) = Sa

i (st(v,�)) ⊕ span{ωv,B,�′ } if v ∈ A and i = d − j + 1,

Sa
i (st(v,�′)) = Sa

i (st(v,�)) ⊕ span{ωv,B\v,�′ } if v ∈ B and i = d − j,

Sa
i (st(v,�′)) = Sa

i (st(v,�)) otherwise.

Assume that A = {u1, . . . , u j } and B = {v1, . . . , vd− j+1}. Since the spaces of
affine i-stresses (i ≥ 2) of the entire complex and of the vertex stars are not affected
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by a facet subdivision or its inverse, we further assume that j �= 1 and j �= d, and so
V (�) = V (�′). We consider the following five cases:

Case 1: i �= j − 1, j, d − j, d − j + 1. In this case, by our assumptions on �,

Sa
i (�′) = Sa

i (�) =
∑

v∈V (�)

Sa
i (st(v,�)) =

∑

v∈V (�)

Sa
i (st(v,�′)).

Case 2: i = j . To start, we claim that for any 2 ≤ k ≤ d − i + 1,

Sa
i (st(v1,�)) + Sa

i (st(vk,�)) = Sa
i (st(v1,�)) + Sa

i (st(vk,�
′)).

Recall that for 1 ≤ k ≤ d − i + 1, Sa
i (st(vk,�′)) ⊕ span{ωk} = Sa

i (st(vk,�)),
where ωk is any affine i-stress on st(vk,�) with A in the support. We will now show
that for any fixed 2 ≤ k ≤ d − i + 1, we can choose ω1 and ωk to be the same
stress. If d ≥ 2i + 2 and k ≥ 2, then lk(v1vk,�) and lk(v1vk,�′) are spheres of
dimension d − 3 ≥ 2i − 1 and since their (i − 1)-skeleta differ only in {A}, that is,
Skeli−1(lk(v1vk,�)) = Skeli−1(lk(v1vk,�′) ∪ {A}), Theorem 3.1 (combined with
the cone lemma) implies that there exists an affine i-stress ω on st(v1vk,�) that
has A in its support. We take ω1 and ωk to be that ω. Similarly, if d = 2i + 1,
then lk(v1vk,�) ∪ {B\v1vk} and lk(v1vk,�′) ∪ {A} share the same (i − 1)-skeleton.
Hence, by applying Theorem 3.1, we conclude that there is a nonzero element ω of
Sa
i

(
st(v1vk,�) ∪ {B\v1vk}

) = Sa
i

(
st(v1vk,�′) ∪ {A}) that has A in its support.

Since both st(v1,�) and st(vk,�) contain the subcomplex st(v1vk,�) ∪ {B\v1vk},
we can again take ω1 and ωk to be that ω. Hence

Sa
i (st(v1,�)) + Sa

i (st(vk,�))

=
(
Sa
i (st(v1,�

′)) ⊕ span{ω}
)

+
(
Sa
i (st(vk,�

′)) ⊕ span{ω}
)

= Sa
i (st(v1,�)) + Sa

i (st(vk,�
′))

as desired. Since the above equation holds for all 2 ≤ k ≤ d − i + 1, we infer that

d−i+1∑

k=1

Sa
i (st(vk,�)) =

d−i+1∑

k=2

[Sa
i (st(v1,�)) + Sa

i (st(vk,�))
]

=
d−i+1∑

k=2

[Sa
i (st(v1,�)) + Sa

i (st(vk,�
′))

]

= Sa
i (st(v1,�)) +

d−i+1∑

k=2

Sa
i (st(vk,�

′)).

On the other hand, since for all z /∈ B, Sa
i (st(z,�′) = Sa

i (st(z,�)), we also obtain
that
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Sa
i (�′) ⊕ span{ωA,�} = Sa

i (�) =
∑

z∈V (�)

Sa
i (st(z,�))

= Sa
i (st(v1,�)) +

∑

z∈V (�), z �=v1

Sa
i (st(z,�′))

=
⎛

⎝
∑

z∈V (�)

Sa
i (st(z,�′))

⎞

⎠ ⊕ span{ω1}.

Since ωA,� is any affine i-stress on � with A in the support, we can take ωA,� =
ω1. Finally, since Sa

i (�′) ⊇ ∑
z∈V (�) Sa

i (st(z,�′)), the above equation yields that
Sa
i (�′) = ∑

z∈V (�) Sa
i (st(z,�′)), and so �′ satisfies the partition of unity.

Case 3: i = d − j + 1. Then

Sa
i (�′) = Sa

i (�) + span{ωu1,B,�′ , . . . , ωud−i+1,B,�′ }

=
d−i+1∑

k=1

(Sa
i (st(uk,�)) + span{ωuk ,B,�′ })

+
∑

z∈V (�)\A
Sa
i (st(z,�)) =

∑

z∈V (�)

Sa
i (st(z,�′)).

Case 4: i = j − 1. In this case Skeli−1(�
′) = Skeli−1(�) and hence Sa

i (�′) =
Sa
i (�). For 1 ≤ k ≤ i + 1, Sa

i (st(uk,�′)) ⊕ span{ωuk ,A\uk ,�} = Sa
i (st(uk,�)).

The subcomplex st(ukv1,�′) ∪ {A\uk} supports a nontrivial affine i-stress ωk with
A\uk in its support. Since st(ukv1,�′) ∪ {A\uk} is contained in both st(uk,�) and
st(v1,�′), it follows that

Sa
i (st(uk,�)) ⊆ Sa

i (st(uk,�
′)) + Sa

i (st(v1,�
′)).

On the other hand, Sa
i (st(z,�′)) = Sa

i (st(z,�)) for z /∈ A ∪ B. Furthermore,
Sa
i (st(vk,�)) ⊆ Sa

i (st(vk,�′)) for all 1 ≤ k ≤ d − i and d ≥ 2i + 1. Hence we
conclude that

Sa
i (�′) = Sa

i (�) =
∑

z∈V (�)

Sa
i (st(z,�)) ⊆

∑

z∈V (�′)
Sa
i (st(z,�′)).

The partition of unity in this case follows since Sa
i (�′) ⊇ ∑

z∈V (�′) Sa
i (st(z,�′))

always holds.
Case 5: i = d − j . The proof is similar to case 4. The only difference is that

we switch the roles of uk and vk , and obtain that Sa
i (st(uk,�)) ⊆ Sa

i (st(uk,�′))
for 1 ≤ k ≤ j = d − i , and Sa

i (st(vk,�)) ⊆ Sa
i (st(vk,�′)) + Sa

i (st(u1,�′)) for
1 ≤ k ≤ d − j + 1. ��

In view of Theorem 4.4, we ask if the partition of unity of affine stresses also holds
for simplicial polytopeswith natural embeddings and (non-PL) simplicial sphereswith
generic embeddings.
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Conjecture 4.5 Let 2 ≤ i ≤ (d − 1)/2. Let (�, p) be either the boundary complex of
a simplicial d-polytope with its natural embedding p, or a Z/2Z-homology (d − 1)-
sphere with a generic embedding p. Then Sa

i (�, p) = ∑
v∈V (�) Sa

i (st(v), p).

Remark 4.6 After seeing the previous version of this paper, Adiprasito, Murai, and
the anonymous referee commented that Conjecture 4.5 can be proved by adapting the
spectral sequence argument of the proof of Theorem 33 from [3]. We feel that this
proof is beyond the scope of this paper, and so instead of presenting it here, we sketch
the main steps and ideas in the Appendix.

5 AWarm-Up: Reconstructing from Affine 2-Stresses

In this section we prove the following theorem (cf. part 1 of Conjecture 1.2).

Theorem 5.1 Let d ≥ 4. Let � be either (i) a normal (d −1)-pseudomanifold without
boundary with a generic embedding p, or (ii) the boundary complex ∂P of a simplicial
d-polytope P with its natural embedding p. In both cases, assume also that � has no
missing faces of dimension ≥ d − 2. Then span{∂xvω : ω ∈ Sa

2 (�, p), v ∈ V (�)} =
Sa
1 (�, p), and so the space Sa

2 (�, p) determines the space Sa
1 (�, p). In particular,

Sa
2 (�, p) determines the positions of vertices of � up to affine equivalence.

We remark that for the case of normal pseudomanifolds with generic embeddings,
Theorem 8.4 in [13] establishes a more general result: it shows that Sa

2 (�, p) deter-
mines Sa

1 (�, p) as long as � has no missing faces of dimension d − 1. The result on
polytopes with natural embeddings is new. Our proof relies on the partition of unity of
affine 1-stresses (Theorem 4.1) as well as on, by now, standard tools from the rigidity
theory of frameworks. Specifically, we rely on the cone and gluing lemmas [22, Sect.
6] and on works of Fogelsanger [15] and Whiteley [39].

While we refer the reader to [6, 7, 16, 22] for a thorough introduction to the rigidity
theory and all undefined terminology, we briefly summarize some necessary back-
ground here. To start, for a d-framework (�, p), we somewhat abuse notation and let
g2(�) := f1(�) − d f0(�) + (d+1

2

)
. Recall that a d-framework (�, p) that affinely

spans R
d is infinitesimally d-rigid if and only if dim Sa

2 (�, p) = g2(�). In particular,
for d ≥ 3, the graph of a simplicial d-polytope with its natural embedding is infinites-
imally d-rigid. This follows from a much more general result of Whiteley [39]. (Of
course, this also follows from the g-theorem for polytopes.) Furthermore, if d ≥ 3
and (�, p) is a normal (d − 1)-pseudomanifold with a generic embedding, then by
a result of Fogelsanger [15], (�, p) is infinitesimally d-rigid. Fogelsanger’s result,
in fact, applies to a more general class of simplicial (d − 1)-circuits and even more
general class of minimal cycles. A self-contained summary of Fogelsanger’s proof is
given in [13, Sect. 3].

We also recall the statement of the gluing lemma. It asserts that if (�, p) is a d-
framework and �1 and �2 are subgraphs of � such that (a) both (�1, p) and (�2, p)
are infinitesimally d-rigid, and (b) the p-image of V (�1) ∩ V (�2) contains d affinely
independent points, then (�1 ∪ �2, p) is also infinitesimally d-rigid.
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The key to our proof of Theorem 5.1 is the following lemma. Some special cases
of this lemma are known, see the proof of [29, Prop. 2.10].

Lemma 5.2 Let d and (�, p) be as in Theorem 5.1. Then for every nonempty face
F ∈ �, (�−F, p) is an infinitesimally d-rigid framework. In particular, dim Sa

2 (�−
F, p) = g2(� − F).

Proof Throughout this proof, all stars and links are computed in �. The complex
� − F is a normal pseudomanifold with boundary. First we claim that every minimal
interior face of � − F has dimension ≤ d − 4. Indeed, if σ ∈ I(� − F), then
by Lemma 2.1, there exists H ⊆ F such that σ ∪ H is a missing face of �. Thus,
d − 3 ≥ dim(σ ∪ H) > dim(σ ), and so dim σ ≤ d − 4 as claimed. This implies
that for every σ ∈ I(� − F), (st(σ ), p) is infinitesimally d-rigid: in the case that �

is a normal pseudomanifold, this follows from Fogelsanger’s result [15] and the cone
lemma, while in the case that � is the boundary complex of a polytope, this follows
from Whiteley’s result [39] and the cone lemma.

Define K = ⋃{st(σ ) : σ ∈ I(� − F)}. Clearly, K ⊆ � − F . On the other hand,
every facet T of � − F is an interior face. Hence T contains a minimal interior face.
It follows that T ⊆ K , and so by purity, K = � − F . We conclude that (� − F, p)
can be expressed as the union of infinitesimally d-rigid frameworks.

The claim that (� − F, p) is infinitesimally d-rigid now follows from repeated
applications of the gluing lemma. Indeed, observe that if σ and τ are elements of
I(� − F) such that σ ∪ τ ∈ �, then st(σ ) ∩ st(τ ) ⊇ st(σ ∪ τ), where st(σ ∪ τ)

contains d vertices of a facet. These d vertices are affinely independent in R
d , and so

by the gluing lemma, (st(σ ) ∪ st(τ ), p) is infinitesimally d-rigid. Thus, to complete
the proof, it remains to show that the following graph G is connected: the vertices
of G correspond to elements of I(� − F), and we put an edge between σ and τ if
σ ∪ τ ∈ �. To see that G is connected, let σ and τ be elements of I(� − F). Then
there exist facets Hσ and Hτ of�− F that contain σ and τ , respectively. Since�− F
is strongly connected, we can walk from Hσ to Hτ along a path of facets in � − F :
Hσ = H0, H1, . . . , H � = Hτ , such that Hi ∩ Hi+1 is a common ridge of both Hi

and Hi+1. Then Hi ∩ Hi+1 contains a minimal interior face; denote it by σi+1. This
gives us a sequence S = (σ0 := σ, σ1, . . . , σ�, σ�+1 := τ) of elements of I(� − F),
where for every i , σi and σi+1 are contained in the facet Hi . Thus, either σi = σi+1,
or σi and σi+1 are connected by an edge in G. In other words, S is a walk from σ to τ

in G, and so G is connected. ��
The proof of Theorem 5.1 now follows in the same spirit as the proof of part 2 of

Theorem 3.4.

Proof of Theorem 5.1 It suffices to show that {∂xvw : w ∈ Sa
2 (�, p), v ∈ V (�)} =

Sa
1 (�, p). First observe that the sequence

0 → Sa
2 (� − v, p) → Sa

2 (�, p)
∂xv→ Sa

1 (st(v), p)

is exact. Now, whether � is a normal pseudomanifold or the boundary of a polytope,
dim Sa

2 (�, p) = g2(�) and dim Sa
1 (st(v), p) = g1(lk(v)). Also, by Lemma 5.2,
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dim Sa
2 (� − v, p) = g2(� − v). Since g2(�) = g2(� − v) + g1(lk(v)), we

conclude that the map ∂xv : Sa
2 (�, p) → Sa

1 (st(v), p) is onto, and hence that
{∂xvw : w ∈ Sa

2 (�), v ∈ V (�)} = ∑
v∈V (�) Sa

1 (st(v), p). Our claim then follows
from Theorem 4.1.

The “in particular” part also follows since the space of affine dependencies of the
multiset p(V (�)) that affinely spans R

d , determines the multiset itself up to affine
equivalence. ��

We end this section with a corollary to our results. The second part verifies a special
case of Conjecture 3.3.

Corollary 5.3 Let d and (�, p) be as in Theorem 5.1.

1. For any vertex v ∈ V (�), g2(�) ≥ g1(lk(v)).
2. Every edge of � participates in some affine 2-stress on �.

Proof Part 1 follows from the facts that g2(�) = dim Sa
2 (�, p), g1(lk(v)) =

dim Sa
1 (st(v), p), and ∂xv : Sa

2 (�, p) → Sa
1 (st(v), p) is onto. For part 2, we apply

Lemma 5.2 to an edge F . Since the graph of � is the graph of � − F plus the edge
F , it follows that dim Sa

2 (� − F, p) = g2(� − F) = g2(�) − 1. Hence F must
participate in some affine 2-stress on (�, p). ��

6 Reconstructing fromHigher Affine Stresses

In this section we prove several results related to Conjectures 1.1, 1.2 (2), 3.3, and 3.6
for polytopes without large missing faces and for flag PL spheres. We also briefly
touch on the g-numbers of flag spheres.

6.1 Polytopes and Flag Spheres

Webeginwith establishing the partition of unity of spaces of linear stresses of antistars.

Lemma 6.1 Let d ≥ 4. Let � be the boundary complex of a simplicial d-polytope P
with its natural embedding p, or a flag PL (d−1)-sphere with a generic embedding p.
Let τ ∈ �. Then for 1 ≤ i ≤ d − 1, S�

i (� − τ, p) = ∑
H∈I(�−τ) S�

i

(
st(H ,�), p

)
.

Proof The case of flag PL spheres follows from [3, Thm. 50]. (In this case, � − τ is a
PL ball, its boundary complex is the induced subcomplex of � − τ , and all minimal
interior faces of � − τ are vertices). Thus, assume that � = ∂P . The proof of this
case is essentially the same as that of [21, Thm. 16]. Since P is a polytope, there is a
line shelling of � that lists the facets of the star of τ last. Consequently, there exists
a shelling of � − τ . Consider such a shelling and let F1, . . . , Fk be the facets at the
shelling steps of type i ; here k = hi (�−τ). For 1 ≤ j ≤ k, letG j = Fj\r(Fj ) and let
� j be the subcomplexof�−τ generated by Fj and all the facets thatwere addedbefore
Fj (in the shelling order).We claim that st(G j ,�) is a subcomplex of� j ; in particular,
G j is an interior face of�−τ . Indeed, lk(G j ,�) is an (i−1)-sphere and in the induced
shelling of this sphere, the step that adds Fj corresponds to the shelling step of type i
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(that adds r(Fj )). Thismeans that after this step, all facets of the link are in the complex.
Now, since st(G j ,�) and st(G j ,�) − r(Fj ) are Cohen–Macaulay complexes with
hi (st(G j ,�)) = 1 and hi

(
st(G j ,�) − r(Fj )

) = 0, it follows that there is a linear
i-stress ω j supported on st(G j ,�) ⊆ � j that assigns a nonzero weight to r(Fj ).
Also, since ω j is supported on � j , it assigns zero weights to all r(Fs) with s > j . We
conclude that {ω j : 1 ≤ j ≤ k} is a linearly independent set of stresses. Furthermore,
since k = hi (�− τ), this set is a basis of S�

i (�− τ, p). The result follows since G j is
an interior face of � − τ and hence G j contains a minimal interior face Hj of � − τ .
Therefore, S�

i (� − τ, p) = ∑
j S�

i

(
st(G j ,�), p

) = ∑
H∈I(�−τ) S�

i

(
st(H ,�), p

)
.

��
Lemma 6.1 along with Theorem 3.1 imply the following higher-dimensional

analogs of Lemma 5.2 and part 1 of Corollary 5.3. This result will be used in essentially
all proofs of this section.

Lemma 6.2 Let d ≥ 4 and 1 ≤ j ≤ i ≤ d/2. Let � be the boundary complex of a
simplicial d-polytope P with its natural embedding p, or a flag PL (d − 1)-sphere
with a generic embedding p. In the case that� = ∂P, assume further that all missing
faces of � have dimension ≤ d − 2i + 1. Then for any nonempty face τ of � of
dimension ≤ j − 1,

1. the map ∂c : S�
j (� − τ, p) → S�

j−1(� − τ, p) is onto. In particular, dim Sa
j (� −

τ, p) = g j (� − τ);
2. the map ∂xτ : Sa

j (�, p) → Sa
j−|τ |(st(τ,�), p) is onto, and hence g j (�) ≥

g j−|τ |(lk(τ )).

Proof Throughout the proof, all stars and links are computed in�. Let σ be a minimal
interior face of � − τ . Since all missing faces of � have dimension ≤ d − 2i + 1, it
follows fromLemma 2.1 that dim σ ≤ d−2i , and so lk(σ ) is a PL sphere of dimension
at least 2i − 2. By the cone lemma and by Theorem 3.1, we obtain that the map ∂c :
S�
j (st(σ ), p) → S�

j−1(st(σ ), p) is onto for all j ≤ i and all minimal interior faces σ of

�−τ . This togetherwith Lemma6.1 implies that ∂c : S�
j (�−τ, p) → S�

j−1(�−τ, p)

is also onto. Finally, since � − τ is Cohen–Macaulay, dim S�
j (� − τ) = h j (� − τ)

for all j . We conclude that dim Sa
j (� − τ) = g j (� − τ) for all j ≤ i .

As in the proof of Theorem 3.4, we have the following exact sequence:

0 → Sa
j (� − τ, p) → Sa

j (�, p)
∂xτ−→ Sa

j−|τ |(st(τ ), p).

By part 1 and Theorem 3.1, the dimensions of the three spaces in the sequence are
g j (� − τ), g j (�), and g j−1(lk(τ )), respectively. Since for any sphere � and τ ∈
�, g j (�) = g j (� − τ) + g j−|τ |(lk(τ )), it follows that the right-most map in this
sequence, ∂xτ : Sa

j (�, p) → Sa
j−|τ |(st(τ ), p), must be onto. Consequently, g j (�) ≥

g j−|τ |(lk(τ )). This completes the proof of both parts. ��
With Lemmas 6.1 and 6.2 at our disposal, we are ready to verify a special case of

Conjecture 1.2 and a special case of Conjecture 3.6.
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Theorem 6.3 Let d ≥ 4 and 1 ≤ j < i ≤ d/2. Let � be the boundary complex of
a simplicial d-polytope P with its natural embedding p, or a flag PL (d − 1)-sphere
with a generic embedding p. In the case that� = ∂P, assume further that all missing
faces of � have dimension ≤ d − 2i + 1. Then

span{∂μω : ω ∈ Sa
i (�, p), μ ∈ Mi− j (V (�))} = Sa

j (�, p),

and so Sa
i (�, p) determines Sa

j (�, p). In particular, Sa
i (�, p) determines the posi-

tions of vertices of � up to affne equivalence.

Proof By Lemma 6.2, for any (i − j − 1)-face τ of �, the map ∂xτ : Sa
i (�, p) →

Sa
j (st(τ ), p) is onto. The statements then follow from the partition of unity of the

space Sa
j (�, p); see Theorem 4.4 and Theorem A.1. ��

Another application of Lemma 6.2 allows us to also establish the following special
case of Conjecture 3.3 (cf. Corollary 5.3).

Corollary 6.4 Let 2 ≤ i ≤ d/2. Let � be the boundary complex of a simplicial d-
polytope with its natural embedding p, or a flag PL (d − 1)-sphere with a generic
embedding p. In the case that � = ∂P, assume also that all missing faces of � have
dimension ≤ d − 2i + 1. Then every (i − 1)-face of � participates in some affine
i-stress on �.

Proof Let τ be an (i − 1)-face of �. By part 2 of Lemma 6.2, the map ∂xτ :
Sa
i (�, p) → Sa

0 (st(τ,�), p) ∼= R is onto. Any preimage of 1 is then an affine
i-stress that has τ in its support. ��

It is worth remarking that the proof of Lemma 6.1 relies on [3, Thm. 50]. This
theorem holds for all simplicial balls whose boundary complex is an induced subcom-
plex. If it continues to hold for all homology rather than just simplicial balls, then all
results in this subsection as well as Theorem 6.5 from Sect. 6.2 would hold for all flag
Z/2Z-homology spheres rather than just flag PL spheres.

6.2 An Interlude: g-Numbers of Flag Spheres

The techniques developed in the previous subsection will be useful in obtaining lower
bounds. The octahedral (d −1)-sphere is the boundary complex of the d-dimensional
cross-polytope C∗

d . As an abstract simplicial complex, ∂C∗
d is the join of d copies of the

0-sphere. In particular, octahedral spheres are flag and hi (∂C∗
d ) = (d

i

)
for all 0 ≤ i ≤ d.

Meshulam [26] proved that in the class of all flag (d − 1)-spheres, the octahedral
sphere simultaneously minimizes all the f -numbers. This result was strengthened
by Athanasiadis [8] who showed that, in fact, it simultaneously minimizes all the h-
numbers. Here we prove that in the class of flag PL spheres, it even simultaneously
minimizes all the g-numbers. This was conjectured in [40] where the case of i = 2
was established.

Theorem 6.5 Let � be a flag PL (d − 1)-sphere. Then for every 1 ≤ i ≤ d/2,
gi (�) ≥ (d

i

) − ( d
i−1

)
, and equality holds if and only if � is the octahedral sphere.
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Proof If � = ∂C∗
d , then gi (�) = (d

i

) − ( d
i−1

)
for all 1 ≤ i ≤ d/2. To prove the

inequality and show that ∂C∗
d is the only minimizer, we use induction on d. The claim

is known to hold for i = 1. Thus assume that i > 1 and let v be a vertex of �. In
particular, lk(v) is a flag PL (d − 2)-sphere. If d = 2i , then by part 2 of Lemma 6.2
and the inductive hypothesis,

gi (�) ≥ gi−1(lk(v)) ≥
(
2i − 1

i − 1

)

−
(
2i − 1

i − 2

)

=
(
2i − 1

i − 1

)

+
(
2i − 1

i

)

−
(
2i − 1

i − 1

)

−
(
2i − 1

i − 2

)

=
(
2i

i

)

−
(

2i

i − 1

)

.

If d > 2i , then let v′ be an interior vertex of � − v (it exists since � is flag). Since
every affine i-stress on st(v′) is also an affine i-stress on � − v, by Lemma 6.2 and
the inductive hypothesis,

gi (�) = gi (� − v) + gi−1(lk(v)) ≥ gi (lk(v
′)) + gi−1(lk(v))

≥
(
d − 1

i

)

−
(
d − 1

i − 1

)

+
(
d − 1

i − 1

)

−
(
d − 1

i − 2

)

=
(
d

i

)

−
(

d

i − 1

)

.

In both cases, if equality holds, then the link of every vertex v is octahedral. Thus,
every vertex v has degree 2d−2, and so h2(�) = f1(�)− (d−1) f0(�)+ (d

2

) = (d
2

)
.

Since g2(�) ≥ (d
2

) − (d
1

)
, it follows that f0(�) ≤ 2d. As � is flag, we must have

f0(�) = 2d, and so � itself is octahedral. ��

6.3 SignVectors of Affine Stresses

In this subsection we discuss another conjecture related to Kalai’s Conjecture 1.1. The
statement of this conjecture is based on the notion of sign vectors.

Definition 6.6 Let � be the boundary complex of a simplicial d-polytope P with its
natural embedding p. For an affine i-stress λ on (�, p) and an (i − 1)-face G of �,
let

sign(λG) =

⎧
⎪⎨

⎪⎩

+ if λG > 0

− if λG < 0

0 if λG = 0.

DefineVi (P) = {(sign(λG))G∈�, |G|=i : λ ∈ Sa
i (�, p)}. ThusVi (P) is the collection

of sign vectors of the squarefree parts of i-stresses on P .

In view of results from [31], the following strengthening of Conjecture 1.1 was pro-
posed there:

Conjecture 6.7 Let 2 ≤ i ≤ d/2. Let P ⊂ R
d be a simplicial d-polytope. The (i −1)-

skeleton of ∂P and the set Vi (P) determine the combinatorial type of P (i.e., they
determine the entire abstract simplicial complex ∂P.)
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The goal of this section is to verify Conjecture 6.7 in the following special case.

Theorem 6.8 Let 2 ≤ i ≤ d/2. Let P ⊂ R
d be a simplicial d-polytope whose

boundary complex has only missing faces of dimension≤ d−2i +1. Then the (i −1)-
skeleton of ∂P and the set Vi (P) determine the entire complex ∂P.

The following lemma will be handy.

Lemma 6.9 Let 2 ≤ i ≤ d/2. Let P be a simplicial d-polytope, let F be a ( j−1)-face
of ∂P with j ≤ i − 1, and let Q be the quotient polytope P/F. Assume also that all
missing faces of ∂P have dimension ≤ d − 2i + 1. Then every affine (i − j)-stress ω′
on Q can be lifted to an affine i-stress ω on P with the following property: for each
(i − j − 1)-face τ of ∂Q, sign(ω′

τ ) = sign(ωF∪τ ).

Proof We work with the boundary complex of P , ∂P , with its natural embedding
p, and the boundary complex of Q, ∂Q, with its natural embedding q; in particular,
∂Q = lk(F, ∂P). Consider the sequence

Sa
i (∂P, p)

∂xF−→ Sa
i− j

(
st(F, ∂P), p

) φi− j−→ Sa
i− j

(
lk(F, ∂P), q

)
,

whereφi− j is themap fromLemma3.2. Themap ∂xF is surjective byLemma6.2,while
the map φi− j is an isomorphism by Lemma 3.2. Furthermore, by the remark following
Lemma 3.2, ifω′ is an affine (i− j)-stress on (lk(F, ∂P), q) andω′′ := (φi− j )

−1(ω′),
then for every (i − j − 1)-face τ of lk(F, ∂P), ω′

τ and ω′′
τ have the same signs. The

result follows by letting ω be any element of Sa
i (∂P, p) such that ∂xF (ω) = ω′′ and

noting that ωF∪τ = ω′′
τ . ��

By Lemma 4.5 in [31], to prove Theorem 6.8, it suffices to establish the following
result, which is interesting in its own right. This result concludes this section.

Theorem 6.10 Let i ≥ 1 and d ≤ 2i . Let ∂P be the boundary complex of a simplicial
d-polytope P with its natural embedding p. Assume that all missing faces of ∂P have
dimension≤ d −2i +1. Let M be a missing face of ∂P of size≥ i +1 and let F ⊂ M
be any subset of size i − 1. Then there exists an affine i-stress λ on (∂P, p) with the
following property: for every (i − 1)-face G = F ∪ v of ∂P, λG > 0 if v ∈ M\F
while λG ≤ 0 if v /∈ M.

Proof If i = 1, then d−2i+1 < d, so P is a nonsimplex polytope of dimension d ≥ 2
and F = ∅. Since M is a missing face, it follows that the intersection conv(p(M)) ∩
conv(V (P)\p(M)) is nonempty and that it is contained in the relative interior of
conv(p(M)). Thus, there exists λ ∈ Sa

1 (∂P, p) such that λv > 0 if the vertex v is in
M and λv ≤ 0 if v /∈ M . This completes the proof of the i = 1 case.

We now prove the statement for i > 1. Let Q := P/F be the quotient polytope
and let q be the natural embedding of ∂Q. Then Q is a (d − i + 1)-polytope and
M ′ := M\F is a missing face of ∂Q. Since all missing faces of ∂P have dimension
≤ d − 2i + 1 < d − i , so do all missing faces of ∂Q. In particular, Q is a nonsimplex
polytope. Applying the first paragraph to the triple (Q, M ′,∅), we find an affine stress
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λ′ ∈ Sa
1 (∂Q, q) = Sa

1 (lk(F, ∂P), q) such that for every vertex v of ∂Q, λ′
v > 0

if v ∈ M ′ and λ′
v ≤ 0 otherwise. Lemma 6.9 then guarantees the existence of a

stress λ ∈ Sa
i (∂P, p) such that for every (i − 1)-face F ∪ v of ∂P , λF∪v > 0 if

v ∈ M ′ = M\F and λF∪v ≤ 0 if v /∈ M . This completes the proof. ��

7 k-Stacked Spheres

To close the paper, we prove Conjecture 1.2 (2) for the case of k-stacked polytopes
and spheres.

Let 0 ≤ k ≤ d. An R-homology d-ball B is called k-stacked if all interior faces
of B are of dimension ≥ d − k; in other words, B is k-stacked if every face of B of
dimension ≤ d − k − 1 is a face of ∂B. A simplicial (d − 1)-sphere � is k-stacked
if there exists a k-stacked R-homology d-ball B such that � = ∂B; in this case,
Skeld−k−1(�) = Skeld−k−1(B). We say that a simplicial polytope P is k-stacked
if ∂P is a k-stacked sphere. The significance of k-stacked spheres is explained by
the Generalized Lower Bound Theorem: if 0 ≤ k ≤ d/2 − 1, then a simplicial
(d − 1)-sphere � satisfies gk+1(�) = 0 if and only if � is k-stacked. This result for
the boundary complexes of simplicial polytopes is due to Murai and Nevo [28] (see
also [1]); the general case follows from Murai–Nevo’s results and the g-theorem (see
Theorem 3.1).

Murai and Nevo also proved that if 0 ≤ k ≤ d/2− 1 and � is a k-stacked (d − 1)-
sphere, then a k-stacked R-homology d-ball whose boundary is equal to � is unique.
This ball is given by

T (�) := {F ⊆ V (�) : Skeld−k−1(F) ⊆ �};

see [28, Thm. 2.3]. Furthermore, if P is a k-stacked d-polytope then T (∂P) provides
a geometric triangulation of P; see [28, Thm. 1.2]. In particular, the p-images of
vertices of any d-face of T (∂P) are affinely independent.

Assume that 0 ≤ k ≤ d/2 − 1 and that � is a k-stacked (d − 1)-sphere with a d-
embedding p. The complex T (�) is d-dimensional; hence, to talk about stress spaces
of T (�), we need to specify a map p̃ : V (T (�)) = V (�) → R

d+1. We define such p̃
by p̃(v) := (p(v), 1). The important thing to notice is that since Skeld−k−1(T (�)) =
Skeld−k−1(�), it follows from the definition of p̃ that Sa

j (�, p) = S�
j (T (�), p̃) for

all j ≤ d/2.
Another thing to notice is that by definition of T (�), I(T (�)) is precisely the set

of missing faces of � of dimension ≥ d − k and

T (�) =
⋃

F∈I(T (�))

st(F, T (�)) =
⋃

F∈I(T (�))

F ∗ SF ,

where S(F) = lk(F, T (�)) is an R-homology sphere of dimension d − |F | ≤ k − 1;
in particular, SF ⊆ �.

We are now ready to prove the following case of Conjecture 1.2.
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Theorem 7.1 Let 1 ≤ i ≤ k ≤ d/2 − 1. Let � be a k-stacked (d − 1)-sphere
that has no missing faces of dimension ≥ d − i + 1. Let p be a d-embedding of
� such that the p-images of vertices of any d-face of T (�) are affinely independent.
ThenSa

1 (�, p) = span
{
∂μω : ω ∈ Sa

i (�, p), μ ∈ Mi−1(V (�))
}
, and soSa

i (�, p)
determines Sa

1 (�, p). In particular, if P is a k-stacked d-polytope, then the space of
affine i-stresses of P determines P up to affine equivalence.

Proof Since Sa
j (�, p) = S�

j (T (�), p̃) for all j ≤ d/2, it suffices to show that

S�
i (T (�), p̃) determines S�

1(T (�), p̃). Also, since the p-images of vertices of any
d-face of T (�) are affinely independent, the p̃-images of these vertices are linearly
independent. Finally, by our assumptions, the dimension of each F appearing in the
decomposition T (�) = ⋃

F∈I (T (�)) F ∗ SF is ≤ d − i , and so each homology sphere
SF in this decomposition has dimension ≥ i − 1. Thus Remark 4.3 applies to T (�)

while Corollary 3.5 applies to each F ∗ SF . We obtain that

span
{
∂μω : ω ∈ S�

i (T (�), p̃), μ ∈ Mi−1(V (�))
}

⊇
∑

F∈I(T (�))

span
{
∂xGω : ω ∈ S�

i (F ∗ SF , p̃), G ∈ SF , |G| = i − 1
}

(∗)=
∑

F∈I(T (�))

S�
1

(
F ∗ SF , p̃

)

=
∑

F∈I(T (�))

S�
1 (st(F, T (�)), p̃)

(†)= S�
1 (T (�), p̃) .

Here (∗) is by Corollary 3.5 and (†) is by Remark 4.3. The result follows. ��
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Appendix A: Proof of Conjecture 4.5

The goal of this Appendix is to sketch the proof of Conjecture 4.5.

Theorem A.1 Let (�, p) be either the boundary complex of a simplicial d-polytope
with its natural embedding p, or a Z/2Z-homology (d − 1)-sphere with a generic
embedding p, and let i be a natural number such that i ≤ �(d − 1)/2�. Then
Sa
i (�, p) = ∑

v∈V (�) Sa
i (st(v), p).

The proof uses the (dual) language of the Stanley–Reisner rings. Specifically,
we denote by R[�] the Stanley–Reisner ring of � and, for a face τ of �, we
denote by R[st(τ )] the Stanley–Reisner ring of the star of τ in �, considered as
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an R[�]-module. As in Sect. 3.1, we let 
 = 
(p) be the collection of d + 1 linear
forms (θ1, . . . , θd , θd+1) in R[X ] determined by p. In particular, θd+1 = ∑

v∈V xv .
Finally, for a graded R[�]-module M and any integer j , we denote by Mj the j-th
graded component of M . Some computations below rely on a simple observation that
R[st(τ )] j = 0 for all j < 0.

The statement that Sa
i (�, p) = ∑

v∈V (�) Sa
i (st(v), p) is easily seen to be equiva-

lent to the statement that the map
(
R[�]/(
)

)
i → ∑

v∈V (�)

(
R[st(v)]/
R[st(v)])i ,

induced by natural surjections R[�] → R[st(v)], is injective. To establish this result
we adapt the proof of Theorem 33 from [3]. The key new idea is to look at the Koszul
complex K ∗(
) w.r.t. all d + 1 elements (θ1, . . . , θd , θd+1) of 
(p) rather than just
w.r.t. the first d elements. Our assumptions on (�, p) along with the g-theorem (see
[25, 34] for the case of polytopes and [18, Thm. 1.3] for the case of spheres) imply that
R[�] is a Cohen–Macaulay ring of Krull dimension d, that the sequence θ1, . . . , θd
is a regular sequence on R[�], and that the map ·θd+1 : (

R[�]/(θ1, . . . , θd)
)
j−1 →

(
R[�]/(θ1, . . . , θd)

)
j is injective for all j ≤ �d/2�. Similar statements apply to

R[st(τ )] for any face τ of�. Specifically, θ1, . . . , θd is a regular sequence onR[st(τ )]
and

·θd+1 : (
R[st(τ )]/(θ1, . . . , θd)R[st(τ )]) j−1 → (

R[st(τ )]/(θ1, . . . , θd)R[st(τ )]) j
is injective for all j ≤ �(d − |τ |)/2�.

The above paragraph and standard results about Koszul complexes (such as Theo-
rem 21 in [3]) imply that for any face τ and any integer j , the following complex of
vector spaces over R

0 → R[st(τ )] j−d−1 ⊗ K 0(
)
∂0→ R[st(τ )] j−d ⊗ K 1(
)

∂1→ · · ·
→ R[st(τ )] j−1 ⊗ Kd(
)

∂d→ R[st(τ )] j ⊗ Kd+1(
)

→ (
R[st(τ )]/
R[st(τ )]) j → 0

is almost exact, namely,

(*) all cohomologies of this complex, except possibly for Hd , vanish, and
(**) if j ≤ �(d − |τ |)/2�, then Hd also vanishes.

We now proceed as in the proof of [3, Thm. 33]. Let �( j) denote the set of j-faces
of �. (In particular, �(0) = V (�).) Let P∗ = P∗(�) be the partition complex

0 → R[�] →
⊕

v∈�(0)

R[st(v)] → · · · →
⊕

σ∈�(d−1)

R[st(σ )] → 0

with indexing such that P−1 = R[�] and P j = ⊕
τ∈�( j) R[st(τ )] for j ≥ 0. Let

K̃ ∗(
) be the augmented Koszul complex w.r.t. 
 = 
(p), i.e., the complex

K 0(
) → · · · → Kd+1(
) → K̃ d+2(
) := R[�]/(
) → 0.
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Finally, letC∗,∗ be the double complex P∗⊗ K̃ ∗(
) endowedwith the grading defined
in [3, Sect. 5.1.1].

We fix i ≤ �(d − 1)/2� = �(d − 2)/2� and consider the i-th graded piece of C∗,∗,
C∗,∗

i . The outline of the proof is as follows. Properties (*) and (**) above along with
[3, Lem. 8] applied in the vertical direction of C∗,∗

i imply that Hd
(
Tot

(
C∗,∗

i

)∗) =
Hd+1

(
Tot

(
C∗,∗

i

)∗) = 0. This in turn implies that Hd
(
Tot

(
C∗,∗≤d+1

i

)∗) is isomor-

phic to Hd+1
(
C∗−d−2,d+2

i

)
. It then follows that the kernel of themap

(
R[�]/(
)

)
i →

∑
v∈V (�)

(
R[st(v)]/
R[st(v)])i is isomorphic to Hd

(
Tot

(
C∗,∗≤d+1

i

)∗). Now, by [3,
Prop. 26], P∗

t is exact for all t �= 0 and since � is Cohen–Macaulay, the only nontriv-
ial cohomology that P∗

0 has is Hd−1. Finally, applying [3, Lem. 8] in the horizontal

direction of C∗,∗≤d+1
i , we conclude that Hd

(
Tot

(
C∗,∗≤d+1
i

)∗) = 0, and so the map(
R[�]/(
)

)
i → ∑

v∈V (�)

(
R[st(v)]/
R[st(v)])i is injective. This completes the

proof. ��

References

1. Adiprasito, K.: Toric chordality. J. Math. Pures Appl. 108(5), 783–807 (2017)
2. Adiprasito, K.: Combinatorial Lefschetz theorems beyond positivity. arXiv:1812.10454v4 (2018)
3. Adiprasito, K., Yashfe, G.: The partition complex: an invitation to combinatorial commutative algebra.

In: Surveys in Combinatorics 2021. London Mathematical Society. Lecture Note Series, vol. 160, pp.
1–41. Cambridge University Press, Cambridge (2021)

4. Adiprasito, K., Nevo, E., Samper, J.A.: A geometric lower bound theorem. Geom. Funct. Anal. 26(2),
359–378 (2016)

5. Adiprasito, K., Papadakis, S.A., Petrotou, V.: Anisotropy, biased pairings, and the Lefschetz property
for pseudomanifolds and cycles. arXiv:2101.07245v2 (2021)

6. Asimow, L., Roth, B.: The rigidity of graphs. Trans. Am. Math. Soc. 245, 279–289 (1978)
7. Asimow, L., Roth, B.: The rigidity of graphs II. J. Math. Anal. Appl. 68(1), 171–190 (1979)
8. Athanasiadis, C.A.: Some combinatorial properties of flag simplicial pseudomanifolds and spheres.

Ark. Mat. 49(1), 17–29 (2011)
9. Bagchi, B., Datta, B.: On stellated spheres and a tightness criterion for combinatorial manifolds. Eur.

J. Comb. 36, 294–313 (2014)
10. Barnette, D.: Graph theorems for manifolds. Israel J. Math. 16, 62–72 (1973)
11. Barnette, D.: A proof of the lower bound conjecture for convex polytopes. Pac. J. Math. 46, 349–354

(1973)
12. Billera, L.J., Lee, C.W.: A proof of the sufficiency ofMcMullen’s conditions for f -vectors of simplicial

convex polytopes. J. Comb. Theory Ser. A 31, 237–255 (1981)
13. Cruickshank, J., Jackson,B., Tanigawa, S.:Global rigidity of triangulatedmanifolds. arXiv:2204.02503

(2022)
14. Fleming, B., Karu, K.: Hard Lefschetz theorem for simple polytopes. J. Algebraic Comb. 32(2), 227–

239 (2009)
15. Fogelsanger, A.: The generic rigidity of minimal cycles. PhD thesis, Cornell University (1988)
16. Kalai, G.: Rigidity and the lower bound theorem I. Invent. Math. 88, 125–151 (1987)
17. Kalai, G.: Some aspects of the combinatorial theory of convex polytopes. In: Polytopes: Abstract,

Convex and Computational (Scarborough, ON, 1993). NATO Advanced Science and Institutional
Series C Mathematics and Physical Science, vol. 440, pp. 205–229. Kluwer Academic, Dordrecht
(1994)

18. Karu, K., Xiao, E.: On the anisotropy theorem of Papadakis and Petrotou. Algebr. Comb. 6(5), 1313–
1330 (2023)

19. Klee, S., Nevo, E., Novik, I., Zheng, H.: A lower bound theorem for centrally symmetric simplicial
polytopes. Discrete Comput. Geom. 61, 541–561 (2019)

123

http://arxiv.org/abs/1812.10454v4
http://arxiv.org/abs/2101.07245v2
http://arxiv.org/abs/2204.02503


956 Discrete & Computational Geometry (2024) 72:928–956

20. Lee, C.W.: Generalized stress and motions. In: Polytopes: Abstract, Convex and Computational (Scar-
borough, ON, 1993). NATO Advanced Science and Institute Series C Mathematics and Physical
Science, vol. 440, pp. 249–271. Kluwer Academic, Dordrecht (1994)

21. Lee, C.W.: PL-spheres, convex polytopes, and stress. Discrete Comput. Geom. 15(4), 389–421 (1996)
22. Lee, C.W.: The g-theorem. https://www.ms.uky.edu/~lee/ma715sp02/notes.pdf (2002)
23. McMullen, P.: Themaximum numbers of faces of a convex polytope.Mathematika 17, 179–184 (1970)
24. McMullen, P.: On simple polytopes. Invent. Math. 113(2), 419–444 (1993)
25. McMullen, P.: Weights on polytopes. Discrete Comput. Geom. 15(4), 363–388 (1996)
26. Meshulam, R.: Domination numbers and homology. J. Comb. Theory Ser. A 102(2), 321–330 (2003)
27. Murai, S.: Tight combinatorial manifolds and graded Betti numbers. Collect. Math. 66(3), 367–386

(2015)
28. Murai, S., Nevo, E.: On the generalized lower bound conjecture for polytopes and spheres. Acta Math.

210(1), 185–202 (2013)
29. Nevo, E., Novinsky, E.: A characterization of simplicial polytopes with g2 = 1. J. Comb. Theory Ser.

A 118(2), 387–395 (2011)
30. Novik, I., Zheng, H.: The stresses on centrally symmetric complexes and the lower bound theorems.

Algebr. Comb. 4(3), 541–549 (2021)
31. Novik, I., Zheng, H.: Reconstructing simplicial polytopes from their graphs and affine 2-stresses. Isr.

J. Math. 255(2), 891–910 (2023)
32. Pachner, U.: PL homeomorphic manifolds are equivalent by elementary shellings. Eur. J. Comb. 12(2),

129–145 (1991)
33. Papadakis, S.A., Petrotou, V.: The characteristic 2 anisotropicity of simplicial spheres.

arXiv:2012.09815 (2020)
34. Stanley, R.P.: The number of faces of a simplicial convex polytope. Adv. Math. 35, 236–238 (1980)
35. Stanley, R.P.: Combinatorics andCommutativeAlgebra. Progress inMathematics, 2nd edn.Birkhäuser,

Boston (1996)
36. Swartz, E.: g-Elements, finite buildings and higher Cohen–Macaulay connectivity. J. Comb. Theory

Ser. A 113(7), 1305–1320 (2006)
37. Tay, T.-S., White, N., Whiteley, W.: Skeletal rigidity of simplicial complexes I. Eur. J. Comb. 16(4),

381–403 (1995)
38. Tay, T.-S., White, N., Whiteley, W.: Skeletal rigidity of simplicial complexes II. Eur. J. Comb. 16,

503–523 (1995)
39. Whiteley, W.: Infinitesimally rigid polyhedra. I. Statics of frameworks. Trans. Am. Math. Soc. 285(2),

431–465 (1984)
40. Zheng, H.: Face enumeration on flag complexes and flag spheres. In: Hibi, T., Tsuchiya, A. (eds.) Alge-

braic and Geometric Combinatorics on Lattice Polytopes, pp. 435–449. World Scientific, Singapore
(2019)

41. Zheng, H.: The rigidity of the graphs of homology spheresminus one edge. DiscreteMath. 343, 112135
(2020)

42. Ziegler, G.M.: Lectures on Polytopes. Graduate Texts in Mathematics, vol. 152. Springer, New York
(1995)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

https://www.ms.uky.edu/~lee/ma715sp02/notes.pdf
http://arxiv.org/abs/2012.09815

	Affine Stresses: The Partition of Unity and Kalai's Reconstruction Conjectures
	Abstract
	1 Introduction
	1.1 Partition of Unity
	1.2 Affine Stresses and Kalai's Conjectures
	1.3 Organization of the Paper

	2 Preliminaries on Polytopes, Spheres, and Pseudomanifolds
	3 Paving the Way: The Spaces of Linear and Affine Stresses
	3.1 Stresses and h- and g-Numbers
	3.2 The Cone Lemma and Supports of Affine Stresses
	3.3 The Partition of Unity of Linear Stresses

	4 The Partition of Unity of Affine Stresses
	5 A Warm-Up: Reconstructing from Affine 2-Stresses
	6 Reconstructing from Higher Affine Stresses
	6.1 Polytopes and Flag Spheres
	6.2 An Interlude: g-Numbers of Flag Spheres
	6.3 Sign Vectors of Affine Stresses

	7 k-Stacked Spheres
	Acknowledgements
	Appendix A: Proof of Conjecture  4.5
	References




