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Abstract 

In this work, we developed and applied a physics-guided autonomous model process control 

approach called DynamicPrint to mitigate defects in laser powder bed fusion (LPBF) additive 

manufacturing. Currently, the processing parameters for LPBF of a specific material are optimized 

through empirical testing of simple-shaped coupons. These optimized parameters are typically 

maintained constant when printing complex parts. However, using constant parameters often 

causes uneven temperature distribution in complex parts, leading to such defects as 

inhomogeneous microstructure, poor surface finish, thermal-induced distortion, and build failures. 

By contrast, DynamicPrint autonomously adjusts the processing parameters layer-by-layer before 

an LPBF part is printed to prevent non-uniform temperature distribution and mitigate thermal-

induced defects. The a priori process parameter adjustments in DynamicPrint are guided by rapid 

physics-based thermal simulations. Through experiments with complex stainless steel 316L LPBF 

parts, we demonstrate the following beneficial outcomes of DynamicPrint: (i) homogenous grain 

sizes and consistent properties (microhardness); (ii) improved geometric accuracy and surface 

integrity of hard-to-access internal features; and (iii) avoidance of recoater crashes and elimination 

of supports in parts with prominent overhang features. DynamicPrint can greatly accelerate the 

time-to-market for LPBF parts by offering a rapid, physics-based method for process qualification, 

unlike the current cumbersome and expensive empirical build-and-test approach. 
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1 Introduction 

1.1 Objective and Motivation 

This work concerns the laser powder bed fusion (LPBF) additive manufacturing process 

(Figure 1). The objective is to develop and apply a physics-based control approach termed 

DynamicPrint to autonomously adjust the processing parameters layer-by-layer for LPBF 

manufactured parts before they are printed. DynamicPrint, which is an embodiment of model 

predictive feedforward control, uses a priori validated physics-based thermal simulations to 

mitigate deleterious temperature trends that can cause defect formation in LPBF parts [1, 2]. 

DynamicPrint can potentially accelerate the time-to-market of LPBF parts by restraining the need 

for extensive build-and-test empirical studies toward process qualification.  

The LPBF process is advantageous for manufacturing complex, high-value components which 

are difficult to create with traditional subtractive and formative techniques. As shown in recent 

industry case studies, the process enables significant reduction in manufacturing lead times, 

simplifies manufacturing by reducing the part count, and mitigates waste [3]. For example, 

recently, NASA successfully tested a rotating detonation engine with LPBF-manufactured fuel 

injectors that can potentially improve specific impulse up to 15% over existing rocket engines [4, 

5]. Despite the capabilities of LPBF, adoption of the technology in safety-critical industries has 

been limited. A key barrier is the tendency of the process to produce flaws, such as porosity, 

distortion, and heterogenous microstructure [6]. These flaws, which are difficult to correct with 

post-process machining or heat treatment, can cause considerable variation in surface finish, 

geometric accuracy, mechanical properties, among other, leading to uncertainty in functional 

integrity of the part [7-10].  
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Figure 1: Schematic of the laser powder bed fusion (LPBF) process. 

Flaw formation and inconsistent part properties are principally driven by the spatiotemporal 

temperature distribution in the part during the printing process [11]. The spatiotemporal 

temperature distribution, also called the thermal history, is governed by a large number of factors, 

such as part geometry, time between layers, orientation, support placement, processing parameters, 

and material selection, among others [12-14]. Due to the complex physical relationships 

underpinning these factors, the processing parameters and build conditions for a specific part shape 

are currently optimized through an empirical build-and-test approach [15, 16].  

Researchers have noted that processing parameters optimized based on empirical testing of 

simple cuboid shapes seldom transfer to complex shapes [17]. Thus, further rounds of build-and-

test iterations are frequently required to adjust the processing parameters to specific part shapes 

and build orientations.  Indeed, Mohr et al. [17] recently reported that the processing window and 

part characteristics shift significantly when parameters optimized based on test cubes were used to 

produce relatively complex parts. This is because, thermal history of complex parts is not constant, 

but changes between layers of the same part. Some features, such as thin walls and overhangs, 
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retain more heat than others [2, 18]. As a consequence of this uneven temperature distribution, 

microstructure characteristics, such as grain size and microhardness often vary between different 

sections of the part [19].  

To illustrate, Figure 2 shows an LPBF-produced stainless steel 316L impeller [20]. The part 

was manufactured under a priori optimized processing conditions suggested by the powder 

manufacturer. The processing parameters were maintained constant throughout the build. Thermal 

simulations predicted that the fins of the impeller tend to overheat due to their narrow cross-section 

compared to its base. This uneven temperature distribution caused conspicuous anisotropy in the 

grain texture and orientation, as well as the occurrence of lack-of-fusion porosity as evident from 

electron backscatter diffraction imaging [20].  

 
Figure 2: Manufacturing a complex LPBF part under constant processing conditions causes 

uneven temperature distribution, which in turn results in anisotropy and flaw formation as evident 

in the difference between the base in fin sections of the impeller part [20].  

Since functional qualification of a practical part is predicated on extensive materials 

characterization and testing, it is estimated that the repetitive, empirical-reliant legacy approach to 

qualify the process for every new part often requires several years and costs millions of dollars 
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[21]. The qualification processes must be repeated if the part design or the build conditions are 

changed [22, 23]. The physics-based thermal simulation and control theory integrated 

DynamicPrint approach developed in this work, summarized in the following section (Sec. 1.2), 

has the potential to accelerate process qualification, and mitigate the cost and time needed for 

empirical studies.  

1.2 Approach, Novelty, and Limitations 

This work presents a physics-based approach to autonomously control the thermal history, 

and consequently mitigate flaw formation in LPBF parts, and overcome the expense and lack of 

transferability associated with empirically optimized LPBF processing conditions. The key idea 

behind DynamicPrint is to integrate predictions from a computational thermal simulation with a 

process control approach called model predictive control (MPC). Modeling and control are 

considered among the highest priority needs for realizing the potential of LPBF [24].  

We emphasize that the aim of DynamicPrint is process control in LPBF. This aim is distinctive 

from offline process optimization based on design of experiments. Starting with part shape, 

material properties and manufacturer-recommended processing parameters, DynamicPrint 

autonomously adjusts the parameters layer-by-layer before the LPBF part is printed such that the 

predicted thermal history of the part matches a user-identified ideal thermal history. Subsequently, 

the controller-recommended process parameters are implemented by the slicing software of the 

LPBF machine (EOS Build) by the operator. DyamicPrint is therefore an embodiment of model 

predictive feedforward control; no changes to the processing parameters are made during the 

printing process through feedback control.  

The DynamicPrint approach presented in this work is a significant departure from the current 

build-and-test methodology that prescribes maintaining processing parameters constant 
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throughout all layers regardless of the geometry of the part. Indeed, to the best of our knowledge, 

it is one of the first works in physics-guided control in LPBF which autonomously produces a 

layer-by-layer process plan for an entire part customized to its shape and build orientation before 

it is printed. A summary of existing process control approaches in LPBF is provided in Sec. 2. The 

approach has the unique ability to achieve a desired thermal history by employing rapid graph 

theory-based computational thermal modeling.  

Through experiments with different part shapes followed by comprehensive materials 

characterization, we demonstrate the following advantages from using the physics-based 

DynamicPrint approach: (i) reduction in microstructure heterogeneity resulting in consistent part 

properties, namely microhardness; (ii) improvement in geometric accuracy and surface integrity 

of hard to access internal features; and (iii) elimination of recoater crash and supports in parts with 

prominent overhang features. This work thus provides an avenue for rapid and shape agnostic 

LPBF process qualification based on thermal physics, as opposed to cumbersome empirical 

optimization. 

 
Figure 3: Overview of the model predictive control (MPC) DynamicPrint approach employed in 

this work to autonomously identify optimal LPBF process parameters before the part is built. 

Shown here is an example of a complex bell crank geometry in order to control end-of-cycle part 

temperature. The approach has four steps: (1) Predict, (2) Identify, (3) Parse, and (4) Select. Steps 

3 and 4 are iterative.   
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The DynamicPrint approach consists of four steps as summarized in Figure 3.  These four 

steps are labeled as: (1) Predict, (2) Identify, (3) Parse, and (4) Select, and are briefly described 

herewith.  

• Step 1 (Predict): Given a part geometry, orientation, materials properties, starting processing 

conditions suggested by the manufacturer and boundary heat transfer conditions, the thermal 

history of the part is predicted using a rapid and meshless, graph theory-based thermal 

simulation model developed in our previous work [2, 19, 25]. Figure 3 exemplifies a complex 

bell crank shape whose model-predicted thermal history depicts heat accumulation and large 

variation in temperature between layers when printed under default manufacturer 

recommended conditions. 

• Step 2 (Identify): In the predicted thermal history of the part from Step 1, deleterious thermal 

trends, such as overheating, are demarcated, and the ideal or target thermal history (T̂ideal) 

devoid of such undesirable trends is identified. For the bell crank, an ideal thermal history 

was identified as one devoid of large temperature variations and having a uniform thermal 

history. 

• Step 3 (Parse): The thermal history of the part for a select number of future layers is predicted 

using the graph theory thermal model with different process parameter inputs, such as 

changing laser power levels. Constraints motivated from practice are placed on the bounds 

of the processing parameters.  In this work, only the laser power was adjusted, and every 

simulation epoch consists of five future layers. To avoid keyhole porosity and lack-of-fusion, 

the laser power is constrained to five discrete levels between 225 W and 146 W, respectively.  

• Step 4 (Select): Pick those processing parameters from Step 3 that result in the closest match 

with the corresponding layers for the ideal thermal history (T̂ideal) identified in Step 2.  
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Steps 3 and 4, which constitute together the core concept of DynamicPrint, are repeated 

iteratively for the whole part [26].  Thus, DynamicPrint entails iterative optimization of the thermal 

history at each simulation epoch. The outcome is a layer-by-layer process plan for a part, such that 

the predicted thermal history of the part closely matches a pre-determined ideal thermal history 

(T̂ideal). The approach thus autonomously adjusts the process parameters layer-by-layer before the 

part is printed such that the model-predicted thermal history of a part matches a predetermined 

ideal or target thermal history. In this context, we clarify that the thermal history was controlled at 

the layer-level and not at discrete individual material points. The specific thermal history control 

metric is called average end-of-cycle temperature (Te), viz., the average steady state temperature 

of a layer after it is melted.  Whilst the DynamicPrint approach can be readily scaled for controlling 

the thermal history at discrete, individual material points, the commercial LPBF machine used in 

this work prevents point-wise process parameter control.  As depicted in Figure 3, it is not possible 

for the final thermal history to match exactly the ideal thermal history in practice due to constraints 

placed on the adjustable levels of processing parameters. 

The most computationally demanding aspect of DynamicPrint is in Step 3 (Parse), where the 

thermal history is estimated as a function of different process parameter levels. Further, the control 

schema is iterative in nature as it repeats Steps 3 and 4 at each simulation epoch. Physics-based 

model predictive control (MPC) approaches, akin to DynamicPrint, for autonomous LPBF process 

optimization have not been implemented because iterative prediction of the thermal history using 

existing finite element (FE) based modeling is computationally demanding [27]. The key enabler 

of DynamicPrint is the meshless graph theory approach for prediction of thermal history used in 

this work which is an order of magnitude faster than FE modeling [2, 18]. Although commercial 

FE-based solutions for thermal modeling can drastically reduce the computation time compared to 
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research-level FE solutions, they do not currently incorporate the ability to autonomously prescribe 

adjustment of parameters to compensate for potential heat retention [28].  To overcome these 

limitations, researchers are actively developing rapid modeling techniques, including surrogate 

models, and leveraging GPU-accelerated FE simulations [22, 29-32]. 

A limitation of the DynamicPrint approach is that only one processing parameter, the laser 

power, is adjusted. Whilst, apart from laser power, other key process input variables, such as the 

laser velocity, hatch spacing, and layer height could be adjusted within both the model and LPBF 

machine, these are not attempted due to the computational complexity associated with adjusting 

multiple variables simultaneously within a controller. Adjustment of laser velocity is not adopted 

because increasing the velocity to decrease heat retention is liable to create meltpool instability 

and spatter [33]. Moreover, increasing the laser velocity also reduces the time between layers, 

which exacerbates heat retention. On the other hand, reducing the laser velocity is liable to increase 

the processing time and cause keyhole porosity  [33]. Changing of layer height would be time 

inefficient and error prone as it requires mechanical positioning of the powder bed. Lastly, 

increasing hatch spacing to decrease heat retention may cause poor consolidation of tracks within 

a layer, resulting in lack-of-fusion porosity [34].  In other words, adjusting the laser power offers 

both the most rapid and practically viable approach for control of thermal history without 

sacrificing process stability and efficiency. Thus, adjusting the laser power offers both the most 

rapid and practically viable approach for control of thermal history without sacrificing process 

stability and efficiency (time). 

Note on difference from the authors’ prior work. In one of our previous published works, we 

implemented a feedforward control approach for LPBF which involved changing the laser power 

and inter-layer dwell time between layers [18]. In this prior work, described in Ref. [18], we 
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demonstrated that changing the laser power and increasing the dwell time between layers to 

mitigate heat accumulation resulted in consistent microstructure and improvement in geometric 

resolution compared to parts built under constant processing conditions. However, this previous 

work has the following two significant limitations which are remedied by the model predictive 

control DynamicPrint approach presented in the current work.  First, in our prior work there was 

no target or ideal thermal history, i.e., there is no Identify Step 2 in Figure 3. The aim of the prior 

work was to only mitigate the large-scale heat buildup. Therefore, unlike DynamicPrint, the prior 

heuristic feedforward approach was unable to control the thermal history to a specific desired or 

target trend.  Second, the parameter adjustments (laser power and dwell time) to mitigate heat 

accumulation were based purely on operator intuition and several hours of manual, trial-and-error 

simulations. By contrast, the DynamicPrint approach is autonomously adjusts the process 

parameters. Lastly, in DynamicPrint only the laser power was adjusted, the dwell time was not 

adjusted because it increases the processing time and diminishes productivity. 

The rest of this paper is organized as follows. In the forthcoming Sec. 2, we briefly review the 

existing literature in process control in LPBF, and identify the gaps in the state-of-the-art. Sec. 3 

describes the experimental setup, build plan, exemplar parts studied, and methods for their 

characterization. Discussed in Sec. 4 is the development of model predictive process control 

approach, including a brief overview of thermal modeling using graph theory, and model 

validation. The results from applying DynamicPrint to three exemplar parts are reported in Sec. 5. 

Finally, summarized in Sec. 6 are conclusions and avenues for further research.  
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2  Literature Review of Process Control Approaches in LPBF 

Process control, outlined in Figure 4,  can be segmented into two broad approaches, namely, 

closed-loop, feedback control; and open-loop, feedforward control [35, 36]. The implementation 

of these approaches in the literature in the context of LPBF is discussed herewith. The 

DynamicPrint approach presented in this work falls in the category of feedforward control. 

 
Figure 4: Comparison of closed-loop, feedback control and open-loop, feedforward control 

strategies. The DynamicPrint MPC approach presented in this work falls under the feedforward 

process control category.  

2.1 Closed-Loop, Feedback Process Control  

Referring to Figure 4, closed-loop control incorporates feedback from sensor(s) that measure 

the state of the process output y(t), i.e., sensor(s) are connected to the output side of the process. 

Contingent on the data acquired from the sensors, the controller accesses the magnitude of a 

process drift e(t) = r(t) – y(t), if any, from the desired setpoint r(t) and produces a control signal 

u(t) based on a mathematical model or heuristic algorithm to adjust the processing parameters 

designed to return the process to its nominal state. Thus, feedback control is reactive in nature as 

the control signal is generated after a process drift has been detected by sensors. Hence, there is an 

inherent lag before the process is returned to its nominal state [37].  

Closed-loop, feedback control methods in LPBF use feedback from sensors, such as 

pyrometers, infrared thermal cameras, photodiodes, among others, to detect process drifts, and 

subsequently correct these by changing processing parameters [35, 38]. We note that there are 

currently no commercially available LPBF systems with an integrated feedback control 
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mechanism [39].  An example of closed-loop control in LPBF was recently exemplified on a 

custom-built LPBF-setup by Wang et. al. [40]. They used photoresistors instrumented coaxially to 

the laser beam to observe the meltpool thermal emissions in the visible light spectrum. A feature 

called the thermal emission index was subsequently derived from the sensor data. The magnitude 

of the thermal emission index was used as the feedback signal to modulate the laser power via a 

proportional integral derivative controller. Wang et al. [40], demonstrated with single-layered 

parts made of Inconel 625 that control of the thermal emission resulted in a substantial mitigation 

in surface defects, including a reduction in overmelting, swelling and balling.  

Renken et. al. [41]  developed a closed-loop with LPBF control system using a pyrometer to 

detect the meltpool intensity. The controller compared the pyrometer signal to a predetermined set 

point and used proportional control to modify the laser power. When applied to a bridge-shaped 

part, the controller significantly reduced heat accumulation. A similar approach was applied by 

Adnan et. al. [42], who used two sensors, a coaxial and off-axis optical camera, to control and 

maintain a consistent meltpool emission in the LPBF process. The feedback controller was 

augmented by the off-axis optical camera, which assessed the surface quality through image 

analysis before and after the recoating process, and dynamically altered the targeted meltpool 

emission setpoint. The controller subsequently modulated the laser power and scan speed of cuboid 

geometries to improve subsequent layer quality.  

Vasileska et. al. [43] used  near infrared, co-axial imaging of the meltpool, specifically, 

meltpool shape and size as the control target. Process control was achieved through alteration of 

the duty cycle of a pulsed laser. This approach improved feature resolution of bridge-shaped parts, 

where reducing local heat accumulation prevented over-melting and geometric deviation. Instead 

of meltpool-based sensing, Kavas et al. [44] used an off-axis infrared thermal camera to acquire 
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the interlayer part temperature. The interlayer temperature is stabilized layer-by-layer to avoid 

overheating. This is achieved by changing the laser power applied to the subsequent layer to 

maintain a constant inter-layer temperature. Kavas et al. [44] showed that the use of process control 

improved tensile strength in samples when compared to parts created without control of process 

parameters.  

Recently, Malekipour et al. [45] proposed a theoretical framework for the control of LPBF by 

optimizing the scan sequence. The proposed strategy uses layerwise thermal tomography to 

identify localized heat accumulation caused by the previous layer scan strategy. This information 

is passed to thermophysical models similar to the graph theory thermal modeling approach used 

in this work. Information from the model is used to guide an optimization algorithm, which 

changes the subsequent layer scanning sequence. This adaptive scanning is hypothesized to reduce 

residual stress and part distortion. Recently, commercial LPBF systems with integrated feedback 

control mechanisms are being actively implemented [38, 39, 46]. For example, EOS recently 

introduced a closed-loop control system that dynamically adjusts the laser power to mitigate heat 

build-up, thus reducing need for of support structures [46]. 

2.2 Open-Loop, Feedforward Process Control (This work) 

As outlined in Figure 4, open-loop or feedforward control does not incorporate feedback from 

the output state y(t) of the process. Instead, disturbances are detected on the input side of the 

process. A physics-based or empirical model predicts the effect of the disturbance on the process 

output 𝑦̂(𝑡). Based on the estimated drift, 𝑒̂(𝑡) = 𝑟(𝑡) − 𝑦̂(𝑡), from the setpoint r(t) the controller 

and generates an appropriate control signal u(t) to adjust the process parameters to avoid a 

potentially deleterious process drift before it occurs [36]. However, stochastic process drifts that 

affect the process output are not detected nor corrected in the feedforward, open-loop framework. 
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With this brief summary, we now describe the application of closed-loop and open-loop control to 

LPBF with the aid of select publications from the literature.  

In the LPBF context, process adjustments in open-loop or feedforward control are made to the 

build plan before printing to compensate for a predicted process deviation. For example, the 

temperature distribution changes contingent on the cross-section, and certain features, such as 

overhangs, thin walls and internal channels tend to overheat. These predictions of the process 

deviation can be obtained using empirically derived or physics-based models, or a combination of 

the two approaches [22]. Based on insights from the model, the process parameters can be adjusted 

a priori to avoid deleterious thermal trends. The DynamicPrint approach in this work uses a 

physics-based thermal model to guide parameter adjustment before printing; it is a form of 

feedforward control.  

An example of empirical model-based open-loop control was demonstrated by Yueng et. al. 

[47]. Their work developed a parameter termed geometric correction factor, which adjusts laser 

power a priori in response to the continually changing geometry. The geometric correction factor 

reduces the laser power when printing overhang regions. As a result, heat retention in the overhang 

was mitigated, which improved surface roughness. While the approach was computationally 

efficient, limited shapes were tested, and specific functional properties were not controlled.  

An example of a model-based open-loop control in LPBF was demonstrated by Druzgalski et. 

al. [22]. They used the ALE3D FE simulation application developed by Lawrence Livermore 

National Laboratory [48]. Hatch-level thermal simulations were used as an input to a heuristic 

open-loop control strategy, which reduced heat accumulation in parts. This approach was 

demonstrated on a complex shape, which was tested with nominal parameters and the process 



15 

 

parameters recommended by the feedforward control approach. The part produced with open-loop 

control showed improved surface and geometric integrity.  

Wang et. al. [49] demonstrated the application of an open-loop control approach to limit 

formation of meltpool modes known to cause keyhole and lack-of-fusion porosity in LPBF. A FE-

based model was developed to predict the change in thermal history of an LPBF geometry with 

two and five layers respectively. Controlling the laser power on a track level enabled a reduction 

of keyhole porosity formation. Ogoke et. al. [50] demonstrated the application of machine learning 

to open-loop control in LPBF. They used reinforcement learning to minimize defect formation 

occurrence in the LPBF process. The reinforcement learning algorithm attempted to maximize an 

empirically derived optimal meltpool distribution, and altered the process parameter conditions to 

maximize the time spent in this optimal meltpool condition.  Recently, He et al.  [31, 51] developed 

and applied a reduced order model for hatch-level simulation of the thermal history and resulting 

residual stresses. Their approach develops a custom scan strategy termed SmartScan that 

successfully reduces thermal-induced residual stresses and distortion in stainless steel 316L plate-

like samples compared to default scan strategies. 

In a recent work, Xi [52] compared the performance of closed-loop feedback control and 

feedforward MPC of meltpool width and depth. Xi’s MPC approach is based on machine learning, 

and the feedback control mechanism is a proportional-integral-derivative algorithm. This 

theoretical study concluded that MPC is more effective than feedback control for attaining a 

desired meltpool depth and width. However, the foregoing study by Xi is concerned with meltpool-

level control and does not involve building multi-layer parts [52]. By contrast, the model-

predictive control approach in this work employs a physics-based model; is demonstrated on 
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practical multi-layer parts; and assess the outcome of process control on functionally critical 

aspects of part quality.   

This work differs from the aforementioned open-loop, feedforward control approaches in 

several ways. First, this work focuses on part-scale thermal control, as opposed to meltpool or 

hatch-level control, which is represented in a large body of existing research. Second, this work 

uses a form of iterative simulation to adjust the processing parameters on a layer-by-layer basis. 

This iterative simulation is possible due to the computational efficiency of the graph theory-based 

model [53]. The approach is demonstrated on both simple shaped parts and practical geometries. 

The control algorithm produced a process parameter plan within 5 hours for a complex bell crank 

part in this work. Lastly, we note that commercial LPBF machines change the laser power whilst 

scanning upskin and down-skin features encountered in overhang geometries. However, we 

underscore that the modified up-skin and down-skin process parameters are only applied to the 

contour regions; the process parameters are not altered between layers of the bulk section [54] . 

We note that upskin and downskin parameters suggested by the LPBF machine manufacturer 

(EOS) were also used in this work. Lastly, whilst build software, such as Materialise allow for 

determining build risks, such as possibility of a recoater crash, they do not provide a means to 

autonomously change the processing plan between layers based on a physics-based modeling to 

avoid these thermal-induced failures.   

  



17 

 

3 Methodology 

3.1 Experiment Setup and Build Plan 

In this work, ten stainless steel 316L (SS316L) parts were manufactured on an EOS M290 

LPBF system. A schematic of the setup is shown in Figure 5. The LPBF machine is instrumented 

with a long wave infrared (LWIR) thermal camera to acquire the top surface temperature of each 

layer at a frame rate of 30 Hz. The data from the thermal camera is used for validation of the 

DynamicPrint approach. The camera was calibrated, as detailed in our previous works, to account 

for the effect of thermal emissivity [18]. The nominal processing parameters and other 

experimental conditions are listed in Table 1. The nominal process conditions for SS316L were 

suggested by the powder manufacturer based on prior experimentation. We note that these 

processing conditions include upskin and downskin adjustments suggested by the manufacturer. 

The build plate with exemplar parts used in this work is shown in Figure 6. A total of 10 parts 

encompassing 5 different geometries were created. This paper focuses on results from 7 parts from 

three types of part geometries, labeled as the arch (A), trumpet (T), and bell crank (B). The parts 

range in height from 25 mm to 52 mm tall. The build required 12 hours to complete. Next, we 

describe each of the three geometries featured in this work. Thermal interaction between parts was 

mitigated by maintaining sufficient inter-part spacing, exceeding 10 mm where possible.  

 
Figure 5: (a) Schematic of the EOS M290 system and the FLIR A65 long wave infrared (LWIR) 

camera installed in the system to capture thermal trends. The thermal camera is located outside 
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the build chamber and is focused on the build chamber via an infrared transparent window.  (b) 

Picture of the experimental setup, with position of LWIR camera installed.  

 
Figure 6: The finished build plate used to demonstrate the MPC approach of this work. Ten parts 

were created, with three unique geometries studied, with parts being termed the Arch (A), Trumpet 

(T), and Bell Crank (B). Parts were built with supports (S) and without support material (X), as 

well as, with (C) and without control (U). For example, the A-XC represents an arch-shaped part 

built without supports under controlled conditions.  

Table 1: Processing conditions, materials properties, and sensor settings used in this work.  
Nominal Processing Parameters [Units] Values  

Laser Power, P [W] 195 

Scanning Velocity, V [mm‧s-1] 1083  

Hatch Spacing, H [mm] 0.09  

Layer Thickness, T [mm] 0.02 

Volumetric Global Energy Density Ev [J/mm3]  100 

Build Conditions [Units] Values 

Build Atmosphere Argon 

Build Plate Preheat Temperature [°C] 70 

Recoater Cycle Time or Powder Recoating Time [sec] 10 

Recoater Blade Type  Metal 

Powder Material Properties Values 

Material Type Stainless Steel 316L 

Material Manufacturer Oerlikon 

Powder Size Range [μm] 15 ‒ 45 (D10 ‒ D90) 

IR Thermal Camera Specifications Values 

Brand and Model FLIR A65 

Resolution [pixels], [pixel per mm2] 640 × 512, 103 

Frame Rate [Hz] 30 

Spectral Range [μm] 7.5 to 13  

Temperature Range [°C] 40 to 550 

Camera On Trigger Event Continuous 
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3.2 Exemplar Part Geometries 

Referring to Figure 6, three types of part geometries are studied in this work, namely, arch 

(A), trumpet (T), and bell crank (B). Two more aspects define each of these part geometries. First, 

parts were either built with supports structures (S) or without supports (X). Second, parts were 

either built under nominal processing conditions that remain fixed for all layers, termed 

uncontrolled processing (U) or with layer-by-layer DynamicPrint (C). For example, A-XC 

represents an arch-shaped part without supports processed using DynamicPrint. We herewith 

describe each of these geometries, and their rationale.  

3.2.1 Arch 

Two 25 mm tall arch-shaped parts consisting of 1250 layers were built; these are labeled as 

follows. 

(i) Supported, uncontrolled arch (A-SU) built under uncontrolled conditions with laser power 

fixed at 195 W and solid support material added underneath the overhang. The arch part with 

supports embodies the ideal thermal history (T̂ideal).  

(ii) Unsupported, controlled arch (A-XC) built without support structures and with layer-by-layer 

laser power changes recommended by the model-predictive control strategy. 

The justification of selecting the thermal history of the supported, uncontrolled arch (A-SU) 

as the ideal or target thermal history (T̂ideal) is tendered herewith. In our previous work, it was 

demonstrated that arch-shaped parts with unsupported spans, despite being manufactured under 

optimized processing conditions, caused recoater crashes due to heat accumulation in the overhang 

region [2]. By contrast identical arch-shaped parts with supports avoided recoater crashes [2]. This 

is because, supports provided a thermal pathway to conduct heat away from the overhang region 

thus avoiding recoater crashes [55]. Consequently, parts with supports tend to depict a more even 
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thermal history, which is favorable to several aspects of part quality ranging from surface finish, 

residual stresses to microstructure [55]. Hence, it is customary to build support structures when 

printing large overhang spans.  

A typical design guideline is to support arch-shaped parts with greater than 0.5 mm horizontal 

overhang [56]. However, the supports increase processing time, material, and removal of supports 

requires substantial post-process machining and finishing. It is estimated that post-process support 

removal accounts for as much as 50% of the total cost of an LPBF part [57]. Therefore, it would 

be economically valuable to eliminate supports in arch-shaped parts while avoid build risk, and 

retaining the beneficial aspects of a homogenous thermal history. Consequently, we printed an 

arch-shaped part without supports (A-XC) having the same thermal history as a arch-shaped part 

with support (A-SU).  

The DynamicPrint approach is adapted in the following manner to avoid recoater crashes and 

eliminate support structures in the arch-shaped parts. The laser power, while processing the arch-

shaped part without supports (A-XC), is adjusted layer-by-layer such that its thermal history 

matches the thermal history of the arch-shaped part built with supports (A-SU, T̂ideal). Although 

for comparison purposes it would be desirable to build an arch-shaped part (A-XU) without 

supports under constant (uncontrolled) laser power conditions of 195 W, this is not attempted 

herein as it is highly susceptible to initiate a recoater crash, and as a consequence, jeopardize the 

entire build and damage the recoater blade [2, 58].   

  



21 

 

3.2.2 Trumpet 

Three trumpet-shaped geometries each 52 mm tall (2600 layers) were built as follows.  

(i) Unsupported, uncontrolled trumpet (T-XU) built under uncontrolled processing conditions, 

with laser power fixed at 195 W, and without supporting material. 

(ii) Supported, uncontrolled trumpet (T-SU) built under uncontrolled processing conditions 

with laser power fixed at 195 W, and with supporting material. The layer-wise average 

thermal history of T-SU is the ideal thermal history (T̂ideal) that the controller strives to 

achieve.  

(iii) Unsupported, controlled trumpet (T-XC) built without supporting material, but with laser 

power controlled layer-by-layer. As with the arch-shaped parts, the rationale is to eliminate 

supports by ensuring that the thermal history of the unsupported trumpet part (T-XC) 

matches that of the supported trumpet (T-SU, T̂ideal). 

These trumpet shaped parts have an overhang angle that increases progressively with the 

deposited layers. While the overhang of the trumpet is more gradual than the arch-shaped part, the 

part itself is substantially taller. As a result, heat retention is likely to be exacerbated in later layers, 

potentially causing a recoater crash. Further, the grain coarsening increases proportionally with 

heat retention, while the variation in microhardness also increases [19]. Consequently, an increase 

in terms of the primary dendritic arm spacing, and variation in microhardness is expected in the 

unsupported, uncontrolled trumpet (T-XU)  [19]. The supports structures in T-SU prevent heat 

retention, and mitigate subsequent grain coarsening and variation in microhardness by providing 

a thermal pathway to conduct excess heat from the overhang to the substrate.  
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3.2.3 Bell crank 

Two 42 mm tall bell crank parts consisting of 2100 layers were built as follows.  

(i) Unsupported, uncontrolled (B-XU) with laser power fixed at 195 W. 

(ii) Unsupported, controlled (B-XC) with laser power modulated layer-by-layer.  

Support structures were not required for the bell crank, as it is oriented with the shaft facing 

upwards. The bell crank is use-inspired, it is a critical linkage mechanism in aircraft and 

automotive controls. The bell crank shape particular to this work has a 42 mm tall shaft with a 

cavity that has varying diameter and an internal overhang feature. The cavity with overhang, is 

difficult, if not impossible, to access using standard subtractive machining tool. Consequently, the 

as-built surface roughness of the cavity is critical to functional properties, such as fatigue life.  

It was noted, based on X-ray CT imaging, that the internal surface of the as-built cavity for 

the uncontrolled bell crank (B-XU) had relatively poor surface integrity likely due to heat 

accumulation within the shaft. Heat accumulation led to partial melting of surrounding particles, 

degrading surface integrity. Therefore, it was hypothesized that the surface integrity, particularly 

of internal features, would be improved by minimizing the heat accumulation within the shaft. 

Accordingly, the aim of the DynamicPrint is to adjust the laser power, such that thermal history of 

the bell crank (B-XC) has a constant temperature trend. Hence, for the bell crank part, the ideal 

thermal history (T̂ideal) is determined to have a constant average layer temperature of 75 ºC.  
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3.3 Build Parameter Selection 

The parameters for the current work were selected based on a recently published work with 

the identical material (SS 316L) and on the same machine (EOS M290) [59]. In this previous work, 

we manufactured 40 tensile ASTM E8 tensile (dogbone) samples under various power (P), velocity 

(V), hatch spacing (H) conditions. We further studied the effect of processing conditions on 

porosity formation and mechanical properties. Materials characterization included optical 

microscopy (OM), scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), 

X-ray diffraction (XRD), X-ray CT (14 µm voxel resolution), and microhardness. This was 

followed by tensile strength and yield strength measurement with digital image correlation (DIC), 

followed by fractography analysis.  

In the foregoing published work, the nominal energy density Ev = 100 J∙mm-3
, with P = 195 

W, V = 1100 mm∙sec-1, T = 0.020 mm [59].   At this nominal processing condition there was no 

evidence of keyhole porosity or lack-of-fusion porosity formation observed in the tensile samples 

via X-ray CT optical microscopy and SEM.  The nominal conditions in the current work are almost 

identical:  P = 195 W, V = 1083 mm∙sec-1, H = 0.090, and T = 0.020 mm resulting in Ev ~ 100 

J∙mm-3
..  Likewise, porosity was not detected in the current parts through SEM imaging and X-ray 

CT.   

In the prior work, the highest energy density Ev = 125 J∙mm-3 with P = 225 W, V = 1000 

mm∙sec-1, H = 0.090 mm, and T = 0.020 mm. Despite this high energy density, keyhole porosity 

was not observed in the tensile samples either through optical microscopy and SEM.  Therefore, 

to diminish the chance of keyhole porosity in the current work, the energy density is restricted to 

Ev = 115 J∙mm-3 by slightly increasing the scan velocity, accordingly the highest allowable laser 

power in this work is P = 225 W, with V = 1083 mm∙sec-1, H = 0.090, and T = 0.020 mm.   
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For manufacturing the tensile specimens, the lowest energy density was Ev ~  73 J∙mm-3 which 

did not show any incidence of lack-of-fusion porosity either through optical microscopy, SEM, 

and X-ray CT.  Therefore, to precluded lack-of-fusion porosity in the current work the lowest 

energy density was maintained at Ev = 74 J∙mm-3 with minimum laser power reduced to P = 145 

W.  Lack-of-fusion porosity was not observed in any of the current parts either X-ray CT  (voxel 

resolution 16 µm ) or SEM. Thus, adjusting the laser power between the set laser power range of 

146 W and 225 W did not adversely affect the density of the parts.  

The density of the parts in this work can be estimated based on our prior work [59]. The tensile 

samples post-processed with electro-discharge machining and examined with SEM and X-ray CT 

at voxel resolution of 14 µm. The samples devoid of visually apparent porosity in the X-ray CT 

slices and SEM images had a defect volume ratio (DVR) ranging between 0.001% to 0.004%. 

Microhardness, and tensile and yield strength measurements were conducted on the ASTM 

E8 specimens using DIC [59]. For test specimens with porosity, the corresponding mean Vickers 

microhardness readings were less-than 210 HV, and the tensile strength was ~ 620 MPa (yield 

strength ~ 510 MPa). By contrast, for the test samples devoid of porosity, the microhardness was 

~224 HV, with the corresponding tensile strength ~650 MPa (yield strength ~ 580 MPa). In the 

current work, whilst it is not possible to conduct mechanical tests due to the complex shape of the 

parts, however, for all samples, either controlled or uncontrolled, the mean microhardness 

exceeded 224 HV. This further affirms that the samples in this work were not affected by porosity.  
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3.4 Post-Process Characterization 

3.4.1 X-ray CT to ascertain absence of lack-of-fusion porosity, surface and geometric integrity.   

 After processing, the parts were examined with X-ray computed tomography (X-ray CT) 

on a North Star Imaging X3000 system with ~16 μm voxel resolution to ascertain lack-of-fusion 

porosity, and surface and geometric integrity of internal features. This X-ray CT resolution is 

insufficient for determination of microstructure related aspects beyond lack-of-fusion porosity, 

such as grain size and keyhole porosity.  None of the samples in this work showed presence of 

lack-of-fusion porosity ‒ a result affirmed through SEM. 

 We note that to examine the SS 316L samples in this work, whose maximum dimensions are 

greater than 10 mm,  the X-ray CT machine had to be set at its maximum voltage 225 kV. The best 

possible voxel resolution at this scan voltage was 16 µm. While, increasing the X-ray CT beam 

voltage would allow examination of larger sample thickness, but doing so would also increase the 

X-ray beam spot size, and therefore degrade the voxel resolution. In other words, there is a tradeoff 

between beam voltage, voxel resolution and sample thickness.   

3.4.2 Scanning electron microscopy (SEM) to measure primary dendritic arm spacing (PDAS, 

λ1) and confirm absence of lack-of-fusion and keyhole porosity porosity.  

The primary dendritic arm spacing (PDAS, λ1) has a significant effect on mechanical 

properties, such as microhardness and strength. Smaller grain sizes and PDAS correlate with larger 

microhardness, enhanced part strength and creep [60, 61]. To measure PDAS, samples of the 

trumpet and arch parts were polished and etched with aqua regia (3 HCl:1 HNO3) and were 

examined using SEM at 6000× magnification with a beam accelerating voltage of 10 kV.  

Multiple locations per part were analyzed with three representative images taken at each 

location. The SEM images are approximately 30 µm × 20 µm. For example, as many as 9 locations 
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were scanned for the trumpet-shaped part. The PDAS measurements from these images were 

acquired using the recommended bounding box procedure detailed in our previous works [19].  As 

affirmed in our previous work, using X-ray diffraction (XRD) analysis, the material stainless steel 

316L is a single-phase austenitic grade steel, hence XRD analysis was not conducted in this work 

[59]. The SEM images confirmed that the samples were devoid of both lack-of-fusion and keyhole 

porosity. 

Further, to affirm the absence of keyhole and lack-of-fusion porosity, wide field-of-view 

(~625 µm × 450 µm) SEM images were also acquired at 200× magnification. These SEM 

micrographs visualize nearly 25 layers of deposited material. None of the SEM images for any of 

the parts showed presence of either keyhole or lack-of-fusion porosity.    

3.4.3 Microhardness 

The complex geometries manufactured in this work are not amenable for mechanical testing. 

In this work, we have conducted microhardness readings, as a surrogate for mechanical testing.  

The Vickers microhardness of the trumpet-shaped parts was determined using a LECO LM110 

microhardness tester. The microhardness was measured at 300 gm load for a dwell time of 10 

seconds (HV0.3, 10).    
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4 DynamicPrint Model Predictive Control  

4.1 Control Algorithm 

The DynamicPrint approach is an embodiment of model predictive control (MPC). The 

conceptual basis of MPC, as applied to LPBF in this work, is to iteratively adjust the laser power 

over a finite future time horizon (layers) subject to constraints [26, 62]. The four steps in the MPC 

approach are: Predict, Identify, Parse, and Select.  These steps are summarized in Figure 7, with a 

temporal schematic diagram of the control algorithm in the context of the arch-shaped part.   

Step 1 Predict  

Given a part geometry along with its material properties, time between layers, and nominal 

processing parameters, we use a rapid, meshless physics-based simulation model to predict its 

thermal history [25]. In this work, the thermal history is predicted for the part geometry under 

fixed processing conditions (P = 195 W, V = 1083 mm∙s-1, H = 90 µm, T = 20 µm).  

These thermal simulations required less than 15 minutes to complete for each geometry. This 

so-called uncontrolled, or original thermal history, is denoted as T̂original in the red dotted line of  

Figure 7. We note that the uncontrolled and unsupported arch-shaped part (A-XU) is liable to 

overheat as evident from the steep rise in layer-wise average end-of-cycle layer temperature.  

Step 2 Identify 

 Next, we identify the ideal or target (T̂ideal) thermal history to preclude the identified 

deleterious thermal trends in T̂original from Step 1. The ideal thermal history can either be 

determined from another instance of a similar geometry with desirable thermal trends, or 

heuristically by the operator. In this work the use of both strategies were demonstrated, the former 

for the arch and trumpet geometries, and the latter for the bell crank. 
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For example, as shown in our previous work, the arch-shaped part when manufactured without 

support material and constant laser power often fails to build due recoater contact [2]. Hence, to 

avoid heat retention, practitioners design support structures to conduct the heat away from the 

overhang regions to the substrate [55, 63]. However, as explained before, support structures 

increase the build time and amount of material required, and necessitate considerable post-process 

machining to remove, thus increasing the cost of the part [57]. Therefore, it would be valuable to 

the practitioner to minimize, if not eliminate, support structures [64]. 

 
Figure 7: Graphical summary of the DynamicPrint MPC method and its temporal behavior. The 

process is completed in four steps, (1): Predict the uncontrolled thermal history. (2): Identify ideal 

thermal history. (3): Parse thermal history from multiple process parameters simultaneously for 

five future layers. (4): Select ideal thermal history and process parameters. Steps (3) and (4) are 

repeated every two layers to generate the final process parameter recommendations.  
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 Accordingly, T̂ideal was chosen as the target thermal history of an arch-shaped part built with 

anchoring supports (A-SU). The T̂ideal, shown as a thick black line in  Figure 7, is also obtained 

using the graph theory model This strategy was also utilized for the trumpet-shaped part. In other 

words, the target thermal history (T̂ideal) for the arch (A-XC) and trumpet-shaped (T-XC) parts 

without supports are the dynamic thermal history of the corresponding parts with supports, A-SU 

and T-SU, respectively. By contrast, a constant end-of-cycle temperature of 75 ºC was set as the 

target  T̂ideal for the bell crank geometry. Essentially, the thermal history or the bell crank was 

chosen to have a ceiling value to reduce heat accumulation and avoid uneven temperature 

distribution, which was shown in our previous work to result in increased surface roughness, 

geometric inaccuracy, and microstructure heterogeneity [18].  

Step 3 Parse  

At every simulation epoch, the thermal history of the part is predicted as a function of various 

laser power levels, within constraints, layer-by-layer over a fixed spatiotemporal horizon of future 

layers.  To explain further, consider layer N of the part, the thermal history T̂P(θ𝑖) is predicted as a 

function of h candidate laser power settings P(θ𝑖) for k future layers, i = {1…h}. Thus, from the 

graph theory model, the end-of-cycle temperatures for layers N through N+k are determined for 

laser power levels P(θ𝑖), i.e., T̂P(θi)(N + 0), T̂P(θi)(N + 1)… T̂P(θi)(N + k). In this work, the 

prediction horizon k = 5 is called lookahead, and the number of candidate laser power settings, h 

= 5.  Five discrete levels of laser power were analyzed: θ1 = 146 W, θ2 =156 W, θ3 = 176 W, θ4 = 

195 W, and θ5 = 225 W. Noting that θ4 = 195 W is the nominal laser power. 

The laser power is constrained between 146 W and 225 W, so as to avoid lack-of-fusion 

porosity beyond the lower limit, and keyhole porosity at the upper limit based on results reported 
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in the literature for SS316L [65]. Discrete power levels are chosen to mitigate the computational 

burden and facilitate practical application, as the power levels adjustments are manually entered 

into the LPBF machine by the operator before printing.  We note that the graph theory thermal 

simulation implements a meta-layer approach where multiple layers are considered to be deposited 

at once. This simplification is also inherent to most FE-based commercial software [66]. Here, 5 

actual layers (100 µm) correspond to 1 simulation layer. Hence, the simulation lookahead of k = 5 

corresponds to 500 µm of actual build height.  

Step 4 Select  

After the layer-wise thermal history T̂P(θ𝑖), i = {1...5} from each of the five laser power levels 

are simulated, we select the optimal laser power θ∗ which results in the minimum mean absolute 

deviation (MAD) from the ideal thermal history T̂ideal over the next five layers. Mathematically, 

the control strategy is expressed as follows. 

θ∗ = arg min
θ

θ={θ1…θ5}

∑
|T̂ideal(N + k) − T̂P(θ)(N + k)|

k

k=5

k=0

 (1) 

 

Thus, the optimal thermal history for layer N is T̂optimal(N) = T̂P(θ∗) . 

The rationale for selecting the minimum mean absolute deviation is that it suppresses both 

positive and negative deviations from the target thermal history (𝑇̂𝑖𝑑𝑒𝑎𝑙). If the minimum were to 

be selected as the objective function, it would only mitigate positive excursion from the target. 

Steps 3 and 4 are repeated after every two simulated layers, i.e., N is replaced by N + 2 in the 

next step. Hence, the optimal laser power is determined in 200 µm intervals for the entire part [65]. 

In other words, the thermal history of the controlled geometry is optimized for 5 future layers (500 

µm), and recalculated (rollback) every 2 layers (100   µm). The model control scheme was able to 
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complete and identify the optimal laser power θ*
 for all layers in approximately five hours for the 

bell crank geometry. For ease of practical implementation, two further simplifications are made to 

the laser powers recommended by the controller. 

i. In our previous work, we observed defects at the interface of layers where large process 

parameter changes occur [67]. Therefore, to reduce the severity of the process parameter 

changes a 15-point moving average is applied to the laser power plan generated by the 

controller. This 15-point moving average corresponds to 1.5 mm of build height.  

ii. Since the layer-wise adjusted laser power settings θ*
  must be manually entered into the 

LPBF machine by the operators. To aid implementation, the smoothened laser power 

recommendations were further averaged for every 4 mm window of build height (200 

layers). Simulation studies showed minimal differences between the end-of-cycle 

temperature for the as-predicted and smoothed laser power estimates.  

4.2 Thermal History Prediction with Graph Theory 

DynamicPrint relies on rapid and accurate prediction of the thermal history T̂P(θ𝑖) as a function 

of laser power level i, iteratively every 2 layers, in Step 3. Thermal modeling using FE-based 

methods are ill-suited for implementation of the iterative steps in DynamicPrint owing to their 

computationally intensive nature [68, 69]. The mesh-free graph theory thermal modeling approach 

overcomes this drawback [18, 25]. 

We now provide a brief overview of the graph theory approach used in this work. Detailed 

mathematical treatment, including verification with FE analysis, exact analytical Green’s functions 

solutions, and validation with experiments of the approach is available in our prior publications  

[25, 53, 70, 71]. As with the FE-based approaches, the graph theory model solves the heat diffusion 
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equation to obtain the temperature for each point T(x,y,z) at every sampled point in time (t). This 

relationship is defined in Eqn. (2).  

𝜌𝑐𝑝
∂T(𝑥, 𝑦, 𝑧, 𝑡) 

∂𝑡
− 𝑘 (

∂2

∂𝑥2
+
∂2

∂𝑦2
+
∂2

∂𝑧2
)

⏞            
𝐿𝑎𝑝𝑙𝑎𝑐𝑖𝑎𝑛 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟

T(𝑥, 𝑦, 𝑧, 𝑡)  = Q 

 

 

(2) 

 In Eqn. (2), 𝜌 is the material density [kg·m-3], 𝑐𝑝 is the specific heat [J·kg-1 ·K-1], 𝑘 is the 

conductivity [J·s-1 ·m-1·K-1], and Q is the rate of heat supplied per unit volume of material melted 

[J·s-1·m-3], called volumetric heat flux. Material properties are assumed to be fixed and are 

evaluated at 250°C. The term Q =
AeP

V∙H∙L∙𝑡
 [

W

mm3
]  is a function of the processing parameters: laser 

power (P, [W]), laser velocity (V, [m·s-1]), hatch spacing (H, [m]), layer height (L, [m]), and time 

when the laser is active (t, [s]). The term Ae in Eqn. (2) is the effective laser absorptivity. 

The graph theory thermal model replaces the second derivative continuous Laplacian operator 

(
∂2

∂𝑥2
+

∂2

∂𝑦2
+

∂2

∂𝑧2
) in Eqn. (2), with a spatial discrete Laplacian matrix (L). This term represents the 

shape of the part. The thermal history T(𝑥, 𝑦, 𝑧, t) is obtained as a function of the eigenvalues (Λ), 

eigenvectors (ϕ) of the Laplacian matrix (L) after simplification [25]. 

T(𝑥, 𝑦, 𝑧, t) = ϕ𝑒
−
𝑘
𝜌𝑐𝑝

Λ𝑡𝑔
ϕ′

⏞        
𝑃𝑎𝑟𝑡 𝑆ℎ𝑎𝑝𝑒 𝑎𝑛𝑑 𝑡𝑖𝑚𝑒

(
AeSl
𝜌𝑣𝑐𝑝

P

V
+ T̂prev )

⏞            

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 
𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠

 
(3) 

In this work, Ae = 0.60 based on experiments by Ye et al. at Lawrence Livermore National 

Laboratory [72]. Next,  Sl is the length scanned per layer (a function of hatch spacing, [mm]), P 

[W] laser power, V [mm·s-1] laser velocity, 𝑣 [mm3] volume of material melted in a layer (a 

product of scanned area and layer height), T̂prev [°C] is the temperature of the previous layer (from 

simulation), g = 0.6  the unitless gain factor is included in the exponent term to adjust the cooling 

rate, and t is the time required for processing the current layer. The dissipation of heat via the 
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conduction equation in graph theory is followed by losses at the boundary of the part through 

convection and radiation. 

An important quantity in Eqn. (3) is the time t, termed inter-layer time (ILT), often also called 

time between layers. The ILT is not constant, but changes proportionally to the top surface area of 

all parts in each layer. The ILT evolution for this work is shown in Figure 8. During the start of 

the build the ILT is nearly 70 s, and reduces to 40 s near layer 2000, as most of the parts have 

finished printing. The ILT was estimated a priori based on the cross-section area, hatch spacing, 

laser velocity. The ILT includes the time to recoat a fresh layer of powder. The powder recoat time 

was measured to be constant of 10 seconds as noted in Table 1. A low ILT increases the bulk part 

temperature, conversely, increasing the ILT reduces heat retention [18].    

 

Figure 8: Inter-layer time (ILT) plotted as a function of build height. Because parts completed at 

different build heights, the ILT steadily reduced throughout the build. Shorter ILT values result in 

increased heat accumulation due to a reduction in cooling time for each deposited layer.  
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4.3 Salient Aspects of the Graph Theory Thermal Modeling Approach 

A salient aspect of the graph theory thermal solution in Eqn. (3), is that the part shape and 

cooling time are decoupled from the processing conditions, such as laser power (P) and velocity 

(V). Consequently, for a given part shape, the eigenvalues (Λ), eigenvectors (ϕ) of the Laplacian 

(L) can be pre-calculated for each part layer, and the effect of multiple different process parameter 

settings can be ascertained without significant computational overhead, and without having to re-

mesh the part as in FE analysis [68, 69]. The semi-analytical nature of Eqn. (3), i.e., discrete in 

space and continuous in time, allows rapid prediction of thermal history as a function of various 

laser power levels in an iterative manner. For example, each parameter iteration of the trumpet-

shaped part in step 3 was completed within 5 minutes, and the optimal parameters were identified 

autonomously within 6 hours.  Further, the semi-analytical nature of the solution also eliminates 

the need for stepping through time, further reducing the computational burden.  

To reduce the computational time, researchers are actively developing alternatives to FE-

based modeling, such as finite difference and thermal circuit networks [73, 74]. In our recent 

works, we have benchmarked FE, analytical modeling (Greens’ functions), finite difference, and 

graph theory solutions for solving standard heat transfer and additive manufacturing cases [25, 

70]. In these prior works, the aforementioned models were implemented with identical, 

temperature invariant materials properties. Indeed, we have compared the graph theory solution 

with FE for a large LPBF part whilst maintaining temperature invariant material properties [71]. 

The foregoing studies showed that the rapid convergence of graph theory was not on account of 

ignoring variable material properties.   

The main reasons for the rapid convergence of the graph theory model approach are  two-fold: 

(i) In FE-based approaches the part has to be repeatedly re-meshed with the addition of material. 
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This re-meshing step is computationally cumbersome. (ii) The graph theory approach is semi-

analytical in nature, and the effect of part shape and cooling time are decoupled from the 

processing conditions, as described in the context of Eqn. (3) above. As a consequence, the effect 

of processing parameters on thermal history can be rapidly iterated without having to compute the 

solution to the heat equation.  

4.4 Model Calibration and Validation 

All thermal simulations require boundary conditions to capture the effects of the machine, 

build plate and gas flow on thermal history [69]. Heat losses are computed by augmenting the 

Laplacian matrix (L) with Type 3 (convection) boundaries [19, 25]. Model calibration involves 

experimentally determining the following three heat transfer boundary coefficients: bulk heat loss 

assigned to the build plate (hs); convective heat loss to the surrounding powder (hp); and, forced 

convection heat loss from the top surface (hg). These heat transfer boundary coefficients were 

calibrated on the same machine and material by means of a separate build conducted a priori. The 

method for tuning the heat transfer boundary coefficients in the graph theory thermal model is 

detailed in our previous works [2, 18]. The calibration process is identical to the model validation 

approach described below. The calibrated heat transfer coefficients are reported in Table 2.   

The graph theory thermal model was calibrated and validated using data from the longwave 

infrared (LWIR) thermal camera. The LWIR camera itself was calibrated using industry-standard 

methods discussed in our previous works [2]. The IR camera acquires thermal images of the top 

surface at 30 Hz. From this data, end-of-cycle top surface temperature measurements were 

extracted according to the method summarized in Figure 9. Shown in Figure 9(a) is a calibrated 

IR image obtained from the thermal camera. The IR measurements acquired over six layers for a 

specific region of interest of the trumpet part is shown in Figure 9(b). The plotted region of interest 
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is 1 mm x 1 mm. The sharp peaks in Figure 9(b) result from the laser passing over the sample 

region in the current layer.  

 

Figure 9: The procedure to extract the end-of-cycle surface temperature (Te) from the infrared 

thermal images. (a) Calibrated top surface temperature images from the IR camera. (b) 

Temperature measurements for a single 1mm × 1mm region over six layers. The end-of-cycle 

temperature is measured at the moment just before the laser strike. (c) The end-of-cycle 

temperature was calculated for all pixels, resulting in the end-of-cycle composite image for an 

entire layer. (d) The average end-of-cycle layer temperature (Te) was obtained by averaging the 

temperature of the part over the layer.  
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The end-of-cycle surface temperature is extracted from this time-based data by measuring the 

temperature immediately before the laser passes the selected region of interest as demonstrated in 

Figure 9(b). The end-of-cycle temperature of all parts in a layer is shown in Figure 9(c). Reported 

in Figure 9(d) is the end-of-cycle temperature averaged over each layer of the unsupported, 

uncontrolled trumpet-shaped part built under fixed laser power (T-XU). This steady-state layer 

averaged end-of-cycle layer temperature is termed Te and was used as the metric for process 

control. The end-of-cycle layer temperature is analogous to the inter-pass temperature in the 

welding literature, it is also called residual surface temperature [75]. 

 Shown in Figure 10 is the composite image of end-of-cycle top surface temperature for 

various parts on the build plate for select layers. A limitation with Te as a control metric is that it 

occludes temperature differences between different regions of the part within the same layer; i.e., 

local temperature variations are suppressed. However, for the exemplar parts printed in this work 

the bulk section of the part is sufficiently large to negate local temperature variations. Further, Te 

for a layer is influenced by preceding layers. This effect is captured in Eqn. (3) in terms of T̂prev, 

viz., the predicted temperature of the previous layer.       

The average end-of-cycle layer temperature (Te) measured from the thermal camera is 

compared to its counterpart T̂e predicted by the graph theory thermal model in Figure 11. The 

graph theory model predictions (T̂e) are between 2.5% to 8% symmetric mean absolute percentage 

error (SMAPE) of the observed end-of-cycle layer temperature (Te). In temperature units the 

prediction error is between 5°C and 20°C (root mean squared error, RMSE). The bell crank 

geometry (B-XU) required the longest time to converge at 15 minutes. The arch (A-SU) and 

trumpet (T-XU) geometries required approximately 11 and 10 minutes, respectively. The model 

parameters are reported in Table 2.   
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Figure 10: A composite end-of-cycle layer temperature for all parts on the build plate shown for 

select layers. 

 

 
Figure 11: Comparision of the average end-of-cycle temperature predicted (𝑇̂𝑒) by the model for 

the  supported arch (A-SU), unsupported trumpet (T-XU), and uncontrolled bell crank (B-XU). 

The model was able to predict part end-of-cycle temperature with a symmetric mean absolute 

percentage error ranging from 2.5% to 8%; and completed in ~15 minutes for the bell crank.  
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Table 2: Simulation parameters obtained after model calibration. 

Simulation Parameters Values 

Heat loss coefficient part to powder, hp [W·m-2· °C] 30 

Heat loss coefficient part to substrate, hs [W·m-2· °C] 20,000 

Heat loss coefficient to gas flow, hg [W·m-2· °C] 30 

Thermal Conductivity (k) [W·m-1·°C] 17  

Density (ρ) [kg·m-3] 8,193  

Specific Heat (cp) [J·Kg-1·°C-1] 540 

Melting Point (T0) [°C] 1,609 

Ambient chamber temperature, T𝑝 [°C] 70 

Node density [nodes·mm3] 1 

Superlayer thickness [mm] 0.1 (5 actual layers)  

Gain factor (g) [unitless] 0.6 

Computational hardware AMD Ryzen 3970X CPU, @3.70 GHz 

5 Results 

5.1 Arch 

Shown in Figure 12(a) are the average end-of-cycle layer temperature predictions for the 

supported, uncontrolled arch (A-SU, T̂ideal) and the unsupported arch printed with DynamicPrint 

(A-XC). The controller recommended layer-by-layer laser power plan is shown in Figure 12(b). 

These laser power changes were implemented by editing the default process parameters through 

the slicing software native to the LPBF machine (EOS Build). Also shown in Figure 12(a) is the 

hypothetical model predicted thermal history of an unsupported arch without control, which would 

result in overheating, and recoater crash. The laser power recommended by DynamicPrint tailored 

the thermal history of the unsupported, controlled arch (A-XC) to match that of the supported, 

uncontrolled arch (A-SU). Using the laser power plan recommended by DynamicPrint 

significantly reduced heat retention in A-XC. As shown in Figure 12(b), DynamicPrint reduced 

the laser power progressively to avoid overheating of the unsupported arch (A-XC). The 

computation time for DynamicPrint to converge was 35 minutes and the time to calculate a single 

iteration was 11 minutes.  
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Figure 12: (a) The graph theory thermal predictions for the unsupported, controlled (A-XC, 

𝑇̂𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙) and supported, uncontrolled (A-SU, 𝑇̂𝑖𝑑𝑒𝑎𝑙) arches, and a hypothetical unsupported 

uncontrolled geometry. DynamicPrint MPC was able to closely match the thermal history of the 

unsupported arch (A-XC) to the supported arch (A-SU). (b) The recommended laser power settings 

for the unsupported, controlled part (A-XC) as a function of build height. DynamicPrint 

constrained the laser power between 145 W and 225 W.  

In Figure 13, the 3D temperature distribution resulting from DynamicPrint are compared for 

all three arches in 4 mm epochs. In the case of the arch-shaped part (A-XU) built without supports 

under uncontrolled conditions, significant overheating is predicted in the overhang region.  This 

overheating has been shown in previous works to result in part distortion and recoater crash [2, 

58]. By contrast, altering the laser power during printing of an unsupported, controlled arch (A-

XC) to best match the thermal history of the supported, uncontrolled arch (A-SU) greatly reduces 

heat accumulation. The temperature distribution of the unsupported, controlled arch (A-XC) does 

not exactly match the thermal history of the supported arch A-SU (T̂ideal), because the laser power 

is constrained between 145 W and 225 W to prevent porosity formation.  
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Figure 13: End-of-cycle thermal predictions for four selected build layers of the three arch-shaped 

parts created in this work. By changing the laser power based on the MPC, the thermal history of 

the unsupported, controlled arch (A-XC) closely matched the thermal history of the supported, 

uncontrolled geometry (A-SU). By contrast, the unsupported, uncontrolled arch is predicted to 

overheat, and potentially lead to a recoater crash.  

 

Figure 14: Composite image comparison of the end-of-cycle layer temperature for the arch 

geometries as observed by the IR camera. Applying DynamicPrint for the unsupported arch results 

in a nearly identical thermal distriubution as the supported arch.  
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Figure 14 is a composite image of the average end-of-cycle layer temperature (Te) measured 

from the IR camera along the build direction. The edges of the image are imprecise due to blurring 

of thermal images around the boundary of the part.  The IR data affirms the reduced heat retention 

in the unsupported, controlled arch (A-XC), and that its thermal history closely matches that of the 

ideal supported, uncontrolled arch (A-SU).  

A comparison of the X-ray CT images of the two arch-shaped parts, A-SU and A-XC, is 

shown in Figure 15. Here the parts are viewed in the XZ plane to ascertain their magnitude of 

distortion. In Figure 15, moderate levels of geometric deviation were observed above 22 mm build 

height for both parts. This deviation is to be expected and often occurs when creating the extreme 

overhang at the top of the part [2, 58]. Deviation in the unsupported, controlled arch (A-XC) was 

successfully mitigated until the same build height as the supported, uncontrolled arch (A-SU), and 

their magnitudes of deviation were similar. Thus, DynamicPrint was able to limit geometric 

deviation to a magnitude comparable to that of the supported geometry. Consequently, 

practitioners can eliminate recoater crashes, as well as delete support structures in complex 

overhang structures. 

 
 

Figure 15: X-ray CT comparison of the supported, uncontrolled (A-SU) and unsupported, 

controlled (A-XC) arch parts. DynamicPrint successfully created the arch without support (A-XC) 

with the same magnitude of distortion as that of the supported, uncontrolled arch (A-SU). Thus, 

saving on the effort and time required to remove support structures. The dotted line indicates the 

region (~ 22 mm) where similar levels of geometric deviation were observed in A-SU and A-XC. 



43 

 

After X-ray CT analysis, the parts were cut, polished, and etched with aqua regia (3:1, HCl: 

HNO3). The microstructure was subsequently analyzed using scanning electron microscopy. The 

resulting primary dendritic arm spacing (PDAS, λ1) measured at three locations along the build 

direction of the parts is shown in Figure 16. Except for the location 1 in Figure 16, the PDAS 

measured in unsupported, controlled arch (A-XC) was statistically similar to the PDAS observed 

for the supported, uncontrolled arch (A-SU). Indeed, the PDAS for A-XC is consistent in the range 

of 400 ± 50 nm throughout.   

Similarity in PDAS of A-XC and A-SU is to be expected and desired as the thermal history 

of A-XC was tailored to match the supported, uncontrolled arch A-SU. The discrepancy in location 

1 is likely due to heat sink effect of the substrate and support structures that results in rapid cooling 

of initial layers. Thus, DynamicPrint facilitates elimination of support structures, while 

maintaining consistency of microstructure and not degrading the geometric integrity. Wide field-

of-view SEM images were acquired at several locations, representative images are shown in Figure 

17; neither lack-of-fusion porosity or keyhole porosity were observed in these  SEM images.  
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Figure 16: (Top) Primary dendritic arm spacing (PDAS, λ1) measurements taken at three sample 

locations in the arch parts. The PDAS of the unsupported, controlled arch was similar to the 

supported, uncontrolled arch. (Bottom) Representative SEM micrographs at three locations. 
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Figure 17:Representative wide field-of-view SEM images at two locations for the arch-shaped 

parts A-SU and A-XC referenced in Figure 16. No lack-of-fusion or key hole pores were observed.  
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5.2 Trumpet 

Akin to the arch-shaped parts, the trumpet-shaped part has a progressively increasing 

overhang feature over a relatively tall build height of 52 mm (2600 layers). Shown in Figure 18(a) 

are the model predicted average layer end-of-cycle temperature (T̂e) for the unsupported, 

uncontrolled (T-XU, 𝑇̂𝑜𝑟𝑖𝑔𝑛𝑖𝑎𝑙); supported, uncontrolled (T-SU, T̂ideal); and the unsupported, 

controlled (T-XC) geometries. The trumpet T-XU tends to retain heat, with the average end-of-

cycle layer temperature reaching ~ 200 °C near the top of the part. In T-SU, the support structures 

mitigate heat accumulation, by providing a conductive pathway for the heat to flow to the substrate.  

The aim of DynamicPrint was to adjust the laser power such that the thermal history of T-XC 

would match the thermal history of T-SU. In other words, the target (T̂ideal) end-of-cycle 

temperature for T-XC was the average end-of-cycle temperature of T-SU. As shown in Figure 

18(a) and (b), the DynamicPrint approach successfully restrains the heat accumulation in T-XC by 

progressively reducing the laser power layer-by-layer. The computation time for DynamicPrint to 

obtain the processing parameters shown in Figure 18(b) was 220 minutes. The simulation time of 

a single iteration was 10 minutes. 

The 3D model-predicted temperature distribution for T-XU and T-XC geometries are 

presented in Figure 18 for 12.5 mm build height intervals. These predictions are affirmed in the 

IR-measured end-of-cycle temperature (Te) composite images of T-XU and T-XC depicted in 

Figure 19, which show that the DynamicPrint successfully mitigated heat accumulation in the top 

layers of the trumpet T-XC.  
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Figure 18: (a) The graph theory thermal predictions for the three uncontrolled and controlled 

trumpet geometries. The DynamicPrint approach was able to alter process parameters to closely 

match the mean surface temperature of the supported geometry, resulting in reduced overheating 

in the unsupported, controlled (T-XC) geometry. (b) The laser power settings derived by 

DynamicPrint strategy. 

 

 

Figure 19: Comparison of the predicted temperature disbribution for the unsupported, 

uncontrolled (T-XU) and unsupported, controlled (T-XC) geometetries, along with the ideal 

supported, uncontrolled geometry (T-SU). DynamicPrint significantly reduced overheating in the 

trumpet part compared to the uncontrolled trumpet. 
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Figure 20: Comparison of the end-of-cycle temperature for the trumpet geometries. Process 

control of thermal history significantly reduced heat accumulation in the top section of the part. 

 

Next, the primary dendritic arm spacing (PDAS, λ1) of T-XU and T-XC trumpet geometries 

were analyzed. The PDAS measurements were obtained at nine locations along the build height. 

Representative SEM micrographs at four of these locations are shown in Figure 20. The PDAS of 

T-XC is discernably smaller than that of T-XU. This reduction in PDAS is symptomatic of reduced 

heat accumulation and faster cooling rates as shown in our previous work [19]. 

Continuing with the analysis, in Figure 22(a) the PDAS measurements for T-XC and T-XU 

are plotted at nine locations along the build height. The PDAS for T-XU ranged from 500 nm to 

690 nm. In comparison, the PDAS for T-XC ranged from 350 nm to 400 nm. Further, T-SU ranged 

from 390 to 690 nm. As evident from Figure 22(b), the larger variation in PDAS of T-XU translates 

to larger variation in microhardness (Vickers microhardness, HV0.3,10). Whilst the mean 

microhardness for T-XC and T-XU cases was statistically identical, the standard deviation in 

microhardness for T-XU was 9.5 HV compared to 5.3 HV for T-XC. We note that although the 

support structures in T-SU reduced the standard deviation of microhardness to 7.7 HV, however 

this reduction requires removal of supports and increases part cost. Wide field-of-view SEM 
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images were acquired for the three trumpet-shaped parts. Representative images are shown in 

Figure 23; lack-of-fusion or keyhole pores are not evident in these SEM images.  

 

Figure 21: Scanning electron microscopy images comparing the primary dendritic arm spacing 

(PDAS, λ1) measurements for the unsupported, uncontrolled (T-XU) and unsupported, controlled 

(T-XC) trumpet geometries. The PDAS was measured at 9 locations along the build height. The 

PDAS for T-XU is noticably larger compared to T-XC. 

 

 

Figure 22: (a) Comparision of the PDAS for the unsupported, uncontrolled (T-XU), unsupported, 

controlled (T-XC), and supported, controlled trumpet (T-SU). The variation in PDAS is 

significantly reduced for the controlled trumpet. (b) The large variation in PDAS for the 

uncontrolled trumpet results in large viariation in microhardness. 
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Figure 23:Representative wide field-of-view SEM images at two locations for the trumpet-shaped 

parts T-XU, T-SU, T-XC. No lack-of-fusion or key hole pores were observed.  

 

5.3 Bell Crank 

The thermal history predictions for the uncontrolled (B-XU) and controlled (B-XC) bell crank 

geometries are presented in Figure 24 and Figure 25. Here the target thermal history (T̂ideal) was 

to maintain a constant average end-of-cycle layer temperature T̂e = 75 °C after 7 mm of build 

height, which corresponded to the temperature when the base section of the part was completed. 

The layer-wise power adjustments suggested by the controller are presented in Figure 24(b). The 

model predicted control strategy converged within 320 minutes with a single iteration computation 

time of 15 minutes. Shown in Figure 25 is the 3D model predicted temperature distribution for B-

XU and B-XC at approximately 10 mm intervals.  

These results demonstrate that compared to B-XU, heat retention in B-XC was considerably 

reduced on account of DynamicPrint, especially towards the last 15 mm of the build.  The reduced 

heat accumulation and relatively homogenous thermal history of B-XC in comparison to B-XU is 
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further affirmed from the infrared average end-of-cycle layer temperature composite image 

presented in Figure 26. However, the controller could not completely eliminate heat retention and 

achieve the targeted constant average end-of-cycle layer temperature of 80 °C. This is because, as 

evident in Figure 24(b), the minimal permissible laser power was set to 145 W to avoid lack-of-

fusion porosity. Despite this constraint, as reported in Figure 24(a), the resulting T̂e of B-XC drifts 

at the most 30 °C from the target temperature of 80 °C, in comparison for B-XU, the deviation in 

T̂e from the setpoint is as large as 60 °C.  

 

Figure 24: (a) The graph theory thermal predictions for the uncontrolled (B-XU) and controlled 

(B-XC) bell crank parts. The target thermal history (𝑇̂𝑖𝑑𝑒𝑎𝑙) is a uniform temperature of 75 °C.  

DynamicPrint reduced overheating and created a temperature distribution closer to the identified 

𝑇̂𝑖𝑑𝑒𝑎𝑙. Due to constraints placed on the laser power, not all heat accumulation could be 

eliminated. (b) The process parameters recommended by DynamicPrint, within the laser power 

constraints of 145 W and 225 W.  
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Figure 25: End-of-cycle temperature predictions for the uncontrolled (B-XU) and controlled (B-

XC) bell crank geometries for four selected build layers. Model predictive process control 

mitigates heat accumulation.  

  

 

Figure 26: Composite image comparison of the end-of-cycle layer temperature for the bell crank 

geometries as observed by the IR camera. Model predictive process control of thermal history 

significantly reduced heat accumulation in the top section of the part.  
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Shown in Figure 27 are X-ray CT images for B-XU and B-XC in the X-Z and X-Y planes. X-

ray CT analysis reveals that the reduction in heat accumulation of B-XC considerably improved 

geometric resolution and surface integrity of internal features.  Along the build direction, the 

corners at the topmost section of B-XC are notably sharper compared to B-XU. Similarly, in the 

X-Y cross-section images located at 35 mm and 39 mm, rougher boundaries for B-XU are visually 

evident compared to B-XC. Noting that the interior of the part has powder trapped within it, the 

increased heat accumulation near the top in the case of B-XU results in partial melting of the 

powder particles in contact with the interior walls. These geometry and surface-related anomalies 

in the internal overhang feature would require specialized tooling to correct post-process using 

machining.  

  These geometry integrity-related improvements were quantified by pixel analysis of X-ray 

CT cross-section images. The diameter variation for the interior overhang feature as a function of 

layer height is shown in Figure 28(a). In the uncontrolled bell crank (B-XU), the uneven 

temperature distribution causes increased deviation from the designed dimensions. The internal 

channel of B-XU is oversized by as much as 0.5 mm from the designed dimensions. The standard 

deviation of the size of the internal channel is reported in Figure 28(b). The diameter of B-XU has 

a standard deviation ranging from 50 μm to 450 μm, compared to 100 μm for B-XC. In the context 

of the bell crank geometry, DynamicPrint improves the surface integrity and geometric accuracy 

of difficult to post-process internal features, with implications to functional integrity, such as 

fatigue life [76]. Lastly, no lack-of-fusion pores were observed in the X-ray CT images obtained 

for the controlled bell crank part. 
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Figure 27: X-Ray CT scans of the inner diameters of the controlled (B-XC) and uncontrolled (B-

XU) bell crank parts. Note the adhered powder in B-XU on account of over sintering due to heat 

accumulation. The controlled geometry (B-XC) portrays an improved surface integrity, on account 

of minimal adhered powder than the uncontrolled (B-XU).  

 
Figure 28: X-Ray CT of geometric deviation comparison between the uncontrolled (B-XU) and 

controlled (B-XC) bell crank parts. (a) Inner diameter of the internal overhang feature of the bell 

crank parts. DynamicPrint resulted in an internal geometry closer to the design dimensions. (b) 

Diameter standard deviation of the bell cranks for the overhang region. The higher standard 

deviation in the internal diameter for B-XU is a result of heat retention. 
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6 Conclusions and Future Works 

We established a physics-based process control approach termed DynamicPrint to mitigate 

thermal-induced defect formation in laser powder bed fusion (LPBF). Starting with part shape, 

material properties, and manufacturer-recommended processing parameters, DynamicPrint 

autonomously adjusts the parameters layer-by-layer before the LPBF part is printed to avoid non-

uniform temperature distributions that often lead to defects at multiple scales. DynamicPrint thus 

offers a rapid, physics-based pathway for process qualification, which can potentially accelerate 

the time-to-market of LPBF parts, as opposed to the existing cumbersome and expensive empirical 

build-and-test approach. Specific outcomes from this work are as follows. 

1) DynamicPrint was applied to three complex shapes: an arch, trumpet, and bell crank. These 

geometries included challenging features such as steep overhangs and internal channels with 

undercuts. The approach successfully adjusted the processing parameters layer-by-layer for 

each of these geometries within 3 to 6 hours on a desktop PC. 

2) In the arch- and trumpet-shaped parts with steep overhang features the layer-wise adjustment 

of process parameters implemented by DynamicPrint eliminated recoater crashes, as well as 

enabled printing of such parts without supports. This can enhance process yield, save several 

hours of machining and post-processing time, as well as reduce material usage. Additionally, 

the trumpet-shaped part produced with DynamicPrint showed consistent grain size and reduced 

variation in microhardness. X-ray CT analysis and SEM micrographs confirmed that the parts 

were fully dense, with no evidence of lack-of-fusion or keyhole porosity. 

3) The DynamicPrint approach was also applied to a complex bell crank geometry with an 

internal channel that is difficult to finish machine. Compared to the bell crank part built with 
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constant laser power settings, the part built with DynamicPrint had significantly improved 

surface integrity and geometric resolution, beneficial for fatigue life. 

In our future works, we will expand the DynamicPrint approach beyond the current layer-wise 

control to within-layer control.  
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