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Biological sensors rely on the temporal dynamics of ligand concentration for signaling. The sensory per-
formance is bounded by the distinguishability between the sensory state transition dynamics under different
environmental protocols. This work presents a comprehensive theory to characterize arbitrary transient sensory
dynamics of biological sensors. Here the sensory performance is quantified by the Kullback-Leibler (KL)
divergence between the probability distributions of the sensor’s stochastic paths. We introduce a novel benchmark
to assess a sensor’s transient sensory performance arbitrarily far from equilibrium. We identify a counterintuitive
phenomenon in multistate sensors: while an initial exposure to high ligand concentration may hinder a sensor’s
sensitivity towards a future concentration up-shift, certain sensors may show a boost in sensitivity if the initial
high concentration exposure is followed by a transient resetting at a low concentration environment. The boosted
performance exceeds that of a sensor starting from an initially low concentration environment. This effect,
reminiscent of a drug withdrawal effect, can be explained by the Markovian dynamics of the multistate sensor,
similar to the Markovian Mpemba effect. Moreover, an exhaustive machine learning study of four-state sensors
reveals a tight connection between the sensor’s performance and the structure of the Markovian graph of its

states.
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I. INTRODUCTION

Sensory receptors perceive information from external en-
vironments and transmit it into the cell via various signaling
mechanisms, despite noise due to thermal fluctuations or im-
perfections [1—4]. A ligand-receptor sensor that reports the
level of ligand concentration is a classic example of a biolog-
ical sensor operating in the stochastic regime. The accuracy
of ligand-receptor sensory mechanisms has been intensively
studied in the steady-state regime [5—11]. However, recent
studies of various biological processes—e.g., the extracellular
signal-regulated Kinase (ERK) pathway [12], and NF-kB sig-
naling under inflammatory stimuli [13]—have revealed that
cells respond differently to different temporal patterns of ex-
ternal signals [14—17]. Concepts from information science,
such as mutual information, Shannon entropy, cross entropy,
Kullback-Leibler (KL) divergence, and so on, have been ex-
plored and utilized for analyzing the signaling capacity of
various biological processes [18-25].

The sensor’s states and the transitions among those states
may play an important role in information sensing, par-
ticularly temporal pattern recognition. As pointed out in
Refs. [26-38], even simple ligand-receptor sensors contains
more states than bound and unbound states. For example, var-
ious metastable configurations of G protein-coupled receptors
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(GPCRs) were stabilized and revealed by nanobody binding
[37]. The sensor’s transitions among various configurations
may transduce more information to the downstream infor-
mation sensory network than that of a binary-state sensor.
Furthermore, a larger number of states allow for more possible
binding and unbinding pathways of the receptor. For example,
Deupi and Kobilka use an energy landscape with four states to
argue that the sensor may take two different pathways to bind
with a ligand [39]. Moreover, various experimental evidences
suggest that proteins can be treated as dynamic molecules that
interconvert between a small number of active and inactive
states [40—42]. Beyond the spatial complexity of the sensor’s
state space, the sensor’s transient dynamics is richer in infor-
mation compared to the steady states [22-25].

These works on the spatial and temporal complexity of
sensor dynamics inspire questions around the performance
limitations of sensors of different state space and the corre-
sponding kinetics. For example, a multistate sensor may not
necessarily take the same state transition path in the bind-
ing process and an unbinding process (see Fig. 1). Thus, its
sensory capability for an up-shift and a down-shift of lig-
and concentrations may be significantly different. A further
question that arises is whether a sensor that is sensitive to
concentration up-shift can also be sensitive to a down-shift?
What are the underlying design principles to ensure sensitivity
in both ways? Beyond the stationary regime, how does the
transient dynamics of a sensor affect the sensory capability
of a sensor? How quick can a sensor recover from a previous
exposure to a high or low ligand concentration?

This paper aims to provide a theoretical framework to
address the questions listed above. In particular, we ask how
the connectivity and transition rates between the various states
of a sensor affect its sensory capability. This work defines
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FIG. 1. (a) A ligand-receptor sensor on the surface of a cell probes the environment through binding with ligands and undergoes
conformational changes that lead to downstream signaling, (b) a sensor can have multiple bound and unbound states and the temporal
trajectory of the sensor’s state contains richer information about the environment than in the state probability distribution [22-25], (c) under
different temporal patterns of the environmental ligand concentration different ensembles of stochastic trajectories can be observed. The
distinguishability between the two ensembles is given by their KL divergence. (d) The KL divergence is shown to be equal to the time integral
of the product between the binding frequency, f4(¢) weighted by the factor F42(¢) as shown in Eq. (3).

a general formula for the transient sensory upper limit of
an arbitrary sensor. When applied to ligand-receptor sensors,
we propose benchmark protocols to reveal a sensor’s sensory
capability as well as the recovery capability. The recovery
capability refers to the ability of a sensor to reset its sen-
sory capability after a previous exposure to a high or low
ligand concentration environment. Furthermore, this paper
identifies a general type of anomalous sensory behavior of
ligand-receptor sensors: while an initial exposure to high lig-
and concentration may hinder a sensor’s sensitivity towards
a future concentration up-shift, certain sensors may show a
boost in sensitivity if the initial high concentration exposure
is followed by a transient resetting at a low concentration
environment. The boosted performance exceeds that of a sen-
sor starting from an initially low concentration environment.
We name this type of behavior a sensory withdrawal effect.
Finally, we employ machine learning to classify the sensory
state graphs based on their structural features, revealing a
strong correlation between the sensor’s performance, its abil-
ity to exhibit the sensory withdrawal effect, and the structure
of its Markovian state graph.

This work focuses on analyzing stepwise concentration
changes that may addresses several biological scenarios.
First, in bacterial chemotaxis, cells must distinguish be-
tween increasing and decreasing chemical gradients to
determine movement direction. Recent work by Wheeler
et al. demonstrates that comparing consecutive concentration
measurements is crucial for gradient sensing [43]. Second,
cellular drug response networks need to differentiate between
transient and sustained drug exposures to mount appropri-
ate responses, as exemplified by the p53 system’s distinct
response patterns to transient versus sustained DNA dam-
age [44]. Third, our framework provides insight into systems
exhibiting cellular memory, where previous exposure affects

future responses—a phenomenon observed in immune cell
priming [45] and bacterial stress responses [46,47]. While
these are a few examples of biological events that may be
modeled using our theory, this is not an exhaustive list and
there may be many more examples in biology related to tem-
poral dynamics. The mutual information rate has traditionally
served as a valuable metric for analyzing biological sensors
[48], our trajectory-based approach offers distinct advantages:
it captures temporal correlations that state-probability-based
mutual information might miss, provides direct mechanistic
insight into history-dependent sensing, and enables quan-
tification of the “withdrawal effect” we discovered. This
approach aligns with recent developments highlighting the
importance of trajectory-based information measures in bio-
logical systems [22].

II. THEORETICAL FRAMEWORK

A. Stochastic description of sensors

We utilize a Markov state model to capture the state-
transition dynamics of an arbitrary sensor. For illustration,
a four-state sensor with two bound states and two unbound
states is shown by the graph in Figs. 1(a) and 1(b). For any
ligand-receptor sensor, we can classify the states into unbound
states and various k-bound states. Here k-bound states include
a singly bound state (k = 1), doubly bound state (k = 2), and
so on. We assume that the transitions among the unbound
states and the transitions among the bound states of same
k value all exhibit rates that are independent of the ligand
concentration. The binding transitions, from an unbound state
to a (k = 1)-bound state, or from a k-bound state to a (k + 1)-
bound state, can be expressed by the product between the
ligand concentration and the corresponding transition rate
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constant. In this paper, we denote the transition rate from state
J to state i by R;;.

The sensor, given the external signal of ligand concen-
tration c(t), evolves according to time-dependent transition
rates {R;;(t)}. The stochastic dynamics of a sensor results
in state-transition trajectories X, that follows the probability
distribution P[X;]. Here 7 denotes the length of the trajectory,
which can be considered as the observation time. The ability
for the downstream signaling pathway to distinguish temporal
patterns of two external signals ¢*(z) and ¢B(¢) via informa-
tion from the sensor accumulated in the time period t is thus
limited by the distinguishability of the trajectory probabilities,
see Fig. 1(c).

B. Transient sensory limit

We propose to use the trajectory Kullback-Leibler (KL)
divergence as a universal characterization of a biological sen-
sor’s ability to distinguish different temporal patterns of the
external signal. By definition, this quantity characterizes the
difference between the probability distributions of the sen-
sors’ transition pathways under two temporal protocols (two
time-dependent signals A and B):

AB, A PY[X,]
DAB(z) = /DX,P Xl . ()
where PA[X,] denotes the probability for a sensor to un-
dergo transition path X; within the observation duration t
[see Fig. 1(c)], and the path integral takes all possible stochas-
tic trajectories of the sensor’s state into consideration. This
quantity serves as an upper limit of the temporal pattern
distinguishability information that a sensor could pass to the
downstream sensory networks.

According to a recent theory [49], for any transient process
that is arbitrarily far from the steady state, the trajectory KL
divergence can be expressed as an accumulated weighted sum
of all observed transition events

D) =" / A0 R ar, ©)
0

(x,x7)

where J2 () = R% (t)- p*(x;t) is the detailed probability
current for the sensor’s transition from state x to x" at time
t under signal A; the weighting factor Fx/?ﬁ (t) characterizes
the transition rate difference for each transition at time ¢ for
the sensor’s dynamics under the two signals [see Fig. 1(d)]. In
this master equation description, the probability of the sensor
being in state x at time ¢ under the protocol A is denoted by
A ).

For a ligand receptor sensor under two different signals,
cA(t) and B (), their trajectory KL divergence can be signifi-
cantly simplified into (see Appendix A)

Dyi(r) = / fra@) - FA@0)d, 3)
0
where f]fa(t) is simply the total ligand binding frequency at

time ¢ for the sensor under signal A, and the weighting factor
FAB(t) is a simple function of the ligand concentrations under

the two signals at time ¢:
A@) B
cB@) AR

This result implies that, for an arbitrary sensor, the more
binding events that likely occur during the time of a large
weighting factor FAB(¢) (i.e., large signal difference), the
more the sensor can distinguish the two temporal patterns of
signals A and B.

In summary, the trajectory KL divergence, especially
Eq. (3), provides a convenient and intuitive way to understand
the transient sensory capacity of a sensor to discern different
temporal patterns of external signal. It leads to intuitive design
rules to enhance the distinguishability: the better sensors are
those with higher binding event frequencies when the lig-
and concentration difference between the two protocols are
prominent. Moreover, this formula allows us to characterize
the transient response of a sensor to arbitrary temporal signals
of ligand concentration and to study the sensor’s transient re-
sponse speed and recovery speed when it experiences sudden
changes of ligand concentration.

Note that Egs. (1) and (2) apply to any sensor that senses
arbitrary physical quantity, whereas Eqs. (3) and (4) apply to
any ligand-receptor sensors. In the next section we develop a
benchmark protocol that can be used to study the performance
of sensors in sensing a sudden concentration shift.

FAB(t)=1n

“

III. TRANSIENT SENSORY RESPONSES
AND BENCHMARK

A. Sensory response: Stationary versus transient

First, the proposed transient theory can be reduced to de-
scribe sensors at steady states. Let us start by considering the
sensor’s stationary difference under constant high and con-
stant low ligand concentrations, ¢, and ¢;. For two identical
copies of a sensor, one at the stationary state of the high ligand
concentration ¢, and another at the stationary state of the low
ligand concentration c;, they produce two different ensembles
of state transition trajectories. The distinguishability between
their stochastic trajectories is characterized by a symmetrized
KL divergence modified from Eq. (3)

Dy(7) = DiB(v) + DBA(v) = v - (FAF™® + fEBFBY), (5)

where the f2 denotes the stationary binding event frequency
at the stationary concentration c;, and FAB is defined by Eq. (4)
with ¢*(t) = ¢;, and ¢B(¢) = ¢;. In other words, at the steady
state, the sensor’s ability to distinguish high and low ligand
concentrations can be considered as the product between the
observation time 7 and a constant information accumulation
rate

Dy, = fAFAB 4 fBEBA, (6)

This agrees with the intuition that the longer the observation
time, the more one can distinguish the two environments.
Then, in this work, we go beyond the steady states and
analyze the transient sensory capability of a sensor under
the theoretical regime introduced in Sec. II. To simplify the
discussion, we focus on a sensor’s ability to distinguish a
step-wise change of ligand concentration [see Fig. 2(a)]. In
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FIG. 2. (a) Protocols to characterize the distinguishability be-
tween a step-wise concentration up-shift (protocol A) from a constant
concentration (protocol B). (b) The resulting weighting factor.
(c) The rate of KL divergence as a function of time. Note that the rate
is always positive but not necessarily monotonic; after long-enough
time from the initial concentration up-shift, it eventually settles to a
constant rate DSS. (d) The KL divergence as a function of observation
time is monotonic with a positive information accumulation. The dif-
ference between the sensor’s total accumulated information and the
information accumulated under steady state information rate for the
same time period defined the total excess information as in Eq. (9).

this case, consider two sensors initialized at the same ini-
tial stationary state at concentration ¢;. Then at time ¢ = 0,
one protocol introduces a sudden up-shift of concentration
to ¢, whereas the other remains at ¢;. The two sensors start
to generate distinct trajectory probabilities after time ¢ = 0.
By utilizing Eq. (3), we can find that the distinguishability
between the two protocols, under observation period (0, 7)
becomes a function of observation length t. This distinguish-
ablibilty increases over T with an information accumulation
rate

Dxi(t) = fA(0)FAB 4 fB (1)FBA, @)

where ftﬁ(t) and fb%(r) are the transient binding frequencies
for the two protocols at time T and the weighting factors FAB
and FBA are both positive constants. Figure 2(c) illustrates
the positive information accumulation rate as a function of
observation length t. Figure 2(d) illustrates the distinguisha-
bility Dy (1), i.e., accumulated information, as a function of
observation length 7.

Given the above analysis, we can compare a sensor’s tran-
sient sensory capability with the stationary sensory capability.
As illustrated in Fig. 2(c), after a concentration up-shift, the
transient response of a sensor may relax to the new steady
state, and as a result the information accumulation rate con-
verges to the steady-state information rate [Eq. (6)]:

lim Dy (7) = Dy ~ Dy (1), ®)

where i denotes the relaxation time of the sensor. To high-
light the difference between the sensor’s transient sensory
capability and steady-state sensory capability, we define their
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FIG. 3. Benchmark protocols ¢(z) and cB(¢) to capture a sen-
sor’s transient response along with its ability to recover from a
previous high-concentration exposure.

difference as the fotal excess information

I5! = lim Dyi.(t) — D (1), ©)

as shown in Fig. 2(d). If I' > O then the sensor’s transient
response to a sudden concentration up-shift is better than
the steady-state sensory capability. If I < 0, the sensor’s
transient response is worse than the steady state.

B. Ligand-receptor sensor benchmark

Using the above characterization, we propose a benchmark
to capture a sensor’s transient sensory capability as well as
a its ability to recover from a previous exposure to high/low
concentration. To illustrate the need for recovery, consider a
sensor that binds strongly to ligands. After being exposed to a
high concentration of ligands, it may be poisoned (i.e., stuck
at the bound state) and it experiences a low binding frequency
foa- To increase fpg and the sensory capability, a recovery in
a low concentration environment may be needed. It would
restore the unbound state and allow for higher fyq at the next
concentration up-shift.

To design a benchmark that simultaneously captures the
two sensory capabilities, we introduce the step-wise protocols
c(t) and cB(¢) as illustrated by Fig. 3. In the benchmark,
both protocols start by initializing the sensor in a high concen-
tration c;, to mimic the effect caused by a previous exposure
to a high concentration of ligands. Then at time f = —feset,
both the protocols lower the ligand concentration to ¢; for the
sensor’s recovery. Ultimately, the next up-shift signal starts
at time ¢ = 0, when the two protocols start to differ: At >
0) = ¢, and cB(¢t > 0) = ¢;. Under this protocol the sensor’s
trajectory KL divergence starts to accumulate with positive
constant weighting factor FAB and F®A as shown in Fig. 3.

Performance function I3 (treset). With the proposed bench-
mark protocols, any ligand-receptor sensor’s transient sensory
capability 1Y (feset) and its dependence on the length of
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FIG. 4. (a) A four-state sensor with one binding transition
andthree unbound states. (b) Sensor’s performance improving as
teset INCrEAses, as expected by intuition. (¢), (d) Sensor performance
exhibits nonmonotonicity with respect to f. indicating a boost of
performance at specific values of #ge.

resetting time #..qe¢ can be studied. This function characterizes
the performance of the sensor by capturing both the transient
sensory capability and its speed of recovery under resetting
periods. A few example performance functions obtained from
three different designs of four-state sensors are illustrated in
Figs. 4(b), 4(c), and 4(d).

Intuitively, one may expect a sensor’s performance func-
tion I (freser) to resemble the curve shown in Fig. 4(b). In this
case, the transient sensory performance I'°'(0) under infinitely
short recovery period is lower than that under an infinitely
long recovery period [I'(00) ~ I%'(14)]. In other words,
the recovery helps the sensor resume the ability to facilitate
binding transitions and thus helps the sensor achieve a better
transient sensory performance.

For illustrative purposes we denote the performances at the
two ends of the performance function as

Iy, = I1540), (10)
I =15 (T), (11

where the first one captures a sensor’s transient sensory per-
formance when the sensor is initiated at a high-concentration
environment (c,) and the second one captures the sensor’s
transient sensory capacity if the sensor is initialized at the
steady state of a low concentration environment ¢;, or equiv-
alently, the sensor is fully recovered at a low concentration
environment ¢;. Notice that for some sensors, one may ob-
serve that its transient sensory performance initiated at high
concentration may be better than that of the low concentration,
I3 > I3, as shown in Fig. 4(d).

Notably, for some sensors the performance function is
nonmonotonic with respect to the recovery time, as shown
in Figs. 4(c) and 4(d). For these sensors, the curves indicate
that the sensors reach a boosted performance for specific #reset
values hence uncovering a design principle that can guide
sensor performances to their best achievable values. This

interesting behavior—the sensory withdrawal effect—of the
sensor’s transient sensory performance function is a result of
the non-stationary dynamics of the sensor traversing different
paths of its internal states and is discussed in detail below.

IV. RESULTS

A. Markovian origin of sensory withdrawal effect

One central observation of this work is a counterintuitive
withdrawal effect in sensory resetting: a previous exposure to
high concentration of ligands followed by a brief period ¢*
of low concentration can boost a sensor’s sensitivity beyond
any steady-state behavior. Specifically, for the same sensor
under the same long observation time T >> T, the ability
for a sensor to distinguish an up-shift ligand concentration
becomes the highest under an optimal recovery period t* < g
Figs. 4(b) to 4(d). Since the recovery does not impact Dy, this
effect can be alternatively characterized in terms of the total
excess information: for an optimal resetting period ¢*, both
I91(*) > Iy, and I5'(t*) > 3" are satisfied, as shown in
Figs. 4(c) and 4(d). This effect is a transient nonequilibrium
effect due to the time evolution of the system over the complex
state space and cannot be explained by traditional steady-state
analysis.

This withdrawal effect resembles another nonmonotonic
effect found in cooling/heating processes—the Mpemba ef-
fect. The Mpemba effect describes that certain systems cool
faster if they were previously heated to a higher initial tem-
perature [50-53]. It was shown that the Mpemba effect can
be explained by decomposing the temporal evolution of the
system into the combination of different eigenmodes. In the
decomposition, it can be shown that the cooling time is dic-
tated by the slowest eigenmode, where each mode relaxes
under a exponential relaxation at a given rate (determined
by the corresponding eigenvalue). The Mpemba effect occurs
if the decomposition factor of the slowest relaxation mode
nonmonotonically depends on the initial temperature. Here
we explain the nonmonotonic withdrawal effect in terms of
eigenmode decomposition. At time ¢ = 0, the sensor’s state
probability can be decomposed into a superposition of eigen-
modes under the rate matrix corresponding to the constant
concentration, ¢, or ¢;. As proven in Appendix B, each
eigenmode (7) contributes a fixed total excess information mlA
and m?:

[etgt(lreset) = IAB (lreset) + IBA ([reset) (12)

N
= Z[r,"A(treset) : m;A + r,B(treset) : m?]» (13)
=2

where the coefficients rl-A(treset) as functions of the resetting
time are the decomposition factors of the sensor’s initial state
into the eigenmodes of the sensor dynamics at a constant
ligand concentration cj,. Similarly, rlB (treset) are the decom-
position of the sensor’s initial state into the eigenmodes of
the dynamics under concentration ¢;. For a sensor with the
withdrawal effect showing up in both / AB (1 et) and IBA (freqer)
[see Figs. 5(c) and 5(d)], we find two different mechanisms
behind the withdrawal effect. One mechanism resembles that
found in the Markovian Mpemba effect, but the second
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FIG. 5. (a) The coefficients r,.A (reser ), Obtained for eigendecom-
position of the sensor’s initial state at + = 0 into the eigenmodes of
the sensor dynamics at a constant ligand concentration ¢;. (b) The co-
efficients r,B (eset ), Obtained for eigendecomposition of the sensor’s
initial state at # = 0 into the eigenmodes of the sensor dynamics at
a constant ligand concentration ¢;. (c), (d) The respective / AB (£ eset)
and 148 (t,.;) obtained using Eq. (13) with the fixed contributions,
m!* and m? listed in the insets of (c), (d). These results were obtained
for the four-state sensor shown in Fig. 4(a) with the following energy
of each states: E; = 0.8, E;, = 0.4, E; = 0.8, E;, = 0, and barrier
heights between the respective states: Bj, =2, Bj3 =1, Bjy = 1.1,
Bz4 == 05 .

mechanism is novel. In the first case, the withdrawal effect
results from the nonmonotonicity of the fourth eigenmode
decomposition factor rf (treset) as shown in Fig. 5(a). In the
second case, all eigendecomposition factors are monotonic
in time, as shown in Fig. 5(b), and the withdrawal effect is
a result of the weighted summation of the three monotonic
functions. This analysis reveals that the withdrawal effect
is a result of more complex dynamical behaviors than the
traditional explanation of the Mpemba effect, as it involves
the contribution from multiple eigenmodes.

B. Structure origin of sensory withdrawal effect

In the following, we utilize machine learning classification
method to systematically investigate the connection between
the sensor’s state transition graph and the sensory withdrawal
effect. Since the distinguishability and the excess information
described previously is directly proportional to the average
number of binding transitions, we expect sensors with mul-
tiple binding transitions to result in better performances.

To characterize the connection between graph structure and
the withdrawal effect, we analyze the frequency of observ-
ing this effect across all possible four-state transition graphs
shown in Fig. 6(a). For each of the 24 distinct transition
graphs, we randomly generate 500 different energy landscapes
using a uniform distribution, resulting in a comprehensive
study of 12 000 possible sensor configurations. As shown
in Fig. 6 and Table I, we find a strong correlation between
the probability of observing the withdrawal effect and the
structural features of the sensor’s state graph. Notably, motif
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FIG. 6. Four-state sensors classified into five classes based on
the features of their graphs. (a) All the four state graphs considered
in this study. A solid circle represents a bound state and a hollow
circle represents an unbound state. The solid arrows represent a bind-
ing transition and the dotted lines represent nonbinding transitions
between states. Note that all the transitions are bidirectional. Each
graph is colored based on the UMAP cluster as shown in (b).

24 in Fig. 6 exhibits a 100% probability of displaying the
withdrawal effect.

This 100% occurrence of withdrawal effect for motif 24
can be explained through analysis of the probability evolution
over its energy landscape. Consider a case where the energy
barrier between states 1 and 3 is high, while the energy barri-
ers between states 1 and 2 and states 1 and 4 are relatively
low. Additionally, among the three unbound states, state 3
assumes the lowest energy. Due to the law of mass action,
the bound state 1 is favorably occupied at the steady state of
high ligand concentrations, while the lowest-energy unbound
state 3 is favorably occupied at the steady state of low ligand

043019-6



MPEMBA-LIKE SENSORY WITHDRAWAL EFFECT

PRX LIFE 2, 043019 (2024)

TABLE 1. For each graph in Fig. 6(a) the percentage of occur-
rence of the withdrawal effect.

Graph w% Graph w%
1 0 13 1.4
2 0 14 2.8
3 0 15 14.6
4 0 16 42
5 0 17 60.2
6 0 18 0

7 0 19 14
8 0 20 19.8
9 0 21 48.8
10 514

11 63.8

12 96.8

concentrations. Under our benchmark protocol, the system
dynamics can be understood in three distinct temporal phases.

In the initial phase (f < —feset), long exposure to high
concentration drives the system toward steady-state abun-
dant occupation of the bound state 1. During the reset phase
(t = —teser to t = 0), when concentration is lowered, states
2 and 4 become populated faster than state 3 due to their
differences in energy barriers. For very short resetting time
teset < 1, there is insufficient time for the system to leave the
bound state 1, leaving the system with low probabilities in the
unbound states 2, 3, and 4. For an intermediate (optimal) reset-
ting time feser = £, the system achieves an ideal intermediate
distribution where states 2 and 4 are more depopulated than
state 3, maximizing the number of rapid binding transitions
(from 2 to 1 and from 4 to 1) upon the upcoming phase
(increase of ligand concentration at + = 0). For a very large
resetting time feqe; > 1, the system fully equilibrates to the
low-concentration steady state dominated by state 3, which is
kinetically slow to bind with ligands upon the upcoming phase
(increase of ligand concentration).

In the subsequent response phase (¢ > 0), the optimal reset
time #* creates a “primed” configuration where states 2 and 4
are significantly occupied to allow rapid new binding events.
This unique combination enables a faster response to subse-
quent concentration increases. The mechanism explains why
motif 24 consistently shows the withdrawal effect: its topol-
ogy enables the necessary separation of timescales between
fast transitions (involving states 2 and 4) and slow transitions
(involving state 3), while the slow-binding state 3 dominates
at the steady state for low concentration.

The analysis of motif 24 can naturally lead to the con-
struction of a minimal system for the withdrawal effect. By
removing state 4 while maintaining states 1, 2, and 3 along
with their respective energy barriers and transition rates, we
can construct a minimal three-state model that exhibits the
withdrawal effect. The mechanism remains analogous: state
3 serves as the slow-binding and slow-unbinding memory
state while state 2 enables rapid binding and unbinding tran-
sitions. Through monotonicity arguments, one can prove that
this withdrawal effect cannot occur in any simpler two-state
Markov systems, as they lack the necessary capacity for two
binding-unbinding pathways with different timescales.

4 -2 0 2 4 6 8 10 12

UMAP component 1

FIG. 7. The clustering of the UMAP embeddings obtained for
the performance of sensors show the same five classes as obtained
for the graph features confirming a strong correlation between graph
features and performance of the sensor.

To capture the structure of the Markov graph we use
the following features: the number of unbound states; the
number of unbound to unbound transitions; the number of
unbound states capable of binding transition; the number of
singly bound states not capable of binding; the number of
singly bound states capable of binding; the number of singly
bound to singly bound transitions—to classify the graphs with
uniform manifold approximation and projection (UMAP) em-
beddings in three dimensions [54]. The clustering of the
UMAP embeddings is shown in Fig. 6(b).

The classification of the sensor graph has strong correlation
with the occurence of the sensory withdrawal effect. The
graphs in classes 2 to 5 show a withdrawal effect with one
exception (in class 4) and the graphs in class 1 do not show a
withdrawal effect. The features of the graphs in each class and
their interpretation are elaborated on in Table II.

C. Correlation between graph features and performance

To systematically investigate the relationship between the
sensor’s performance and the structure of its state graph,
we employ UMAP to visualize the high-dimensional perfor-
mance data in a three-dimensaionl (3D) latent space. The
UMAP representation is generated from four-dimensional
vectors capturing key features of the sensor’s performance
function, 11" (freser). These features include the position and
value of the maximum I’ (freser) Within the range (0,1), as
well as the ratios of I'% at the initial (fesee = 0) and final
(#ma) reset times to the maximum value of I'%'(frse). Re-
markably, the UMAP embeddings of the sensor performances
form distinct clusters that precisely match the previously
identified graph classifications (Fig. 6), as illustrated by the
consistent color coding in Fig. 7. This agreement between
the performance-based clustering and the graph classification

suggests an inherent link between the sensor’s performance
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TABLE II. Correlation between graph structure and withdrawal effect.

Class Withdrawal effect Graph features Interpretation
1 No One unbound state, three bound states. Since there is only one unbound state the recovery
There could be one, two, or three binding dynamics is too simple to allow for a withdrawal effect.
transitions.
2 Yes Three unbound states, one bound state. Multiple unbound states with only one unbound state
Only one unbound state is allowed to bind. allowed for the binding transition. These graphs allow
for complex dynamics under the recovery period and
thus allow for the withdrawal effect. The less transitions
between the unbound states, the stronger the
non-monotonicity of its resetting relaxation and thus
higher the probability to see the withdrawal effect.
3 Yes Two unbound states, two bound states. The stronger the connection (direct or indirect) between
the two unbound states, the weaker the withdrawal effect
in agreement with class 2.
4 Yes except 1 The only class of graphs that allows for No clear trend is observed possibly due to the
multiple levels of binding (k > 1). multiplicity of the bound states (k > 1).
5 Yes Three unbound states, one bound state. All In agreement with the observation from class 2 and 3,

unbound states can make binding
transitions.

the less connection between the unbound states the more
non-monotonicity one could achieve in the recovery
period thus allowing for more probability to observe the
withdrawal effect.

characteristics and the structural features of its underlying
state graph.

To better visualize the correlation between the graph
features and the performances of the sensor beyond the with-
drawal effect, we plot the performance embeddings separately
for each graph in Fig. 8. Clearly, the performance embed-
ding from graphs of the same structural class show similar
shapes in the three-dimensioanl latent space. It indicates that
the structure of the Markov graph is tightly connected to the
information performance of a sensor.

V. DISCUSSION

This paper presents a comprehensive theoretical frame-
work and a systematic benchmark to investigate the transient
information sensory performance of ligand-receptor sensors.
Through this study, we uncover a counterintuitive phe-
nomenon termed the “sensory withdrawal effect,” in which a
sensor initially exposed to a high concentration environment,
followed by a brief recovery period at low concentration,
exhibits a significant enhancement in its sensory performance
compared to starting from any stationary ligand concentration
level. Our analysis reveals a strong connection between the
structure of the sensor’s state transition graph and the occur-
rence of the withdrawal effect, as well as the overall transient
information performance. This relationship is robustly con-
firmed by the consistent classifications of sensors based on
their graph features and performance features.

The implications of our findings could extend beyond the
realm of theoretical studies and shed light on the mechanisms
underlying disease-related mutations in biological receptors.
For instance, recent work by Chen, Marsiglia et al. [38] on the

fibroblast growth factor (FGF) receptor, a receptor tyrosine
kinase, reveals how certain mutations in the kinase domain
affect its structure and activity. Disease-causing mutations
often lead to increased kinase activity, even in the absence of
ligand binding and are a major concern in cancer or growth
disorders [55-60]. Our theory and the concept of the sensory
withdrawal effect may provide a new lens to interpret these
findings in the transient dynamics of sensor’s state transi-
tions. In the future, our methodology may allow researchers
to gain deeper insights into how changes to the receptor state
transition graph due to mutations may consequently alter the
sensor’s performance. This understanding could pave the way
for the development of novel therapeutic strategies that target
the temporal dynamic of receptors, rather than solely focusing
on their static structural features.

Furthermore, our approach could be extended to other
receptor systems implicated in various diseases, such as G
protein-coupled receptors (GPCRs) [61-64]. By characteriz-
ing the transient sensory dynamics of these receptors and
identifying potential withdrawal effects, researchers could un-
cover new mechanisms underlying pathological conditions
and guide the design of more effective drug compounds that
modulate receptor dynamics.

In conclusion, this work not only advances our funda-
mental understanding of the complex sensory dynamics in
ligand-receptor systems, but also provides a powerful tool for
the design and characterization of biosensors with improved
transient performances. The insights gained from our study,
combined with the growing body of research on disease-
related receptor targets, may open up exciting avenues at the
interface of theoretical biophysics and medicinal chemistry.
The implications of this study have far-reaching consequences
for fields such as synthetic biology, drug discovery, and
biosensor development.
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The numerical codes written for this study in Julia and
Python languages are made publicly available on GitHub:
Excess Information at Ref. [65].
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APPENDIX A: LIGAND-RECEPTOR SENSOR’S
PERFORMANCE EXPRESSED BY BINDING
FREQUENCIES

For any transient process that is arbitrarily far from the
steady state, the trajectory KL divergence can be expressed as
an accumulated weighted sum of all observed transition events
as given by Eq. (2). The weighting factor F; AB \ (1) characterizes
the transition rate difference for each transmon at time ¢ for
the sensor’s dynamics under the two signals (as given by
Eq. (10) in Ref. [49])

ch‘,)C @)
Rffx )

RY()

AB
FAB(r) = X0

+

—1>0. (A1)

In this description, we adopt the master equation description
of the sensor’s dynamics, where the transition probability rate
from state x to x" is denoted by R? (¢) and the probability
of the sensor being in state x at time ¢ under the protocol
A is denoted by p*(x;t). For ligand receptor sensors, the
external signal is ligand concentration, and it only impacts the
probability rates of the binding transitions that have the form

RA (1) = A(t)e PEED, (A2)

where B8 =1 is the inverse temperature, By, is the energy
barrier between the states x’, and x and E, is the energy of the
state x. Thus one can show that the nonbinding transitions do
not contribute to the KL divergence [i.e., with a zero weight-
ing factor as shown in Eq. (A1)] and for any binding transition,
the weighting factor follows a simple formula as shown in
Eq. (4). Ultimately, one can show that for ligand-receptor
sensors, the KL divergence is simply a time integral of all
binding frequencies weighted by the “transient concentration
difference” between the two signal protocols, as shown in

Eq. 3).

APPENDIX B: EIGENMODE DECOMPOSITION
OF THE TOTAL EXCESS INFORMATION

By using the eigenrepresentation of the sensor’s state prob-
ability, one can express the initial probability PA(x, 0; treser) AS
the weighted sums of the eigenvectors of the rate matrix R*,

PO = 05 treser) = TA) + D 1 trese) 0 (3, 1), (B1)

i>2

Here the weighting factors are collectively expressed by a
vector 7 (freset), and the leading eigenvector given by the
steady-state distribution 7. Then as the sensor evolves ac-
cording to the protocol A, each of its eigenmode exhibits an
exponential decay with the decay rate set by the corresponding
eigenvalues

P =) + Y i s VL), (B2)
i>2

where 4 (x) is the steady-state distribution on state x, A; is
the ith eigenvalue, and v;(x, ) is the component of the ith
eigenvector of matrix R* on state x. Here, the eigenvalues {A;}

are ranged inthe order 0 = A > Ay > A3 > --- = Ap.
The KL divergence in Eq. (2) then becomes
DQL(T freset) = / dr Z RA A(X)FAB(Z‘)
edge x—x’
F ) [ 3 RES )
i>2 edge x—x’
FAB(p), (B3)

where the KL divergence is linearly dependent on the coeffi-
cients {r}. For a time-independent rate matrix R*, only the
term e in Eq. (B3) includes time ¢. In this case, Eq. (B3)
reduces to the following form:

DR (Titew) = Y RETNx)FAPr

edge x—x’
r trese
+Z[ (o) (e _ )y
22
Y R ;“(x)FAB} (B4)
edge x—x’
(& t)
— . SSFAB +Z|: ese _1)
=2
x Y Rﬁxu;*(x)FAB}. (B5)
edge x—x’

We use a symmetric version of the KL divergence
Dy (7)) = Dﬁf(r) + D (r) to define the sensor’s transient
sensory capability in terms of it’s total excess information,
I (freser) and its dependence on the length of resetting time

treset :

Ietil (treset) = rlingo DKL(t; [reset) - Dss(t; [reset)- (B6)
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Using Eq. (BS), Eq. (B6) for a N state sensor becomes

A
—ri(t.
Iéi‘(rmet)=2[$ Yo RELPFM®

i>2 i edge x—x’

—r; (lreset) Z Rxx 1 ()C)FBA:|

edge x—x’

(B7)

which gives Eq. (13) in the main text

ItOt(treset) = Z [rlA(treset) : m? + r,B (Freset) - m?]s (BY)

i>2
where
md = /\AR)?XU;*(x)FAB, (B9)
1
mP = ~35 —R® vB(x)FBA. (B10)
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