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ABSTRACT
Simulating stochastic systems with feedback control is challenging due to the complex interplay between the system’s dynamics and the
feedback-dependent control protocols. We present a single-step-trajectory probability analysis to time-dependent stochastic systems. Based
on this analysis, we revisit several time-dependent kinetic Monte Carlo (KMC) algorithms designed for systems under open-loop-control
protocols. Our analysis provides a unified alternative proof to these algorithms, summarized into a pedagogical tutorial. Moreover, with
the trajectory probability analysis, we present a novel feedback-controlled KMC algorithm that accurately captures the dynamics systems
controlled by an external signal based on the measurements of the system’s state. Our method correctly captures the system dynamics and
avoids the artificial Zeno effect that arises from incorrectly applying the direct Gillespie algorithm to feedback-controlled systems. This work
provides a unified perspective on existing open-loop-control KMC algorithms and also offers a powerful and accurate tool for simulating
stochastic systems with feedback control.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0217316

I. INTRODUCTION
At the molecular scale, biological processes are complex and

stochastic.1,2 Currently, numerical simulations contribute critical
insights into the stochastic dynamics of the systems.3 One example
approach involves solving for the master equation,4–6 constructed
either through molecular dynamics simulations (e.g., via Markov
state model approaches7–9) or through experimental results (e.g.,
kinetic proofreading10,11). In this case, if the system is reduced to
a few state Markov network, one can numerically solve for the
master equation, given the initial probability distribution and the
control protocol. Another example, when the system’s state space
is too large, is to utilize the Gillespie algorithm12 or kinetic Monte
Carlo (KMC) simulation to obtain an ensemble of the stochastic
trajectories of the process.

Numerous biological processes also respond either to external
control or other coupled processes.13 These stochastic systems are
more complex than stationary systems, as their kinetic rates change
over time via open-loop (non-feedback) or closed-loop (feedback)

control. Examples of feedback controlled systems span multiple
length- and timescales, from metabolic regulation14–16 to bacterial
chemotaxis17,18 to cell-cycle regulation.19–22 Understanding feed-
back controlled systems is essential in unraveling their dynamics and
optimizing their performance. However, it remains challenging to
simulate feedback controlled stochastic systems due to the presence
of in-time feedback.

Gillespie first proposed a direct KMC method that allows one
to simulate the stochastic dynamics for a system that evolves under
a constant set of rates.23 Unfortunately, this method cannot be
directly extended to simulate time-inhomogeneous systems, where
the system’s dynamical rates change over time. Naively implement-
ing the direct KMC simulation by discretizing the simulation into a
sequence of constant rate windowsmay lead to an incorrect underes-
timation of the transition frequency of the systems, which resembles
the Zeno effect. In quantummechanics, the Zeno effect describes the
system dynamics being trapped into a single state due to frequent
repetitive projective measurements.24–26
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In the past few decades, an open-loop-control KMC algorithm
has been proposed to simulate various time-inhomogeneous bio-
logical systems whose kinetic rates change over time due to an
open-loop (non-feedback) control protocol. These studies were pre-
sented for various biological processes, including ion channels in
neurons,27–29 RNA folding,30 and chemical reactions.7,31 In 2007,
Anderson proposed a modified next-reaction simulation method,
where the transition rate of one possible reaction could change over
time due to the occurrence of another possible reaction that takes
place in a shorter time.31 In this case, the simulation addresses the
changes of the reaction rates by providing a modification to the
generation of the waiting time of reactions. Later, a general class
of methods7,27,29–31 were formulated for simulating systems with
time-dependent rates. These studies address systems that fall into
the category of open-loop controlled stochastic systems,32 where
the system’s transition rates are controlled by an external signal
as a function of time according to a given protocol. However, still
missing is a general theory and an algorithm for simulating feed-
back controlled stochastic systems, where the protocol is updated
at each scheduled measurement time based on the instantaneous
measurement outcome.33 The main difficulty in developing a KMC
algorithm for feedback controlled systems is that the control proto-
col at future times is unknown, as it depends on the results of the
future measurements of the system.

In this work, we first provide an alternative derivation for the
open-loop-controlled KMC, which recapitulates the methods devel-
oped in a number of existing Refs. 7, 27, and 29–31. This alternative
derivation, based on single-trajectory probability analysis, lays the
foundation to the development of a novel algorithm able to simulate
systems under in-time feedback control. The validity and the imple-
mentation of the algorithm are demonstrated by Maxwell’s feedback
control refrigerator.

II. THEORY AND ALGORITHMS
A. Theory: Single-step trajectory probability

This article begins by revisiting the theoretical foundation of
the open-loop-control KMC method by providing a pedagogical
proof that recapitulates various versions of these algorithms.7,27,29–31

The theory is constructed by comparing the true probability of
single-step trajectories and the simulated trajectory probability gen-
erated within one step of a modified KMC algorithm. This trajectory
analysis not only provides an alternative proof for open-loop-control
KMC methods described previously7,27,29–31 but also provides the
foundation from which a closed-loop-control KMC method can be
derived.

Consider a continuous-time discrete-state Markov process that
is subject to an external control protocol λ(t) as an arbitrary func-
tion of time t. The system contains a discrete number of states ns and
is initialized with probability distribution p⃗(t = 0). The dynamics of
p⃗(t) is characterized by the master equation

dp⃗
dt
= R̂(λ(t))p⃗, (1)

where the matrix element Rji(λ(t)) is the transient transition prob-
ability rate from i to j given the control parameter λ at time t. The
diagonal element satisfying Rii(t) = −∑j≠iRji(t) is the negative tran-
sient escape rate from state i at time t. Themaster equation evolution

of p⃗(t) can also be expressed in terms of the dynamics of the ith
state’s probability,

dpi
dt
=∑

j≠i
Rij(λ(t))pj(t) + Rii(λ(t))pi(t). (2)

For an open-loop controlled system, the control protocol λ(t) is
externally determined. In contrast, for a closed-loop controlled sys-
tem (e.g., one with a series of feedback measurements), the specific
form of λ(t)may depend on the system’s state.

Each individual step of a KMC simulation is concerned with
only generating the next stochastic event (i.e., evolving to state xk+1
at time tk+1 from the previous state xk and time tk). This event can
be expressed as a single-step trajectory Xsingle = (xk, tk, x′, t′) given
the previous step. The conditional probability for this single-step
trajectory can be written as

p[x′, t′∣xk, tk] = e∫
t′
tk
Rxkxk (t)dtRx′xk(t

′), (3)

which is also a joint probability distribution of the next event’s time
t′ and state x′. This formula is true for anyMarkov dynamics regard-
less of whether the dynamical rates are constants or the rates change
over time. We show below that, in the case of time-independent
or time-dependent rates, the direct Gillespie algorithm or an open-
loop-control KMC algorithm, respectively, can correctly capture the
dynamics.

1. Time-independent rates
In the case where the dynamics of the system are constant

over time,34 the direct Gillespie algorithm23 is sufficient. From a
probability theory perspective, the single-step transition probabil-
ity of the next state x′ and next time t′ can be factored into the
product of two statistically independent distributions and can be
generated separately from their own probability distributions Px(x′)
and Pt(t′),

p[x′, t′∣xk, tk] = Pt(t′) ⋅ Px(x′) , t′ > tk, x′ ≠ xk
= e(t

′
−tk)⋅Rxkxk ⋅ Rx′xk. (4)

In this case, the direct KMC23 is carried out by generating the
next transition time t′ according to Pt(t′)∝ eRxkxk ⋅(t

′
−tk) and gen-

erating the next state x′ according to the state probability Px(x′)
∝ Rx′xk .

2. Time-dependent rates
If the rates change over time, the direct KMC approach23 fails

to generate the correct dynamics since the next event’s time and state
are statistically correlated. In this case, we can still factorize the joint
probability of t′ and x′, P(x′, t′) ≡ p[x′, t′∣xk, tk], as the product of
two probability distributions,

P(x′, t′) = Pmarg
t (t′) ⋅ Pcond

x (x′∣t′), (5)

where the marginal distribution of the transition time t′ (given the
previous xk and tk) is denoted by

Pmarg
t (t′) = ∑

x′≠xk

p[x′, t′∣xk, tk]

= −e∫
t′
tk
Rxkxk (t)dt ⋅ Rxkxk(t

′) (6)
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and the conditional probability distribution of the next state x′

conditioned on the transition time being t′ is

Pcond
x (x′∣t′) =

Rx′xk(t
′)

−Rxkxk(t′)
. (7)

In this case, a modified KMC algorithm should be capable
of faithfully generating the stochastic trajectory. In one simulation
step of the modified KMC algorithm, one first generates the next
transition’s time t′ = t∗ according to Eq. (6) and then generates the
next state x′ according to Eq. (7) given the proposed time t′ = t∗.
One can verify that the generated pair of x′ and t′ follows the true
single-step trajectory probability distribution [Eq. (3)]. This anal-
ysis is applicable to arbitrary time-dependent processes, where the
system’s rates change over time due to either (1) open-loop control
according to a scheduled protocol7,27,29–31 or (2) closed-loop control
with a series of feedback measurements.

B. Review of open-loop-control KMC: General
algorithm

Here, we review the open-loop-control KMC methods previ-
ously described in Refs. 7, 27, and 29–31. This review also serves as
an alternative derivation and justification of these algorithms in the
language of single-step trajectory generation introduced in Sec. II A.
The representation of the single-step trajectory probability as the
product of a marginal probability and a conditional probability,
Eq. (5), allows one to separately generate the next transition’s time
t′ and state x′, even when the time dependence of the system’s rate
creates a statistical correlation between t′ and x′.

1. Generating transition time t ′

The random generation of transition time t′ > tk according to
the marginal probability density in Eq. (6) can be realized by first
obtaining the cumulative density function,

c.d.f.(t′) = 1 − e∫
t′
tk
Rxx(t)dt , (8)

and then generating a random number u following a uniform distri-
bution between 0 and 1, and finally solving for t∗ according to the
following equation:

u = c.d.f.(t∗) = 1 − e∫
t∗
tk

Rxx(t)dt. (9)

Or equivalently, for a randomnumber v = 1 − u also following a uni-
form distribution between 0 and 1, one can solve t∗ as the root of the
following equation:

ln (v) = H(t∗), t∗ ∈ (tk,∞), (10)

where

H(t∗) = ∫
t∗

tk
Rxx(t)dt, t∗ ∈ (tk,∞) (11)

and Rxx(t) is the negative escape rate from state x at arbitrary time t.

2. Generating the next state x ′

Once the transition time t∗ is generated, the selection of the
next state x′ is straightforward—the new state’s probability is pro-
portional to their transient transition rates evaluated at the chosen

ALGORITHM 1. Open-loop-control KMC.

1: The starting time of the current simulation step is t
with the starting state x.

2: Generate the list of all possible states that the system
can jump to, and evaluate the time-dependent escape rate
from state x as −Rxx = ∑x′≠xRx′x(t), where the summation
takes all possible new states x′ into consideration.

3: Generate a random number v ∈ (0, 1] following a uniform
distribution. Obtain the next event time t∗ by solving for
t∗ > t from Eq. (10).

4: Given the proposed transition time t∗, propose the tran-
sition event (e.g., to state x′) with the probability propor-
tional to their transient transition rates p(x′)∝ Rx′x(t∗)
[Eq. (7)].

5: Update the system state to x′ and time to t∗. Continue the
iteration by going to step 2.

transition time t∗, as defined in Eq. (7). This resembles the state gen-
eration in the direct KMCmethod, with the only difference being the
probability to jump to state x′ here is proportional to the transient
rate Rx′xk(t

∗) evaluated at the chosen time t∗.
To summarize, one simulation step of the open-loop-control

KMC algorithm can be enumerated in Algorithm 1. Furthermore,
by including appropriate approximations (see Sec. II C), one can
reproduce various open-loop-control KMC algorithms previously
described in Refs. 7, 27, and 29–31.

C. Piece-wise approximations to open-loop control
In practice, solving for the next event’s time t∗ by a given ran-

dom number v and Eq. (10) for arbitrarily complex time-dependent
rates may be challenging. We now briefly review a few ways to
approximately solve for this integral equation. Various methods
have been proposed in simulating specific biological processes.27–30

For illustrative purposes, we demonstrate two approximations and
sketch the corresponding algorithms for: (i) piece-wise linear func-
tion approximation and (ii) piece-wise step function approximation
for the escape rate −Rxx(t).

Here, we illustrate the algorithms by focusing on one step of
the simulation. Let us denote the previous state as xk = x and the
previous time tk = tlast; then, the algorithm’s task is to generate the
next event’s time t∗ and the next state x′. As illustrated in Fig. 1(a),
the negative escape rate from the state x, Rxx(t) (shown as the black
curve), can be approximated by (i) a consecutive set of straight line
segments (top panel), or (ii) a set of stepwise step functions (bottom
panel).

1. Piece-wise linear escape rates
Let us denote each window wi by a time interval (τi, τi+1) and

also set the beginning of the first window at τ1 = tlast. The negative
escape rate from state x at each window’s left edge is denoted by Rτi

xx
= −∑x′≠x Rx′x(τi). Under this assumption, the numerical integration
involved in Eqs. (10) and (11) can be considered as

H(t∗) = A1 + A2 + ⋅ ⋅ ⋅Ai−1 + ∫
t∗

ττi
Rxx(t)dt (12)
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FIG. 1. Approximating open-loop protocol control. (a) Graphical representation of
both (i) piece-wise linear rate function and (ii) piece-wise step-function rates. The
black curve is the actual negative escape rate Rxx(t). The approximation breaks
the time into multiple windows. Each window wi starting at time τi is represented
by shaded regions, and the colored straight lines represent the approximated
piece-wise negative escape rate. (b) Cartoon of one possible trajectory of the sys-
tem. Here, the trajectory within the step of simulation is shown by the bold black
lines; previous and future trajectories are shown by light gray lines. This simulation
step is conditioned on the starting time tlast and state x and proposes to jump to a
new state x′ at time t∗ > tk .

for τi < t∗ < τi+1. Here, the integral for each window starting from
τ1 = tlast is defined as

Ai = (τi+1 − τi)Rτi
xx +

Rτi+1
xx − Rτi

xx

2
(τi+1 − τi). (13)

Here, Ai is the integrated negative escape rate within the window wi
defined from τi to τi+1. Successive windows wi starting from i = 1
will be evaluated until the jth window where the transition time is
chosen, which can be identified by∑ j−1

i=1 Ai < − ln v < ∑ j
i=1 Ai. Given

Eqs. (12) and (13), we can solve for t∗ according to Eq. (10) in
sequence, starting from i = 1 and continuing until the appropriate
t∗ can be drawn from the jth window according to35

j−1

∑
i=1

Ai + Rτ j
xx(t∗ − τj) +

Rτ j+1
xx − R

τ j
xx

2(τj+1 − τj)
(t∗ − τj)2 = ln v. (14)

2. Piece-wise step-function escape rates
When the time dependent escape rate from state x is considered

as a piece-wise step function, where Rxx(t) = Rτi
xx for each window

t ∈ (τi, τi+1), we can determine the next event’s time t∗ by solving
for a linear equation,

(t∗ − τk)Rτk
xx +

k−1

∑
i=1

Bi = ln v, (15)

where v is a random number uniformly distributed between 0 and 1
and the integrated negative escape rate for each window is denoted
by

Bi = (τi+1 − τi)Rτi
xx. (16)

By solving for the above equations starting from the first window,
one can find the next event’s time as t∗ ∈ (τk, τk+1) occurring at the
kth window. We demonstrate this method in a 1D lattice diffusion
problem as shown in the Appendix.

D. Closed-loop feedback controlled systems: General
algorithm

Consider a feedback control scheme where a scheduled series
of measurements will be taken at a set of observation time points
τ1, ⋅ ⋅ ⋅ , τi, τi+1, ⋅ ⋅ ⋅ τi+k, ⋅ ⋅ ⋅ [see Fig. 2(a)]. At each observation time τj,
the measurement outcome is determined by the transient state of the
stochastic system:mj = x(τj).34 Immediately, the measurement out-
come updates the system’s kinetic rates via a rapid feedback control
mechanism. Let us denote the control signal as an explicit function of
time λ(t), which can be represented by a piece-wise function where
each piece is defined for the time between two consecutive measure-
ments and is determined by all previous measurement outcomes.
The actual protocol can be piece-wise constant (see an illustrative
example in Secs. II E and III A), or, in more general cases, could be a
solution of an ODE parameterized by the measurement outcomes at
each feedback measurement. The general algorithm proposed here
is applicable to arbitrary functional forms of the control protocol.

The key to correctly simulate the feedback controlled system is
to recognize that, when carrying out each step of a KMC simulation,
one only needs to predict the next transition event given the present

FIG. 2. Closed-loop control protocol. (a) Graphical representation of a series of
scheduled measurements occurring at τi−1, τ, . . . , τi+k . (b) Two types of single-
step trajectories illustrated in the piece-wise step-function feedback control: (i) the
next event occurs prior to the next scheduled measurement evolved using the
determined protocol based on the last measurement Rxx(λa) or (ii) event occurs
after the k additional measurements, and the rate is projected by fixing the future
measurements to be state x resulting in control signal being λb, and the escape
rate is Rxx(λb).
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state and the transition rates set by the control protocol. Now, con-
sider a system placed at state x and time tlast set by the previous step
of simulation. Without losing generality, let us consider the current
time as τi−1 < tlast < τi so that the current system has gone through
the (i − 1)th measurement and the very next feedback measurement
(the ith measurement) will occur at a future time τi.

To carry out the present simulation step and predict the next
transition time t∗ and next state x′, there are only two possible sce-
narios to consider, which are separated by a milestone time—the
immediate next measurement time, τi. The two scenarios are the fol-
lowing: (i) the next event takes place at a time before the milestone
time [t∗ < τi, Fig. 2(b-i)] or (ii) the next event takes place at any time
after the milestone time [t∗ > τi, Fig. 2(b-ii)]. The milestone time τi
is highlighted by the color scheme transition from red to yellow in
Fig. 2(b-ii).

In the first case, one does not need to consider the control pro-
tocol after the next measurement and only needs to consider the
protocol before τi. For this case, the control protocol for any t < τi is
fully determined without any ambiguity, given the historical trajec-
tory of the simulation. This pre-milestone part of control protocol
before τi can be generally represented by the following function and
is fully determined:

λ(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

λ1(t;m1), τ1 ≤ t < τ2,
⋮
λi−1(t;m1, . . . ,mi−1), τi−1 ≤ t < τi,

(17)

where λj denotes the control protocol for time window τj < t ≤ τj+1,
and its functional form can be impacted by all the previous mea-
surement results m1,m2, . . . ,mj through any prescribed feedback
mechanisms. Here, jmust be smaller than i.

In the second case, we need to treat the system with a step-
wise protocol where the system still evolves according to the pre-
milestone protocol [Eq. (17)] up to the milestone time τi, and then
the protocol is updated to a future post-milestone protocol. It may
appear that the post-milestone protocols (for t > τi) cannot be fully
determined due to the ambiguity of the future system states. How-
ever, as we have argued, each step of the KMC simulation involves
the generation of a single step trajectory that starts at (x, tlast),
remains at state x, and only jumps to an unknown state x′ at a future
unknown transition time t∗. Thus, for any unknown transition time
t∗ > τi larger than the milestone time, each futuristic feedback mea-
surement according to the trajectory under consideration will return
a measurement outcome based on the system state x. In other words,
the post-milestone protocol for any future t ≥ τi is denoted by

λ̃(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ̃i(t;m1, . . . ,mi−1, x), τi ≤ t < τi+1,
λ̃i+1(t;m1, . . . ,mi−1, x, x), τi+1 ≤ t < τi+2,
λ̃i+1(t;m1, . . . ,mi−1, x, x, x), τi+2 ≤ t < τi+3,
⋮

(18)

which is determined without ambiguity because all future mea-
surements must detect the system at the current state x (i.e.,
mi,mi+1,mi+2, ⋅ ⋅ ⋅ = x). In this argument, all futuristic protocols are
then determined by the combination of the historical measure-
ment outcomes and the asserted futuristic measurement outcomes,
m1,m2, . . . ,mi−2,mi−1, x, x, x, ⋅ ⋅ ⋅.

In summary, through our single-step trajectory probability
argument introduced in Sec. II A, we are able to assert a fully deter-
mined protocol for a feedback control system. This determined pro-
tocol combines Eq. (17), the pre-milestone protocol λ(t) for t < τi,
which is fully determined by historical feedback measurements, and
Eq. (18), the futuristic post-milestone protocol λ̃(t) for t > τi, which
appears to be unknown due to the future feedback measurement
outcomes. As a result, even for closed-loop controlled systems, one
can utilize an open-loop-control KMC algorithm7,27,29–31 reviewed
in Sec. II B to generate the next transition event according to the cor-
rect probability distribution [Eqs. (5)–(7)]. This general algorithm
is shown in Algorithm 2. For illustrative purposes, the following
demonstrates a simple application of the proposed feedback-control
KMC algorithm.

E. Application: Piece-wise-constant feedback control
Here, we demonstrate the proposed new algorithm with a gen-

eral yet simple scenario. In this example, the rates within each mea-
surement window remain constant and are instantaneously updated

ALGORITHM 2. Closed-loop-control KMC.

1: In the current simulation step, the last transition event
takes place between the (i − 1)th and ith measurement
τi−1 < t < τi, and landing at the present state x; the cont-
rol protocol λ(t) can be determined up to t < τi [see
Eq. (17)] with the last measurement outcome being
mi−1 = x(τi−1). (See Fig. 2.)

2: To project future control protocols for t ≥ τi, take the
current state x for all future measurements. The projected
control protocols are written in Eq. (18).

3: Generate the list of all possible states that the system
can jump to from the current state x, and evaluate
the time-dependent escape rate from state x as −Rxx(t)
= ∑x′≠xRx′x(t). These time-dependent rates Rx′x((λ(t)))
are determined by the protocol λ(t). The control
protocol is described by the combination of the
deterministic part for t < τi [Eq. (17)] and the projected
part for t ≥ τi [Eqs. (17) and (18)].

4: Generate a random number v ∈ (0, 1] following a uniform
distribution. Obtain the next event time t∗ by solving for
t∗ > t from Eq. (10), where H(t∗) is defined by Eq. (11),
where the rates Rxx(λ(t)) are dictated by the protocols
defined in Eqs. (17) and (18).

5: Given the proposed transition time t∗, propose the
transition event (e.g., to state x′) with the probability
proportional to their transient transition rates [Eq. (7)]. If
t∗ < τi, the transient rates are determined by the
deterministic protocol from Eq. (17). If t∗ > τi, the rates
are determined by the projected protocol from Eq. (18).

6: Update the system time to t∗ and state to x′. If the time
duration between t and t∗ includes one or more
scheduled feedback measurements, also record
measurement results of state x.

7: Continue the iteration by returning to step 2.
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based on each measurement. For more complicated feedback con-
trol regimes (e.g., the control protocol evolves deterministically in
time according to differential equations parameterized by histori-
cal measurement outcomes), one can simply extend this algorithm
in accordance with the general feedback controlled KMC algorithm
described in Algorithm 2.

We here describe a model algorithm where the control para-
meter λ(t) between two consecutive measurement events is always
maintained at a constant value. In this case, both the determined
protocol λi−1(t) = λa, tlast < t < τi, and the projected protocol λ̃(t)
= λb, t > τi, are piece-wise constants. Therefore, the escape rate from
state x is a piece-wise constant function with only two pieces [see
Fig. 2(b)],

Rxx(λ(t)) =
⎧⎪⎪⎨⎪⎪⎩

Rxx(λa), tlast ≤ t < τi,
Rxx(λb), t ≥ τi.

(19)

In this case, the simulation chooses the next event’s occurrence
time by solving for the solution of the piece-wise function,

ln (v) =
⎧⎪⎪⎨⎪⎪⎩

Rxx(λa)(t∗ − tlast), t < τi,
Rxx(λb)(t∗ − τi) + Rxx(λa)(τi − tlast), t ≥ τi,

(20)

where v is a uniformly distributed random number between 0 and
1, and the r.h.s of the equation is defined by Eq. (11). There are
two types of possible simulation outcomes of the single-step tra-
jectories. At possibility no.1 [top panel of Fig. 2(b)], when the next
event occurs before the nextmeasurement, tlast < t∗ < τi, the dynam-
ical rates remain unchanged throughout the time, and the rates were
determined by the last measurement outcome mi−1 = x(τi−1) [see
the red shaded regions in Fig. 2(b)]. At possibility no.2 [bottom
panel of Fig. 2(b)], when the next event occurs after k more future
measurements τi+k−1 < t∗ < τi+k, for k = 1, 2, ⋅ ⋅ ⋅, the dynamics are
initially governed by the old rates R̂(λa) before the ith measurement
and then by a new rate R̂(λb) after τi [see the yellow shaded regions
in Fig. 2(b)]. We demonstrate this method in a two-state refrigerator
model in Sec. III A.

III. RESULTS AND DISCUSSION
A. Demonstration: 2-State feedback control Maxwell’s
refrigerator

To demonstrate the new feedback controlled KMC algorithm
proposed in Sec. II D, we utilize an example feedback control system
whose behavior can be solved analytically. Feedback control systems
have been extensively studied in various stochastic systems.32,37–46

Here, we choose to simulate the stochastic trajectories of a 2-state
refrigerator inspired by Ref. 47.

Consider a 2-level system coupled to a heat bath. The ground
state level’s energy is E0 = 0, and the excited level’s energy is con-
trolled externally by a binary toggle switch. At control A, the excited
state energy is EA

1 = 1; at control condition B, EB
1 = ϵ > 1. The feed-

back control is facilitated by a periodic sequence of instantaneous
measurements to the system’s state at times τi = i/ν, where ν is the
measurement frequency. If the measurement detects the system at
the ground state “0,” the control is switched to B, and if excited state
“1,” control is A [see Fig. 3(a)].

FIG. 3. Two-state refrigerator through periodic feedback control. (a) (i) Design of
energy landscape of a two-state system in two different conditions and (ii) feed-
back control decision occurring at each measurement time. (b) Time-averaged
thermodynamic properties of the refrigerator including (left) information rate and
(right) entropy production rate computed under different feedback measurement
frequencies. To demonstrate the artificial Zeno effect, both the correct feedback
controlled KMC method (correct) and a naively implemented direct KMC method
(incorrect) are shown. (c) System’s thermodynamic efficiency (η ≤ 1) calculated
under different feedback control frequencies with both the correct and the incorrect
algorithms.

This system falls into the category of the stepwise constant
feedback control scenario (discussed in Secs. II E). In this case, the
system evolves either according to the transition rates set by con-
trol condition A or by condition B. At each instantaneous time, the
transition rates take the Arrhenius form Rij = eBi j−E j , where we have
taken the unit such that the inverse temperature β = 1/(kBT) = 1.
In our demonstration, we set the barrier for the transition to Bij = 2
and set the energies according to EA

1 = 1 and EB
1 = ϵ = 1.5. Under this

feedback control, it was shown that the system behaves as a refrig-
erator, constantly drawing energy from the heat bath and performs
work against the external control. This refrigerator does not require
energy expenditure but rather operates at the cost of information
obtained via the measurements. For a comprehensive overview of
the definition of heat and work in the stochastic systems, refer to Ref.
48. For the connection between information and thermodynamic
entropy, a few representative studies can be found in Refs. 43, 46
and 49–56.

At each stochastic transition from the ground state to the
excited state, the system draws from the heat bath energy Qsys = 1
(for control A) or Qsys = ϵ (for control B). At the transition from
the excited state to the ground state, the system’s heat gain is Qsys
= −1 (for control A) and Qsys = −ϵ (for control B). At any schedule
measurement causing a control switch from A to B (the system is at
the ground state), there is no work or heat exchange (W = 0, Q = 0).
At the scheduled measurement causing a control switch from B toA,
the system performs positive work to the controllerWext = ϵ − 1, and
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there is no heat exchange Q = 0 within the instantaneous measure-
ment time. By counting the frequencies of the stochastic transitions
of the system (0 to 1 or 1 to 0) under different control conditions
A and B, respectively, one can calculate the average heat rate (the
average heat drawn by the system per unit time).

By implementing the feedback controlled KMC algorithm, we
are able to obtain an ensemble of 100 statistically independent
stochastic trajectories from such a feedback controlled refrigerator.
Each trajectory is of time length 500, and we exclude the initial relax-
ation period of length 100 from statistics. From the trajectory, one
can compute the bath’s entropy change rate, which is equal to the
total entropy change rate of the system and the bath,

Ṡtot =
JA0→1 ⋅ (E0 − EA

1 ) + jB0→1 ⋅ (E0 − EB
1)

T
, (21)

where the net transition current J is defined by the difference
between the detailed currents,

JA0→1 = jA0→1 − jA1→0, (22)

JB0→1 = jB0→1 − jB1→0. (23)

Furthermore, since each measurement is binary, one can calculate
the information rate simply bymultiplying the information permea-
surement with the measurement frequency: kB İ = ν ln 2. Finally,
we also computed the efficiency of the refrigerator as the entropy
decrease rate over the information gain rate,

η = −Ṡtot
kB İ

≤ 1, (24)

which characterizes the system’s ability to decrease entropy at the
expenditure of information change. Notice that according to the
generalized second law of thermodynamics Ṡtot + kB İ ≥ 0,43–46 the
efficiency must be lower than or equal to 1. The simulation results
for a range of measurement frequencies are shown in Figs. 3(b) and
3(c).

One can verify the proposed feedback controlled KMC by com-
paring its result to the analytical solution of the system. In the limit
of the infinitely high frequencymeasurements, ν≫ 1, one can obtain
an effective constant ratematrix of the system and analytically obtain
its average heat rate and entropy change rate. Due to infinitely fre-
quent measurements, the system’s transition rate from state 1 to 0 is
always equal to Reff

01 = RA
01 = e−1 and the system’s transition rate from

state 0 to 1 is always equal to Reff
10 = RB

10 = e−2. As a result, the effective
rate matrix under infinite frequency feedback control is

R̂ eff = [−e
−2 e−1

e−2 −e−1]. (25)

The steady state probability for this system can be written as (pss0 , pss1 )
= ( e

1+e ,
1

1+e). This allows us to compute the detailed transition cur-
rent from 0 to 1 as e

1+e e
−2, and current from 1 to 0 as 1

1+e e
−1. Due to

the frequent measurement, each transition from 0 to 1 must occur
under control B, which takes energy ϵ from the bath, and each tran-
sition from 1 to 0must occur under controlA, which deposits energy
1 into the bath. As a result, for a system at the steady state (no system

entropy change), the total entropy change of the system and the bath
is purely the bath entropy change with the rate

lim
ν→∞

Ṡtot =
jA1→0 ⋅ 1 + jB0→1 ⋅ (−ϵ)

T
≈ −0.049 469 009 9, (26)

where the detailed steady-state currents are

jA1→0 = Reff
01 ⋅ pss1 = RA

01 ⋅ pss1 , (27)

jB0→1 = Reff
10 ⋅ pss0 = RB

10 ⋅ pss0 . (28)

From Fig. 3, one can verify that the entropy change rate at a high fre-
quency limit obtained from our proposed feedback controlled KMC
algorithm matches well with the analytical result in Eq. (26).

B. Discussion: Avoiding artificial Zeno effect
This work proposed a new algorithm to simulate systems under

feedback control. Here, we illustrate that for systems with time-
dependent control (both open-loop and closed-loop), the direct
implementation of the original Gillespie algorithm12 can lead to
erroneous results, where the system’s dynamics appears to be immo-
bilized due to frequent changes of the external control parameter or
frequent feedback controls. We name this erroneous result the arti-
ficial Zeno effect. This effect appears to resemble the quantum Zeno
effect57 but is fundamentally different—the former is an artificial
numerical error, and the latter is a true physical phenomenon.

In the quantum Zeno effect,57 frequent projective measure-
ments may reset the system’s wave function into an eigenstate and,
in the limit of infinitely high measurement frequency, the system’s
wave function is frozen at the eigenstate and the system appears to
be non-evolving. In contrast, classical stochastic systems, where the
measurement does not directly impact the system’s state,35 should
not have any Zeno effect. The artificial Zeno effect is a numerical
error only when one naively implements the direct KMC algorithm
in a piece-wise manner for time-dependent systems.

For illustrative purposes, we first demonstrate the erroneous
artificial Zeno effect in the feedback control system discussed in
Fig. 3. In the Appendix, this discussion has been extended to
open-loop controlled time-dependent systems (Fig. 4).

For the feedback controlled system, one naïve way to imple-
ment the original Gillespie algorithm12 is to reset the KMC simula-
tion at each measurement time point. Specifically, one may perform
a constant-rate KMC simulation for each measurement time win-
dow. Consider a system at state x at time <τi−1 < t < τi. If the direct
KMC approach proposes the next transition’s time to be t∗ > τi, one
simply evolves the system time to t′ = τi while maintaining the sys-
tem state to be x and then starts another step of the direct KMC
simulation, with the initial state x and initial time τi. This approach
appears to be valid, since the predicted time t∗ is indeed longer than
the time of the next measurement, and the system should not change
until after the next measurement. However, this direct implementa-
tion of the KMC method leads to wrong results that can become
obvious by considering the infinitely frequent measurement limit,
where the time until the next measurement approaches 0 and the
chance that the direct KMC proposes a t∗ before the next measure-
ment becomes zero. Thus, the simulation is frozen to state x. This
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artificial Zeno effect becomes more prominent for higher frequency
measurements.

To illustrate this mistake, we implement the above direct KMC
simulation for the Maxwell’s refrigerator discussed in Sec. III A
and show that the artificial Zeno effect significantly underesti-
mates the transition events of the systems dynamics, resulting in
an underestimation of the refrigerator’s entropy decreasing rate and
thermodynamic efficiency [see Figs. 3(b) and 3(c)].

For a feedback controlled system where one measures and
acquires system’s states at a scheduled sequence of times, plainly
restarting the clock of the KMC simulation from the measured state
to simulate the dynamics of the system will lead to an artificial Zeno
effect. The closed-loop-control algorithm demonstrated here avoids
this pitfall and preserves the correct dynamics. In the Appendix, we
show that similar mistakes may occur in open-loop-control systems
only if one overlooks previously introduced algorithms.7,27,29–31

IV. CONCLUSION
In conclusion, we here propose a new method to simulate

stochastic trajectories of systems experiencing feedback control.
This new method is derived based on a general single-step trajec-
tory probability analysis. This analysis can be used to derive and
recapitulate several previously proposed open-loop-control KMC
algorithms for non-feedback control systems whose rates change in
time under a given protocol. Then, we demonstrate that feedback
controlled systems can be simulated by combining a pre-milestone
control protocol and a post-milestone control protocol. This allows
us to perform a time-dependent KMC simulation for feedback con-
trolled systems with a modified open-loop-control KMC algorithm.
We validate our claims using the simulation of a two-state feedback
control Maxwell’s refrigerator. Our correct algorithm provides the
true dynamics of the system. The simulation results are compared
with the analytical results obtained in the infinitely frequent con-
trolled scenarios, and the numerical results are in perfect agreement
with the analytical result. Furthermore, the new modified KMC
algorithms avoid the artificial Zeno effect, where a wrong implemen-
tation of the direct KMC may lead to an erroneous underestimation
of the frequency of transitions.

The algorithms described herein can find broad applicability in
a number of fields, particularly in biological systems that experience
rapid fluctuations in local environments and frequent feedback con-
trol via interaction with surroundings. Multiple processes—such as
neurophysiology,59 transcriptional regulation,60 circadian clocks,61
and metabolic regulation62—are examples of such systems beyond
the scope of analytical solutions. A KMC algorithm to treat these
feedback controlled systems would allow the relevant dynamics to be
sampled and captured. Even though the example provided in Fig. 3
is a binary state model that is analytically solvable, the algorithm can
be directly applied to complex systems that are not analytically solv-
able (see Secs. II E). If the system’s control protocol follows complex
rules, one can still apply the general algorithm by making necessary
approximations on the control protocol similar to those sketched
in Secs. II C. While rapid feedback control or complex dynam-
ics may pose challenges by increasing the computational cost of
these simulations, our derivation provides a flexible path to tackling
these problems.We believe that the relevant non-equilibrium behav-
ior and thermodynamic quantities in a wide variety of feedback

controlled chemical and biological system, such as reaction turnover
rates, binding affinity, or assembly properties, can be accurately
captured by using the new algorithm.

SUPPLEMENTARY MATERIAL

Numerical simulation codes can be found in the supplementary
material.
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APPENDIX: ZENO-EFFECT
IN OPEN-LOOP-CONTROL KMC

If one overlooks the existing open-loop-control KMC
methods7,27,29–31 and approximates the control protocol by piece-
wise functions, it is possible that an artificial Zeno effect similar to
Fig. 3 appears. Below, we demonstrate a comparison between the
correct method7,27,29–31 and the erroneous result.

Let us consider a diffusion process on a 1-dimension lattice,
where random walkers experience biased transitions. The initial
states of all random walkers are placed at position 0. Under a peri-
odic switch between controls A and B, the system evolves under two
sets of rates with control period set to 2τ = 0.02 [see Fig. 4(a)]. In
condition A, the transition rate for moving right is rA+ = 0.4 and for
moving left is rA− = 0.1 [Fig. 4(a), left panel]. Conversely, in condition
B, these rates are rB+ = 0.2 and rB− = 0.1. As the environment oscil-
lates rapidly between conditions A and B, the system experiences
alternating transition rates [Fig. 4(a), right panel]. To accurately
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FIG. 4. Diffusion along a 1D lattice. (a) (Left panel) Schematic of the diffusion pro-
cesses with jumping rates to the right and left direction denoted as rA/B

+ and rA/B
− .

The control condition is denoted by A and B. (Right panel) Periodic control proto-
col with period 2τ. (b) Simulated diffusion trajectories using (top panel) averaged
rate dynamics in traditional KMC, (center panel) individual rate dynamics using
incorrectly applied KMC due to timescale mismatch between τ and time for each
move Δt, (bottom panel) individual rate dynamics correctly simulated using the
KMC described herein.

simulate this scenario, we employ the correct open-loop-control
KMC method to generate a set of trajectories representative of the
random walker’s behavior [see Fig. 4(b), top panel]. To illustrate
the erroneous artificial Zeno effect, we perform a piece-wise direct
KMC simulation and find that the artificial Zeno effects significantly
slowed down the system’s diffusion, and the random walkers are
mostly frozen withoutmany transitions [see Fig. 4(b), middle panel].
In the end, to verify the validity of the open-loop-control KMC,
we include an alternative way to obtain the true dynamics of ran-
dom workers: by acknowledging that the control switch frequency is
much greater than the diffusion rates, ν = 1/(2τ) = 50≫ rA/B

+/−
, one

can show that this system evolves under effective dynamics with
constant rates.63,64 In this case, the system’s dynamics can be gen-
erated by a direct KMC simulation under the effective rates, shown
in Fig. 4(b) bottom panel. We verify that under the rapid oscilla-
tion limit, the effective dynamics and the dynamics generated by the
open-loop-feedback KMC agree with each other. However, the naïve
implementation of direct KMC to time-dependent dynamics results
in a significant slowdown of the dynamics (i.e., the artificial Zeno
effect).
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