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ABSTRACT
Ecology often seeks to answer causal questions, and while ecologists have a rich history of experimental approaches, novel ob-
servational data streams and the need to apply insights across naturally occurring conditions pose opportunities and challenges. 
Other fields have developed causal inference approaches that can enhance and expand our ability to answer ecological causal 
questions using observational or experimental data. However, the lack of comprehensive resources applying causal inference to 
ecological settings and jargon from multiple disciplines creates barriers. We introduce approaches for causal inference, discuss-
ing the main frameworks for counterfactual causal inference, how causal inference differs from other research aims and key 
challenges; the application of causal inference in experimental and quasi- experimental study designs; appropriate interpretation 
of the results of causal inference approaches given their assumptions and biases; foundational papers; and the data requirements 
and trade- offs between internal and external validity posed by different designs. We highlight that these designs generally priori-
tise internal validity over generalisability. Finally, we identify opportunities and considerations for ecologists to further integrate 
causal inference with synthesis science and meta- analysis and expand the spatiotemporal scales at which causal inference is 
possible. We advocate for ecology as a field to collectively define best practices for causal inference.

1   |   Introduction

Questions about causal relationships are common in ecology: we 
seek to understand the effect of biodiversity on ecosystem func-
tioning (Tilman et al. 2001; Tilman, Isbell, and Cowles 2014), 
the impacts of climate change and disturbance regimes on 
ecosystems (García Criado et al. 2020; Halofsky, Peterson, and 
Harvey 2020), the effects of anthropogenic activities on animal 
behaviour (Gaynor et  al.  2018), the effects of different abiotic 
variables on plant productivity across ecosystem types (Smith 

et al. 2024) and the effectiveness of restoration and conservation 
(Geldmann et al. 2019; Suding 2011). These are fundamentally 
causal questions: they seek to isolate and estimate the effect of 
a causal variable on an outcome (Box 1) and rule out alternative 
explanations for the estimated effects (Table 1).

Identifying and quantifying causal relationships, however, pose 
challenges in complex ecological systems. Many factors impact 
an outcome of interest, and confounding variables—which affect 
both the causal variable and the outcome—can bias estimates of 
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BOX 1    |    Key terms in causal inference.

As different disciplines have contributed to the development of causal inference, the field has accumulated a dizzying array of 
jargon. These specialised terms pose barriers to ecologists seeking to engage with the literature. We provide definitions for some 
key terms, with an extended glossary in Appendix S1.

• Average treatment effect (ATE): the average difference in the outcome variables between the treated and control populations 
(Figure 1).

• Bias: the difference between the estimated effect and the true value of the effect.
• Collider: a variable that is affected by both the treatment and the outcome. Conditioning on a collider can lead to incorrect 

estimates of the direction of the effect.
• Complier: a sample unit that received the treatment to which it was assigned: a unit that was assigned to the treated group and 

received the treatment, or a unit that was assigned to the untreated group and did not receive the treatment.
• Conditioning: an approach to isolating the effect of the treatment on the outcome of interest by considering the values of 

all other variables in a model given a certain value of the variable on which the model is conditioned. Also referred to as 
‘adjusting’.

• Confounder: a variable that affects both the treatment and the outcome. Failing to account for confounding variables biases 
estimates of the treatment effect.

• Control: the untreated units in an experiment or quasi- experiment.
• Counterfactual: well- defined alternative(s) to what we observe in the world.
• Endogeneity: correlation between the treatment variable and the error term, arising due to omitted confounding variables, 

reverse causality, simultaneity, or measurement error in the explanatory variable.
• Estimand: the effect of the treatment compared to the control for a specific population (e.g., average treatment effect, av-

erage treatment effect of the treated, local average treatment effect and conditional average treatment effect (Supporting 
Information)).

• Estimator: a statistical approach to estimating the value of a model parameter.
• Exogeneity: the condition in which the treatment variable is not correlated with or causally influenced by other model 

parameters.
• Local average treatment effect (LATE): the treatment effect for units that were assigned to the treated group and did in fact 

receive the treatment, ignoring the effect of non- compliance.
• Measurement error: the difference between the true and recorded/observed value of a variable. Measurement error in the 

treatment variable biases the estimates, while measurement error in the outcome variable adds noise to the model without 
biasing the estimates.

• Mediator: a variable that lies on the causal pathway between the treatment and the outcome.
• Moderator: a variable that affects the magnitude of the causal effect, often implemented in statistical analyses and regression 

as an interaction term.
• Omitted variable bias: bias in estimates of the treatment effect that occurs when study designs do not account for confounding 

variables.
• Panel data: data collected for the same sample units over multiple time periods (i.e., longitudinal data).
• Outcome: the value of the response variable.
• Quasi- experiments: study designs that assess causal relationships in the absence of randomisation, using variation in units' 

exposure to treatment(s).
• Random assignment: an approach to treatment assignment in which all units have an equal probability of receiving the treat-

ment, regardless of underlying characteristics. Randomisation ensures that there are no systematic differences between the 
treated and control units, allowing for an unbiased estimation of the treatment effect.

• Reverse causality: the outcome variable affects the treatment, rather than the treatment affecting the outcome.
• Selection bias: when the units that are exposed to the treatment are not randomly selected, there may be systematic differences 

between the treated and control samples, biasing the estimate of the treatment effect.
• Simultaneity: the treatment affects the outcome, and the outcome affects the treatment.
• Stable unit treatment value assumption (SUTVA): the assumption that there is no interference in the system (the treatment 

status of one unit cannot influence the outcome of another unit) and that for each unit, there are not different versions of each 
treatment level or hidden variation in the treatment.

• Treatment: a potential manipulation by humans or nature. Causal inference focuses on treatments/causes where we could 
hypothetically imagine an ideal controlled experiment with randomised treatment assignment.
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causal relationships. For example, precipitation is a confound-
ing variable when estimating the effect of plant species richness 
on grassland productivity, by affecting both richness and pro-
ductivity (Dee et al. 2023). Failure to account for precipitation in 
our model would lead to incorrect conclusions about the signif-
icance, magnitude and/or direction of the effect of species rich-
ness on productivity. Confounding variables occur frequently in 
ecological systems: as researchers, we may be aware of and able 
to measure some but not all of them (e.g., we may lack data on 
some confounding variables, or our model may be misspecified, 
causing us to omit a confounder). This creates challenges for un-
derstanding causal relationships in ecology.

To answer causal questions, ecologists have traditionally used 
randomised experiments or pseudo- experiments (Christie 
et  al.  2019). However, many ecological questions face logis-
tical and ethical challenges to experimentation, such as the 
inability to replicate natural disturbances or ethical issues re-
garding the manipulation of endangered or non- native species. 
Furthermore, experiments can be imperfect and do not always 
meet the assumptions required for causal inference: unexpected, 
non- random processes may pose challenges for their causal in-
terpretation (Arif and Massey 2023; Kimmel et al. 2021). Other 
fields facing similar barriers, including public health and eco-
nomics, have extended the foundations underlying experimental 
design to develop frameworks for inferring causal relationships 
from observational data (Greenstone and Gayer 2009; Little and 
Rubin  2000). These frameworks include statistical approaches 
for overcoming the challenges posed by experimental and obser-
vational data, emphasising clear articulation of the assumptions 
required for causal interpretations of estimated effects (Hernán 
and Robins  2016). While the conservation impact evaluation 
field has embraced these approaches, particularly to assess the 
effectiveness of protected areas (Ferraro and Pattanayak 2006; 
Jones and Shreedhar 2024), causal inference approaches are less 
widely adopted in ecology. Encouragingly, recent reviews have 
provided introductions to causal inference geared towards ecol-
ogists (Butsic et al. 2017; Larsen, Meng, and Kendall 2019), and 
ecological studies have increasingly applied quasi- experimental 
approaches (Box  1; Dee et  al.  2023; Ramsey et  al.  2019; Wu 
et  al.  2023) and used causal graphs (Arif and MacNeil  2023; 
Grace et al. 2016; Shipley 1999) in empirical settings.

These approaches to causal inference can improve our ability 
to investigate causal relationships using both experimental and 
observational data. Stronger integration of causal inference into 
ecology can enable new insights by (1) strengthening experi-
mental design and clarifying the assumptions required for de-
riving causal inference from experiments (Kimmel et al. 2021) 
and (2) advancing rigorous assessment of causal relationships 
from observational data (Butsic et al. 2017; Larsen, Meng, and 
Kendall 2019). These approaches can enable ecologists to lever-
age novel data streams from remote sensing, long- term moni-
toring, or citizen/community science to test ecological theory 
in natural, non- experimental ecosystems (Dee et  al.  2016, 
2023; Larsen and Noack  2020) and ask ecological questions 
at management- relevant spatial and temporal scales at which 
randomised controlled experiments are not possible (Ratcliffe 
et al. 2022, 2024; Siegel et al. 2022a, 2022b; Simler- Williamson 
and Germino 2022). This integration has not yet reached its full 
potential, as applying these approaches appropriately requires 
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an in- depth understanding of the assumptions, strengths and 
limitations of causal inference.

As ecologists, we face significant jargon and disciplinary bar-
riers to adopting causal inference approaches, despite the re-
cent proliferation of applications to ecology and open- source 
software tools. Quasi- experimental approaches to causal in-
ference are not part of most graduate curricula in ecology, and 
experimental design courses may not equip students with tools 
to interpret their results when the assumptions underlying ran-
domised experiments are violated. Exploring causal inference 
using texts from multiple other disciplines (e.g., Angrist and 
Pischke 2008, 2015; Cunningham 2021), ecologists may strug-
gle to find intuitive, applicable examples. Different fields' jargon 
also creates obstacles (Box 1 provides a glossary). For example, 
other fields use ‘panel data’ to describe what an ecologist might 
call ‘longitudinal data’ and ‘fixed effects’ has a different—nearly 
opposite—meaning in ecology than in econometrics (Byrnes 
and Dee 2024). These barriers raise the risk of misusing meth-
ods and missed opportunities to advance basic and applied ecol-
ogy. The growth of machine learning highlights the urgency of 
clarifying best practices in the field of causal inference, as these 
popular methods may not be the best approach to answering 
causal questions (Pichler and Hartig 2023).

To help ecologists overcome these barriers, we provide an acces-
sible translation of causal inference study designs by building 
intuition around the assumptions, strengths and limitations of 
different approaches. We present the underlying frameworks 
of causal inference; the assumptions upon which causal infer-
ence—both from experimental and observational approaches—
rest and how our interpretation of ‘arguably causal’ results 
should reflect the assumptions underlying the approaches we 
use; and applications to ecological research. We highlight that 
studies are not simply ‘causal’ or ‘not causal’: there is a spec-
trum based on the strength of assumptions given the study de-
sign, data context and research question (Kimmel et al. 2021). 
Throughout, we introduce readers to foundational texts. For 
additional, self- guided study, we provide a curated reading list 
and reproducible demonstrations of individual causal inference 
approaches (Supporting Information), drawing on our expe-
riences teaching a graduate- level causal inference course for 
ecologists (Box  2). Building from previous introductions (e.g., 
Arif and MacNeil (2022b), Butsic et al. (2017), Fick et al. (2021), 
Grace (2021) and Ramsey et al. (2019)), we discuss how strengths 
of causal inference approaches in terms of reducing bias—inter-
nal validity—can be weaknesses in terms of generalisability and 
emphasise that these approaches require substantial amounts 
of data to detect effects. To increase generalisability, we discuss 
potential integrations of causal inference with synthesis sci-
ence and meta- analysis and highlight how the use of new data 
streams (e.g., from remote sensing) can increase both the scale 
of inference and sample sizes for causal inference. We end with 
a forward- looking view for the field to collectively define best 
practices for causal inference in ecology.

2   |   Causal Inference Frameworks

Causal analysis—including experiments and quasi- 
experiments—must contend with the fundamental problem that 

we can only observe one state of the world (Hernan 2004). We 
cannot directly observe how a change (e.g., a treatment, expo-
sure, or altered condition) affects the same individual unit (e.g., 
person, plant, place) under both treatment and control condi-
tions simultaneously (Holland 1986). In other words, we cannot 
directly observe the counterfactual: if a given unit received the 
treatment, we cannot observe the alternative scenario in which 
that same unit did not (Box 1). To address this, two complemen-
tary frameworks for causal inference have emerged: the poten-
tial outcomes (PO) framework (Rubin 1972) and the structural 
causal model (SCM) (Pearl 2009). In both, and throughout this 
paper, we define a treatment as a potential manipulation or 
‘intervention’ by humans or nature. Treatments can be binary 
(e.g., species presence/absence), categorical (e.g., ecosystem 
type), or continuous (e.g., precipitation levels). Treatments may 
be the result of active manipulation by humans (e.g., species 
introductions) or nature (e.g., beavers' transformation of hy-
drology) or a characteristic of a system (e.g., edaphic gradients) 
(Holland 1986).

The PO framework defines a causal effect based on a set of 
potential outcomes that could be observed in alternative 
states of the world (Rubin 1972, 2005): the causal effect is the 
difference in potential outcomes across two states of nature 
(Figure  1). The unobserved potential outcomes are counter-
factuals (Morgan and Winship  2014). Counterfactuals, or 
well- defined alternatives to the outcomes that we observe 
in the world, are central to causal inference (Ferraro  2009). 
Different approaches are used to construct a counterfactual, 
all of which—including experiments, where control groups 
are often the counterfactual—require assumptions (Kimmel 
et al. 2021).

The other dominant causal inference framework is the SCM 
(Pearl  2009, 2010), which is related and complementary to 
the PO framework (Malinsky, Shpitser, and Richardson  2019; 
Pearl 2009; Richardson and Robins 2013). The SCM framework 
combines counterfactual causality from PO with graphical 
model approaches (Spirtes, Glymour, and Scheines 2001), gen-
eralising structural models more common in ecology, with roots 
in path analysis (Wright  1921). Recent reviews introduce the 
SCM to ecologists (Arif and MacNeil 2023; Laubach et al. 2021). 
Briefly, the SCM uses directed acyclic graphs (DAGs) to quan-
tify the effects of interventions (Pearl 2009). Drawing on domain 
knowledge, previous research and ecological theory, DAGs are 
causal diagrams that map causal relationships among variables 
as directional arrows or paths in a graph (Figure  2). DAGs 
make transparent our assumptions about the relationships in 
our study system (Pearl 2009). DAGs include all known poten-
tial confounding variables (Box  1; Arif and MacNeil  2023)—
whether or not they are observed in our data—and can clarify 
variables that fall on the causal path (mediators) or that create 
other sources of bias (e.g., colliders, Box 1) (Figure 2). DAGs thus 
provide a useful starting point for clarifying and articulating as-
sumptions about causal relationships based on prior knowledge 
(Figure 3a) and for thinking through the spatial and temporal 
scales of the dynamics and variables of interest. We recommend 
drawing a DAG before performing an analysis and ideally before 
data collection. Arif and MacNeil  (2023) provide guidance for 
ecologists on developing a DAG and testing its consistency with 
the underlying data, including R code.
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3   |   Challenges for Causal Inference

As previously introduced, the frequent occurrence of con-
founding variables makes causal analysis difficult in ecolog-
ical systems. Confounders pose challenges for experimental 
and quasi- experimental approaches to causal inference: failure 
to account for confounding variables can bias estimates of the 
treatment effect (i.e., the estimated effect will differ from the 
true effect) because if confounders are omitted from the model, 
the model error will be correlated with the treatment (Figure 2). 

This phenomenon, where the treatment variable is correlated 
with the error term, is called endogeneity (conversely, if the 
treatment term is not correlated with the error term, then it 
is exogenous). Endogeneity can arise from other causes, like 
reverse or bidirectional causality or measurement error (Box 1) 
in the explanatory variable, but the challenge of confounding 
variables is especially pertinent in ecology. When confound-
ing variables are not accounted for and thus cause bias in the 
estimator (Box 1), this is called omitted variable bias. Notably, 
omitted variable bias is an issue regardless of the sample size: 

BOX 2    |    Teaching causal inference.

Formal coursework can increase ecologists' understanding of causal inference. To contribute to the development of causal in-
ference curricula for ecologists, we developed and taught a graduate- level course on causal inference for ecology in the spring 
of 2023 in the Department of Ecology & Evolutionary Biology at the University of Colorado- Boulder, USA. The course attracted 
participants from diverse fields, including PhD students and postdoctoral scholars in ecology, evolutionary biology, microbiology, 
geography and environmental studies, as well as project scientists from academic research groups and a government agency. 
More than 90% of the course participants are now integrating causal inference methods into their dissertations, as side projects, 
or in their work in government agencies.

Course participants had different levels of statistical training, ranging from undergraduate- level statistics to extensive previous 
coursework in graduate- level biostatistics and econometrics. There was a similar diversity in experience and comfort with pro-
gramming in R, the software language the course used. To meet the needs of this student body, we emphasised developing an in-
tuitive understanding of the methods we taught, rather than stressing the underlying mathematics. For those with more technical 
training in statistics, we also provided key references for deeper dives into the math underlying these methods.

Our overall objectives were for students to gain an understanding of the main frameworks for counterfactual causal inference and 
how causal inference differs from other empirical research aims; familiarity with how causal inference is applied in experimental 
and quasi- experimental study designs; and experience reading the published literature with a critical eye towards appropriate 
use of methods for identifying causal relationships. Specifically, students learned to (a) summarise key threats to causal inference 
and identify these threats when evaluating study designs; (b) apply causal inference methods to real- world research questions and 
datasets; (c) identify the most appropriate study design(s) and methodology in non- experimental settings based on the available 
data and research question; (d) implement these designs and methods using R; and (e) appropriately interpret the results and their 
potential biases; and (f) communicate clearly about these methods, their results and their assumptions.

The course consisted of lectures introducing key topics and methods, demonstrations of how to implement quasi- experimental 
methods in R using simulated and real datasets, student- led discussions of publications that used different approaches and 
semester- long individual projects. Students demonstrated their understanding of the applications of different causal inference ap-
proaches, the underlying assumptions and the strengths and limitations of different methods through their projects: students iden-
tified a causal question, developed a DAG and revised it based on feedback, compiled the necessary data, conducted a preliminary 
analysis using a quasi- experimental method introduced in class and interpreted the results in the context of the method's under-
lying assumptions (Figure 3). The projects gave the students an opportunity to apply causal inference to their own research areas, 
with a focus on understanding the underlying intuition and learning the mechanics of applying causal inference to real- world 
problems. They also gained experience in providing feedback on each other's analyses, practicing skills required for peer review.

Students readily adopted DAGs, but many struggled to align their datasets with quasi- experimental designs. They often found 
matching and weighting to be the most intuitive approaches, even though these methods make the strongest assumptions. They 
also gravitated towards these methods due to data constraints (e.g., a single time period of data with no clear discontinuity or in-
strumental variable). Students were familiar with randomised experiments but not the approaches available when an experiment 
does not go to plan. Students' uncertainty in determining which quasi- experimental method best fit their research question and 
data motivated us to create Figure 3b.

We provide a curated reading list from our course (Appendix S2) as a resource for those interested in developing similar courses 
or using the reading list to structure their own self- guided learning. In our experience, a course on causal inference in ecology is 
useful for students familiar with ecological statistics and experimental design, but fundamental concepts of causal inference—
such as underlying assumptions and issues with confounding—could be incorporated throughout research methods and study 
design curricula for ecologists.

In our experience, existing textbooks may not be well- suited as stand- alone texts for causal inference. Many textbook examples 
focus on binary treatments, while ecologists often encounter continuous or categorical treatments. This can create misconcep-
tions about the applicability of quasi- experimental methods to ecological contexts (Box 3). Some textbooks pose issues for edu-
cators seeking to foster an inclusive and just classroom, as they may simplify complex social issues (e.g., positioning gender as a 
binary treatment).
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increasing the sample size does not reduce the bias in the esti-
mate. Thus, confounding variables threaten causal inference. 
Note that we discuss regression- based approaches to estimat-
ing causal effects, but other approaches exist (Pearl 2010).

DAGs can help identify whether we have measured or unmea-
sured confounding variables (so- called ‘back- door paths’ that in-
troduce endogeneity and lead to spurious correlations and bias) 
(Rohrer 2018). To satisfy Pearl's ‘back- door criterion’, we can use 
DAGs to identify which confounding variables to control for so that 
the effect of our causal variable of interest is conditionally indepen-
dent (or d- separated) given this control (Arif and MacNeil 2022b; 
Pearl 2009). The back- door criterion must be completed for each 
pathway of interest to interpret the results causally.

As nonparametric causal graphs, DAGs encode our assumptions 
about causal relationships in a system to help guide the choice of 
variables to include or not when estimating their effects (e.g., in 
regression analyses). On their own, however, they do not quan-
tify or estimate the magnitude of causal effects. For causal esti-
mation, we next describe statistical designs for causal inference 
that fall along a spectrum from those that require the weakest 
assumptions for causal interpretation to approaches that require 
much stronger assumptions.

4   |   Experimental Designs

The counterfactual model of causality described above 
was at the heart of Fisher's randomised controlled experi-
ments (Fisher  1935). Randomised controlled experiments, 
or randomised control trials (RCTs), compare treated units 
to control units: control units serve as the counterfactual. 
Randomisation—or random treatment assignment—ensures 
that every unit has the same probability of receiving the treat-
ment and therefore that there is no systematic relationship be-
tween the outcomes and observed or unobserved confounding 
variables (Figure 1b). Randomisation makes the treatment in-
dependent of confounders (Figure 1c), and the expected poten-
tial outcome for the control units is the same as the expected 
potential outcome for the entire population. Thus, random as-
signment makes two or more comparable groups. With perfect 
randomisation, groups should be identical on average prior to 
the treatment because every unit has an equal probability of 
being treated. In an ideal randomised controlled experiment, 
the effect of confounding variables is eliminated and the key 
assumptions of causal inference are met (Kimmel et al. 2021). 
Then, we can compare the differences- in- means of treatment 
groups to estimate an average treatment effect (Box 1) of the 
population in the experiment.

FIGURE 1    |    The fundamental problem of causal inference poses a challenge for experimental and observational studies. (a) We cannot observe 
the outcomes of different treatment scenarios—receiving the treatment (Di = 1) and not receiving the treatment (Di = 0)—for a single unit (Splawa- 
Neyman 1923). In this example assessing nitrogen's effect on plant growth, because of the fundamental problem of causal inference, we can only 
observe the outcomes Y1i when Di = 1 and Y0i when Di = 0. The individual treatment effect is Y1i - Y0i, which is the causal effect of the treatment for unit 
i. (b) Different approaches to causal inference range in the strength of the assumptions they make to estimate causal effects, from randomised con-
trolled experiments (which make the weakest assumptions) to purely observational studies (which make stronger assumptions). (c) Randomisation 
of treatment assignment ensures there is no systematic relationship between treatment assignment and underlying characteristics of the unit that 
could otherwise affect the outcome, allowing for estimation of the treatment (or causal) effect as the average difference between the outcomes for the 
different treatments. (d) Observational data, lacking randomisation, poses challenges for causal inference. In this example, the sample plots vary in 
their background characteristics (e.g., past land use, elevation), which affect soil nitrogen and plant growth, complicating our ability to estimate the 
potential outcomes. Icons from Saxby, Hawkey, and Anderson (2024). Photo credits: N. Emery and K. Siegel.
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Randomised controlled experiments require the fewest and 
weakest assumptions for causal inference (Fernainy et al. 2024). 
However, even in experiments, several key assumptions must 

be met for potential outcomes—and thus counterfactuals—to 
be well- defined. First, experiments assume that the treatment T 
does not affect the outcome Y except through its effect on X, the 

FIGURE 2    |    When confounding variables are not accounted for, endogeneity occurs: The treatment term is correlated with the error term, yield-
ing biased estimates of the treatment effect. We demonstrate this issue using directed acyclic graphs (DAGs) to visualise a hypothesised causal effect 
of the presence of rare plant species on grassland productivity. We show the regression equations corresponding with each DAG to demonstrate how 
omission of observed or unobserved confounding variables (e.g., precipitation, historical land use) leads to biased estimates of the treatment effect. 
We overcome challenges to endogeneity by conditioning on all confounding variables: This is equivalent to applying the back- door criterion (i.e., 
blocking all back- door paths). This can be challenging: All paths must be specified and correct, and all confounding variables must be controlled for 
and measured without error (Huntington- Klein 2022). Icons from Saxby, Hawkey, and Anderson (2024).

FIGURE 3    |    (a) A workflow for causal inference in ecology. Dashed arrows indicate steps that may require iteration. For example, the process of 
drawing a DAG may lead us to modify our research question by clarifying the outcome we believe, based on prior knowledge, would actually be im-
pacted by the treatment we have identified. Similarly, the process of collecting or assembling data may change our DAG by forcing us to use proxies 
for important confounders. (b) A decision tree for choosing a study design and statistical approach for causal inference. The research question, do-
main knowledge about the study system (e.g., understanding whether there are issues of simultaneity or compliance) and properties of the available 
data (e.g., presence of panel data) all shape the decision about which, if any, approaches will be appropriate and feasible. For each method in a grey 
box, we note additional key assumptions or requirements that must be met.
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cause being studied (the ‘excludability’ assumption): the treat-
ment is solely responsible for the different outcomes observed, 
and there are no confounding variables. In addition, experi-
ments must satisfy the stable unit treatment value assumption 
(SUTVA), an assumption common to all causal inference ap-
proaches we discuss. SUTVA has two key components: no in-
terference (a unit's outcome is only conditional on whether it 
received treatment) and no multiple versions of the treatment 
(there is only a single, well- defined version of each treatment 
level). Finally, experiments assume that there is no ‘non- 
compliance’: units have or maintain the treatment they were 
assigned (e.g., in a seed addition experiment, the planted seeds 
emerge, no other species invade and no species fail to emerge). 
However, these assumptions can be challenging to meet; thus, 
experiments can deviate from perfect randomisation and com-
pliance, highlighting the need to engage explicitly with causal 
thinking when interpreting the results of experiments (Kimmel 
et al. 2021). Furthermore, while randomised controlled exper-
iments are viewed as the gold standard for causal inference in 
terms of internal validity (or the extent to which a study accu-
rately estimates a causal relationship within a study population), 
generalising from experiments and creating experiments that 
replicate the conditions and scales of processes found in nature 
pose challenges.

5   |   Quasi- Experimental Designs

Without randomised treatment assignment and experimental 
control, quasi- experimental designs can facilitate causal infer-
ence but require more assumptions—many of which are inher-
ently untestable—to be met (Imbens  2024). These approaches 

require careful probing and justification of their assumptions 
based on system- specific knowledge to support the interpreta-
tion of arguably causal relationships. Quasi- experiments can be 
used at any spatial and temporal scale, while randomised, con-
trolled ecological experiments in the field and lab are mostly re-
stricted to smaller scales. Quasi- experiments often use specific 
data structures, such as cross- sectional and panel data. Cross- 
sectional data are observations from multiple units at a single 
point in time, facilitating comparison of treatment effects across 
individuals. Panel data are observations of multiple units across 
multiple time points.

Quasi- experimental approaches to causal inference must often 
contend with selection bias resulting from non- random treat-
ment assignment. For example, we may be interested in the ef-
fect of land- based nutrient pollution on kelp cover (Krumhansl 
et al. 2016; Figure 4a). To answer this question, we might re-
late remotely sensed water quality data to long- term kelp cover 
monitoring data. However, distance to human settlements and 
the coast is likely an important confounding factor: it affects 
the amount of land- based pollution to which a kelp forest is 
exposed (the treatment) and it also affects fishing pressure on 
predators of sea urchins, which in turn affect kelp cover (Ling 
et al. 2009). If we simply compared kelp forests with high vs. 
low levels of nutrient pollution, we might attribute observed 
differences in kelp cover to pollution without accounting for the 
confounding effect of remoteness on fishing pressure. This ex-
ample demonstrates selection bias: kelp forests exposed to the 
treatment are systematically different from untreated kelp for-
ests in ways that affect the outcome. Kelp forests with the high-
est nutrient pollution are likely closer to coastal areas with high 
human population densities and thus also subject to higher 

FIGURE 4    |    Illustrations of quasi- experimental methods. (a) A DAG illustrates assumed causal relationships and confounders for a hypothet-
ical study of land- based nutrient pollution's impact on kelp cover. (b) Difference- in- differences compares treated and untreated units before and 
after treatment implementation (here, a policy improving water quality discharged by rivers by reducing fertiliser use and restoring wetlands). (c) 
Instrumental variables isolate treatment effects through variables that impact the treatment but only influence the outcome through their relation-
ship with the treatment. Here, green outlining indicates the instrumental variable (nearest river mouth's nutrient load). (d) Regression discontinuity 
designs compare units on either side of interventions (here, implementation of the policy from 4b). (e) Inverse probability of treatment weighting 
uses propensity scores to weight units based on the likelihood that their treatment status is the status predicted by their observable confounders. (f) 
Matching uses propensity scores to identify treated and untreated units with comparable confounding variables.
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fishing pressure, while kelp forests with minimal pollution are 
far from the coast with less accessible fishing grounds (Witman 
and Lamb 2018). Selection bias stems from non- random treat-
ment assignment: the units exposed to the treatment we wish to 
study are not randomly selected, which introduces confound-
ing. When study designs fail to account for selection bias, the 
estimated difference in the mean outcomes for the treated and 
untreated groups actually represents the average causal effect 
plus the effect of selection bias.

Confounding variables may be observable (i.e., factors that the 
investigator has identified as potential confounders and mea-
sured) or unobservable (i.e., factors that are known and not 
measured, or unknown). It may not be possible to measure un-
observable variables: the study site may lack historical records 
(Butsic et al. 2017), data may not be publicly available, or col-
lecting these data may be prohibitively expensive. Different 
quasi- experimental methods take different approaches to deal-
ing with, and make different assumptions about, the presence 
and importance of observable and unobservable confounders. 
And while quasi- experimental designs require more assump-
tions than randomised experiments to derive arguably causal 
findings, these approaches have the benefit of observing natu-
ral conditions (rather than conditions manipulated by the re-
searcher) and enable analyses at broader scales.

We review the main approaches to quasi- experimental causal 
inference, categorising them according to whether or not they 
condition on unobservable confounders in addition to observ-
ables. We discuss each approach's assumptions, strengths, lim-
itations and data requirements (Figure 3b). Butsic et al. (2017) 
and Larsen, Meng, and Kendall (2019) provide further introduc-
tions to these approaches. Across all these approaches, we rec-
ommend, as a first step, drawing a DAG—based on knowledge 
of the study system and ecological theory—with the treatment, 
outcome and all potential confounders, mediators and moder-
ators, when they are relevant to the research question (Box 1).

5.1   |   Conditioning on Observable 
and Unobservable Confounders

Among quasi- experimental approaches to causal inference, ap-
proaches that condition on both observable and unobservable 
confounders require the weakest assumptions for causal inter-
pretation by relaxing the assumption that we have observed 
all confounders (Figure  4b–d). These approaches can yield 
arguably causal interpretations even if we cannot measure or 
do not know all confounding variables in our system, or if we 
have drawn an incorrect DAG and thus do not know the true 
data- generating process. We briefly review the core ideas and 
assumptions, applications to ecology and recent trends for these 
approaches, focusing on difference- in- difference designs, panel 
regressions, instrumental variables and regression discontinu-
ity designs. In Table 2, we highlight more recent extensions for 
these designs.

We start with difference- in- difference (DiD) designs—sim-
ilar conceptually to before- after control- impact (BACI) and 
thus familiar to ecologists (Green  1979; Stewart- Oaten and 
Bence  2001)—which compare the differences in control and 

treated groups before and after an intervention or exposure (re-
viewed, with extensions,  in Wauchope Hannah et al. (2021). 
This approach compares the differences between the (treated 
group after − treated group before) − (untreated group after − un-
treated group before) to estimate how much more the treated 
group changed as compared to how much the untreated group 
changed (Figure  3b; Figure  4b). To create a counterfactual, 
difference- in- difference relies on the untestable assumption 
that the trends in time for these groups would be the same (or 
parallel) without the treatment. While most textbook examples 
consider binary treatments, difference- in- difference also applies 
to continuous treatments or treatments of different intensities 
(Callaway, Goodman- Bacon, and Sant'Anna 2024). This field is 
rapidly evolving, with emerging methodological extensions for 
cases where the parallel trends assumption is violated and ef-
fects are not homogenous (reviewed in Roth et al. (2023)).

Similarly, panel regressions, or ‘within’ estimators, make com-
parisons within groups, such as sites, individuals, or time peri-
ods. Panel regression controls for fixed differences across units 
and time- specific effects, or variables that affect all sites in a 
unit of time (Wooldridge 2010; Figure 3b). Time- invariant char-
acteristics of sites can be confounding (e.g., more remote kelp 
forests also tend to be less impacted by land- based pollution 
(Figure 4)); these across- site differences are ‘between variation’. 
To control for these differences, panel approaches use ‘fixed 
effects’—dummy variables for each group to control for time- 
invariant, confounding differences across groups, whether or 
not the confounding variables are observed. Here, a fixed effect 
has a different meaning than its use in mixed effect and hierar-
chical modelling, which instead considers a fixed effect to be a 
parameter that does not vary by group (Bolker et al. 2009). With 
this approach, we can track how, within a location, kelp cover 
changes through time in response to other variables that change 
through time, like sea surface temperature. Thus, we can com-
pare sites to themselves at different treatment levels (e.g., levels 
of nutrient pollution) observed at different points in time as the 
counterfactual (Dee et al. 2023).

These approaches differ from, and make weaker assumptions for 
causal identification than, mixed effects models using random 
effects (Byrnes and Dee  2024) or conditioning on observable 
confounding variables alone (Dee et al. 2023). The downside is 
that panel approaches ‘throw out’ the between variation (both 
confounding and otherwise) and require large panel datasets 
because they estimate a coefficient for each group and time 
(Angrist and Pischke 2008; Wooldridge 2010). Nested sampling 
designs can exploit cross- sectional data with multiple plots sam-
pled across multiple sites and retain between- group variation 
(reviewed in Byrnes and Dee  (2024) and Wooldridge  (2010)). 
These approaches are increasingly used in ecology (e.g., Dudney 
et al. (2021), Ratcliffe et al. (2022), Suskiewicz et al. (2024)) and 
are straightforward to implement in R (Bergé  2018): see Dee 
et al. (2023) and Byrnes and Dee (2024) for tutorials.

Instrumental variables (IV) regression can eliminate sources of 
bias from all forms of confounding variables (including the time- 
varying confounding variables missed in DiD), measurement 
error, reverse causality and simultaneity (Box 1; Figure 3b). IV 
regression uses a third variable (an ‘instrument’, Z) that is related 
to the treatment, X, but not to the outcome, Y, except through its 
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effect on X (or at least, after controlling for other variables in the 
system) (Angrist and Krueger 2001; Imbens 2014; Figure 4c). An 
IV in a regression mimics what an experiment's randomisation 
process would do, where the randomly assigned treatment pro-
cess is independent of Y. The IV must be strongly related to the 
treatment but not with the outcome (after controlling for other 
covariates). When these two assumptions are met, IV regression 
yields a local average treatment effect (Box 1). The challenge is 
finding a valid and relevant IV.

For example, MacDonald and Mordecai (2019) used IV regression 
to isolate the effects of deforestation on malaria transmission and 
vice versa in the Amazon; because their effects are simultaneous, 
isolating one from another is challenging with standard methods 
such as mixed effect models. They used dry season aerosol pol-
lution as an IV to isolate the effects of annual deforestation on 
malaria transmission from the reverse relationship. For causal in-
terpretation, a key, untestable assumption is that dry season aero-
sol pollution and deforestation are strongly related (because most 
deforestation occurs and cleared forests are burned in the dry sea-
son) but that dry season aerosol pollution does not directly affect 
annual malaria transmission after controlling for other factors.

The final quasi- experimental approach to controlling for ob-
servable and unobservable confounders we discuss is regres-
sion discontinuity design (RDD) (Figure 4d). RDD is an option 
when there is a spatial, temporal, or policy discontinuity that 
separates treated from untreated units (Hahn, Todd, and Van 
der Klaauw  2001; Imbens and Lemieux  2008); Figure  3b. In 
RDDs, the treated and untreated units are sorted according to 
their position relative to a threshold in the ‘running’ variable 
(which defines the location of the discontinuity): on one side of 
the threshold, all units receive the treatment, while all units on 
the other side are untreated. RDDs compare the outcomes of 
units located directly on either side of the threshold to estimate 
the treatment effect (Cattaneo, Idrobo, and Titiunik 2019).

RDDs assume that the location of the discontinuity is exogenous: 
all observable and unobservable confounding variables are 
constant or continuous on either side of the threshold, without 
jumps in their values. As a result, units located directly on either 
side of the threshold are very similar to one another (there are 
generally no units observed directly at the threshold). In ecologi-
cal systems, it can be difficult to identify appropriate, exogenous 
discontinuities in the absence of policy changes and manage-
ment interventions (Englander 2019), although temporal discon-
tinuities (e.g., before and after a disturbance event) may meet 
the assumptions of RDDs (Grainger and Costello 2014). RDDs 
assume that in the absence of the treatment, the outcome would 
not change discontinuously at the threshold (Hahn, Todd, and 
Van der Klaauw  2001). To assess the validity of this assump-
tion, RDDs require sufficient data on both sides of the threshold 
(Wuepper and Finger 2023). We also assume that all unobserved 
confounders are either correlated with the running variable or 
not discontinuous across the threshold. Generally, RDDs esti-
mate the treatment effect using a narrow bandwidth of units on 
either side of the threshold to avoid making assumptions about 
the shape of the underlying regression functions.

RDDs also assume that the probability of treatment changes 
discontinuously at the threshold (Cattaneo, Idrobo, and 

Titiunik 2019). In a sharp RDD, we assume perfect compliance: 
all units above the threshold receive the treatment, while none 
of the units below the cutoff receive it (Figure 3b). We can relax 
this assumption and use fuzzy RDD, which merely assumes 
that the probability of treatment changes discontinuously at the 
threshold (Wuepper and Finger  2023). Fuzzy RDDs allow for 
treatment noncompliance: the value of the running variable is 
a predictor of whether a unit received the treatment but does 
not completely determine its treatment status. The value of the 
running variable relative to the threshold thus functions as 
an IV that affects the outcome solely through its effect on the 
likelihood of treatment. RDDs also assume that there is no en-
dogenous sorting of units: units do not seek to be on one side 
of the threshold (Lee  2008). In ecological applications, endog-
enous sorting may occur where animal behaviour comes into 
play—for example, the landscape of fear shapes animal move-
ment (Gaynor et  al.  2019)—or where treatments cause spatial 
spillovers—for example, protected area establishment increases 
extractive activities directly outside reserve boundaries (Ewers 
and Rodrigues 2008).

A strength of RDD is that many of the underlying assumptions 
can be tested visually (Cattaneo and Titiunik 2022). We can test 
whether the discontinuity is exogenous by plotting the values 
of confounding variables across the threshold and checking for 
discontinuous change (Cattaneo, Idrobo, and Titiunik  2019). 
Plotting the data using placebo thresholds can reveal whether 
there are locations with similar treatment effects in the absence 
of a treatment discontinuity (Noack et  al.  2022; Wuepper and 
Finger 2023). Density tests that check for increased sample unit 
density on one side of the threshold can test for endogenous sort-
ing (McCrary 2008).

5.2   |   Conditioning on Observable Confounders

Quasi- experimental designs that condition on observable con-
founders (Figure  3b) make the strong, untestable assumption 
that all important confounders are observable. Two such ap-
proaches are inverse probability of treatment weighting (hereaf-
ter, ‘weighting’) and matching (Figure 4e,f). Both use observable 
confounders to calculate propensity scores, or the probability of 
a unit receiving a treatment based on that unit's covariate values 
(Rosenbaum and Rubin 1983; Stuart 2010). In matching, we de-
velop a set of control and treated units by identifying the control 
units with propensity scores closest to those of the treated units 
(Figure 4f). We discard untreated units that do not have similar 
propensity scores to treated units and vice versa, maintaining 
only units with sufficient overlap in their covariate values (i.e., 
common support). In weighting, each unit is weighted based on 
its propensity score such that treated units with high propen-
sity scores and untreated units with low propensity scores have 
lower weights than other units (Figure 4e). Weighting retains all 
units. We use the weights in the subsequent regression model to 
estimate the treatment effect. In both matching and weighting, 
including the covariates used to calculate the propensity score 
in the subsequent regression model increases the robustness of 
the treatment effect estimate (Jones and Lewis 2015). Matching 
is more commonly used with a binary treatment, although 
continuous treatments are sometimes stratified, and there is 
ongoing development of approaches for continuous treatments 
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(Brown et al. 2021; Fong, Hazlett, and Imai 2018; Hirano and 
Imbens 2004).

Weighting and matching integrate well with regression methods 
and work with both panel and cross- sectional data. Estimated 
treatment effects are also less sensitive to mis- specified mod-
els (Butsic et al. 2017), and propensity scores reduce bias from 
measurement error in the covariates (Austin  2010). There are 
also simple diagnostics to assess the quality of matches, in-
cluding comparison of standardised mean differences pre-  and 
post- matching. Matching can also reveal where there is not suf-
ficient common support to make plausible causal claims (Ho 
et  al.  2011). Finally, if unobserved confounders are correlated 
with the observed confounders, these approaches can adjust for 
unobservables.

The essential assumption of weighting and matching is that se-
lection bias is caused by observable confounders or unobserved 
confounders that are correlated with observed variables: they 
suffer from omitted variable bias when there are unobservable 
confounders (Simler- Williamson and Germino 2022). Compared 
to experimental designs and quasi- experimental approaches 
that condition on unobservables, weighting and matching re-
quire stronger assumptions for causal interpretation. Finally, 
matching has several distinct limitations: it relies on sufficient 
common support for treated and untreated units, and it re-
duces the variation in the dataset because units without qual-
ity matches are dropped. The results must be interpreted in the 
context of the reduced dataset: the estimated treatment effect is 
valid for the range of units included in the matched dataset, but 
it may not be appropriate to extrapolate the estimated effect to 
the full dataset.

In addition, and complementary to, these quasi- experimental 
designs rooted in the PO framework are approaches from the 
SCM framework. In SCM, conditioning on all confounding 
variables is equivalent to applying Pearl's back- door criterion 
(blocking all back- door paths). This makes two assumptions: 
that all paths are specified correctly, and that confounding vari-
ables are observable and measured (Huntington- Klein  2022). 
When this cannot be achieved, an alternative is the front- door 
criterion, which adjusts for a mediator that is uncorrelated with 
the confounding variables of concern (Bellemare, Bloem, and 
Wexler  2024; Pearl  1995, 2009). Controlling for an exogenous 
mediator blocks the effect of omitted confounding variables 
and isolates the effect of the causal variable of interest (Pearl 
and Mackenzie  2018). To implement the front door criterion, 
one first estimates the effect of the treatment on the media-
tor without confounders and then estimates the effect of the 
mediator on the outcome. These two effects are multiplied to 
get the total effect of the treatment on the outcome (Arif and 
MacNeil  2023). However, identifying situations in which the 
front- door criterion works is challenging, so it is less frequently 
used (Huntington- Klein 2022).

6   |   Discussion

Causal questions are central to ecological understanding, and 
ecology has a rich tradition of experiments to address causal 
questions and estimate the magnitude of causal effects. In recent 

years, ecological literature reviewing or applying causal infer-
ence approaches that complement experimental approaches has 
exploded, highlighting a variety of approaches that can exploit 
new data streams to extend ecological understanding to broader 
spatial and temporal scales. However, making sense of how 
and when to apply these approaches and navigating the wide- 
ranging, rapidly evolving, technical and jargon- filled fields that 
causal inference spans still pose challenges. In response, we re-
view key challenges for causal inference using experimental and 
observational data in ecology, quasi- experimental approaches to 
answering causal questions and the key assumptions underly-
ing these approaches. Building on previous reviews (e.g., Butsic 
et al. (2017) and Larsen, Meng, and Kendall (2019)), we explicitly 
define quasi- experimental designs in terms of their treatment 
of unobservable confounding variables. We believe that this 
distinction is very important for ecologists, as approaches that 
select on both observable and unobservable variables require 
weaker assumptions for causal interpretation. We demonstrate 
how the use of PO and SCM frameworks can be complementary 
and provide a workflow for moving from a causal question, to a 
DAG, to the appropriate methodological approach, to the inter-
pretation of results (Figure 3). We also provide resources for self- 
guided study, including reproducible code with accompanying 
data and a curated reading list (Supporting Information).

Causal inference is not as straightforward as following a recipe 
or implementing a pre- existing software package. Robust causal 
inference requires careful combination of pre- existing knowl-
edge (formalised in DAGs), appropriate data, study design and 
interpretation of estimated effects in light of key assumptions. 
Adding nuance, approaches for causal inference pose trade- offs 
and require different assumptions, some of which may be more 
or less plausible in particular contexts (Grace 2024). In addition, 
the approaches reviewed here emphasise carefully estimating 
one causal effect at a time, rather than estimating all causal ef-
fects in a system at once, although causal inference can contrib-
ute to the goal of building system- level knowledge (Box 3). To 
navigate these important nuances, we synthesise some critical 
considerations: the spectrum of weak to strong assumptions re-
quired for causal interpretation of estimated effects, different 
designs' trade- offs between internal and external validity and 
data requirements for causal inference. We offer recommen-
dations for overcoming these limitations and outline future re-
search needs.

6.1   |   Tradeoffs Between Internal and External 
Validity

Causal inference designs exist along a spectrum from true ran-
domisation to purely observational; this spectrum reflects both 
the strength of assumptions needed for causal interpretation and 
trade- offs in internal and external validity. While internal va-
lidity refers to accurate estimates of causal relationships within 
a study population, external validity is the extent to which a 
study's results can be applied beyond the study sample (Spake 
et  al.  2022). Quasi- experimental approaches and randomised 
controlled experiments prioritise internal validity: researchers 
rigorously eliminate sources of bias in their estimates of the 
treatment effect (Desjardins et al. 2021). Much like experiments 
with different treatments, different quasi- experimental designs 
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yield distinct estimands, with varying implications for exter-
nal validity. On one end of the spectrum are ideal, randomised 
controlled experiments, which prioritise internal validity and 
require the weakest assumptions for causal interpretation of 
effect sizes. However, experiments may struggle with external 
validity, as the controlled conditions and specific populations 
involved can limit the generalisability of findings to broader, 
real- world contexts (Dee et al. 2023) or other forms of treatment 
(Wolkovich et  al.  2012). Moving further along the spectrum, 
quasi- experiments and imperfect experiments also have trade- 
offs between internal and external validity (Kowalski  2023). 
Both RDD and IV estimate local average treatment effects 

(LATE) rather than the average treatment effect (ATE) (Box 1). 
RDDs estimate the LATE using units located directly on either 
side of the discontinuity (Baker and Lindeman 2024): it may not 
be appropriate to extrapolate this LATE to units located far from 
the discontinuity, although emerging methods allow researchers 
to assess RDDs' external validity (Wing and Bello- Gomez 2018; 
Wuepper and Finger 2023). Similarly, the estimated causal ef-
fects of IV designs only apply to compliers (the units that vary in 
response to the IV, Box 1; Imbens 2010).

However, we often seek generalisability, or external validity, to 
extend our findings beyond the units and spatiotemporal scale 

BOX 3    |    Common misconceptions about causal inference.

We clarify some misconceptions about causal inference approaches and their applicability to ecology.
1. Causal inference is purely statistical and does not rely on domain knowledge. Researchers using statistical designs for causal 
inference do not apply these methods in a vacuum, but rather draw on ecological knowledge to shape their research questions, 
hypotheses, study design and, importantly, the interpretation and caveats surrounding the estimated effects and reported causal 
relationships. Drawing a DAG is a useful first step for formalising prior knowledge (Figure 3).

2. Quasi- experiments can only handle binary treatments. Quasi- experiments can accommodate continuous and multivalue treat-
ments (e.g., the effect of fire severity categories on forest biomass). They can also estimate heterogeneous effects (Table 2).

3. Causal inference does not provide information on mechanisms. The causal inference approaches we review can examine causal 
mechanisms, either by including moderators (e.g., interaction terms in a regression) or mediators on the causal path, using medi-
ation analyses (VanderWeele 2015; Huberman et al. 2020) (Table 2, Figure 4).

4. The structural causal model (SCM) and the potential outcomes (PO) framework are competing and non- overlapping frameworks. 
SCM and PO are complementary frameworks and have been unified and translated from one to another (Malinsky, Shpitser, 
and Richardson 2019; Richardson and Robins 2013). Both seek to achieve unbiased estimates and make assumptions for causal 
interpretation transparent.

5. Prior ecological knowledge can tell us the size and direction of a causal relationship and the bias associated with its estimate. 
Ecological systems are complex, and while prior knowledge allows us to form hypotheses about the direction and magnitude of 
causal relationships, our knowledge is limited. We may be incorrect in our assumptions about the size and direction of the bias in 
our estimates. Bias could mean a true effect is masked (i.e., appears to be zero in an analysis) or the estimated effect is a mirage 
(i.e., a spurious effect, when there is no true effect). Bias can also lead to the incorrect sign of an effect or assumed relationship. 
Approaches such as the ‘useful approximation standard’ (Grace 2024), which suggest that an estimated causal effect must simply 
be ‘predominantly causal’ (i.e., the causal component of the estimate is greater than the bias component), thus make very strong 
assumptions, because the size of the bias versus that of the true causal effect is unknowable. Under these strong assumptions, 
researchers may run the risk of allowing confirmation bias to guide the interpretation of their results.

6. Studies or estimated effects are either causal or not causal. Causal inference designs fall along a spectrum based on the strength 
of the assumptions they make. Applying a quasi- experimental, experimental, or structural modelling approach does not guaran-
tee that the estimated effect reflects a true causal effect. Causal interpretation of empirical estimates relies on assumptions and 
domain knowledge about whether those assumptions are met. While causal inference methods attempt to reach unbiased esti-
mates, complete lack of bias is almost always unachievable. However, we believe that unbiased estimates should still be the goal, 
as there is no rigorous and reproducible definition of a ‘good enough’ estimate (sensu Grace 2024). For instance, if a researcher 
could fully randomise their experimental treatment, they would not opt to only partially randomise it. Interpretation of effect 
sizes and relationships from causal analyses in ecology requires transparency about their assumptions and limitations. Use of 
robustness tests can help assess the strength of findings (Box 4).

7. Causal inference methods do not allow for generalisability. While causal inference approaches prioritise internal validity, statis-
tical designs such as matching provide more general estimands, and causal inference approaches can be integrated with meta- 
analysis to generalise their findings.

8. Quasi- experiments do not seek to understand how a system works. The approaches we discuss seek to build up ecological un-
derstanding through estimations of each individual element and process in the system. Often, multiple analyses and DAGs are 
needed to advance understanding of multiple relationships within that system, as an individual DAG may have many assumed 
relationships but not identify all causal pathways (i.e., an individual DAG may not satisfy the backdoor criterion for all relation-
ships in the system).

9. There is a silver bullet for causal understanding. There is no one- size- fits- all approach or formula to follow for causal inference. 
Instead, causal inference is a process that iteratively integrates prior knowledge, data and causal assumptions. The choice of ap-
proach is based on the best available knowledge, methods and data, which are all evolving as science progresses.
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that we studied (Spake et  al.  2022). Moving further along the 
spectrum to observational studies that condition only on observ-
ables, approaches like matching estimate average treatment ef-
fects or average treatment effects on the treated (Box 1) but make 
stronger assumptions about our ability to identify and include all 
confounders. Still, in matching, because we exclude unmatched 
units, we cannot assume that the estimated treatment effect 
would apply to units whose covariate values fall outside the 
area of common support (Crump et al. 2009; Stuart 2010). For 
example, Siegel et al. (2022a) use matching to estimate the effect 
of federal vs. private land ownership on wildfire probability in 
western US forests. However, because federal wilderness areas 
tend to be at higher elevations than private forests, the matched 
dataset includes relatively few wilderness units (< 7% of federal 
units in the matched dataset). It would thus be inappropriate to 
naively extrapolate their findings to high- elevation wilderness 
forests.

6.2   |   Data Considerations

Available data also determine generalisability, the choice of 
causal inference design (and therefore internal validity) and 
the statistical power to detect an effect. Quasi- experimental 
designs have specific data requirements: their appropriateness 
will depend on both the research question and the data con-
text. As noted previously, cross- sectional and panel data are 
common dataset structures in quasi- experimental approaches. 
Difference- in- difference and panel designs require panel data, 
while IV and RDD require some plausibly exogenous sources 
of variation. With only cross- sectional data, design options are 
more limited (e.g., matching or weighting), and it is harder to 
flexibly control for confounding variables, particularly unob-
served variables.

Cross- sectional versus panel data also may reflect different 
effects and degrees of generalisability. Cross- sectional data 
captures a snapshot in time and can be used for space- for- time 
comparisons, which are critiqued in applications such as cli-
mate change ecology for issues with generalisability (Lovell 
et  al.  2023). While cross- sectional data allow us to examine 
how a particular treatment (e.g., exposure to reduced pre-
cipitation) affects multiple units (e.g., grassland plots in dif-
ferent locations), panel data allow us to examine trends over 
time across the treated and untreated units and generalise to 
multiple time points. This facilitates the study of ecologically 
interesting questions such as time lags in treatment effects, 
the effects of varying levels of treatment exposure over time 
and interactions between the treatment and covariates over 
time. However, there may also be trade- offs in existing data-
sets in terms of spatial extent versus resampling through time. 
Furthermore, a reliance on panel data that includes the pre- 
treatment period is ecologically limiting, as we are less likely to 
have these data for processes such as climate change impacts, 
species introductions and unexpected disturbances. The real-
ities of funding and data collection logistics may also restrict 
the availability of panel data.

Sample size is a related consideration; many quasi- experimental 
approaches require relatively large datasets for sufficient sta-
tistical power to detect effects. Thus, ecologists working with 

limited datasets from field- based observations may not have 
sufficient data to leverage causal inference methods or enough 
power to detect a treatment effect (Kimmel, Avolio, and 
Ferraro 2023; Lemoine et al. 2016). When there are interactions 
between the treatment and other covariates, the required sample 
size increases. New data streams can not only scale up ecolog-
ical understanding and inferences when coupled with quasi- 
experimental approaches but also increase statistical power.

Synthesis and meta- analyses can help expand external validity 
by combining multiple internally valid studies covering a range 
of naturally occurring conditions (Spake et  al.  2022). Meta- 
analysis is a common approach to quantitative synthesis in ecol-
ogy, especially of experiments. However, when meta- analyses 
include original studies with biased estimands, they can yield 
biased estimates and inaccurate results. This limitation is true 
for observational designs and imperfect experiments (Kimmel 
et al. 2021). Further, the estimands may not be the same across 
studies, muddying quantitative comparisons. Similarly, if the 
original studies feeding into a meta- analysis focus on different 
subpopulations with heterogeneous treatment effects, it be-
comes difficult to combine and generalise the estimated effects 
(Spake et al. 2022). Study eligibility criteria can reduce the prob-
ability of including original studies with bias: we recommend 
that the field develop eligibility criteria based on the treatment 
of confounding variables and other sources of bias. We may need 
to develop other approaches to account for remaining endogene-
ity in the original studies (Mathur and VanderWeele 2022) and 
for comparisons when different estimands and subpopulations 
are involved.

More generally, synthesis science combines datasets from dispa-
rate sources and often seeks to disentangle causal relationships 
(Carpenter et al. 2009; Halpern et al. 2020). Quasi- experimental 
approaches can expand and accelerate synthesis science's con-
tributions to ecological knowledge, but measurement error (the 
difference between the true vs. recorded value of a variable) 
presents a challenge. Synthesis approaches combine multiple 
data sources, each with their own sources of measurement error. 
When the extent and types of measurement error differ across 
studies, error and uncertainty can propagate through models 
using synthesised data.

Another opportunity is using large- scale datasets, such as time 
series derived from satellite imagery, combined with causal 
inference approaches. The volume of data from Earth obser-
vations, community science programs and other distributed 
surveys and monitoring networks is rapidly increasing, expand-
ing observations of ecological systems at larger scales and the 
sample sizes available for data- hungry approaches. More ob-
servations of ecosystems under a wider variety of time points, 
conditions and scales will also increase the generalisability of 
inferences and enable us to test new theories that span different 
spatial and temporal scales of causal relationships.

A challenge posed by these expanding data streams, however, 
is mismatches in spatial and temporal resolution between the 
treatment, confounders and outcome. For example, remote 
sensing data can facilitate analysis at broader spatial scales but 
are often available at coarser resolutions, which can obscure 
understanding of highly localised processes (Alix- García and 
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Millimet  2023; Jain  2020). If we were interested in the effect 
of artificial nighttime lights on large mammal behaviour, for 
example, we might have outcome data at fine spatio- temporal 

scales (e.g., multiple data points per hour, accurate within sev-
eral meters) from radiocollars, treatment data at 30 × 30 meter 
resolutions in the form of daily nighttime light data (Román 

BOX 4    |    Best Practices for Causal Inference in Ecology.

To take advantage of causal inference approaches responsibly and effectively, some understanding of their underlying assumptions 
and the contexts in which one study design is more robust than another is needed. To interpret an estimated effect or correlation as 
causal, assumptions are always required, even in randomised experiments (Kimmel et al. 2021). Indeed, just using a randomised 
experiment or quasi- experimental approach does not guarantee that the interpretation holds causal meaning. While we believe best 
practices should emerge collectively, we suggest some (non- exhaustive) guidelines to move this process forward, based on our expe-
riences teaching, applying and reviewing papers on causal inference using ecological data.

Data collection and pre- analysis planning. Best practices start before data collection, and study design enables more robust causal in-
ference. An emerging focus is on best practices for reproducibility in ecology prior to data analysis (Kimmel, Avolio, and Ferraro 2023; 
Parker et al. 2016).

• Create a DAG based on domain knowledge and use it to guide data collection or assembly of existing data.
• Where possible, collect or assemble pre- treatment data to expand the study designs available for your analysis (e.g., difference- 

in- difference, temporal regression discontinuity designs, or other panel design) in both experimental and quasi- experimental 
settings.

• Use pre- registration or pre- analysis plans to define your study design in advance. This enhances reproducibility, clarifies assump-
tions and reduces the likelihood of p- hacking.

• Perform power analyses, particularly in field studies with low replication, datasets with small sample sizes, or when aiming to 
estimate interactions (moderator) effects or site- specific effects.

Study and statistical design. When possible, use designs that make weaker assumptions and triangulate results using complementary 
methods and sensitivity tests.

• Use DAGs to guide your analysis choices and include them in a pre- analysis plan.
• Where possible (based on the research question and data), use methods that make fewer and weaker assumptions about con-

founding variables (e.g., methods that condition on observable and unobservable confounders: IV, RDD, difference- in- difference, 
within- estimator and other panel designs), because even with extensive domain knowledge, ecological surprises are still possible.

• Use multiple, complementary designs to assess the robustness of estimates to different assumptions about observed and unob-
served confounding (e.g., Dee et al. (2023)).

• Use sensitivity tests to assess the robustness of estimates to the presence of confounding variables that have not been controlled 
for (Andraczek et al. 2024; Liu, Kuramoto, and Stuart 2013).

Communicating assumptions. Clarity around assumptions allows others to understand the study's strengths and limitations and can 
help identify further avenues for research.

• Include your DAG(s) in published analyses and interpret your model results in relation to your DAG. This will allow others to 
understand and critique your causal model, and we expect published DAGs to also help the field identify commonly unobserved 
confounders that may require new data streams to address.

• Clearly discuss the assumptions of your study and statistical design, including in randomised experiments, and how they are met 
as well as caveats.

• Explain how your design accounts for observable and unobservable sources of confounding.

Interpreting results. Careful interpretation of results given your study design's limitations and assumptions increases transparency 
and credibility.

• Interpret your findings in the context of your study's assumptions and all forms of bias that may remain in your estimates. If your 
model does not consider unobserved confounders, note that your estimates of causal effects may include the effect of both the 
causal variable and unobserved confounders.

• Explicitly discuss the limitations of your analysis in terms of potential reasons the assumptions required for causal interpretation 
could be violated.

• Interpret analyses based on their external validity and avoid over- generalising your inferences.

Changing incentives and norms. As a community, a cultural shift that prioritises transparency and robustness in publishing would 
improve the credibility of causal inference. As reviewers, we recommend viewing explicit acknowledgement of a study's assumptions 
and limitations (e.g., transparency around issues with internal validity given potential violations of assumptions and limits to the 
generalisability of findings) as a strength, rather than a weakness or a justification for rejecting a study's findings. Current publish-
ing incentives, which may dissuade transparency around assumptions and limitations, put the robustness and credibility of causal 
inference at risk. More transparency around these could help the science to build on itself (e.g., by collecting new data to overcome 
assumptions or developing new methods to relax them).

 14610248, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ele.70053 by U

niversity O
f C

olorado B
oulder, W

iley O
nline Library on [03/03/2025]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



18 of 23 Ecology Letters, 2025

et al. 2018) and data on environmental and socioeconomic con-
founders at various resolutions. However, newer remote sensing 
techniques and products (such as LiDAR) can generate data at 
finer spatial and temporal resolutions over larger spatial ex-
tents, helping to overcome issues with scale mismatches. There 
is also a growing literature examining the unique challenges 
when using remote sensing data for causal inference, as these 
data are often derived using machine learning. This magnifies 
challenges for controlling for confounders and of measurement 
error. For instance, if confounders are included in the machine 
learning model that predicts the data, that can introduce bias. 
Analogously, errors from machine learning model predictions 
are a form of measurement error in subsequent causal models 
that can introduce bias (Alix- García and Millimet 2023; Gordon 
et al. 2023; Jain 2020; Proctor, Carleton, and Sum 2023). New 
methodological and conceptual advances are needed to recon-
cile these challenges and facilitate larger scale ecological causal 
understanding (Van Cleemput et al. 2024).

6.3   |   Establishing Shared Best Practices for Causal 
Inference in Ecology

Further integration of these approaches into the research de-
sign and statistics curriculum for graduate students in ecology 
can help us harness the power of causal inference (Box 2). Many 
ecologists report a desire for more statistical training and a mis-
match between their formal training and current best practices 
(Barraquand et al. 2014; Touchon and McCoy 2016). In our ex-
perience, graduate students are eager to learn new approaches. 
Through an emphasis on building students' intuitions regarding 
the strengths, limitations and underlying assumptions of causal 
inference designs, focused coursework can strengthen students' 
research design and statistical skills. As the use of causal infer-
ence in ecology becomes more popular, we also need careful, crit-
ical reviewers to evaluate and provide input into these studies. 
Fortunately, a growing body of ecological studies, applications 
and general resources can contribute to self- guided and course- 
based learning (Heiss 2022; Huntington- Klein 2022; Supporting 
Information). As more ecologists gain a working understanding 
of how causal inference can integrate with ecological research, 
we can develop a collective and evolving set of best practices as 
a field (Box 4).

Finally, this synthesis is not exhaustive. Table 2 summarises ad-
ditional topics and references. While we focus on counterfactual- 
based causal inference approaches to build on ecology's rich 
history of experimentation, there are alternative notions 
of causality, such as causal detection (Munch, Rogers, and 
Sugihara 2023; Runge et al. 2023; Sugihara et al. 2012) or causal 
discovery (Spirtes, Glymour, and Scheines 2001). Lastly, the de-
signs we present can also be estimated using structural equation 
modelling (Shipley  1999, 2009) and Bayesian approaches (Li, 
Ding, and Mealli 2023; Oganisian and Roy et al. 2021).

7   |   Conclusion

With growing interest in and use of causal inference tech-
niques, best practices—that are decided on and adopted by the 
field of ecology—are needed. This will allow us to effectively 

and constructively evaluate each other's work and build on it. 
Transparency is key, as causal analyses rely on assumptions at 
multiple stages, from study design to estimation of treatment 
effects and causal interpretation. By clearly stating and justi-
fying our assumptions, we can create more credible estimates 
of causal effects and more reproducible results, enabling oth-
ers to build on existing studies through improvements in data 
and methods. Ongoing and future improvements in estima-
tion and identification (reviewed in Athey and Imbens (2019) 
and Roth et al. (2023))—which are rapidly evolving in diverse 
fields, including ecology—can potentially weaken the under-
lying assumptions required for causal interpretations (Roth 
et al. 2023). Transparency about underlying assumptions can 
also help readers interpret the estimand, determine whether 
they believe a causal interpretation is appropriate and under-
stand the limits of a result's generalisability (Spake et al. 2022). 
Finally, transparency ensures that the approaches used are ap-
propriate for the question at hand. Credible causal estimates 
will enable us to advance basic and applied ecology, informing 
ecological theory and ecosystem management at broad scales.
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