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Abstract

Ecologists seek to understand the intermediary ecological processes through which
changes in one attribute in a system affect other attributes. Yet, quantifying the causal
effects of these mediating processes in ecological systems is challenging. We must define
what we mean by a “mediated effect”, determine what assumptions are required to esti-
mate mediation effects without bias, and assess whether these assumptions are credible
in a study. To address these challenges, scholars have made significant advances in
research designs for mediation analysis. Here, we bring these advances to the attention
of ecologists, for whom obtaining a causal understanding of mediating processes are
important for testing theory and developing resource management and conservation
strategies. To illustrate both the challenges and the advances in quantifying mediation
effects, we use a hypothetical ecological study. With this study, we show how common
research designs used in ecology to detect and quantify mediation effects may have bi-
ases and how these biases can be addressed through alternative designs. Throughout
the review, we highlight how causal claims rely on causal assumptions, and we illustrate
how different designs or definitions of mediation effects can relax some of these assump-
tions. In contrast to statistical assumptions, causal assumptions are not verifiable from
data, and so we also describe procedures that we can use to assess the sensitivity of
a study’s results to potential violations of its causal assumptions. The advances in
causal mediation analyses reviewed herein equip ecologists to clearly communicate the
causal assumptions necessary for valid inferences, and to examine and address potential
violations to these assumptions using suitable experimental and observational designs,
which will enable rigorous and reproducible explanations of intermediary processes in
ecology.
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I. Introduction

Ecologists seek a causal understanding of ecosystem dynamics. A key part of this understand-
ing is obtained by quantifying the effects of ecological processes that act as intermediaries
between a cause and its effect. We refer to these intermediary ecological processes as “me-
diators”, but they are sometimes called ecological “mechanisms” (Heger, 2022; Poliseli et al.,
2022). Quantifying their effects involves decomposing the overall effect of a cause into its con-
stituent mediation effects (i.e., the causal pathways through which the overall effect arises).
For example, scientists may be interested in the causal effect of drought on tree mortality and
whether this effect is mediated by changes in carbohydrate reserves. Similarly, conservation
scientists and practitioners may seek to understand whether and by how much changes in
poaching may mediate the causal effect of protected areas on species abundance. The chal-
lenges to quantifying causal mediator effects are different from the challenges to quantifying
overall causal effects, and thus the required empirical approaches are also different.

Although recent publications have introduced causal inference concepts to ecologists (Arif
and MacNeil, 2023, 2022b; Grace and Irvine, 2020; Larsen et al., 2019; Ramsey et al., 2019;
Ribas et al., 2021), they have neither described the challenges in estimating causal medi-
ation effects nor presented solutions to address these challenges. Estimating these effects
and ensuring that these estimates can be interpreted as causal requires careful attention to
eliminating the effects of other variables that can introduce spurious relationships. Even in
ecological experiments in which the treatment is randomized, estimating mediation effects
is challenging, because randomization only isolates the treatment’s overall causal effect, not
specifically the part that operates through a mediator. Without additional research design
strategies to isolate the mediator’s effect, other variables can still obscure how much of the
treatment’s effect truly flows through the mediator.

Here, we review important conceptual advances in statistical designs for causal mediation
analysis that have been developed in statistics, social science, biostatistics, and computer
science. These methods have seen broad application across disciplines but remain largely
unadopted in ecology despite their potential for elucidating intermediary ecological processes.
To introduce the terminology that is commonly used in the causal mediation literature, we
use a hypothetical ecological study. We also use this study to describe how common designs
in ecology for detecting or quantifying mediation effects may have biases, that is, systematic
deviations between the estimated effect and the true underlying causal effect. We show
how the biases in common designs used in ecology can be addressed through alternative
experimental or observational designs, each of which relies on different causal assumptions
to make causal claims about the signs and magnitudes of mediation effects.

The mantra that credible causal inferences are not possible without explicit causal as-
sumptions is one of the most important insights from the field of causal inference in the
last three decades (Rubin, 2006; Pearl, 2009; Shipley, 2000). Significant developments have
been made in extending these assumptions to methods for mediation analyses (MacKinnon,
2012; VanderWeele, 2015) which we can leverage to address complex ecological questions.
Throughout our review, we focus on transparently describing the foundational causal as-
sumptions required for all mediation designs, discussing when they may be violated for
ecological studies, and offering alternative experimental and observational designs to ad-
dress these violations. At the end of our review, we demonstrate how these assumptions



can be articulated and understood using the potential outcomes framework (Holland, 1986,
1988; Rubin, 2005), one of several analogous causal inference frameworks available for defin-
ing and estimating causal effects in experimental and observational studies (Dawid, 2000,
2021; Pearl, 2009; Rubin, 1974, 2006). The potential outcomes framework extends classical
approaches to mediation analysis by providing a unifying and rigorous structure that can be
flexibly applied across ecological settings and data distributions.

We conclude with a summary table that synthesizes the key concepts from this review,
providing a set of practical steps to guide the design of mediation analyses in ecological
research. Our review is not intended to provide a detailed guide for implementing specific
estimation approaches for mediation analysis. Instead, our review synthesizes the vast lit-
erature in causal mediation analysis. We focus on describing the major threats to causal
inferences about ecological mediation effects in experimental and observational studies and
the designs and methods for mitigating these threats. For readers who wish to learn more
about implementing these designs and methods, we provide citations to key references.

II. Motivating example

We illustrate the concepts, methods, and challenges associated with quantifying mediation
effects in ecological systems using a hypothetical example of an experimental study in which
researchers aim to quantify how meteorological drought (as opposed to agricultural or eco-
logical drought; see Wright and Collins 2023) affects productivity in grassland ecosystems
(e.g., Hoover et al. 2018; Pennisi 2022; Wilkins et al. 2022). The researchers hypothesise
that one way that drought reduces productivity in grasslands is by changing soil moisture.
In other words, they hypothesise that soil moisture is a mediator through which drought
affects productivity in grasslands (Figure la). The researchers are not only interested in
determining whether changes in soil moisture induced by drought lead to changes in pro-
ductivity. They also want to quantify how much of the influence of drought on productivity
comes from this change in soil moisture: “On average, about X% of the effect of a drought
treatment on productivity arises from the effect of drought treatment on soil moisture.” The
researchers are aware that soil moisture may not be the sole mediator (other mediators could
include the amount, quality, and decomposition rate of surface organic litter; see Joos et al.
2010; Schuster et al. 2017; Seres et al. 2022), but they choose soil moisture as the mediation
effect to quantify in the study. Estimating the effects of multiple mediating variables within
one study can bring additional challenges that are discussed briefly in Supplement (5).

In the experiment, as in the International Drought Experiment (Smith et al., 2024),
researchers randomly assign grassland plots to a rainfall exclusion treatment, which mimics
meteorological drought conditions by preventing access to rainfall using overhead shelters
(Figure 1b and 1c). Sometime after random assignment of the treatment, the researchers
measure soil moisture and productivity on each plot. Thus, the drought treatment is binary
and soil moisture and productivity are continuous variables. We assume that the idealised
experimental conditions for a randomised controlled trial are met (Cox 1958; Neyman et al.
1935; Rubin 1974, and reviewed in Kimmel et al. 2021). At the end of the experiment, the
plots randomly assigned to the drought treatment are found to exhibit, on average, decreased
productivity in comparison to the control plots (Figure 1b).
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Figure 1: (a) The hypothesis for our hypothetical drought study expressed as a causal
diagram in which arrows imply causal relationships between variables. For visual simplicity,
the continuous variables soil moisture and productivity are represented as binary. (b) Results
from the hypothetical experiment on 12 grassland plots, where 6 plots have been randomly
assigned treatment with a rainout shelter. Rainout shelters reduce soil moisture by blocking
precipitation, which in turn reduces plot productivity. (c) Photo of a drought experiment
with rainout shelters in Boulder, Colorado, USA (Photo credit: Meghan Hayden).



By using an illustrative example in which researchers randomly assign the treatment, we
can focus on the key issues that arise in all study designs aimed at estimating the effects
of mediators, whether the treatment is randomised or not. Although the drought treatment
was randomised across plots, the mediator, soil moisture, was not. This feature is common
in experimental designs in ecology, because randomising intermediary ecological processes is
challenging (see Section (1)).

When estimating the causal effect of a mediator in a design that does not randomise the
mediator, we face the same challenges that must be addressed in any observational design,
particularly the challenge of eliminating the effects of other variables that influence both soil
moisture and productivity, such as the influence of grazing by herbivores (Eldridge et al.,
2017; Sitters and Olde Venterink, 2015; Veldhuis et al., 2014). Variables like herbivory and
the challenges they pose for estimating the effects of mediation are described in more detail
in Sections III. to V.. Even if it were possible to conduct a follow-up experiment in which
soil moisture was randomised, or both soil moisture and drought were randomised, drawing
inferences about the mediation effects in the original experiment can be challenging (see
Section (1)).

III. Concepts

In this section, we introduce terminology that is used to distinguish the roles of key variables
in a system, define the causal effects to be estimated, determine how to estimate these effects
without bias, and communicate the results. Familiarity with this terminology is useful for
articulating and verifying the assumptions required to make causal claims in a study.

(1) Causal graphs

To identify hypothesised causal relationships in a study, communicate the underlying assump-
tions required for causal inference, and obtain guidance on appropriate statistical analyses,
researchers often use a causal directed acyclic graph (DAG), like the graph in Figure la (Dig-
itale et al., 2022; Greenland et al., 1999; Pearl, 2000). In DAGs, arrows between variables
imply causal dependence between the variables but do not specify a functional relationship
(i.e., they are ‘non-parametric’). DAGs are directed, meaning that arrows defining causal
relationships go in only one direction between two variables; there are no bidirectional ar-
rows. The absence of an arrow between two variables implies that the researchers assume
no causal relationship between the variables. Additionally, DAGs do not allow for feedback
loops or paths of directed arrows that create a closed loop, hence they are “acyclic”. Bidi-
rectional and feedback relationships usually reflect unresolved temporally ordered effects or
the presence of unmeasured causes (Herndn and Robins, 2006; Murray and Kunicki, 2022;
Pearce and Lawlor, 2017). A complete DAG includes all known or hypothesised causes that
are shared by any pair of variables represented in the causal diagram. For example, a com-
plete DAG representing the natural drought system on which our hypothetical experiment
is based should include all variables that causally influence both drought and soil moisture,
along with all variables that causally influence both soil moisture and productivity, plus
all variables that causally influence drought and productivity. Path diagrams of structural



equation models (SEMs) are a special case of DAGs that include additional parametric and
distributional assumptions (Kunicki et al., 2023; Pearl, 2000; Shipley, 2000).

(2) Variables in mediation analysis

Before designing or conducting the hypothetical drought experiment, ecologists may describe
their hypothesis about the natural drought system with a DAG to identify the relevant
variables in the study. We begin with an incomplete DAG that does not yet include all
relevant variables in the drought study (Figure 2a). In experimental designs, the manipulated
causal variable is typically referred to as the treatment or exposure. In our hypothetical
study, the treatment is drought, which is represented by two possible states: a treated state
in which drought conditions are applied through rainout shelters and a control state in which
no drought conditions are applied. This treatment is binary, but it could be discrete (e.g.,
“low”, “medium”, “high”) or continuous (e.g., millimetres of precipitation). The treatment is
randomised across units, which are plots in our example study (Figure 1b). The variable
hypothesised to be causally affected by a change in the treatment is referred to as the
outcome, which in the case of our example study is aboveground grassland productivity in
a plot.

Since soil moisture is hypothesised to act as a causal intermediary between the treatment
and outcome in the drought study, it is referred to as a mediator. A mediator is always
on the causal path, that is, the path between a treatment and an outcome (indicated in red
in Figure 2). The process through which the treatment’s effect arises via one or multiple
mediators is called mediation, and the set of methodologies by which the magnitudes of the
mediating effects are estimated is known as mediation analysis. In an ecological system,
there can be multiple mediators by which a treatment can affect an outcome, and multiple
mediators can be on the same causal path (Figure 2b).

Mediators are often confused with moderators, which leads to misconceptions and mis-
interpretations in causal analyses (Ferraro and Hanauer, 2015; Holmbeck, 2019; Kraemer
et al., 2008; Wu and Zumbo, 2008). Mediators and moderators play very different roles
in the effect of a treatment on an outcome, and thus the distinction between the two is
important for valid causal mediation analyses (Baron and Kenny, 1986; MacKinnon, 2011).
Moderators do not lie on the causal path but instead affect or “moderate” the strength or
direction of a causal effect. Moderators interact with treatments and mediators to alter
their effects on the outcome, a phenomenon known as interaction or “effect modification”. In
the drought system, soil type or texture in each plot may modify the effect of drought on
productivity (Figure 2¢). For example, drought may have a different effect on soil moisture
in clay soil than in sandy soil, because clay soil can retain moisture for longer periods. The
moderation of the effect of drought on soil moisture would thus modify the overall effect of
drought on productivity across different soil types, creating heterogeneous treatment effects.
If distinguishing the heterogeneous effects of drought on productivity for different soil types
is of interest, moderator or subgroup analysis can be used (VanderWeele, 2012a; Wu and
Zumbo, 2008). Moderator analysis can also be combined with mediation analysis (Vander-
Weele, 2012a, 2014; Wu and Zumbo, 2008). While we focus on methods for estimating causal
mediation effects, interactions created by moderators introduce heterogeneity that must be
handled appropriately to estimate mediation effects without bias (see Sections IV. and VI.
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Figure 2: Causal diagrams of potential hypotheses for the hypothetical drought system
with (a) only the treatment D, mediator M, and outcome P (an incomplete DAG); (b)
multiple mediators between the treatment and the outcome; (¢) a moderator L that interacts
with the drought treatment to affect the relationship between treatment and outcome; (d)
treatment-mediator confounder W, mediator-outcome confounder G, and treatment-outcome
confounder K; (e) an alternative exposure of interest J that relabels the original treatment
D as a mediator; and (f) the causal path of the incomplete DAG in panel (a) labelled
to indicate the total effect ¢/, direct effect ¢, and indirect effect composed of a and b. D
= drought, M = soil moisture, M, = secondary mediator (e.g., photosynthesis), M3 =
alternative mediator (e.g., frequency of wildfires), P = productivity, L = soil type, W =
topography, K = temperature, G = historical grazing, J = cloud seeding. Causal paths are
in red.



and Supplement (3)).

Factors that influence at least two variables along the causal path are known as con-
founders, or “common causes”. Confounding is a major concern for estimation of causal
effects, as confounders induce dependence between treatment, mediator, and outcome that
may not be due to true causal relationships. Confounders can therefore mask or mimic
causal relationships among treatment, mediator, and outcome. Hence, failure to account for
confounders leads to bias in the estimation of causal effects (Addicott et al., 2022). Consider
the potential confounders W, K, and G in the drought system (Figure 2d). Treatment-
mediator confounders, such as topographic features or climate zones, influence both drought
and soil moisture (W in Figure 2d). Treatment-outcome confounders, like temperature (K
in Figure 2d) or air pollution, can affect grassland productivity as well as the frequency
and duration of drought. Mediator-outcome confounders, such as historical grazing (G in
Figure 2d), affect both soil moisture and productivity. Like moderators, confounders do not
lie on the causal path.

The labels “treatment”, “mediator”, and “outcome” are context dependent. Drought, for
example, could be viewed as a mediator if we consider an expanded version of the drought
system where the manipulated treatment is cloud seeding, which is hypothesised to influence
grassland productivity through drought and soil moisture (Figure 2e). While these labels may
be somewhat artificial when describing an ecological system, adhering to causal terminology
is helpful for clearly identifying key parts of a study and their respective roles when estimating
causal effects. This nomenclature has not been used in a standardised manner in ecology
and related fields like conservation science (e.g., Cinner et al. 2018), which makes it difficult
to identify the roles of the variables under investigation in a study and the assumptions that
researchers presume are met when estimating mediation effects, including which confounders
are accounted for and which are not (Arif and MacNeil, 2023; Kimmel et al., 2021). Having
identified the relevant components of a causal DAG that represents a study system, we next
describe the effects to be estimated in mediation analysis.

(3) Effects in mediation analysis

In mediation analysis, we are interested in breaking down the overall effect of a treatment
on an outcome into its constituent parts through one or more mediators in the system
(Figure 2f). The overall effect of a treatment on an outcome is known as the total effect,
which includes the effects of all conceivable mediators along all possible paths from the
treatment to the outcome (path ¢ in Figure 2f). The total effect represents the change in
the outcome when the treatment is changed from control to treated (if the treatment variable
is binary), or when the treatment is changed by one unit value (in the case of a discrete or
continuous treatment) while holding all other variables not on the causal path constant. The
total effect provides no information on the contribution of individual mediating pathways to
the effect of the treatment on the outcome.

The effect of the treatment on the outcome that operates through an observed mediator
is known as an indirect effect, which captures the magnitude of the relationship between
the treatment and outcome that is attributable to the mediator. Hence, an indirect effect is
sometimes referred to as a “mediated effect” (VanderWeele and Vansteelandt, 2014; MacK-
innon et al., 2007). An indirect effect is influenced by both the magnitude and direction



of the relationship between the treatment and mediator (path a in Figure 2f) and by the
magnitude and direction of the relationship between the mediator and the outcome (path b
in Figure 2f).

The causal effect of the treatment on the outcome that is not transmitted through the
mediator of interest is referred to as the direct effect (path ¢ in Figure 2f). The direct effect
is not equivalent to an unmediated effect, although some texts refer to it as such. Indeed,
there is no such thing as a truly unmediated causal effect (Le Poidevin, 2007; Mellor, 1995).
The direct effect represents the effect through all other pathways from the treatment to the
outcome that are not of interest or are unobservable to the researchers. We therefore think
of the direct effect as the part of the total effect that does not pass through the mediator
of interest. In many causal diagrams, the direct effect is not drawn but is implied (e.g.,
Figures 2a, 2b, 2d and 2e).

In our hypothetical drought study, the total effect of drought D on grassland productivity
P represents the causal effect that would occur if we could change drought in a grassland
plot from the control state (no rainout shelter), D = 0, to the treated state (with rainout
shelter), D = 1. Hence, the total effect for a given plot is often referred to as the individual
treatment effect.

In an idealized version of our hypothetical study in which no confounders, moderators,
or interactions exist (Figure 2a), a highly unlikely scenario in most ecological studies, we
could estimate the total effect of drought on productivity using the equation

(1) P = By + BiD; + €1

where D; is the treatment indicator for plot ¢, P; is the plot-level productivity, £y represents
the mean productivity across all control plots, 8, represents the total effect of drought on
productivity averaged over all ¢ plots, and ¢;; are plot-level random errors.

In our example drought study, the total effect is hypothesised to be mediated, at least in
part, by soil moisture M, which means that the total effect is composed of (1) the indirect
effect, which is the effect that would occur if D were fixed at 1 and the value of soil moisture
were changed from the value it takes when D = 0 to the value it takes when D = 1, and (2)
the direct effect, which is the effect that would occur if D were changed from 0 to 1 but the
value of soil moisture were held to the value it takes when D = 0.

To estimate the average direct and indirect effects across all plots in the idealized version
of our hypothetical study in which no confounders exist, we would use the following two
equations:

(2) M; =00+ 61D; +ein
(3) P,£:(50+(51Di+(52Mi+€i3, izl,...,n.

where D; and P; are defined as in Equation (1), M; is the soil moisture on plot i, 6y and
0o are intercepts, €;2 and ¢;3 are random plot-level errors. The direct effect of drought on
productivity not going through soil moisture averaged over all plots would be represented
by d;. The indirect effect of drought on productivity that operates through soil moisture
averaged over all plots would be calculated as 619, using the product method (Baron and
Kenny 1986; see Supplement (2) for details and for indirect effects defined when the mediator
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and outcome are not continuous). In Section VI., we introduce other definitions of mediation
effects that may also be of interest to ecologists.

In real-world studies, Equations (1) to (3) are rarely sufficient for estimating the direct,
indirect, and total effects without bias, because the prevalence of confounders, moderators,
and interactions in most ecological contexts can obscure the true causal effects (for details
on how confounding can introduce bias into the effects defined with Equations (1) to (3), see
Supplement (1)). These empirical challenges are present regardless of whether the studies are
conducted in experimental or observational settings. To effectively address these challenges,
we need a systematic approach to mediation analysis that clearly specifies the necessary
criteria for drawing valid conclusions about causal relationships. In the next section, we
outline the causal and statistical assumptions necessary for estimating effects in mediation
analysis without bias. In subsequent sections, we examine approaches to quantifying effects
in mediation analysis and discuss the conditions under which these approaches may or may
not satisfy key causal assumptions.

IV. Causal assumptions for estimating effects in media-
tion analyses

To draw causal inferences about effects in mediation analysis using experimental or ob-
servational data, we must make several causal and statistical assumptions (Pearl, 2001b,
2009; VanderWeele, 2015). In this section, we describe the foundational causal assumptions
common to all mediation analyses (VanderWeele, 2015), and we distinguish them from the
statistical assumptions that are often of focus in ecological analyses. These causal assump-
tions are required to guide the selection of designs in ecological mediation studies. The
foundational causal assumptions are as follows:

Assumption A1 No unmeasured treatment-outcome confounders, i.e., no unmeasured vari-
ables that influence both the treatment and the outcome.

Assumption A2 No unmeasured treatment-mediator confounders, i.e., no unmeasured vari-
ables that influence both the treatment and the mediator.

Assumption A3 No unmeasured mediator-outcome confounders, i.e., no unmeasured vari-
ables that influence both the mediator and the outcome.

Assumption A4 No mediator-outcome confounders (measured or unmeasured) that are in-
fluenced by the treatment.

Assumption A5 No interaction between the treatment and mediator.
Assumption A6 Mediation effect is not influenced by moderators.
Assumption A7 No hidden variation (multiple versions) of treatment or mediators.

Assumption A8 No interference among units (i.e., the treatment condition of one unit
does not influence the mediator or outcome of other units).
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Assumption A9 Treatment temporally precedes the mediator, and mediator temporally pre-
cedes the outcome (i.e., no reverse causality).

As we describe in subsequent sections, ecologists interested in quantifying mediation ef-
fects must find ways to satisfy these causal assumptions or relax them. Assumptions Al to A4
address confounding variables that can introduce bias in mediation analysis (Figure 3). In
our hypothetical drought study, if we expect temperature, topography, and historical grazing
to be confounders (as in Figures 3a to 3c, respectively), all three variables must be measured
during the study to satisfy Assumptions Al to A3. Assumption A4 means that drought (i.e.,
the presence or absence of the rain shelters) should not influence historical grazing (as in
Figure 3d). A violation of this assumption is not possible in our hypothetical study, because
historical grazing occurred before application of the drought treatment. Assumptions A5
to A8 address other factors that can introduce bias and create challenges for interpretation
of mediation effects. For example, Assumption A5 means that the effect of drought on pro-
ductivity is not affected by the level of soil moisture. This assumption would be violated
if the effect of drought on productivity was more severe or pronounced when soil moisture
was already low. Assumption A6 means that effect of drought on the soil moisture and the
effect of soil moisture on productivity are the same across all soil types. If soil type alters
either of these relationships, Assumption A6 is violated (as in Figure 2c¢). Assumption A7
requires that the researchers use the exact same rain shelter for all treatment plots — if some
rain shelters have perforated plastic to block rainfall while others have plastic slats, this
assumption is violated. Assumption A8 means that applying the rain shelter on one plot
should not influence soil moisture or productivity in a different plot. One way to satisfy this
assumption would be to space the experimental plots far enough apart.

Causal assumptions are distinct from statistical assumptions, which permit valid population-
level statistical inferences from available sample data (Berry, 1993). Statistical assumptions
primarily focus on correct model specification (e.g., additive relationships between measured
variables) and model-specific assumptions about the distribution of the data and proper-
ties of the residuals (e.g., constant variance, independent errors, normality). Statistical
assumptions are theoretically valid with sufficiently large data, and much work has gone into
developing methods to obtain valid inference in the presence of violations to many common
statistical assumptions (Wilcox, 2010).

Unlike statistical assumptions, causal assumptions cannot be expressed using probability
calculus, and they cannot be verified without extensive experimental controls, even with
unlimited data, because these assumptions reflect conceptual beliefs about unobserved, and
therefore unmeasured, variables (Pearl, 2001a; Stone, 1993). Thus, determining whether
causal assumptions have been satisfied is subjective, and their plausibility in a specific context
is ascertained by a mix of theory, field knowledge, and indirect tests.

Without an explicit description and justification of the causal assumptions on which a
mediation study relies, the scientific community cannot assess the credibility of any causal
claims in the study. Notably, half of the causal assumptions (Assumptions Al to A4) explic-
itly address confounders, underscoring the numerous ways in which confounding can distort
relationships among treatment, mediator, and outcome in ecological mediation analyses.
Ecologists are often aware of the threat of confounding in ecological studies and attempt to
address it through experimental designs in which the treatment is randomised. For example,
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(a) Assumption 1: The treatment-outcome
confounder K cannot be unmeasured.

D > M > P

(¢) Assumption 3: The mediator-outcome
confounder GG cannot be unmeasured.

D > M > P

(b) Assumption 2: The treatment-mediator
confounder W cannot be unmeasured.

D > M > P

(d) Assumption 4: The mediator-outcome
confounder G cannot be influenced by the

treatment D, regardless of whether G is mea-
sured or unmeasured.

Figure 3: Causal diagrams illustrating four causal assumptions related to confounding vari-
ables that could exist in our hypothetical drought study. Labels are as in Figure 2. The
confounder addressed by each assumption is shown in orange.

since the drought treatment in our hypothetical study is randomised. Assumptions Al to A2
can be satisfied by statistical theory. In the absence of treatment randomisation, we would
need to explicitly account for all treatment-outcome and treatment-mediator confounders,
increasing the challenge of estimating mediation effects without bias (Imai et al., 2010; Pearl,
2014; VanderWeele, 2015).

Importantly, randomisation of the treatment does not imply that Assumptions A3 or A4
are satisfied (for further explanation of the intuition for this claim using our drought study,
see Supplement (2)). Mediator-outcome confounders are ubiquitous but are often overlooked
in studies of ecological processes like our hypothetical drought study. When unaccounted
for, mediator-outcome confounders can introduce bias into estimated effects of mediated
pathways.

Addressing mediator-outcome confounding is therefore essential for ensuring that ob-
served relationships between treatments and outcomes truly reflect ecological mechanisms
rather than the influences of confounders. To satisfy Assumptions A3 and A4 in an ex-
periment in which the treatment was randomized, researchers must either measure these
confounders or eliminate their effects through specific research designs or statistical tech-
niques (Sections (1) to (4)). If violations to Assumptions A3 or A4 are still suspected in a
study, researchers should quantify how robust the estimated effects are to such violations
(Section (5)).

Confounders are not the only concern in studies aiming to quantify the effects of ecological
mechanisms. If ecologists are unable to satisfy Assumptions A5 to A8, such as in studies
with heterogeneous treatment effects and interactions between the treatment and mediator,
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they may have to use a causal inference framework (Section VI.) or change their definitions
of indirect and direct mediation effects (Supplement (6)). Therefore, ecological mediation
analyses must address a variety of threats to accurately estimate the effects of ecological
mechanisms. The causal assumptions for mediation analysis (Assumptions Al and A9) serve
as a comprehensive list of conditions necessary for valid inferences and, just like statistical
assumptions, cannot be ignored.

In the next section, we presume Assumptions Al and A2 are satisfied (e.g., via randomi-
sation, as in our drought experiment example), and we explore ways in which we can address
mediator-outcome confounders to satisfy Assumptions A3 and A4 and assess the robustness
of the estimated mediation effects to violations of these assumptions. In Section VI., we
introduce the potential outcomes causal inference framework that can help us address po-
tential violations to Assumptions A5 to A8. Overcoming violations to temporal precedence
is fundamentally difficult (Pearl and Verma, 1995); thus, we presume Assumption A9 can be
met for all mediation analyses discussed herein.

V. Addressing mediator-outcome confounders

Even in studies where we have satisfied Assumptions Al and A2, we must also eliminate the
effects of mediator-outcome confounders (i.e., satisfy Assumptions A3 and A4) to estimate
mediation effects without bias (James and Brett, 1984). For example, consider again our
hypothetical drought study, but imagine that, prior to the experimental stage, some plots
experienced heavy grazing by herbivores while other plots had little to no grazing activity
(Figure 4). Suppose that plots with historically more grazing are also, on average, less pro-
ductive and have less soil moisture in the current period, perhaps through soil compaction
by grazers (Eldridge et al., 2017; Sitters and Olde Venterink, 2015; Veldhuis et al., 2014).
The correlation of historical grazing with both soil moisture and productivity introduces
bias into the estimation of the effect of drought on productivity and the effect of soil mois-
ture on productivity (see Supplement (2) for details). Thus, when the assumption of no
unmeasured mediator-outcome confounding is violated, estimated mediation effects cannot
be imbued with causal interpretations, even in experimental designs in which the treatment
is randomised (Holland, 1988; MacKinnon, 2012; VanderWeele and Vansteelandt, 2009). Al-
though the assumption of no unmeasured mediator-outcome confounding is likely violated
in practice, it is typically not explicitly stated or interrogated in ecological studies.

In the next five subsections, we describe approaches that can address mediator-outcome
confounders and can be implemented using linear regression models. For each approach, we
describe when and how it can mitigate the effects of mediator-outcome confounders and the
challenges faced in implementing the approach.

(1) Experimental manipulation of mediators

One way to eliminate the effects of mediator-outcome confounders is to randomise the me-
diator in an experimental design, i.e., a “manipulation-of-mediator” design (Carnevale et al.,
1988; Pirlott and MacKinnon, 2016). Although these designs are less common in ecology,
there are some examples of ecological experiments that randomised a suspected mediator.
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Figure 4: (a) A revised causal DAG of the hypothesis for our hypothetical drought study
with the addition of a mediator-outcome confounder, historical grazing. For visual simplicity,
the continuous variables soil moisture and productivity are represented as binary. The effect
of historical grazing cannot be eliminated through randomisation of the drought treatment.
(b) Results from the hypothetical experiment on 12 grassland plots, where 6 plots have been
randomly assigned treatment with a rainout shelter. The historical presence of herbivores
also reduces soil moisture through compaction of substrate and reduces productivity through
grazing. Historical grazing is not manipulated or randomised, but it could be measured
during the experimental phase: herbivores grazed on four of the plots, with no preference
towards treated or control plots (as expected from randomisation of the rainout shelters).
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For instance, to quantify how productivity reduces plant species richness through shading,
studies have manipulated ground light availability directly (Eskelinen et al., 2022; Hautier
et al., 2009).

In manipulation-of-mediator approaches, direct manipulation of the mediator typically
requires at least two experiments with separate, independent manipulations of the treatment
and mediator to isolate the treatment’s effect from the mediator’s effect on the outcome
(Imai et al., 2013; Pirlott and MacKinnon, 2016). For example, a double randomisation de-
sign splits the sample into two subsamples. In the first subsample the treatment assignment
is randomised, and both the mediator and outcome are measured. In the second subsam-
ple, the assignment to different mediator values is randomized (disregarding the treatment
variable) and the outcome is measured (Pirlott and MacKinnon, 2016). Other experimental
designs that manipulate the mediator are also available, such as parallel designs, cross-over
designs, and blockage and enhancement manipulation designs (Jacoby and Sassenberg, 2011;
Pirlott and MacKinnon, 2016). These designs provide experimental design-based solutions
for ecologists interested in quantifying mediating effects in a wide range of contexts.

While manipulation-of-mediator designs eliminate mediator-outcome confounders, other
considerations must be addressed when estimating mediation effects in these designs (Bullock
et al., 2010). Choosing meaningful values for manipulating the mediator in a way that
accurately represents natural changes in the mediator as caused by the treatment can prove
difficult. Additionally, manipulating the mediator, if it is indeed a process or consequence of
the treatment, requires either the manipulation of the treatment or of another cause of the
mediator. For example, in our hypothetical drought study, inducing values of soil moisture
that occur when drought is present (D = 1) in plots that are assigned to the no-drought
condition (D = 0) may be impossible without manipulating another causal factor, say Z, to
induce changes in soil moisture.

Manipulation-of-mediator designs also create challenges for quantifying the effects of the
treatment and mediator on an outcome. Experimental manipulation of a mediator can affect
the outcome in ways that are undesirable for capturing the effect of treatment on outcome
through the mediator (Bullock et al., 2010), leading to difficulty in separating the direct
and indirect effects of treatment on the outcome (Imai et al., 2010). Returning to our
hypothetical drought study, if Z is manipulated for drought-absent (D = 0) plots to obtain
values of soil moisture (M) that would occur in drought-treated (D = 1) plots without
actually changing drought (D), then productivity under D = 0 is likely no longer being
influenced by changes in D through M, producing misleading estimates of indirect effects
through soil moisture. Thus, directly manipulating the mediator may result in violations to
the causal assumption of no multiple versions of the treatment (Assumption A7; Kimmel
et al. 2021). It may therefore be preferable to encourage or discourage experimental units to
take on particular mediator values, resulting in imperfect manipulation of the mediator that
can still be informative. Such designs include parallel encouragement designs and crossover
encouragement designs (Imai et al., 2013; Pirlott and MacKinnon, 2016).

Even if we could address the quantification and interpretation challenges of manipulation-
of-mediator designs, mediating variables in ecology are often ecological processes that are
difficult to manipulate. For instance, carbohydrate reserves are a hypothesised mediator of
drought’s effect on tree mortality (Adams et al., 2017); and local adaptation and functional
diversity are hypothesised mediators of biodiversity’s effect on productivity in decomposers
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(Keiser et al., 2014). Carbohydrate reserves, local adaptation in decomposers, and decom-
posers’ functional diversity are challenging ecological variables to directly manipulate. Thus,
many ecological experiments are similar to our hypothetical drought experiment in which
the mediator is not randomised but instead measured for each plot (i.e., a “measurement-of-
mediator” designs, Spencer et al. 2005). In the next four subsections, we explore approaches
in measurement-of-mediator designs to either eliminate the effects of mediator-outcome con-
founders or quantify the degree to which the estimates of mediation effects would change if
the effects of all mediator-outcome confounders have not been eliminated in a study.

(2) Measured mediator-outcome confounders

In the absence of experimental manipulation of the mediator, we must eliminate the effects of
mediator-outcome confounders through other means. The assumption that a study’s research
design has controlled for all possible confounders is a strong assumption that is unstated in
many mediation analyses (Bollen and Pearl, 2013; Grace et al., 2015; Kunicki et al., 2023;
VanderWeele, 2012b; VanderWeele and Rothman, 2021). In our hypothetical drought study,
we assume that historical grazing (G) is a mediator-outcome confounder that influences both
soil moisture and productivity (Figure 4). If historical grazing had been measured for each
of the plots, we would estimate the mediation effects using the following three equations:

(4) Py = By + BiD; + e
(5) M; =0y +0,D; + €52,
(6) Pi=50+(51Di+(52Mi+53Gi+€i3, izl,...,n,

where D; is the treatment assigned to plot i; P; is the plot-level productivity; M; is the
plot-level soil moisture; G; is the amount of historical grazing on plot 7; Sy, 6y, and Jy are
intercepts; 1, 01, 01, 02, and d3 are coefficients; and €;1, €;2, and g;3 are plot-level error terms
(e.g., €;3 represents all other plot-level variation not accounted for by drought, soil moisture,
or historical grazing). The average productivity of all plots under the no-drought control
is represented by [y, while 3; represents the average change in productivity across all plots
when going from the control state (D = 0) to the drought-treated state (D = 1).

Some mediation studies in ecology use only Equations (4) and (5) to estimate a depen-
dence between the treatment and the outcome and between the treatment and the mediator,
respectively. If the dependencies are statistically significant, the studies claim to have de-
tected a mediator in the system (Borer et al., 2014; Cadotte, 2017; Fornara and Tilman,
2009; Liu et al., 2018; Oliveira et al., 2022; Tian et al., 2016). This “two-part estimation
approach” hastwo important limitations: (1) the indirect effect cannot be quantified, i.e.,
we cannot estimate the proportion of the effect of drought on productivity that is mediated
by soil moisture; and (2) multiple conclusions can be drawn from the results, including a
conclusion that the hypothesised mediator plays no mediating role at all (see Supplement (1)
for details).

By including historical grazing in a regression equation of productivity as a function of
both the treatment and mediator (Equation (6)), we eliminate the part of the effect of soil
moisture on productivity that is due to the correlation with historical grazing (Figure 5a). If
we further assume that that no other mediator-outcome confounders exist (Assumption A3),
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then Equation (6) will produce estimates of both §; and d, without bias. If the estimated
total effect of drought on productivity is negative (31 < 0) then drought reduces productivity
on average across plots (Figure 5b). If the estimated effect of drought on soil moisture is
negative (92 < 0) and the estimated effect of drought on productivity increases when both
soil moisture and historical grazing are included in the model ((5A1 > 31), then drought
reduces productivity by reducing soil moisture on average. In other words, after controlling
for the mediator-outcome confounder (historical grazing), the negative effect of drought on
productivity is smaller in magnitude (i.e., smaller in absolute value) when the effect of soil
moisture on productivity is held constant. This procedure is characteristic of analyses using
SEMs in ecology (e.g., Grace et al. 2016), although such analyses are not typically framed in
these terms. To estimate the effect of drought on productivity through soil moisture using
Equations (5) and (6), we can use the product method, in which the indirect effect is 609
(see Supplement (2) for details and for indirect effects defined using the three-part procedure
when the mediator and outcome are not continuous).

A

G

Figure 5: Mediation analysis of the hypothetical drought study is subject to bias arising
from confounders. (a) If a mediator-outcome confounder exists, such as historical grazing
GG, and is measured in the study, bias from G can be eliminated by including the variable
as in Equation (6).(b) The three-part procedure estimates four components of the relation-
ship between D and P. (c¢) The procedure assumes no mediator-outcome confounders, but
the effect of drought can operate through other mediators, such as M, in addition to soil
moisture. However, M must not be affected by any other mediators; e.g., My becomes a
mediator-outcome confounder that is influenced by the treatment if the dashed red path
exists (a violation of Assumption A4). Labels are as in Figure 2.

Regardless of how the indirect effect is quantified, the effect is only estimated without
bias if all mediator-outcome confounders are accounted for (Figures ba and 5c) and if the
effect of soil moisture on productivity is homogeneous across different levels of drought, i.e.,
there is no interaction between drought and soil moisture (Valeri and Vanderweele, 2013).
For a detailed explanation of the bias that arises in the presence of heterogeneous effects
using the hypothetical drought study, see Supplement (3), but see Section VI. for options to
relax Assumption A5.

In real ecological systems, there will likely be many mediator-outcome confounders, and
identifying and measuring them all will be challenging. Additionally, many confounders (e.g.,
historical grazing patterns, weather, soil composition) are multi-dimensional, and identifying
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and measuring the relevant dimensions can be difficult. In the next three subsections, we
describe approaches for mediation analysis that do not rely on measuring every potential
mediator-outcome confounder in all their relevant dimensions.

(3) Unmeasured mediator-outcome confounders: instrumental vari-
able designs

Suppose that the mediator-outcome confounder historical grazing cannot be measured in
our hypothetical drought experiment. Suppose also that there exists another variable that
affects productivity only through its effect on soil moisture and is unrelated to the treatment
(V in Figure 6). For example, V' could be the presence of a sudden flooding event on some
of the experimental plots due to nearby farms emptying their irrigation ponds, which would
not be caused by the randomized application of drought treatments and would likely only
affect productivity through its influence on soil moisture. When measured, V' can be used
as an instrumental variable to estimate the effect of the mediator without bias, even in the
presence of mediator-outcome confounders. If we assume that V' only affects productivity
through its effect on soil moisture (Figure 6a), an untestable causal assumption known as
the “exclusion restriction”, we can replace Equations (5) and (6) with

(7) Mz = 00 + 91D1 + 92‘/; + €2
(8) Py =60+ 0 D; + 52@ + &3

where Vj is the presence or absence of the sudden flooding event at each plot ¢ and ]\/4\1 is the
fitted value of soil moisture estimated from Equation (7) (Chen et al., 2023; Dippel et al.,
2020). As in Section (2), we can use the product method to estimate the indirect effect from
Equations (7) and (8) as #;95. If the exclusion restriction assumption is violated (Figure 6b),
one cannot use Equations (7) and (8) to estimate the effect of soil moisture on productivity,
09, without bias.

G G
D s M s P D .y , p
v V-

(a

Figure 6: Causal diagrams illustrating instrumental variable designs for mediation analysis.
(a) In the presence of the unmeasured mediator-outcome confounder G, an instrumental
variable V| e.g., a sudden flooding event, can be leveraged to estimate the effects of D on
P that occur through M. (b) V' is not a valid instrumental variable if it affects P through
any other pathways, such as the dashed red path (a violation of the exclusion restriction).
Labels D, M, P, and GG are as defined in Figure 2.

~—
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Finding and measuring instrumental variables that do not violate the exclusion restric-
tion is challenging in ecological systems (Grace, 2021; Kendall, 2015; Rinella et al., 2020),
although, in some cases, the assumption can be made more plausible after eliminating the
effects of measured confounders (Section (2)). Furthermore, instrumental variable designs
have interpretation challenges: unless the average effect of soil moisture is constant across
plots, we can only estimate the indirect effect for a subgroup of plots (Angrist and Imbens,
1995; Frolich and Huber, 2017; Rudolph et al., 2021; Wang and Tchetgen Tchetgen, 2018).

(4) Unmeasured mediator-outcome confounders: longitudinal data
designs

The effects of unmeasured mediator-outcome confounders can also be eliminated if clustered
longitudinal data on soil moisture and productivity have been collected. By “clustered”
longitudinal data, we mean data on productivity and soil moisture from ¢ = 1,...,n plots
clustered within multiple sites s = 1,...,S and measured across multiple time points ¢t =
1,...,T both before and after the drought treatment is randomly assigned (Figure 7). In
a randomised experiment, data from time points before random assignment of the drought
treatment are not necessary to estimate the effect of drought on productivity without bias,
but such data can be helpful for estimating the effects of a mediator like soil moisture by
eliminating the effects of unobserved mediator-outcome confounders. While two time points
(pre- and post-treatment) might allow for basic insights, more time points improve accuracy
in mediation analysis by capturing the dynamics of change in ecological processes (Maxwell
and Cole, 2007). The benefits of collecting such data for mediation studies in ecology will
need to be balanced with the increased time and expense required for data collection.

Time ¢

Time t +1

Figure 7: Causal diagram for a longitudinal version of the hypothetical drought study for
plot i at site s. For simplicity, time is represented by two periods: ¢ and ¢ 4+ 1. The diagram
can be extended to include all times ¢t = 1,...,7T. Gy is the unmeasured mediator-outcome
confounder at time ¢, and G, is the same unmeasured mediator-outcome confounder at the
next time point ¢ + 1. All other labels are as defined in Figure 2.

Below, we describe two widely used approaches for eliminating mediator-outcome con-
founding effects: multilevel modelling and autoregressive modelling designs (Gelman and
Hill, 2006; VanderWeele, 2015; Wooldridge, 2010). For a review of additional approaches to
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leveraging clustered longitudinal designs for causal inference, see Wooldridge (2010). As we
will highlight in the following subsections, valid inference from clustered longitudinal data
designs requires additional attention to correctly modelling the structure of the data (e.g.,
serial correlation of the errors).

(a) Multilevel modelling approach

Ecologists often analyse clustered longitudinal data using a multilevel model structure, which
captures the clustered structure of the data by specifying at least two levels of equations:
(1) first level equations which model the observation-level data (e.g., productivity on each
plot at each time period); and (2) higher-level equations, which include sets of equations
for each grouping (e.g., productivity on each plot averaged over all time periods) (Gelman
and Hill, 2006). In this context, we use “clusters” to refer to naturally occurring nested
structures, such as plots within sites, and “groupings” to indicate arbitrary or model-driven
structures. Modelling clustered longitudinal data with the classical multilevel structure,
which is often referred to as mixed effects modelling in ecology, includes error terms in
each of the higher-level equations and allows us to quantify the variation within and among
various groupings (Bolker et al., 2009). To use mixed effects modelling to estimate mediation
effects without bias, we must assume that the unmeasured differences in the outcome among
plots or among sites, including differences that arise from the effects of confounders, are
uncorrelated with the model’s predictors (i.e., the drought treatment and the soil moisture
mediator) (Gelman, 2006; Seber and Lee, 2003). Even in ecological settings where the
treatment is randomised, this assumption is likely violated. For a discussion on how bias
arises in estimating mediation effects using mixed effects modelling for the hypothetical
drought experiment, see Supplement (4).

An alternative multilevel modelling approach can accommodate correlations between
unmeasured differences among groupings and predictors in the model. This approach,
sometimes called the Mundlak regression approach (Mundlak, 1978) or multilevel mod-
elling for causal inference (Gelman and Hill, 2006), adds group-averaged predictors from
the observation-level equations as predictors in the higher-level (i.e., plot level and site-time
level) equations (Gelman, 2006; Gelman and Hill, 2006). These group-averaged predictors
remove the effect of unmeasured plot-level and site-level confounding variables that do not
vary over time or change very slowly, as well as unmeasured site-level confounding variables
that change over time (for details, see Supplement (4) and Byrnes and Dee, 2024).

To implement the multilevel approach for our hypothetical drought study, we include
intercepts at the plot-level and the site-time group level to account for unmeasured con-
founding at both levels. We provide the full set of multilevel equations for our hypothetical
drought study in Supplement (4), but the primary difference between a traditional mixed
effects modelling approach and a multilevel modelling approach for causal inference lies in
the inclusion of plot-averaged and site-time-averaged soil moisture terms in the higher-level
equations. Recall that in the clustered longitudinal version of our drought study, a plot ¢ is
observed at multiple time points t = 1,...,T. We will represent an individual observation
on plot ¢ at time t as an observation h. Thus, for an observation h measured at time ¢
and belonging to plot ¢ within site s, we describe the effect of drought and soil moisture on
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productivity as

(9) Py = ¢3i[n) + H3,stfn) + 01D + 02 My, + €34
1=1,....,.n;s=1,...,8;t=1,..., 7T ;h=1,...,nST

where each site is composed of n, plots, for a total of n = n; +no + - - - + n, plots, and each
plot is repeatedly measured over T' time points; i[h] is the plot i containing observation h;
st[h] is the site-time group containing h; P, Dy, and M}, are the productivity, drought, and
soil moisture values measured for an observation h; §; and d, represent the effects of drought
and soil moisture on productivity; ¢s ;) is the plot-level intercept; psq(n) is the site-time
group-level intercept; and €3, is the error term.

To eliminate the effects of unmeasured mediator-outcome confounders, we must specify
second-level equations for Equation (9) that include group-averaged soil moisture as predic-
tors of the group-level intercepts. These equations are

(10) ¢3i = P3. + vM; + 13,i
(11) H3,st = 3. + /{Mst + 7)3,st

where ¢3. is the average of the plot-varying intercepts ¢s;); ps. is the average of the site-
time group-varying intercepts g q(n); v is the coefficient for the predictor M, representing
plot-level averages of soil moisture; k is the coefficient for the predictor My representing the
site-time grouped means of soil moisture; 73 ; is the plot-level error; and 73 . is the site-time
group-level error. Researchers can again use the product method to estimate the indirect
effect as 0195 (see Supplement (4) for details).

In addition to assuming that time-varying, plot-level confounding variables are observed
or do not exist, the multilevel modelling approach also requires three additional assumptions:
(1) linearity and additivity of the effects, (2) the effects of the treatment and mediator do
not change across groupings or over time, and (3) the outcome variable for the treated and
control plots would have the same mean trend over time in the absence of treatment, con-
ditional on ¢; and pug (called the parallel trend assumption; Imai and Kim 2021). These
assumptions, particularly the parallel trends assumption, may not hold in long-term ecologi-
cal experiments. More recent advances for multilevel models provide options for relaxing the
assumptions of linearity (Imai and Kim, 2019), homogeneous treatment effects (de Chaise-
martin and D’Haultfoeuille, 2020), and parallel trends (Riittenauer and Ludwig, 2023).

(b) Autoregressive approach

The multilevel modelling approach described in Section (a) assumes that the unmeasured
mediator-outcome confounders are unchanging attributes of the system or time-varying site-
level attributes. Alternative approaches to modelling clustered longitudinal data require
alternative assumptions about the potential sources of confounding. For example, autore-
gressive models with fixed effects, sometimes called “dynamic panel models” in econometrics
(Arellano and Bond, 1991; Blundell and Bond, 1998), can be used if the most likely sources
of confounding are time-varying, plot-level attributes that are correlated with values of the
outcome variable at previous time points (e.g., prior values of productivity affect current val-
ues of soil moisture). Autoregressive models with fixed effects can incorporate lagged effects
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and between-cluster effects over time, but like all approaches to mediation analysis, they rely
on untestable causal assumptions (Bellemare et al., 2017). Some of these assumptions can
be relaxed when these models are used within the SEM setting (Allison et al., 2017), but no
autoregressive approach can address all potential sources of mediator-outcome confounders
simultaneously.

(5) Sensitivity analyses for unmeasured mediator-outcome confounders

The assumption of no unmeasured mediator-outcome confounders (Assumption A3) is not
verifiable using data, but we can quantify uncertainty over potential violations of the as-
sumption by drawing on a range of recent advances to (1) explore how the results change
after using multiple estimation approaches that rely on different causal assumptions about
the nature of mediator-outcome confounders (e.g., compare the estimated mediation effects
from an instrumental variable design with the estimates from a multilevel model); or (2)
assess the degree to which the sign or magnitude of the estimated effects could change if the
assumption of no unmeasured mediator-outcome confounders is violated. Sensitivity analy-
ses explore how much the estimated mediation effects can change in the presence of a specific
source of confounding (Ding and VanderWeele, 2016; Imai et al., 2010; Hong et al., 2018;
Sullivan and VanderWeele, 2021; VanderWeele, 2010). In contrast, partial identification ap-
proaches estimate mediation effects under the least restrictive or weakest causal assumptions
to obtain the widest bounds for each effect and then explore how the bounds shrink as the
causal assumptions are strengthened (Flores and Flores-Lagunes, 2013; Huber, 2020; Miles
et al., 2017; Richardson et al., 2014).

The assessment of the sensitivity of estimated mediation effects to potential violations in
the causal assumptions is an important step in mediation analyses (MacKinnon and Pirlott,
2015; VanderWeele, 2015). Causal assumptions are almost certainly violated to some degree
in most real-world systems. Rather than discard causal analyses altogether, every mediation
study should be supplemented by analyses that assess the implications of potential violations
to causal assumptions (Hafeman, 2011; Imai et al., 2010; MacKinnon and Pirlott, 2015;
Tchetgen Tchetgen and Shpitser, 2012; VanderWeele and Ding, 2017). Such analyses allow
us to evaluate our level of confidence for causal claims and provide avenues for addressing
gaps in satisfying causal assumptions in future studies.

VI. Addressing other causal assumptions: causal infer-
ence frameworks for mediation analysis

In this section, we introduce the potential outcomes causal inference framework, which we
can use to define and estimate direct and indirect effects that systematically incorporate
the complexities that we ignored in Section V.. These complexities include heterogeneous
mediation effects and interference among units (i.e., violations of causal assumptions A5
to A8) as well as conditions such as nonlinearity (i.e., violations of statistical assumptions).

Without a formal causal inference framework, the assumptions and interpretations of any
analyses that aim to estimate causal effects from data are opaque and difficult to evaluate
or reproduce (Ferraro and Hanauer, 2015). Causal inference frameworks provide clearly
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defined terminology for the roles that key variables play in an ecological system and supply
a language to describe the relationships between these variables. The potential outcomes
framework is one of several well-developed causal inference frameworks for mediation analysis
and is commonly employed in epidemiology, behavioural sciences, econometrics, and public
health. The potential outcomes framework allows us to define direct and indirect effects in
the absence of any parametric assumptions about the data or specific functional forms that
describe the relationships between variables, and it also allows us to decompose total effects
into interpretable components under conditions in which some of the causal assumptions
in Section IV. are not satisfied. For example, when mediation effects are heterogeneous
because of treatment-mediator interactions or mediator-mediator interactions, the potential
outcomes framework illustrates how one can decompose and separate the contributions of
the interactions and the mediation to the total effect (see Supplement (6) for details).

Using our hypothetical drought study, we introduce the potential outcomes notation
for direct and indirect effects (also called “counterfactuals” notation). Recall that we are
interested in measuring the effect of drought on productivity while considering the mediating
effect of soil moisture. A plot can potentially be under the drought-treated condition, D = 1,
or the no-drought control condition, D = 0. Imagine that researchers assigned a plot to the
control condition and recorded the productivity after some time. At the same time in a
parallel world in which all other conditions are identical, the same researchers assigned the
same plot to the drought-treated condition instead and recorded the productivity. If they
were able to monitor both worlds simultaneously, the researchers would have a measure of
productivity for the same plot under both the control condition, which we can define as the
plot’s potential outcome F,, and under the treated condition, which we can define as the
plot’s potential outcome P;. The difference in productivity between the two potential states
of the same plot is the total effect (TE) of drought on productivity in that plot:

(12) TE=P —P,.

In the potential outcomes framework, the total effect can be decomposed into two com-
ponents: one that represents the indirect effect of drought on productivity through soil mois-
ture, and another that represents the effect of drought on productivity that goes through
other mediators that are not the focus of our hypothetical drought study (Robins and Green-
land, 1992; VanderWeele, 2014). Continuing with our parallel worlds thought experiment, we
define two potential outcomes for the mediator: M, is the potential value that soil moisture
would take in the plot’s no-drought control condition (D = 0), while M; is the potential
value that soil moisture would take in the same plot’s drought-treated condition (D = 1).
Thus, the plot has four potential outcomes: Ping, Piag, Pony, and Py, (e.g., Piag, is the
plot’s productivity in the drought-treated condition with soil moisture held to its values in
the no-drought control condition).

The effect of drought on productivity through soil moisture is represented by the total
indirect effect (T'IE), which describes the amount by which productivity would change in
a plot if drought were fixed at D = 1 and soil moisture changed from the value it would be
at D = 0 to the value it would be at D =1,

(13) TIE = Py, — Pou, .
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The remaining effect of drought on productivity that does not go through soil moisture, the
pure direct effect (PDFE), describes how much productivity would change if drought were
changed from D = 0 to D = 1 and soil moisture were kept at the value it would have been
when D =0 (i.e., M),

(14) PDE = Py, — Pou, -

Although we can imagine parallel worlds and define these effects in terms of poten-
tial outcomes, in our one world, we cannot observe the same plot under both the treated
condition and the control condition simultaneously. This dilemma is known as the “funda-
mental problem” of causal inference (Holland, 1986). For a treated plot, we can observe only
one of the potential outcomes — the potential outcome under the drought-treated condition
(Pia, = P1). We cannot observe the potential outcomes of the treated plot as it would be
under control conditions (P, Poar, or Por,). These are counterfactual potential outcomes
(counter to fact). Similarly, for a control plot, we can only observe one potential outcome
(Pory, = Py). We cannot observe the counterfactual potential outcomes Py, , Piagy, Or Py, -
Thus, the individual plot-level causal effects in Equations (12) to (14) cannot be estimated.

While we cannot observe all potential outcomes for a plot in our drought experiment,
we can combine the potential outcomes framework with statistical theory and assumptions
to obtain from data a population-level approximation of our hypothetical parallel worlds
(VanderWeele, 2015). When the treatment is completely randomised, the observed average
productivity of the plots under the control condition provides an estimate of the population-
level productivity had all plots been under the control condition, i.e., E[Fp], where E|-] is the
expectation operator. Similarly, the average productivity of the plots under the drought-
treated condition provides an estimate of the population-level productivity had all plots
been under the drought-treated condition, i.e., E[P;]. The difference between these two
quantities provides us with an estimate of the average total effect of drought on productivity
when changing from the control condition to the treated condition (sometimes called the
“average treatment effect”, ATE):

ATE = E[P| — R] = E[P1] — E[R]
(15) = B[P ] = E[Pow,] -

We can also estimate two components of the ATE: the average pure direct effect (E[ Py, —
Piy,]) and average total indirect effect (E[Piy, — Pons,]), where the ATE is the sum of the
average PDE and the average TTE:

B[P — R] = E[Pia, | — E[Po]
= (B[P ] — E[Pi]) + (E[Piag ] — E[Por,])
(16) = E'[PlM1 — PlMo] + E[PlMO — POMO] .

In our drought study with its binary treatment, we could use Equations (4) to (6) to
estimate the AT E, which would be equal to (3, the average PDFE, which would be equal to
1, and the average TIE, which would be equal to 6,0, (Figure 8). These estimates would
only be valid if Assumptions Al to A9 were satisfied and the statistical assumptions of the
regression estimators were satisfied. In many ecological systems, however, one or more of
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these assumptions may not be valid, and, in such cases, a conceptual framework like the
potential outcomes framework is valuable for decomposing the total effect into interpretable
components and suggesting appropriate estimation procedures.

Average PDFE = 6,

Figure 8: Mediation effects defined using the potential outcomes framework and the three-
part estimation procedure for the hypothetical drought study. The three-part procedure
estimates four components of the relationship between D and P. If Assumptions Al to A9
and relevant statistical assumptions are satisfied for regression estimators, then we can use
Equations (4) to (6) to estimate the ATE and average PDE and TIE. The estimate of
the ATE is (1, shown in red. The estimate of the average PDFE is 01, shown in teal. The
estimate of the average T'I F is 0,05, shown in orange. Labels D, M, and P are as in Figure 2.

The causal assumptions of no heterogeneous mediator effects (Assumptions A5 and A6)
will be routinely violated in ecological systems. For example, in our drought experiment, the
effect of soil moisture on productivity may be functionally different in the presence of drought
than in the absence of drought, which would suggest an interaction between the treatment
and mediator in violation of Assumption A5 (VanderWeele, 2009; VanderWeele and Robins,
2007). The estimation procedures in Sections (1) to (4) will not generate estimates of the di-
rect and mediated effects of drought on productivity without bias when treatment-mediator
interactions are present, even if both drought and soil moisture were randomised (Bullock
et al., 2010; Glynn, 2012; Pearl, 2001b; for a detailed justification, see Supplement (3)).
To address treatment-mediator interactions, direct and indirect effects estimators have been
developed using traditional regression-based approaches, including SEM (MacKinnon et al.,
2020; Rijnhart et al., 2017, 2021; VanderWeele and Vansteelandt, 2010), but these estima-
tors are only valid under certain conditions (e.g., for continuous outcomes and continuous
or binary mediators). The potential outcomes framework has been used to develop more
general approaches that allow for treatment-mediator interactions and both continuous and
non-continuous mediators and outcomes (e.g., Loh et al. 2022, 2020; Xue et al. 2022). For
example, in the presence of treatment-mediator interactions, the total effect can be decom-
posed into four component effects instead of just a PDE and a TIE (VanderWeele, 2014;
see Supplement (6) for details). Moreover, in observational studies or randomised studies
with non-compliance, other mediation effects not defined in traditional regression-based ap-
proaches may be more plausibly estimated with available data. Causal inference frameworks
can help to clearly differentiate these mediation effects from others and suggest appropriate
estimation strategies (e.g., Ferraro and Hanauer 2014; see also Supplement (6) for other
mediation effects of potential interest to ecologists).

A key advantage of causal inference frameworks is that they allow us to separate the
definitions of the mediation effects from the estimation procedures for those effects (Pearl,
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2001b; Robins and Greenland, 1992; VanderWeele, 2015). In that way, the relevant assump-
tions that must be invoked to estimate a particular effect can be transparently evaluated or,
when those assumptions are not likely to hold, the study aims can be transparently redefined
to focus on more plausible assumptions under which mediation effects can be estimated. For
example, mediation effects obtained using the regression-based approaches in Sections (2)
to (4) require assumptions of additivity and linearity. However, direct and indirect effects
can be defined for more flexible semi- and non-parametric models. Bootstrapping can be
used to nonparametrically estimate direct and indirect effects (Imai et al., 2010) and is par-
ticularly useful when the sample size is small or the distribution of the mediator or outcome
is non-Gaussian. Semiparametric methods have also been used to estimate direct and in-
direct effects (Tchetgen Tchetgen, 2011; Tchetgen Tchetgen and Shpitser, 2012), and more
recent work has extended these methods to settings with multiple mediators and confounding
(Miles et al., 2020; Zhou, 2021). To accommodate nonlinear relationships and interactions
between the treatment, mediator and outcome, kernel-based approaches can be used (Carter
et al., 2020; Devick et al., 2022; Singh et al., 2022) and have also been applied in SEM
settings (Shen et al., 2017). For data with non-Gaussian distributions or nonlinear relation-
ships between treatment, mediator, and outcome variables, Bayesian nonparametric models
have been shown to be effective for estimating direct and indirect causal effects (Kim et al.,
2017, 2019; Linero and Antonelli, 2023). More recently, machine learning methods have been
incorporated into mediation analyses with high-dimensional data to provide a data-driven
approach for handling large sets of measured confounders (Farbmacher et al., 2022; Linero
and Zhang, 2022; Xu et al., 2022).

The potential outcomes framework is not the only causal inference framework that we
could use. Several publications in ecology have promoted various methodologies or frame-
works for causal inference, such as SEMs (Grace, 2006; Grace et al., 2012), structural causal
models (SCMs) (Arif and MacNeil, 2022a, 2023; Laubach et al., 2021), and the potential out-
comes framework (Clough, 2012; Larsen et al., 2019; Ramsey et al., 2019). These approaches
to causal inference, along with the decision theoretic approach to statistical causality (Dawid,
2000, 2003, 2021), are equivalent under identical causal assumptions. For example, SEMs
can be expressed mathematically using the do-calculus of Pearl (2009) (Bollen, 1989; Mu-
laik, 2009) and have been shown to be equivalent to SCMs (Pearl, 2009, 2023), the potential
outcomes framework (Hernan and Robins, 2006), and the decision theoretic approach to
statistical causality (Dawid, 2015). Thus, SEM methodologies with which ecologists may
be familiar can be used to estimate mediation effects if the required causal assumptions
are transparently described and plausibly satisfied in the analysis (Bollen, 1989; Bollen and
Pearl, 2013; Hernan and Robins, 2006; Mulaik, 2009; Pearl, 2009, 2023; Vander Weele, 2012b).

Regardless of the causal inference framework used, the focus of any mediation analysis
should be on clearly articulating and satisfying causal assumptions, thereby reducing poten-
tial bias that arises from violations of these assumptions (Larsen et al., 2019). Including
sensitivity analyses (Section (5)) in mediation analyses to quantify potential bias from vio-
lations to causal assumptions also allows us to further assess the plausibility of causal claims
made in studies of mediation.
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VII. Conclusion

1.

Quantifying the effects of intermediary ecological processes is challenging and requires
careful attention to study designs, including defining the causal effects to be estimated
and explicitly describing the untestable causal assumptions on which causal inferences
rely. Those definitions and descriptions allow us to better identify and eliminate rival
explanations for observed patterns in data and to rigorously explore the implications
of potential hidden biases.

Although ecological studies often describe and justify statistical assumptions, they have
given less attention to describing and justifying causal assumptions (Section IV.). The
credibility of these causal assumptions determines the credibility of mediation studies
in ecology, regardless of the causal inference framework used (Dawid, 2021; Pearl, 2000;
Rubin, 2006).

In our review, we highlighted challenges in quantifying the effects of ecological me-
diators, but we do not view these challenges as insurmountable. Rather than view
these challenges as reasons to avoid making inferences about ecological mediators, we
instead view them as reasons for being transparent when making causal claims about
mediation and for using more advanced techniques for estimating mediation effects.

To address these challenges and advance the empirical literature on ecological media-
tors, we described tools and a conceptual framework for causal inferences that empha-
sise transparency, and we described many of the steps that every empirical mediation
study should include (summarised in Table 1). Although we have emphasised how
methodological innovations in other fields can contribute to advances in ecology, we
also believe that well-executed mediation analyses in ecology have the potential to
contribute innovations to other fields. Ecologists’ extensive experience in modelling
heterogeneous spatial and temporal dynamics, decades of development of mechanis-
tic theories of ecological processes, and vast collections of field data provide unique
opportunities to address challenges of causal inferences for mediation in observational
settings and complex systems (Clough, 2012; Larsen et al., 2019; Laubach et al., 2021,
Schliiter et al., 2023).

For ecologists to make meaningful contributions to both methodological advancements
and ecological theory through the study of mediators, we must carefully consider and
explicitly state the causal and statistical assumptions we make when estimating the
effects of intermediate ecological processes from data. Clearly communicating the
assumptions necessary for valid inferences and examining potential violations to these
assumptions are key for providing rigorous and reproducible mediation analyses that
explain important intermediary processes in ecology.
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Table 1: Essential steps in mediation analysis.

Steps Reference

1. Define the mediation effect(s) of interest using a conceptual Section VI
framework for causal inferences.

2. Identify the likely confounding variables using theory and field Section III.
knowledge, including all hypothesised treatment-outcome,
treatment-mediator, and mediator outcome confounders.

3. Pre-register the mediation hypotheses, including how Kimmel et al. 2023
treatments mediators, and moderators will be measured.?

4. For each mediation effect of interest, develop a strategy for Section V.
estimating the effect and mitigating the biases that
confounding variables may introduce.

5. Select a mode of statistical inference that is appropriate for the
data generating process.

6. Assess the presence of treatment-mediator interactions, i.e., Section VI.
heterogeneity.

7. Estimate mediation effects.

8. Perform sensitivity analyses of how the estimated effect(s) Section (5)
would change if assumptions Al to A4 in Section IV. were
violated.

9. Assess the likelihood that causal assumptions A5 to A8 in
Section IV. are violated and discuss the implications of
potential violations for the estimation procedures of the
interpretation of the estimated effects.

'The set of treatments, mediators, and moderators should be kept small given the challenges of
satisfying the assumptions in Section IV. for multiple treatments and mediators and the dangers of
detecting spurious relationships through multiple comparisons (i.e., data mining).
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Supplementary Material

(1) Limitations of the two-part estimation approach for mediation
analyses

Some ecological studies attempt to detect mediators in experiments by first manipulating
the treatment and then estimating the dependence between the treatment and outcome and
between the treatment and mediator. In our hypothetical study, this approach would be
represented by two equations, where the effect of drought (D) on soil moisture (M) and the
effect of drought on productivity (P) are estimated by

(1) P, =By + B1D; +eq
(2) MZ':60+(91DZ'+€Z'2, izl,...,n,

where D; is the treatment assigned to plot i, P; is the plot-level productivity, M; is the
plot-level soil moisture, fy and 6y are intercepts, 81 and 6, are coefficients, and ¢;; and ¢,
are plot-level error terms. The average productivity of all plots under the no-drought control
is represented by [y, while 3; represents the average change in productivity across all plots
when going from the control state (D = 0) to the drought-treated state (D = 1).

Complete randomisation of the drought treatment allows us to assume that the plot-
level observations are independent and identically distributed and that the effects of any
treatment-mediator and treatment-outcome confounders have been removed. Thus, ordinary
least squares (OLS) estimation of Equation (1) yields an unbiased estimator of ;. Under
complete randomisation, if the OLS-estimated coefficient BAl < 0, the drought treatment
reduces productivity on average across plots. Likewise, using OLS regression to estimate
Equation (2) yields an unbiased estimator of ;. If the estimated coefficient 6; < 0, then, on
average, the drought treatment induces a reduction in soil moisture across plots. If ﬂAl <0
and 6; < 0 and both are statistically significant, some studies may conclude that there is
sufficient evidence to claim that the effect of drought on productivity is mediated by soil
moisture (Figures Sla to Slc). However, the two-part estimation procedure does not quantify
the indirect effect; that is, the proportion of the effect of drought on productivity that is
mediated by soil moisture is not estimated (Figure S1d). Thus, other possible conclusions can
also be drawn from the results of the two-part estimation approach, including a conclusion
that the hypothesised mediator plays no mediating role at all (Figures Sle and S1f).

(2) Effect of mediator-outcome confounders on mediation effects in
randomised controlled trials

Here, we answer a question that many readers may have: why, exactly, is the three-part
estimation procedure invalid for identifying and estimating the effect of drought on produc-
tivity through soil moisture when drought was randomised but there exist mediator-outcome
confounders?

Consider our hypothetical drought experiment in which some plots experienced heavy
grazing by herbivores (Figure 4). Because drought was randomised across plots, researchers
may incorrectly believe that historical grazing (G), which is correlated with both soil moisture
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(d) (e) Conclusion 2A (f) Conclusion 2B

Figure S1: The two-part estimation procedure for the hypothetical drought study can result
in multiple conclusions. A two-part estimation process in which (a) drought D is found to
relate to productivity P, and (b) drought is found to be related to soil moisture M, leads to
(c) the conclusion that drought influences productivity though soil moisture. However, the
two-part procedure does not estimate the effects of soil moisture and drought on productivity
(d), which means that alternative conclusions (e) and (f) are also possible from the evidence
given by (a) and (b) alone. D = drought, M = soil moisture, M, = secondary mediator
(e.g., photosynthesis), P = productivity.

and productivity, need not be added to Equation (6). Thus, the researcher would instead
estimate the following three equations:

(1) Py = By + BiD; + e
(2) M; =0y +0,D; + €2,
(3) BZ(SO—l-(SlDZ'-l-(SQMi-F&ig, izl,...,n.

With randomisation of the drought treatment, the distribution of historical grazing across
all plots is, on average, the same in the drought-treated plots as it is in the control plots.
This property ensures that 6; in Equation (2) is an unbiased estimator of the average effect
of drought on soil moisture when changing D from 0 to 1, as detailed in Supplement (1). In
Equation (2), we do not need to control for any other variables that may affect productivity
— the variation in P resulting from those factors is included in the error term g;5. Of course,
we still have sampling variability, represented by &;, but modes of statistical inference (e.g.,
confidence intervals) have been developed to quantify the uncertainty that the differences in
treatment and control plots have arisen by chance. However, sampling variability is different
from bias: as the sample size grows, the sampling variability of the 0; estimates will converge
around the true value of 6.

In contrast, randomisation of the treatment does not render Equation (3) unbiased in the
estimation of 1, nor is it unbiased in the estimation of d,. For estimation of d2, Equation (3)
is biased, because it does not control for historical grazing GG, which is positively correlated
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with both M and P; i.e., g;3 is correlated with M. In contrast to the effect suggested by
Figure 4, we suppose here that plots with historically more grazing are, on average, more
productive and have more soil moisture, possibly through nutrient addition by grazers’ waste
(Sitters and Olde Venterink, 2015; Veldhuis et al., 2014). If plots that have been historically
free of grazing are, on average, less productive and have less soil moisture, then the estimate
of 95 includes both the effect of M on P and some of the effect of G on P. In other words,
the estimate includes the unconfounded effect of soil moisture on productivity caused by
drought, but also includes the effect of soil moisture confounded by historical grazing. Thus,
the estimate of ds is positively biased, because it is a weighted average of the uncounfounded
and confounded effects of soil moisture.

Bias also enters the estimation of §; — specifically, the estimate is also positively biased.
The sign of the bias in estimating §; is the same as the sign of the correlation between M
and P in the absence of a randomised experiment, which is positive in our drought study.
Recall that researchers declare mediation to be present if the estimated effect of drought on
productivity gets less negative when controlling for M, ie., &, > 3 (see Supplement (1)).
Also recall that ¢;3 in Equation (3) is positively correlated Wlth M and P — if G increases,
M increases and P increases. So, for estimation of d;, Equation (3) will be upwardly biased.
The direction of bias implies that we would detect mediation when soil moisture is not, in
fact, a mediator at all (i.e., when there is no arrow from M to P in Figure 5 and the detection
of mediation only reflects the non-causal correlation between M and P that comes from G).
Thus, soil moisture will appear more influential on productivity than it is.

To illustrate the intuition behind these claims without referring to equations, consider
a prediction made by a researcher for the hypothetical drought experiment: the drought
treatment, on average, lowers soil moisture, and lower soil moisture, on average, reduces
grassland productivity. In addition, the researcher predicts that plots with more historical
grazing are more productive and have more soil moisture. Imagine we selected at random
a drought-treated plot and a no-drought control plot from the field experiment and told
the researcher only the treatment status of each plot. The researcher would anticipate
that the control plot has higher average productivity, based on their initial experimental
prediction. This prediction step is akin to Equation (1), which is answering the question,
“For a randomly selected plot from the study population, what is the expected effect of the
drought treatment?”

Now, suppose that before revealing each plot’s measured productivity, we tell the re-
searcher that the two plots were randomly selected from a subgroup of plots that all had
identical soil moisture levels. In light of the new information, the researcher is given the
opportunity to revise their initial guess of which plot has higher measured productivity.
They might wonder why the drought-treated plot had the same soil moisture as the no-
drought control plot, despite the control plot not being exposed to drought. Based on the
researcher’s original predictions about the effect of historical grazing on soil moisture, one
possible explanation for the control and treated plots to have identical soil moisture is that
the treated group experienced more historical grazing. Greater historical grazing is asso-
ciated with higher productivity, independent of soil moisture. Based on this insight, the
researcher would update their first guess and instead predict that the drought-treated plot
has higher productivity. This adjustment step is akin to using Equation (3) in the presence
of an unmeasured mediator-outcome confounder. In the case of the drought study, the ad-
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justment includes unmeasured differences in historical grazing across plots, making the effect
of soil moisture appear more influential than it really is.

If the effects of all mediator-outcome confounders have been appropriately eliminated,
researchers can estimate the magnitude of the effect of drought on productivity through soil
moisture using the three-part procedure in one of two ways: by taking the difference between
f1 and &1, or by taking the product of 8; and d5. Both of these traditional regression-based
approaches have been commonly applied and studied in many other scientific fields. The
traditional regression approach to mediation analysis used in fields such as epidemiology and
public health relies on Equations (1) and (3) and is known as the “difference method”. With
this method, the magnitude of the indirect effect of drought on productivity through soil
moisture is 5; — 7, while the coefficient §; represents the magnitude of the direct effect.
The presence of mediation is thus determined if soil moisture explains some of the effect
of drought on productivity, i.e., |1 — 1| > €, € > 0. In contrast, the traditional regres-
sion approach to mediation used in social sciences and psychology is known as the “product
method” (popularised by Baron and Kenny 1986) and uses Equations (2) and (3). With
the product method, §; again represents the direct effect, while the indirect effect is 66,.
If 10192 > €, € > 0, then mediation is determined to be present. The product method is
typically how the direct and indirect effects from Equations (2) and (3) are represented in
SEM (Muthén and Asparouhov, 2015). It should be noted, however, that the product and
difference methods only coincide when the outcome and mediator are continuous and the
regression equations are fit using OLS estimation, provided the statistical assumptions for
OLS are satisfied. For a binary outcome that is not a rare event, the difference and product
methods do not give identical results (Mackinnon and Dwyer, 1993; MacKinnon et al., 1995),
and the estimates from both methods are not directly interpretable as indirect effects (Van-
derWeele and Vansteelandt, 2010; Valeri and Vanderweele, 2013). In such cases, the product
method using log-linear models is typically preferred for binary outcomes (MacKinnon et al.,
2007; Rijnhart et al., 2019, 2023).

(3) Effect of heterogeneity on mediation effects estimated using tra-
ditional regression-based approaches

For the hypothetical drought study (Section II., Figure 1), suppose we fit the models

(S1) M; = wo + wiiD; + €9
(82) P, = ag + a;D; + a; M; + €3

instead of Equations (2) and (3), where the coefficients wy; and «y; are allowed to vary for
each plot . If both drought (D) and soil moisture (M) are randomly assigned to plots (e.g., a
manipulation-of-mediator design), the average effect of D on M is w1, and the average effect
of M on P (productivity) is as. If each of these effects are consistent across all plots, then
using the product method of defining the indirect effect as wias would provide an unbiased
estimator of the effect of drought on productivity through soil moisture. Conversely, suppose
the effects of D on M and the effects of M on P are heterogeneous across plots. For one set
of plots, the effect of D on M is negative, w; < 0, and the effect of M on P is also negative,
as < 0. The average effect of D on P through M for this group of plots would be positive
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(Figure S2a). For a different set of plots, the effect of D on M is small but positive, w7 > 0,
and the effect of M on P is also positive ay > 0. The mediated effect of D on P through
M for this different set of plots would again be positive (Figure S2b). If we averaged across
all ¢ plots, the indirect effect of D on P, wy, could be negative or zero, while the effect of
M on P, as, could be negative, zero, or positive. Thus, the indirect effect of drought on
productivity through soil moisture averaged across all plots could also be negative, zero, or
positive, despite the indirect effect in both subsets of plots being positive.

M M
/ \ / x
D > P D > P

(a) (b)

Figure S2: The effect of D on P through M can be identical in magnitude and size for two
different plots where (a) the effects of D on M and M on P are negative or (b) the effects
of D on M and M on P are positive. In both (a) and (b), the indirect effect of D on P
through M is positive: wjay. Labels are as defined in Figure S1.

(4) Multilevel models for clustered longitudinal data

A multilevel model typically captures distinct groupings of clustered data by specifying an
observation-level equation with group-level intercepts in concert with higher-level equations
that describe the group-level intercepts for each for each grouping of the data (Gelman
and Hill, 2006). In mixed effects modelling, a variant of multilevel modelling commonly
applied in ecology, error terms are included in the higher-level equations (Bolker et al.,
2009). Modelling clustered longitudinal data with error terms in each of the higher-level
equations allows researchers to quantify the variation within and among various groupings
(Bolker et al., 2009) and has the benefit of partial pooling which reduces the effect of outlying
groups on parameter estimation without eliminating their effect entirely.

To estimate mediation effects without bias using a mixed effects model for our hypo-
thetical drought study, researchers must assume that the differences in productivity among
plots or among sites are uncorrelated with other predictors in the model (Seber and Lee,
2003). This assumption is likely violated in many ecological settings, leading to estimates
that are biased (Gelman, 2006). To see how the violation of this assumption could occur, let
us consider the problem from the perspective of our drought study (Section II., Figure 1).
In a mixed effects model, for an observation A that is measured at time ¢ and belongs to plot
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i within site s, we replace Equations (1) to (3) with

(S3) Py = ¢rin) + pasepn) + B1Dp + 1
(S4) My = ¢on) + po,sefn) + 01Dp + €2
(S5) Py = @310 + p3,stin) + 01 Dp + 02 My, + €3

i=1,....n;s=1,...,8:;t=1,....T;h=1,...,nST,

where each site is composed of n, plots, for a total of n = n;+ns+- - -+n, plots, and each plot
is repeatedly measured over T' time points; i[h] is the plot i containing observation h; st[h]
is the site-time group containing h; Py, Dy, and M), are the productivity, drought, and soil
moisture values measured for an observation h; (5 represents the overall effect of drought
on productivity; 6; represents the effect of drought on soil moisture; 9; and d, represent
the effects of drought and soil moisture on productivity; o1 ;in), @2,i[n], P3,in) are plot-level
intercepts; i1 si(n], Mo,st[h], H3,st[n] are site-time group-level intercepts; and €15, €24, €34 are
the error terms. Note that Equation (S5) was introduced in Section (a) as Equation (9).

For a mixed effects model, we must also specify higher-level equations that include group-
averaged intercepts. These equations are

(S6) b1 = O1.+ My
(S7) P2 = P2 + M2
(S8) ¢3,i = @3 + N34
(S9) Hist = f1. =+ Tist
(S10) H2,st = 2. + T2,
(S11) H3,st = 3.+ M35t

where ¢1., ¢a., ¢3. are the averages of the plot-varying intercepts @1 n), @2,i[n], @3,i[n]» respec-
tively; ji1., pio., p3. are the averages of the site-time group-varying intercepts piy gn), f2,s[n],
H3.st[n], respectively; mi;, m24, 13, are plot-level errors; and 7y 4, 726, 73, are site-time
group-level errors.

For simplicity when discussing how mediation effects can be estimated with bias when
mediator-outcome confounding exists, we will focus on the effect of drought and soil moisture
on productivity described by Equations (S5), (S8) and (S11).

In a large-scale regional or global set of drought experiments where one might expect
to obtain clustered longitudinal data, some sites could be in regions with low soil moisture,
resulting in the differences in productivity between those sites and others in the study to
be correlated with soil moisture. This would result in a correlation between soil moisture
and the site-time groupings which, if not explicitly modelled in Equation (S11), would be
included in the error term 73 . Let us substitute Equation (S8) and Equation (S11) into
Equation (S5), which gives us

(S12) Py, = ¢3. 4 ps. + 01Dp + 0o My, + 3 + 13,50 + €34 -

As 134, m3.5, and €3, are all error terms, we can combine them into a new error term e’ and
rewrite the model as

(813) b, = ¢3.+M3.+51Dh+52Mh+6/ .
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Since 73 o is correlated with soil moisture, and 73 4 is now part of the new error term, then e’
is correlated with M}, thus violating the assumption that the errors should be independent
of predictors in the regression model.

One way around this issue is to instead allow for group-level effects where error terms
are not estimated at the group-level (Gelman, 2006). The observation-level model describ-
ing the effect of drought and soil moisture on productivity would remain the same as in
Equation (S5), but the second-level equations for ¢3; and 3 would instead be given as

(814) ¢3,i ~ N(¢3., OO)
(S15) pa,st ~ N (p3., 0)

where the infinite variances allow for maximum variation in the plot-level and site-time group-
level effects from the data. This is equivalent to fitting separate regression models for each
plot and each site-time grouping, where estimates that vary across groups are completely
unpooled (Bafumi and Gelman, 2006; Gelman and Hill, 2006). The same effect could be
achieved by using dummy variables for plot and site-time groupings (Bollen and Brand,
2010). The coefficient estimates will thus be unbiased even in the presence of unmodelled
correlation between the differences among plots or among sites and soil moisture, such as in
the presence of unmeasured mediator-outcome confounding (Fitzmaurice et al., 2012).

Unfortunately, fitting separate models requires a large number of parameters to fit sepa-
rate intercepts for each plot and each site-time grouping. Instead, an alternative multilevel
modelling approach described in Section (a) can accommodate the presence of correlation
between differences among groups and predictors in the model without the need for sepa-
rate models for each grouping. We would use the same observation-level models specified
in Equations (S3) to (S5) above, however we must specify different higher level equations
from those specified in mixed effects modelling to accommodate correlation introduced by
mediator-outcome confounders.

To account for mediator-outcome confounders, we must specify second-level equations
that include group-averaged soil moisture as predictors of the group-level intercepts. We
use the same second-level equations for ¢y ;, @2, f1.st, and py o as in Equations (S6), (S7),
(S9) and (S10), but the second-level equation for ¢3,; would instead be specified with a
plot-averaged soil moisture term, vM;, in Equation (S16) and the second-level equation
for ps s would be specified with a site-time group-averaged soil moisture term, kMg, in
Equation (S17), as we showed in Section (a) with Equations (10) and (11). The full set of
second-level equations are

(S6) Ori = O1. + My

(S7) G2 = Pa. + M2y

(S16) Gs3i = P3. + v M; + 13,
(S9) H1,st = M1+ T st

(S10) H2,st = f2. + M2,st

(S17) fis,st = p3. + KMy + 134

where v is the coefficient for the predictor J M, representing plot-level averages of soil moisture
and k is the coefficient for the predictor My, representing the site-time grouped means of soil
moisture.
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By including M; in Equation (S16) and M, in Equation (S17), we explicitly model any
potential correlation between soil moisture and differences in productivity at the plot or
site-time group levels. We do not need to include group-averaged terms for drought, since
drought being randomised allows us to assume no unmodelled correlation between drought
and the differences in productivity among plots or among sites. Thus we arrive at the
formulations for obtaining unbiased estimators of mediation effects using multilevel models
as given in Equations (9) to (11) in Section (a), and the indirect effect can be estimated as
010, using the product method.

Including plot-level effects ¢;[,), which are intercepts estimated for each plot ¢ in site s
where the plot-level differences over time are averaged, allows us to account for unmeasured
differences between plots that do not change over time, such as differences associated with
unmeasured mediator-outcome confounders that occur at the plot level. Likewise, including
site-time group-level effects piq[,), which are intercepts estimated for each site-time group
st where the differences across plots at each site and time point are averaged, allows us to
account for unmeasured differences between sites that change over time, including differences
associated with unmeasured mediator-outcome confounders that vary over time at the site
level but do not vary across plots within the same site. Further, including the plot-level
(M;) and site-time group-level (M) averages of the mediator in the higher-level equations
eliminates any potential correlation between soil moisture and the plot or site-time groupings.
As long as plot-level, time-varying confounders (e.g., micro-climate) do not exist, or they
are observed and included in the multilevel model, then n; and 7y are not correlated with
soil moisture, and the assumption of independence between the levels or groupings (i.e., plot
and site-time) and the mediator in the model is not violated (Greenland and Robins, 1985;
Robins et al., 2000; Roth and MacKinnon, 2012). Longitudinal data can also be used to
control for unmeasured, plot-level confounding variables that vary over time, but we do not
consider those methods here (Greenland and Robins, 1985; Roth and MacKinnon, 2012).

When observations are only collected for two points in time, multilevel modelling for
causal inference is equivalent to a difference-in-differences analysis (Abadie, 2005; Wooldridge,
2021), which has been recommended for observational ecological studies (Butsic et al., 2017;
Larsen et al., 2019). Multilevel models without group-level error terms and with group-

averaged variables as predictors in the higher level regression equations (as in Section (a))
can be estimated using SEMs (Allison, 2009; Andersen, 2022; Bollen and Brand, 2010).

(5) Estimating effects for multiple mediator pathways

In the hypothetical drought study, we declared that the researchers were only interested in
the mediating effect of soil moisture (Section II.). However, researchers may also be interested
in additional mediators through which drought affects productivity. In the analyses outlined
in previous sections, the effect of other mediators are lumped into the direct effect, which
is interpreted as the effect of drought on productivity through mediators other than soil
moisture. If we are interested in measuring the effect of drought on productivity through
multiple mediating variables separately (Figure S3), we require additional causal assumptions
to estimate effects for each mediator without bias.

To identify individual indirect effects for each of m mediators, which is a common objec-
tive in SEM analyses, one might presume that the traditional approach could be repeated
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for each mediator separately by replacing M with M;, j = 1,2,...,m, in Equations (2)
and (3) to estimate the effect of drought on productivity through Af;. This approach, how-
ever, requires at least three more causal assumptions. First, we must assume that there
are no mediator-outcome confounders for each of the measured mediators. In other words,
Assumption A3 must be satisfied for each measured mediator. Second, we must assume
that there are no unmeasured mediator-mediator confounders, i.e., there are no common
causes between two mediators that have not been accounted for in the regression equations
(Grace et al., 2015; Loh et al., 2022; VanderWeele and Vansteelandt, 2014). If we have an
unmeasured confounder U between two mediators M; and M, as in Figure S3a, U acts as
an unmeasured confounder between M; and P through its effect on M,, resulting in correla-
tion between M; and P not due to the treatment D and biasing the coefficient estimates in
Equation (3). Similarly, U acts as an unmeasured confounder between M and P through its
effect on M, again producing bias. To satisfy Assumption A3 when using the instrumental
variable approach described in Section (3), we must either assume that no other mediators
are observed or obtain an instrumental variable for each mediator. Third, we must assume
that the mediators are independent from each other, i.e., the values of one mediator do not
depend on the presence or values of another mediator, which is to satisfy Assumption A4 for
each mediator. If interdependencies between mediating variables exist (Figure S3b), then in-
dividual direct and indirect effects of multiple mediators cannot be estimated (VanderWeele
and Vansteelandt, 2014).

N

U \) M. D > M1 > MQ > P
(a) (b)

Figure S3: Additional dependencies among variables can introduce bias when estimating the
effects of more than one mediator; for example, (a) an unmeasured common cause U of M;
and Ms, or (b) a dependency of My on M;. Labels are as defined in Figure S1.

If the assumptions of no unmeasured mediator-mediator confounders or independence
of the mediators are unlikely to hold, one could instead estimate the effect of drought on
productivity through the entire set of mediators {M;, My, ..., M,,} jointly. Joint direct and
indirect effects are defined for continuous outcomes with binary or continuous mediators
and for binary outcomes with continuous mediators (VanderWeele and Vansteelandt, 2014).
To estimate the joint direct and indirect effects when mediator-mediator interactions exist,
one must make additional statistical assumptions, and when exposure-mediator interactions
are present, the formulae become increasingly complicated (VanderWeele and Vansteelandt,
2014). Further, if the mediators are time-varying, estimating direct and indirect effects
typically requires a different class of estimation procedures, different definitions of direct
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and indirect effects, and additional causal assumptions (MacKinnon, 2012; VanderWeele,
2015; VanderWeele and Tchetgen Tchetgen, 2017).

(6) Decomposition of causal effects

We can decompose the total effect of drought on productivity derived from Equations (5)
and (6) given in Section (2) into the direct and indirect effects. We assume that the drought
treatment is binary and soil moisture and productivity are continuous variables, as we have
done in Section II.. We also assume that there is no interaction between the drought treat-
ment and the soil moisture mediator. The average effect of drought on productivity operating
through the soil moisture mediator, called the average total indirect effect (TIFE), is given
by d260;. More specifically, d26, describes the average change in productivity if drought was
implemented on all plots (D = 1) but soil moisture changed from the value it would be under
the no-drought control condition (My) to the value it would be under the drought-treated
condition (M;). The remaining effect of drought on productivity not operating through soil
moisture, but possibly going through other mediated causal paths not explicitly denoted in
the DAG, is described by the average pure direct effect (PDFE) and is given by §;. That is, 4,
describes the average amount by which productivity would change if drought were changed
from control (D = 0) to treated (D = 1) on all plots but soil moisture remained at the level
it would have been under no drought conditions (My). Combining the average PDE and
the average TIFE gives us the average total effect TE = 01 + d20;.

In ecological studies, it is often more realistic to expect an interaction between the treat-
ment and mediator. Indeed, a common recommendation for mediation analyses is to include
interactions between the treatment and mediator if an interaction cannot be ruled out, since
interactions are often difficult to detect with significance tests and not accounting for inter-
actions can bias the estimates of direct and indirect effects (VanderWeele, 2015). If we wish
to include an interaction between drought and soil moisture, an interaction term d,D;M; is
added to Equation (6). When defining direct and indirect effects that include treatment-
mediator interactions, the potential outcomes framework provides clear intuition for where
an interaction coefficient should appear. Thus, the average PDFE and average T I E are given
as

(819) TIE = ((5291 + 5491) + 0404 .

As with a mediation analysis that does not include a treatment-mediator interaction, com-
bining the average TIFE and average PDFE give us the average total effect:

(S20) TE = PDE +TIE = [01 + 64(6p + 61)] + [(0201 + 0461) + 6464] .

In many ecological studies, the treatment variable may be continuous. Drought, for
example, could be specified using one of several possible drought indices. For a continuous
drought treatment with an interaction term between the treatment and mediator, we can
instead define the average PDFE and average TIFE in terms of the difference between the
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treated and control drought values:

(S21) PDE = 6,(d — d*) + 64(0y + 01d*)(d — d*)
(S22) TIE = (8,01 + 6461d*)(d — d*) + 6,0, (d — d*)(d — d*) |

where d is the treated value of drought and d* is the untreated value of drought. The total
effect can be derived again as a combination of the average PDE and average TIE:

(S23) TE = [01(d — d*) + 64(60 + 61d*)(d — d*)]
+ (5201 + 6461d*)(d — d*) + 6401(d — d*)(d — d*)] .

In some cases, it may be desirable to break down the direct and indirect effects to obtain
further interpretations of mediation effects (Figure S4). We now describe these alterna-
tive mediation effects using our hypothetical drought study with the outcome productivity
P influenced by a drought treatment D and soil moisture mediator M, but these can be
generalized to any outcome Y with treatment A and mediator M.

CDE
/ \
PDE PDE
~— — N
INT, TDE
~
1E / TE
\ INT, .o
/
TIE
\
PIE

Figure S4: Two decompositions of mediation effects. Adapted from VanderWeele (2014).

Using the potential outcomes notation, the pure direct effect can be split into two parts:
a controlled direct effect in which the mediator can be set to specific values not necessarily
determined by the state of the drought treatment, and a reference interaction term (Fig-
ure S4). The controlled direct effect (CDFE) captures the average amount by which
productivity would change if drought were changed from D = 0 to D = 1 across all plots
and soil moisture were fixed at a specified level M = m for all plots. The controlled direct
effect is given by

(S24) CDE(m) = E[Piy — Pom] -

We only need to satisfy Assumptions A3 and A5 to estimate the controlled direct effect. The
average C' D E of drought on productivity for all plots in the hypothetical drought experiment
is the difference in the average productivity for treated and control plots if soil moisture were
held (controlled) at a single level across all plots. For each possible soil moisture level that
could be fixed across all plots, there is a different average controlled direct effect.
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Why would an ecologist be interested in controlled direct effects? Let’s say that an
ecosystem manager wants to reduce the effects of drought on productivity and determines
some values of soil moisture for which the controlled direct effect of drought on productivity
is small and thus less of a management concern. The manager would then have the option of
reducing the effect of drought on productivity by externally increasing the soil moisture, say,
through a ground-level irrigation system, to the levels implied by the favourable controlled
direct effect estimates.

The reference interaction (/NT,.s) represents an additive interaction of the effect of
drought and soil moisture on productivity that only occurs when soil moisture remains at
the value it would be under the no-drought control condition (My). This interaction effect
is given by

(S25) INT,er = E[(Pisg, — Pisty — Poary + Poary)(Mo)] -

If there exists no interaction between drought and soil moisture, the average CDE(m) =
PDE = 4, for our drought study represented by Equations (5) and (6). The equivalence of
the average controlled direct effect and the average pure direct effect is generally true for all
regression-based approaches without mediator-outcome interactions, i.e., no d,D;M; term in
Equation (6). If an interaction between the treatment and mediator is present, the C D E(m)
must be redefined to include d, (VanderWeele and Vansteelandt, 2009).

The total indirect effect can also be separated into two components: a pure indirect effect
in which the mediator changes while the treatment is fixed at D = 0 (instead of D = 1 as in
the TIFE), and a mediated interaction term (Figure S4). The pure indirect effect (P/F)
captures the amount by which productivity changes if M were changed from the level it was
under the no-drought control condition (M) to the level it was under the drought-treated
condition (M) while fixing drought to the control condition (D = 0),

(526) PIE = E[Po, — Pou,] -

The mediated interaction (I NT,,.,) represents the additive effect of both drought and
soil moisture on productivity and the effect of the drought on soil moisture. The mediated
interaction is given as

(S27) INTea = E[(Pin, — Piaig — Poa, + Powy ) (M1 — M) .

Combining the mediated interaction with the pure direct effect gives us the total direct
effect (T'DFE), which describes the amount by which productivity changes if drought were
changed from D = 0 to D = 1 but soil moisture were fixed to the value it would be under
the drought-treated condition (Mj):

(S28) TDE = INTyeq + PDE = E[Piar, — Pour,] -

Note that, in contrast to the TDFE, the PDE fixes soil moisture to the value it would be
under the no-drought control condition (My). Adding INT,,.q to PDE captures additional

information about the effect of soil moisture under the drought treatment to give the TDE
(Figure S4).
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The decomposition of causal effects can be extended to cases of two or more mediators
that can potentially interact with both the treatment and each other, but doing so requires
the researcher to define more potential outcomes and more decomposable components of the
total effect and to designate which contrasts among the many potential outcomes one wants
to consider (e.g., Bellavia and Valeri, 2017). The researcher would also have to eliminate
the effects of mediator-outcome confounders for all mediators in the analyses (as detailed in
Supplement (5)).
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