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Organic superbases are a distinct class of strong base that enable numerous modern reaction applications.
However, despite their great synthetic potential, widespread use and study of superbases are limited by their
air sensitivity and difficult preparation. To address this, we report air-stable carboxylate salts of BTPP and P»-
t-Bu phosphazene superbases that, when added to solution with an epoxide, spontaneously generate
freebase. These systems function as effective precatalysts and stoichiometric prereagents for superbase-
promoted addition, substitution and polymerization reactions. In addition to improving the synthesis, shelf
stability, handling and recycling of phosphazenes, this approach enables precise regulation of the rate of base
generation in situ. The activation strategy effectively mimics manual slow addition techniques, allowing for
control over a reaction’s rate or induction period and improvement of reactions that require strong base but
are also sensitive to its presence, such as Pd-catalyzed coupling reactions.

Introduction

Brgnsted bases are indispensable tools in synthetic chemistry.
For a given application, the exact choice of base can be of critical
importance as its properties often dictate reaction outcomes.!
Organic superbases are a valuable class of base that enable
unique applications over more common metal-containing bases
(Figure 1, top).2 Defined as neutral organic compounds with
basicity greater than Proton-sponge® (pKy = 18.6 in MeCN),
superbases are distinguished by their high solubility in organic
media, low nucleophilicity and the formation of conjugate acid
ion pairs upon substrate deprotonation.3-> These properties are
frequently leveraged in the discovery of new base-promoted
and -catalyzed reactions.26 Superbases also enable advances in
other areas of methods development, such as cross-coupling
and photoredox methodology and in high throughput
experimentation technologies.” However, as with all strong
bases, organic superbases are high energy compounds that are
unstable under ambient conditions, a significant limitation that
hinders their wider use and study.® To address this challenge,
we herein exploit the unique ion pairing properties of organic
superbases to establish a new and improved means for their
use. We disclose air-stable superbase salts and additives that,
once added to solution, controllably generate the freebase
without the use of a separate strong base (Figure 1, bottom).
This process functions as a practical superbase precatalyst
system and also provides a new way to regulate base
introduction to a solution.
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Figure 1. Organic superbases and a new approach to accessing
superbases from precatalyst salts. @ Reported pKx values in MeCN.13

Organic superbases form stable salts when combined with a
strong acid, a fundamental contrast to commonly used anionic
bases that form neutral conjugate acids (Figure 2, top). Stable
superbase salts are most commonly comprised of very weakly
basic counteranions (e.g., BFs~) and their neutralization requires
the use of a separate strong base.? We reasoned, however, that
the counteranion of a superbase salt could be a functional
component of a design strategy for the controllable generation
of freebase in solution. By definition, the counteranion of any
stable salt is incapable of directly neutralizing the conjugate
acid. Therefore, the key to spontaneous in situ activation of
such a system is to implement a mechanism by which a weakly
basic anion can facilitate superbase generation. This capability
has been previously achieved within photocaged base
technology wherein light-promoted counteranion
decomposition leads to freebase formation.1° This approach,
however, has thus far only been used for photocuring
applications and has not been applied towards more traditional
synthetic chemistry.11
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Figure 2. Mechanistic design for superbase precatalyst system.

Herein, we describe a new strategy for the thermal
generation of superbases from stable carboxylate salts in the
presence of epoxides (Figure 2, bottom). When in solution, the
carboxylate (pKy ~24 in MeCN) opens the epoxide, thereby
harnessing potential energy (i.e., epoxide ring strain) to create
a strongly basic alkoxide intermediate (pKy ~43 in MeCN) that
deprotonates the superbase conjugate acid.[*213] |n principle,
the epoxide can be stored independently for easy variation,
premixed with the salt for convenience or incorporated into the
counteranion structure, so long as activation takes place only in
solution. This modular design allows for the carboxylate or
epoxide to be adjusted to achieve desired physical properties
and reactivity, including the rate of epoxide opening to control
the speed of base generation. Importantly, the activation
process generates tertiary alcohol byproducts that are
compatible with most superbase applications.

The initial motivation for this work was to address key
challenges associated with conducting superbase chemistry.
Although superbase hydrochloride salts are readily prepared
from commodity chemicals, their neutralization often involves
nontrivial procedures such as distillation, air-free purification or
the use of hazardous bases. 1415 The resulting freebases are air
sensitive and typically stored and handled in an inert
atmosphere glovebox, resulting in limited convenience and
long-term fidelity, as well as high cost.2® In total, these concerns
can stifle the translation of innovative breakthroughs made in
discovery settings into more widely used chemistry.l7 In this
report, we focus on BTPP and P,-t-Bu phosphazenes as they are
commercially available and among the most commonly used
superbases for reaction discovery and methods development.
The use of superbase carboxylate salts with this new activation
method addresses the aforementioned challenges as the salts
can be prepared without the need to access the freebase and
can be stored, handled and recycled under ambient conditions
(Figure 2, bottom).

Results and Discussion

BTPP Salt Development and Application

BTPP freebase irreversibly reacts with atmospheric CO; to form
a phosphoramide, thus necessitating storage and use under
inert atmosphere.8 This deleterious process also rules out the
use of a decarboxylative strategy for superbase salt activation.
We therefore sought to identify a stable BTPP salt and effective
activation system to overcome these challenges. Superbase
carboxylate salts were targeted given that they can be stable
salts while still possessing nucleophilic counteranions, as
opposed to more commonly isolated salts comprised of
nonnucleophilic counteranions (e.g., BF4). After investigating
various carboxylates, BTPP salt A was identified as a shelf-stable
crystalline solid (Figure 3a). BTPP salt A is accessible in scalable
quantities via a one-pot process from PCls, t-BuNH; and
pyrrolidine, followed by anion metathesis with potassium
carboxylate salt 1 (Figure 3a, >20 g prepared).
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Figure 4. Use of BTPP salt A in catalytic and stoichiometric applications. Yields determined by H NMR spectroscopy. 2 Preactivation
procedure conducted in DMSO for 4b and THF for 4c. b Yields of reactions with commercial BTPP in a N,-filled glovebox for comparison.

We next studied the generation of freebase from BTPP salt
A when mixed with epoxides in solution. We found that aryl-
substituted epoxides readily facilitate BTPP generation, as
tracked by 3P and 'H NMR spectroscopy to observe the
freebase and activation byproduct, respectively. The activation
curves for electronically-differentiated epoxides 2-4 show that
the rate of BTPP formation directly correlates with epoxide
electrophilicity (Figure 3b). The activation rate is also
dependent on the solvent identity, temperature and
concentration, with full details in the Supplementary
Information. Thus, BTPP salt A activation occurs under a variety
of conditions, which provides flexibility for its use in synthetic
applications.

The successful activation of BTPP salt A with epoxides allows
this system to function as a precatalyst for superbase-promoted
reactions. All reaction applications of the superbase salts in this
Article were conducted outside of a glovebox with the use of a
Schlenk line. To demonstrate this capability, we selected the
Michael addition between deoxybenzoin (5) and tert-butyl
acrylate (6) as a model reaction.’® The combination of BTPP salt
A and epoxide 2 promotes this reaction in a similar high yield as
commercial BTPP that is stored and handled in an inert
atmosphere glovebox (Figure 4ai). Consistent with a precatalyst
activation process, reaction profiles for the Michael reaction
show an induction period that reflects the electrophilicity of the
epoxide activator used (Figure 4aii). Further control

experiments show that neither BTPP salt A nor epoxides on
their own promote this reaction (Figure 4ai). The fact that the
combination of potassium carboxylate 1 with epoxide 2 also
does not promote this reaction indicates BTPP is a necessary
component of the precatalyst system.12 Additional Michael,
aldol and Mannich products are shown in Figure 4aiii to
demonstrate the precatalyst system’s generality (substrates 8-
13). Finally, we note that BTPP salt A was regularly handled
open-to-air for six months, after which it remained equally
effective at promoting these reactions.

We found that direct use of the precatalyst system was not
equally as effective as commercial BTPP freebase for certain
applications. For example, in the ester amidation reaction in
Figure 4b, the aminoalcohol undergoes a competitive side
reaction with the epoxide that inhibits BTPP activation.1® To
address this, a five-minute preactivation process (stirring BTPP
salt A and epoxide 2 at 80 °C in DMSO) generates a solution of
freebase for use in catalytic ester amidation reactions (14-16).

BTPP salt A and epoxide 2 can also be used in stoichiometric
quantities as a prereagent system, a more demanding
application that requires full generation of freebase. We
studied this utility in the context of a BTPP-promoted
deoxyfluorination method developed by the Doyle Group
(Figure 4c).20 This reaction was selected as a challenging test for
the prereagent system, as the sulfonyl fluoride reagent can
potentially react with the carboxylate of BTPP salt A or the



activation byproduct. Using a preactivation procedure, the
prereagent system provides alkyl fluorides (17-20) in good
yields, albeit slightly lower than use of commercial BTPP. The
tertiary alcohol activation byproduct does not undergo
deoxyfluorination, demonstrating its compatibility in
superbase-promoted alcohol functionalization reactions.

P,-t-Bu Salt Development and Application

We next sought to develop salt systems for the stronger P,-t-Bu
base, which is typically sold as a solution in THF under inert
atmosphere as its pure, solid form rapidly absorbs ambient
moisture.?! Slight modification of the carboxylate counteranion
provided stable, crystalline P,-t-Bu salt A (Figure 5a). However,
activation of this salt with aryl-substituted epoxides (2 and 21)
is reversible, with only 50% freebase generated at equilibrium
(Figure 5b), as confirmed by running the activation process in
reverse. We reasoned this equilibrium effect is due to the
greater thermodynamic challenge of generating P,-t-Bu as
compared to BTPP. To address this, we found dialkyl-
substituted epoxides provide a greater driving force for
freebase generation, including spirocyclic epoxide 22 that
produces >90% P,-t-Bu at equilibrium.22 We also identified
epoxide 23 that, although only generates 75% freebase at
equilibrium, can be stored together with P,-t-Bu salt A to serve
as a premixed, all-in-one precatalyst system.23 Additional
activation studies for P,-t-Bu salt A are described in the
Supplementary Information.

The P,-t-Bu precatalyst system was first investigated for the
promotion of oxa-Michael addition reactions. This application
was selected as such reactions are reversible and require
strong, non-coordinating bases that operate in nonpolar media
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for high yields, making superbases ideal catalysts.2* The simple
addition of P,-t-Bu salt A and epoxide 22 to a solution of
methanol (24) and N,N-dimethylacrylamide (25) leads to a high-
yielding oxa-Michael reaction, similar to the use of commercial
P,-t-Bu in a glovebox (Figure 6a). Notably, use of the all-in-one
precatalyst (P.-t-Bu salt A and epoxide 23 stored together) or
six-month-old P,-t-Bu salt A also provide high yield. Consistent
with P,-t-Bu serving as the active catalyst, control studies show
that neither P,-t-Bu salt A or epoxide 22 catalyze the reaction
on their own (Figure 6ai). The P,-t-Bu precatalyst system is
general, as shown by an oxa-Michael reaction with an alkynol
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(27) and related hydroamination reactions between N-
heterocycles and polarized alkenes (28 and 29, Figure 6aii).2>

Beyond small molecule synthetic applications, phosphazene
bases are also valued as organocatalysts for controlled anionic
polymerization reactions.26 As these reactions are typically
conducted at or near room temperature (rt), we used aryl-
substituted epoxides that partially activate P,-t-Bu salt A at low
temperature for polymerization.2’ Thus, catalytic P>-t-Bu salt A
and epoxide 2 promote the polymerization of e-caprolactone
(30) with benzyl alcohol (31) initiator to 90% conversion (32, M,
=14.9 kDa, b = 1.07, Figure 6b).28

We next used P,-t-Bu salt A and epoxide 22 as a prereagent
system for nucleophilic aromatic substitution (SyAr) reactions.
This represents an emerging application of P,-superbases as
they have been shown in high throughput experimentation
(HTE) to act as mild bases and uniquely enable challenging SyAr
reactions.?® The prereagent system promotes SyAr for a broad
range of O-, N-, and C-based pronucleophiles (33-38, Figure 6c)
with yields typically similar to direct use of commercial P,-t-Bu.
We note that a 1 h preactivation procedure is required for
substrate 36 as imidazole reacts with epoxide 22, precluding an
effective single addition protocol. A separate stoichiometric
application is shown in Figure 6d, where preactivated P,-t-Bu
salt A promotes the alkylation of benzyl sulfone 39 in 81%
yield.30 A preactivation protocol was used as this reaction takes
place at 25 °C whereas elevated temperature is required for full
P,-t-Bu generation using epoxide 22.
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Figure 7. Use of superbase prereagents in Pd-catalyzed cross-
coupling reactions. Yields determined by H NMR spectroscopy. @ t-
BuBrettPhos Pd G3 (5 mol%) used as catalyst.

Organic superbases also find utility in advanced applications of
metal-catalyzed cross-coupling as they provide homogeneous
reaction conditions, can enhance functional group tolerance and
enable HTE for reaction screening.3! In this regard, scientists at

Merck reported the advantages of P,-Et within Pd-catalyzed coupling
reactions, which inspired us to apply the salt systems as prereagents
for such methods.32 As shown in Figure 7, superbase carboxylate salts
and epoxide 2 added directly to standard Pd catalysis reaction
conditions enable high-yielding amination of aryl halides and triflates
(42-49). The P,-t-Bu prereagent system is optimal for alkyl amines,
while the BTPP system can be used for more acidic aniline partners.
Here, epoxide 2 is used for both bases as it activates the salts at 25
°C as compared to epoxide 22, a process driven to completion by
consumption of the base in the coupling reaction. However, C-0O (50
and 51) and Suzuki couplings (52, with water as an additive) require
superbase preactivation with epoxide 22 as O-pronucleophiles can
react with epoxide 2 and prevent superbase activation when all
reagents are mixed simultaneously.

Unique Opportunities of Superbase Salt Systems

The phosphazene salt activation systems provide several new
opportunities compared to the manner in which strong base-
promoted chemistry is typically conducted. First, salt synthesis
and employment does not require a discrete neutralization step
or handling of freebase. This was illustrated in the 75 mmol
scale synthesis of BTPP salt A in Figure 3a. This feature also
enables recycling of the superbase salts, wherein the recovery
of superbase hydrochloride salts from crude reaction mixtures,
followed by anion metathesis, effectively regenerates the
superbase carboxylate salts. Recovery is especially desirable in
stoichiometric applications, as illustrated in Figure 8a by a Pd-
catalyzed amination reaction that used 1.1 g of P,-t-salt A that
was regenerated in 71% yield.

A second feature of the salt system is that, once added to
solution, the epoxide identity controls the rate of base
generation. This effectively mimics the physical act of freebase
addition to a reaction vessel that is traditionally achieved
manually or by a syringe pump.33 Thus, one could view the
epoxide component as a modular “timer” that can be adjusted
through substituent modification, with more electrophilic
epoxides generating base faster. We first observed this effect in
the model Michael reaction for BTPP salt A, wherein the
induction period onset is dictated by epoxide electrophilicity
(Figure 4aii). A similar correlation is observed for the rates of
Pd-catalyzed coupling reactions of bromobenzene (56) and
morpholine (54) that uses P,-t-Bu salt A with various epoxides
(Figure 8b).3* We anticipate this strategy could serve as a
general way to regulate onset times, rates and potential
exotherms of base-promoted reactions.3>
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Figure 8. Recovery of superbase salts and use of rate-controlled base
generation in Pd-catalyzed amination reactions. Yields determined
by 1H NMR spectroscopy. 25 mol% Pd used.

While investigating Pd-catalyzed amination reactions, we
noticed use of the P,-t-Bu prereagent system often provides
higher yields than the commercial freebase, with examples in
Figure 8c (58-60). Despite their necessity for reaction
promotion, strong bases can be detrimental to Pd catalysis due
to competitive catalyst binding or undesired side reactions with
catalytic intermediates and base-sensitive functional groups.36
Prior work has shown the advantage of slow base addition for
Pd-catalyzed amination reactions33 and, in a similar sense, we
speculate the yield improvements of the prereagent system are
due to the epoxide opening process that governs base
concentration in situ. This proposal was examined using

substrate 61, where use of P,-t-Bu freebase provides only 9%
yield using 5 mol% Pd catalyst. Control studies indicate the
amine and aryl halide lose mass balance when mixed solely with
stoichiometric P,-t-Bu, and that the Pd-catalyzed coupling yield
increases to 24% when P,-t-Bu is added manually over 15
minutes. Use of P,-t-Bu salt A with epoxides 2, 3 and 4 provides
increased yields of 78-99%. The yields are inversely correlated
with epoxides electrophilicity, a trend that is amplified when
the Pd catalyst loading is decreased to 2.5 mol%. Together,
these results illustrate how the prereagent system provides a
new approach to improving reactions that require strong base
but are also sensitive to its presence.3”

Improved Superbase Salt Stability

Throughout our studies, BTPP salt A and P,-t-Bu salt A remained
unchanged over six months during which time they were
handled regularly open to air and stored in a benchtop
desiccator while not in use.3® However, upon exposure to >60%
humidity, the salts begin to absorb moisture and can become
difficult to handle. This effect is exacerbated at higher humidity
(80-90%) where the salts turn into oil hydrates. If this occurs, a
toluene azeotrope restoration process via rotary evaporation
can regenerate the anhydrous salts, as demonstrated in Figure
9a for BTPP salt A. This restoration procedure exploits the fact
that the hygroscopic nature of the carboxylate salts differs from
freebase decomposition, as neutral phosphazenes react with
CO, or absorb water and are impossible or challenging to
restore, respectively.81415b A second approach we took to
address salt hygroscopicity was to alter the carboxylate
counteranion. To this end, we found BTPP salt B and P,-t-Bu salt
B to be substantially less hygroscopic, with no change stored in
glass vials open to 84% humidity for 24 h. Additionally, while
spread out across weighing paper (a more moisture-sensitive
state), the new BTPP and P,-t-Bu salts maintain crystallinity for
8 and 24 hours on weighing paper in 84% humidity, respectively.
These more stable salts perform equally well in reaction
applications compared to the original superbase carboxylate
salts (details in the Supplementary Information). Storage of the
superbase salts in a desiccator or freezer while not in use is
recommended.



(a) First generation superbase salts absorb water under high humidity
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wet salt A (192.2 mg)

Y 84% humidity
Ph”” >CO,H-BTPP

BTPP salt A (150.8 mg)
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Figure 9. Moisture sensitivity of superbase salts and solutions to
address this issue.

Conclusions

In summary, the strategy presented here provides access to
organic superbases from benchtop-stable carboxylate salts.
These salts, with epoxide additives, are effective precatalysts
and prereagents for BTPP and P,-t-Bu using standard Schlenk
manifold protocols. The salts are easy to prepare, recyclable
and can be regularly handled open to air. We described several
scenarios where a preactivation procedure is required to
illustrate potential challenges that may be encountered and
how they can be addressed when using these salts. Improved
activation systems are currently under development, including
for the stronger P4-t-Bu superbase.l42391 The precatalyst systems
have the potential to accelerate the discovery of new
superbases, superbase-promoted applications and their use by
a wider community. More broadly, the mechanistic ability to
regulate superbase introduction to solutions presents a myriad
of possibilities for improving or manipulating base-promoted
reactivity, a prospect that we are currently pursuing in
numerous contexts.
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