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ARTICLE INFO ABSTRACT

Editor: Soroush Abolfathi This study developed a hybrid model for predicting dissolved oxygen (DO) using real-time sensor data for thir-
teen parameters. This novel hybrid model integrated one-dimensional convolutional neural networks (CNN) and

Keywords: long short-term memory (LSTM) to improve the accuracy of prediction for DO in water. The hybrid CNN-LSTM

Hybrid model model predicted DO concentration in water using soft sensor data. The primary input parameters to the model

CNN-LSTM were temperature, pH, specific conductivity, salinity, density, chlorophyll, and blue-green algae. The model used

Dissolved oxygen
XGBoost
Significant predictors

38,681 water quality data for training and testing the hybrid deep learning network. The training procedure for
the model was successful. The training and test losses were both nearly zero and within a similar range. With a
coefficient of determination (Rz) of 0.94 and a mean squared error (MSE) of 0.12, the hybrid model indicated
higher performance compared to the classical models. The normal distribution of residual errors confirmed the
reliability of the DO predictions by the hybrid CNN-LSTM model. Feature importance analysis indicated pH as
the most significant predictor and temperature as the second important predictor. The feature importance scores
based on extreme gradient boosting (XGBoost) for the pH and temperature were 0.76 and 0.12, respectively. This
study indicated that the hybrid model can outperform the classical machine learning models in the real-time pre-
diction of DO concentration.

Nomenclature XGBoost extreme gradient boosting
MSE mean squared error

DO dissolved oxygen RMSE root mean squared error

BOD biochemical oxygen demand R? coefficient of determination

Al artificial intelligence relu rectified linear unit

ML machine learning tanh hyperbolic tangent function

CNN convolutional neural networks sigmoid sigmoid function

DNN deep neural networks adam adaptive moment optimizer

RNN recurrent neural networks sgd stochastic gradient descent

LSTM long short-term memory rmsprop root mean squared propagation

AUV autonomous underwater vehicle RF random forest

Min minimum SVR support vector regression

Max maximum MLP multilayer perceptron

STD standard deviation MAE mean absolute error

IQR interquartile range

t-SNE t-distributed stochastic neighbor embedding
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1. Introduction

Emerging and fugitive contaminants, such as pharmaceuticals, per-
sonal care products, pesticides, and microplastics, have polluted
aquatic and freshwater systems due to their widespread use and inade-
quate treatment processes [1]. These emerging and fugitive contami-
nants persist in the environment and bioaccumulate in aquatic organ-
isms. Microplastics can impact water quality by serving as both physical
contaminants and transporters of toxic chemicals, such as heavy metals
and pesticides [2]. These emerging and fugitive contaminants can have
long-term, cumulative effects on both the environment and human
health. Thus, novel technologies, including advanced monitoring tools,
are an essential part of water management systems to effectively con-
trol these contaminants.

Measuring important parameters such as dissolved oxygen (DO) and
biochemical oxygen demand (BOD), which influence the quality of wa-
ter, is a challenging task in water quality monitoring [3]. Despite the
availability of low-cost sensors for water quality measurements, some
water characteristics still require a laboratory approach for analysis due
to the lack of online real-time sensors [4]. Laboratory-based methods
for measuring important water quality parameters encounter chal-
lenges such as time-consuming sample collection processes, delays in
obtaining results, costly procedures, and variability in sampling tech-
niques and storage conditions [5]. Addressing these challenges requires
efforts to improve sample collection techniques, enhance laboratory ca-
pacity, and integrate complementary monitoring approaches to provide
comprehensive water quality assessments [6]. Soft sensor-based moni-
toring is a reliable approach to address the challenges of water quality
monitoring when a specific physical measurement sensor is missing. A
soft sensor is a virtual sensing method that creates an inferential model
to estimate different parameters of interest based on the data for other
available measured parameters [7-9].

Artificial intelligence (AI) and machine learning (ML) are highly
useful for water quality modeling due to their ability to process vast
amounts of data from various sources, such as sensors, satellite im-
agery, and environmental databases [10-12]. The AI and ML models
can accurately predict water quality parameters by considering com-
plex relationships between environmental factors, such as temperature,
pH levels, and pollutant sources [13-15]. Al and ML models improve
over time when they are fed with more data, especially from real-time
in-situ physical sensors [16]. This makes the models valuable tools for
monitoring and managing water resources, facilitates early detection of
pollution events, and guides decision-making for water quality manage-
ment efforts [17]. The results of numerous studies confirm the higher
predictive performance of the AI and ML models compared to the tradi-
tional models for water quality monitoring [18].

Deep learning is a branch of machine learning that has received
more attention for water quality monitoring in recent years [19,20].
Deep learning models have outperformed classical models in predicting
water quality parameters due to their ability to handle high-
dimensional data. These models can capture intricate relationships be-
tween various environmental factors and water quality indicators [21].
Deep learning models, such as convolutional neural networks (CNN),
deep neural networks (DNN), recurrent neural networks (RNN), and
long short-term memory (LSTM) can effectively process diverse
datasets [22-24]. The models can optimize their predictions over time
and enhance their accuracy and reliability in forecasting water quality
parameters such as DO levels and pollutant concentrations [25]. Thus,
deep learning models have fundamental advantages for real-time water
monitoring and early warning systems that contribute to more effective
resource conservation and pollution control efforts [26].

Hybrid deep learning models combine the strengths of multiple
deep learning algorithms to improve the accuracy of predictions
[27-29]. A CNN-LSTM model is superior to regular deep learning mod-
els for predicting DO concentration because it combines the strengths of
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both CNNs and LSTM networks. This allows the CNN-LSTM model to ef-
fectively handle both spatial and temporal aspects of water quality
data. In this ensemble learning method, each deep learning model is
trained independently, and the outputs of the models are combined to
make predictions [30]. This approach helps in reducing overfitting and
improving generalization performance, thus enhancing predictive accu-
racy [31]. Such a hybrid model, with its improved predictive accuracy,
can play a major role in the real-time monitoring of water quality para-
meters using real-time data recorded by in-situ sensors. The hybrid
CNN-LSTM model is useful for real-time prediction of water quality pa-
rameters when the data for a specific sensor is not available.

This research develops a hybrid one-dimensional CNN-LSTM model
to predict DO concentration in water based on real-time sensor data for
thirteen other water quality parameters. The hybrid CNN-LSTM is a ro-
bust model to predict DO concentration. It uniquely combines CNNs for
extracting spatial features and LSTMs for capturing temporal dependen-
cies. The hybrid model offers a more comprehensive approach for water
quality data. The primary inputs to the model are the sensor locations
and water quality parameters, including temperature, pH, specific con-
ductivity, salinity, density, chlorophyll, and blue-green algae. The hy-
brid CNN-LSTM forms by merging the output layers of the CNN and
LSTM. This novel hybrid model enhances the accuracy of predictions
for DO concentration in water compared to the classical ML models.

2. Methodology
2.1. Study area and water quality dataset

The Savannah River is a major river in the southeast United States.
The river flows along the border between Georgia and South Carolina.
It stretches about 484 km, beginning in the Blue Ridge Mountains of
North Carolina, where the Tugaloo and Seneca rivers converge to form
the Savannah. The river flows southeast through the Piedmont and
Coastal Plain regions, eventually emptying into the Atlantic Ocean near
the city of Savannah, Georgia. The original data for the study area were
measured during six days of spatial water quality survey collection. The
study area was close to the Georgia Power Plant McIntosh in Effingham
County, Georgia, and the Hutchinson Island DO injector site. The water
quality data included measurements at multiple locations and depths
using physical sensors [32].

An IVER3 EcoMapper Autonomous Underwater Vehicle (AUV; SN
3086) measured the water quality characteristics. This instrument mea-
sures water quality data using a YSI EXO1 Water Quality Sonde. An on-
board depth sounder and pressure transducer measured the AUV bathy-
metric data. The calibration of the AUV and EXO2 Sonde before and af-
ter each data collection trip was based on the water quality sampling
protocols [33]. Water quality data measurements were generally at or
near slack-tide conditions at the surface or 2 ft below the surface. YSI
sensors 599870-01, 599870-01, 599102-0, 599102-01, 599100-01,
57760, and 599101-01 measured specific conductivity, temperature,
total algae, chlorophyll, DO, pH, and turbidity. To develop the hybrid
CNN-LSTM model in this study, the dataset included 38,681 measure-
ments of water quality characteristics for the study area. Table 1 repre-
sents a summary of statistics for the data used to develop the hybrid
CNN-LSTM model. To predict the DO concentration in water, the CNN-
LSTM model used thirteen water quality parameters as inputs.

2.2. Exploratory data analysis

To detect hidden patterns in the water quality dataset, a preliminary
data analysis was performed using t-distributed stochastic neighbor em-
bedding (t-SNE). This method involves dimensionality reduction to re-
veal and visualize patterns within complex datasets [34]. This approach
focuses on preserving local relationships and capturing the intrinsic
structure of the data. The method begins by computing pairwise simi-
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Table 1
Summary of statistics for the input and output parameters used in the model-
ing processes.

Water quality (unit) Min.  Max. Mean Median Std. IQR

Inputs parameters:

Pitch angle -33.7 189 -0.8 -23 4.11 6.5
Roll angle -28.4 23.5 1.6 1.3 2.52 1.8
Depth to surface (ft) 0 6.3 1.6 2.1 0.88 1.9
Depth to bottom (ft) 5 32.1 16.3 16.5 5.12 7.6
Total water column (ft) 5.2 339 179 182 5.66 8.6
Current step 1 44 22.4 22 12.5 23

Temperature (C) 28.5 30.3 289 288 0.39 0.5
Specific conductivity (uS/cm) 141 3870 487 248 621.9 130

pH 6.5 7 6.7 6.7 0.09 0.1
Chlorophyll (RFU) 1.6 3.8 2.4 2.2 0.42 0.6
Blue-Green algae (RFU) 0.1 2 0.5 0.5 0.18 0.2
Salinity (ppt) 0.1 2 02 0.1 032 01
Density (kg/m°) 996 997 996 996 0.23 0

Output parameter:
Dissolved oxygen (mg/L) 5.6 7.7 6.3 6.2 0.46 0.5

Min: Minimum, Max: Maximum, Std: Standard deviation, IQR: Interquartile
range.

larities and measures the similarity between two data points based on
their Euclidean distance [35]. It converts the similarities into condi-
tional probabilities and aims to find a lower-dimensional representa-
tion where the conditional probabilities of the data points are as similar
as possible to those in the original space. This exploratory data analysis
method is effective for identifying clusters that might be challenging to
discern in high-dimensional spaces [36]. The t-SNE technique facili-
tates the visualization of intricate patterns within the water quality
datasets by mapping data points to a lower-dimensional space.

2.3. Feature importance analysis

The contribution of the individual input parameters to the perfor-
mance of the CNN-LSTM model was examined by feature importance
analysis [37]. Extreme gradient boosting (XGBoost) determined the sig-
nificant variables for predicting DO concentration in water. XGBoost
calculates importance scores for the input features based on how they
contribute to the model's predictive performance [38,39]. The method
calculates the feature importance score using the weighted improve-
ment in the performance of the model. Reduction in the objective loss
function is a criterion to measure the performance improvement. The
MSE was the loss function to measure the difference between a pre-
dicted output and the actual target value. The XGBoost regression was
developed using scikit-learn in Python [40]. The grid search cross-
validation technique optimized the hyperparameters of the XGBoost.
The model showed the highest predictive performance, with a maxi-
mum depth of 4 and a learning rate of 0.15. The XGBoost technique cal-
culates the importance scores based on the total gain of each feature
across all nodes and the number of trees in the ensemble. The equation
for calculating feature importance scores in XGBoost is as follows:

Feature importance = Z Gaingoges/Number of trees (€}

nodes
2.4. Hybrid CNN-LSTM model

A convolutional neural network (CNN) is a deep learning model that
consists of multiple convolutional layers, pooling layers, and fully con-
nected layers [41]. Convolutional layers apply filters to inputs in order
to capture spatial hierarchies and detect important features. The model
applies an activation function element-wise to the output of each con-
volutional operation. The activation function adds non-linearity to the
network [42]. Pooling layers reduce the dimensionality of the feature
maps and make computation more efficient while preserving important
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information [43]. Fully connected layers perform high-level reasoning
and decision-making based on the extracted features. Through forward
and backward propagation, CNNs are trained to automatically learn
and extract relevant patterns from input data and predict the output
[44]. The mathematical representation of the CNN model with a fully
connected final layer is as follows:

7 =0; (Wi Xxi) +b;) 2)

y=o (Wﬁnal X Zpreviuus + bﬁnal) (3)

where Z; is the output of layer i, 9; is the activation function of layer i,
W, is the weight of layer i, b; is the bias of layer i, *i-1 is the input to
layer i, and y is the predicted output.

Long short-term memory (LSTM) is a recurrent neural network that
effectively works for sequential data by mitigating the vanishing gradi-
ent problem [45]. LSTM achieves this by incorporating memory cells
and gating mechanisms that regulate the flow of information. Each
LSTM unit contains a cell state serving as the memory and three gates
controlling the flow of information (input, forget, and output gates).
The input gate determines which information to update, the forget gate
discards unwanted information, and the output gate regulates which in-
formation to output [46]. By dynamically adjusting these gates based
on the input and the current state, LSTM networks can learn to effec-
tively process and predict sequences, such as time series predictions.
The following equations summarize the computations for the LSTM at
each time step.

iy=0 (Wix, + Uph_) + b)) 4
fr=0 (Wyax + Uphiy +by) ®)
0,=0 (Wyx,+ Uyh_; +b,) (6)

where i, is the input gate, f; is the forget gate, ¢; is the output gate, ¥ is
the input at time step t, &, is the hidden state at time step ¢, o is the acti-
vation function, W and U are the weight matrices, and b is the bias vec-
tor.

The CNN-LSTM model development included separate designs for
the one-dimensional CNN and LSTM architectures based on the train
datasets. The CNN and LSTM models were merged by concatenating
their layers to form a new layer. The hybrid CNN-LSTM model had a
fully connected output layer. The inputs of this output layer were the
merged layers (Fig. 1). The output layer of the hybrid model had a lin-
ear activation function to predict the DO concentration.

2.5. Model training procedure

The training procedure for the hybrid CNN-LSTM model involved
several key steps. The preprocessing of the water quality dataset was
the first step to appropriately adjust the data for the model. The prepro-
cessing included dividing the water quality dataset into training and
test sets and reshaping them for both the CNN and LSTM models. The
two models had separate architectures with independent training
processes. The networks used 80 % of the data for training and 20 % for
testing the models. The hybrid model integrated CNN layers to capture
spatial features and LSTM layers to model temporal dependencies. The
hybrid CNN-LSTM model formed a single layer by combining the out-
put of the CNN layers and the LSTM layers.

The CNN model was a one-dimensional convolutional neural net-
work with 64 computational neurons in the first layer and a kernel size
of 3. Grid search cross-validation determined the most optimal hyper-
parameters for the model (Table 2). Several activation functions were
applied to train the model. The grid search cross-validation showed a
rectified linear unit as the best activation function [47]. The model had
a max-pooling layer with a size of 2. The second convolutional layer
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Fig. 1. Architecture of the hybrid CNN-LSTM model for predicting DO concentration.

Table 2
Grid search cross-validation for the hyperparameters of the model.

Parameter Search space Optimal value
Activation function [‘relw, ‘tanh’, ‘sigmoid’] ‘relu’
Optimizer [‘adam’, ‘sgd’, ‘rmsprop’] ‘adam’

CNN filter size [32, 64, 128] 64
CNN kernel size [2,3,4] 3
LSTM units [32, 64, 128] 64
Dropout rate [0.2, 0.3, 0.4] 0.2
Batch size [500, 1000, 2000] 1000
Epochs [100, 500, 1000] 100

had 32 computational neurons and a kernel size of 3. The size of the
max-pooling layer for the second convolutional layer was 2. The CNN
model also had a flattening layer to prepare the inputs for the next
layer. The grid search cross-validation indicated that the LSTM model
has the highest performance with 64 computational cells. The output
layers of the CNN and LSTM models were merged into a fully connected
dense layer with 128 computational neurons to form the hybrid model.
The activation function of the hybrid CNN-LSTM model was a rectified
linear unit.

The model compilation included an MSE for the loss function, an
adaptive moment optimizer (adam), and evaluation metrics. The train-
ing processes consisted of feeding batches of 1000 of the training data
into the model. The backpropagation method computed the gradients
and updated the weights accordingly. Performance of the model was
monitored on the validation dataset to tune hyperparameters. The vali-
dation dataset was 20 % of the training dataset. The training of the
model was repeated for 100 epochs. Regularization was used to prevent
overfitting and ensure the model generalizes well to unseen data.
Dropout is one of the most common regularization techniques in neural
networks, including hybrid models like CNN-LSTM. The dropout rate of
0.2 was the optimal value for the hybrid model according to the grid
search cross-validation. The hybrid CNN-LSTM model was developed in
Python 3.11 using the TensorFlow platform. Fig. 2 demonstrates vari-
ous steps of designing and developing the hybrid CNN-LSTM model.

The training procedure for the model was successful. The near val-
ues for the training and test losses over 100 computational epochs con-
firm the reliability of the predictions by the hybrid CNN-LSTM model
(Fig. 3). When training and test losses are both in the same range and
very near zero, it indicates that the hybrid model has effectively learned

to generalize from the training data to new unseen data [48]. The pre-
dictive CNN-LSTM model can achieve a balance in its ability to capture
underlying patterns without memorizing the noise of water quality
data. Such results signify a well-optimized model that effectively learns
from the water quality data without exhibiting either high bias or high
variance. This is a sign of the robustness and generalization capabilities
of the hybrid CNN-LSTM model [49].

2.6. Performance evaluation

Evaluating the performance of the hybrid CNN-LSTM model is a crit-
ical step in assessing the effectiveness and reliability of the DO predic-
tions. Mean squared error (MSE) and root mean squared error (RMSE)
are common loss functions in regression problems. This study used
these error metrics to measure the difference between predicted values
and actual values of the DO concentration [50]. The lower values of
MSE, RMSE, and mean absolute error (MAE) indicate better perfor-
mance [51]. The coefficient of determination (R%) was the criteria to
evaluate the goodness of fit [52,53]. The MSE, RMSE, MAE, and R? can
be calculated by the following equations.

MSE = 1/n2?:] (i = vi)’ )
RMSE =/ 1/0 3" (v5i = ¥i)* (8)
MAE=1/n3" |y - v ©

R*=1- Z?:l (vi— ypi)z/Z; (o _y)Z (10)

where y is the average of ¥ over the n data, ) is the actual value, and Y
is the predicted value.

3. Results and discussion
3.1. Principal components and patterns

The outputs of pattern recognition using t-SNE to visualize the possi-
ble clusters in the water quality dataset are shown in Fig. 4. The results

indicated relatively separate clusters in the water quality data. The
analysis showed separate clusters for high DO concentrations and low
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Exploratory data analysis (t-SNE)
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CNN LSTM
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Python (Skitlearn - TensorFlow)
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|¢
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|¢

Predicting DO concentration

Fig. 2. Steps for designing and developing the hybrid CNN-LSTM model for pre-
dicting DO concentration in water.

DO concentrations. As shown in Fig. 4, the clusters were distinguishable
based on the first t-SNE dimension. This indicates that some input para-
meters were more significant than other parameters. The possibility of
different zones of water quality needs further investigation by applying
t-SNE to water quality data for a longer period of time. The t-SNE, to-
gether with other clustering algorithms, is useful for deeper cluster
analysis of water quality data with longer periods [54].

3.2. Significant predictors

The results of feature importance analysis using XGBoost for the
thirteen input parameters were insightful. The final score for each input
parameter was converted to relative importance and visualized using a
bar chart (Fig. 5). With the highest relative importance score for the pH,
the analysis indicated pH as the most important predictor for predicting
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Fig. 3. Loss of the hybrid CNN-LSTM model for both training and test datasets
for the hundred computational epochs.

t-SNE visualization for DO
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Fig. 4. Visualization of the hidden patterns in the water quality dataset using t-
SNE technique.

DO concentration in water. The pH had a relative importance of 0.76,
and then temperature was the second important predictor, with a rela-
tive importance of 0.12. The results of previous studies indicated that
pH and temperature are important parameters for predicting DO con-
centration in water [55,56]. The high importance of pH and tempera-
ture can be attributed to their fundamental roles in both chemical and
biological processes that govern oxygen dynamics in water. pH directly
affects the chemical equilibrium of DO. It also influences photosynthe-
sis and respiration, which are critical for oxygen production and con-
sumption. Temperature affects oxygen consumption by influencing the
solubility of oxygen in water and the metabolic rates of aquatic organ-
isms. These combined effects of pH and temperature are more signifi-
cant and consistent in predicting DO concentration compared to other
variables like salinity or conductivity, which have a more indirect influ-
ence on oxygen levels [57].The analysis indicated that other input para-
meters such as chlorophyll, specific conductivity, and blue-green algae
have a relative importance of less than 0.04. The results of the feature
importance analysis are in agreement with the separate clusters based
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0.8

Fig. 5. The relative importance of the thirteen features for the prediction of DO
concentration using the extreme gradient boosting technique.

on the first principal component of the t-SNE. The results of these analy-
ses indicated that accurate prediction of DO concentration is possible
from the data recorded by a few other physical sensors (data for pH).

3.3. Predictive performance of the hybrid CNN-LSTM model

The hybrid model showed improved accuracy for the prediction of
DO concentration based on the test dataset for water quality. The hy-
brid CNN-LSTM model captured the picks of water quality data for DO
concentration (Fig. 6). The results proved the high generalization capa-
bility of this predictive model for detecting water quality trends [58].
This high generalization enables the hybrid CNN-LSTM model to iden-
tify potential contamination sources, predict water quality fluctuations,
and recommend proactive measures to maintain or improve water qual-
ity standards. The results of the modeling are particularly important for
in-situ real-time monitoring of water pollution using tiny machine
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learning systems. The microcontrollers equipped with the proposed hy-
brid model can autonomously and effectively monitor water pollution
occurrences. As shown in Fig. 6, the predictive values for DO concentra-
tion match the measured values relatively well for both training and
test datasets. Goodness of fit indicates how closely the predicted values
match the actual values in the dataset used for training and validation
of the model [59]. A reliable predictive model typically exhibits a high
goodness of fit, meaning that it accurately captures the patterns and re-
lationships within the water quality data.

The results also indicated that the hybrid CNN-LSTM model has high
performance based on the R2 and the error metrics (Fig. 7). The model
achieved the highest accuracy with an R? of 0.94 and an MSE of 0.12 for
the test dataset. The RMSE for the test dataset was 0.34. The hybrid
CNN-LSTM model indicated higher predictive performance compared
to the classical machine learning models. The previous studies indi-
cated that fuzzy neural networks predict DO concentration in water
with accuracies up to 92 % [60]. In this study, hourly DO and water
quality variables for a one-year period were used in the modeling
process. The MAE for the attention-based recurrent neural networks
varied from 0.16 to 0.18 [61]. Table 3 presents the comparison between
the predictive performance of the proposed CNN-LSTM model and
other classical models in previous studies. The hybrid CNN-LSTM
model outperforms single models in predicting water quality due to its
ability to capture complex relationships and patterns inherent in di-
verse water quality data [62-67]. By combining two powerful deep
learning algorithms, the hybrid model can effectively handle the multi-
dimensional nature of water quality parameters [68]. The model offers
enhanced flexibility in representing both linear and nonlinear relation-
ships. The model utilizes ensemble learning techniques to reduce vari-
ance and improve prediction accuracy. It leverages transfer learning to
adapt pre-trained representations for water quality prediction tasks.

The residual errors of predicting DO by the hybrid CNN-LSTM
model based on the training and test datasets were plotted against the
frequency in Fig. 8. The results for residual errors demonstrated a nor-
mal distribution. A normal distribution (Gaussian curve) shows the
highest error in the middle of the curve [69]. Based on the test data, the
Gaussian curve indicated that the DO predictions were symmetrical.
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g ; | ]
E 6.5 At | * . . l l | 1 t | J \ |
g ; L 10 ekl (1 e o L OFLST &limeol g Tot . (14 o0 10 :
= il ! ."'“' | r i " | 'l'l.l-| Ig [ [ Il
o -|,!|..l1- l vef 3 ! i ¥ J | IF i 4 I
=] 6.0 1 M . o ll ' | | ! {11 l l 1 1 [
=1 X Ih ' [LLY. T 2P f I *" ‘e
Ll
0 50 100 150 200
Train data points
—e— Test (Experimantal)

= 6.6 4 =# = Test [Predictions) :
g
_=;1— e 1 E H ] |
2 1 .- I
E 6.2 1 | V A I :l' I l'l
g 1 ! MR
. 1 41 L 1 Ii
8 6.0 by | - ‘ % ‘l
o Dk i " W
S sg * » S ! -

0 10 20 30 40 50

Test data points

Fig. 6. Predictions of the DO concentration by the hybrid CNN-LSTM model vs. target values based on training and test datasets.
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Fig. 7. Regression analysis for the hybrid CNN-LSTM model for predicting DO concentration: measured DO values vs. predicted DO values.

Table 3
Predictive performance of the hybrid CNN-LSTM model compared to the re-
ported studies.

Model Input variables R Error Reference
CNN- Thirteen water quality 0.94 MSE = 0.12 This study
LSTM parameters and sensor data RMSE = 0.34
RF Water quality parameters 0.67 MAE = 0.89 Garabaghi et
RMSE = 1.28 al. [62]
SVR Temperature and flowrate 0.96 MAE = 0.57 Dehghani et
RMSE = 0.64 al. [63]

MLP Temperature, pH, specific - MAE = 0.49 Ahmed and
conductance, and chemical RMSE = 0.65 Lin [64]
oxygen demand

LSTM seven hydrometeorological 0.90 RMSE = 0.37 Zhi et al.
variables [65]

RNN Temperature, specific - MAE = 0.25 Moghadam
conductance, streamflow RMSE = 0.43 et al. [66]
discharge, pH

LSTM-  Temperature and DO 0.95 MSE = 0.54 Pan et al.

RNN concentration MAE = 0.42 [671

RF: Random forest, SVR: Support vector regression, MLP: Multilayer percep-
tron, MAE: Mean absolute error.

The frequency of error bunched in the middle and died off in the tails of
the curve. The results demonstrated that the error distribution for pre-
dicting DO concentration in water was around zero. The residual errors
confirmed that the hybrid CNN-LSTM model can accurately and reli-
ably predict DO concentration in water.

The predictive hybrid CNN-LSTM model is potent for practical im-
plementation. The model can be integrated into existing water quality
monitoring systems that utilize sensor networks. In such setups, multi-
ple sensors deployed in different locations of rivers continuously collect
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data on water quality parameters. By feeding this hybrid CNN-LSTM
model with real-time data from the sensor networks, water quality
monitoring can become more predictive rather than reactive. The hy-
brid CNN-LSTM model can provide early warnings about potential
drops in DO concentration. It also allows environmental authorities to
respond proactively to prevent harmful algal blooms. The system can
support informed decision-making in water resource management, such
as optimizing aeration systems in reservoirs and adjusting wastewater
discharge regulations based on forecasted DO levels.

4. Conclusions

This study introduced a novel hybrid CNN-LSTM model to accu-
rately predict DO concentration in water. This study demonstrated the
efficacy of this hybrid deep learning model in accurately predicting DO
concentration using real-time sensor data compared to the classical ma-
chine learning models. The CNN-LSTM model trained on data for thir-
teen key parameters achieved remarkable performance metrics, with an
R? of 0.94 and an MSE of 0.12. The proposed model showed reliability
in predicting DO concentration, particularly for water quality data from
in-situ sensors. The results indicated that a hybrid CNN-LSTM model
can predict water quality parameters such as DO concentration with im-
proved accuracy compared to the classical models. The results of fea-
ture importance analysis using XGBoost showed that pH, with a relative
importance of 0.76, was the most significant predictor. Temperature
was the second significant predictor, with a relative importance of 0.12.
These results suggest that real-time prediction of DO concentration
with acceptable accuracy is possible even when data from its physical
sensor is missing, as long as information from two other in-situ sensors
is available. This research not only contributes to the advancement of
predictive modeling in environmental monitoring but also underscores
the potential of hybrid deep learning models to enhance the accuracy
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Fig. 8. Residual error vs. frequency for the predictions of the DO concentration by the hybrid CNN-LSTM model based on the training and test datasets.
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and reliability of such predictions. This predictive method is an effec-
tive tool to support decision-making for water quality management and
conservation efforts through autonomous monitoring of water quality.
CNN-LSTM models are computationally intensive and require signifi-
cant processing power, especially with real-time water quality data. De-
veloping hybrid CNN-LSTM models suitable for microcontrollers is an
important research area that supports autonomous monitoring of water

quality.
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