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Abstract

Deep learning models can predict uptake of emerging contaminants in plants with improved
accuracy because they leverage advanced data-driven approaches to capture non-linear
relationships that traditional models struggle to address. Traditional models suffer from low
accuracy in predicting transpiration stream concentration factor (TSCF) and root concentration
factor (RCF). This study applied deep neural networks (DNN), recurrent neural networks (RNN),
and long short-term memory (LSTM) to enhance the accuracy of predictive models for TSCF and
RCF. The three models used nine chemical properties and two plant root macromolecular
compositions for predicting TSCF and RCF. The results indicated that deep learning models
predict TSCF and RCF with improved accuracy compared to mechanistic models. The coefficient
of determination (R?) for the DNN, RNN, and LSTM models in predicting TSCF was 0.62, 0.67,
and 0.56, respectively. The corresponding mean squared error (MSE) on the test set for the models
was 0.055, 0.035, and 0.060, respectively. The R? for the DNN, RNN, and LSTM models in
predicting RCF was 0.90, 0.91, and 0.84, respectively. The corresponding MSE for the models
was 0.124, 0.071, and 0.126, respectively. The results of feature extraction using extreme gradient
boosting underlined the importance of lipophilicity and root lipid fraction.

Keywords: Emerging contaminants, TSCF, RCF, machine learning, deep learning.
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1. Introduction

Predictive models aid in risk assessments, regulatory frameworks, and the formulation of
sustainable strategies for mitigating environmental and human health concerns associated with
emerging contaminants (Liu et al., 2024; Villeneuve et al., 2019). Predicting the uptake and
translocation of emerging contaminants in plants is a critical task, especially in the context of
assessing potential risks and impacts on both ecosystems and human health (Shi et al., 2022). This
research area investigates the mechanisms by which plants take up and distribute emerging
contaminants, such as pharmaceuticals and industrial chemicals, from soil or water into various
plant tissues (Bagheri et al., 2023). Understanding these processes is essential for evaluating the
bioaccumulation potential and potential transfer of contaminants along the food chain (Chormare
and Kumar, 2022; Rossi et al., 2019). The modeling of transpiration stream concentration factor
(TSCF) and root concentration factor (RCF) plays a vital role in unraveling the intricate dynamics
of plant-contaminant interactions (Trapp, 2000). The TSCF represents the ratio of the
concentrations of emerging contaminants in the plant's transpiration stream to those in the
surrounding soil (exposure media). This factor sheds light on the contaminant's mobility within
the plant and its potential transfer to other tissues (Bagheri et al., 2021). The RCF characterizes
the accumulation of contaminants in the plant roots relative to the concentration in the exposure
media (Li et al., 2022).

Uptake, translocation, and accumulation of contaminants in plants are generally encapsulated
in mathematical models that integrate factors such as plant physiology, soil characteristics, and the
physicochemical properties of chemicals (Dourado Junior et al., 2017). These mechanistic models
provide valuable insights into the fate and transport of emerging contaminants (Brunetti et al.,

2021; Trapp, 2004). Since 1974, a number of modeling studies have offered relationships between
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the physicochemical properties of contaminants and their uptake by plants, mainly using the
octanol/water partition coefficient (Briggs et al., 1982). These single-parameter relationships
suffered from low accuracy and limited applicability for different plant species and chemical
compounds. Compartmental models, which take into account more physicochemical and
environmental properties and incorporate the complexity of uptake and translocation processes,
did not offer high predictive accuracy (Collins and Finnegan, 2010). The accuracy of predictions
for TSCF was improved by considering more physicochemical properties in a numerical modeling
process (Limmer and Burken, 2014).

The applications of artificial intelligence (Al) and machine learning (ML) models to predict
TSCF and RCF offered several advantages over traditional modeling approaches (Zhong et al.,
2021). Multi-layer perceptron neural networks significantly improved the accuracy of predictions
for both TSCF and RCF compared to the previous approaches. With solely relying on six
physicochemical properties, the multi-layer perceptron neural networks outperformed traditional
models and complemented the findings of previous studies in some aspects (Bagheri et al., 2020).
The fuzzy logic technique also indicated that molecular weight is a significant factor in explaining
the uptake efficiency of moderately hydrophobic and hydrophilic compounds (Bagheri et al.,
2019). In a more recent study (Gao et al., 2022), the applications of several classical ML and
ensemble learning algorithms resulted in improved prediction accuracy for RCFs. These ML
models achieved high accuracy by learning nonlinear relationships between RCFs and the
properties of contaminants, soils, and plants. Among ensemble learning models, gradient-boosted
regression trees showed higher predictive performance for the root uptake of per- and

polyfluoroalkyl substances, with accuracies up to 0.85 (Xiang et al., 2023).
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The current research is an effort to improve the accuracy of predicting the TSCF and RCF by
applying three deep learning models. To the best of our knowledge, this is the first study that
employs deep neural networks (DNN), recurrent neural networks (RNN), and long short-term
memory (LSTM) models to predict both TSCF and RCF for emerging contaminants. The
predictions are based on nine chemical properties and two plant root macromolecular
compositions. The feature importance analysis is performed for the input variables of the models
using extreme gradient boosting (XGBoost). The relationship between fractions of
macromolecules in the plant roots and concentration factors (TSCF and RCF) for the emerging
contaminants is missing. The role of root macromolecular fractions in the uptake of emerging

contaminants is examined through feature importance analysis.

2. Materials and Methods
2.1. Data sets

Comprehensive data sets were compiled from published studies for the modeling of both
TSCF and RCF, see Supplementary Material. The selected TSCF values included 288 records of
151 compounds measured in 33 plant genera under various experimental approaches from 42
studies. The RCF data set included 342 values for 96 compounds in 44 plant genera measured
under various experimental approaches from 19 studies. The inclusion of various chemicals and
plant species in the data sets makes it possible to develop models that are not compound- or plant-
specific. The data sets did not include TSCFs and RCFs from studies when there was no evidence
of reaching a steady state, roots were damaged, depletion of dosing solution was higher than 50%,

other modes of exposure were included, or calculations were not reliable (Limmer and Burken,
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2014). The data sets also did not include TSCFs and RCFs when the metabolism of the parent
compound in plants was observed or measurements included metabolites.

The data sets included nine physicochemical properties and two plant root properties. The
physicochemical properties were octanol/water partition coefficient (log Kow), molecular weight
(MW), hydrogen bond donor (HBD), hydrogen bond acceptor (HBA), rotatable bonds (RB), polar
surface area (PSA), vapor pressure (VP), half-life (HL), and water solubility (WS). The
experimental values of the properties were considered in the analyses when both predicted and
experimental values were available. The chemical properties were obtained from chemical
structure databases, including the US EPA Chemistry Dashboard and ChemSpider. The two plant
root properties were fractions of the lipids and proteins in the roots. The macromolecular
composition of the plant roots was obtained from published studies. Table 1 represents a summary
of the chemical and plant root properties used for developing deep learning models for both TSCF

and RCF.

2.2. Pattern recognition analysis

t-distributed stochastic neighbor embedding (t-SNE) was used for exploratory data analysis
and to detect important patterns in the data sets. t-SNE involves a dimensionality reduction method
to reveal and visualize patterns within complex data sets (Zhu et al., 2019). It focuses on preserving
local relationships and capturing the intrinsic structure of the data. t-SNE is particularly effective
for identifying clusters that might be challenging to discern in the high-dimensional spaces of plant
uptake problems (Kim et al., 2023). This technique facilitates the visualization of intricate patterns
and clusters within the TSCF and RCF data sets by mapping data points to a lower-dimensional

space. However, t-SNE preserves pairwise similarities between the high-dimensional spaces.
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2.3. Feature importance analysis

Feature importance analysis is an ML approach for examining the contribution of each input
parameter to the predictive models (Zien et al., 2009). It particularly helps determine which
parameters have the most influence on the prediction of TSCF and RCF. In this study, XGBoost
was used to analyze the importance of the nine physiochemical and two plant root properties for
the modeling processes. Feature extraction in XGBoost often refers to the importance scores
assigned to each feature during the training process. XGBoost assigns weights to features based
on their contribution to predictive accuracy (Wade and Glynn, 2020). These importance scores
guantify the influence of each input parameter of the models in making predictions for the TSCF
and RCF. The XGBoost models were developed using scikit-learn, which is an ML library in
Python (Hackeling, 2017). Each data set was divided into 80% for training and 20% for testing the
models. Both data sets were rescaled using StandardScaler to have a standard normal distribution
with a mean of 0 and a standard deviation of 1. The hyperparameters of the XGBoost models were
optimized through randomized search cross-validation (Bergstra and Bengio, 2012). The XGBoost

models showed the highest performance, with a maximum depth of 4 and a learning rate of 0.15.

2.4. Deep learning model training

Three deep learning models, including DNN, RNN, and LSTM, were applied to predict TSCF
and RCF. The models were designed and developed in Python using TensorFlow, which is an
open-source machine learning library (Ramsundar and Zadeh, 2018). For the three deep learning
models, 80% of the data was used for training and 20% for testing. The data was rescaled using
StandardScaler to have a standard normal distribution before training. Optimized hyperparameters

for the three deep learning models were achieved through randomized search cross-validation.
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The DNN models are neural networks with multiple layers, typically including an input layer,
one or more hidden layers, and an output layer. The DNN for predicting TSCF and RCF had two
hidden layers. The architecture of the DNN model with eleven input variables for predicting TSCF
and RCF is shown in Fig. 1. The input layer, first hidden layer, and second layer had 128, 64, and
32 computational neurons, respectively. A dropout of 0.2 was implemented after input and hidden
layers to make the predictions reliable. During the training steps, the network adjusts its weights
and biases through a backpropagation, minimizing the difference between predicted and measured
outputs (Zhu et al., 2018). Adaptive moment (Adam), which is a replacement optimization
algorithm for stochastic gradient descent, was used as the optimizer of the DNN models. Each
layer of the DNN performs computations on the input data and transforms it into abstract
representations. Activation functions apply non-linearity and enable the network to capture
relationships within the data (Ding et al., 2018). The activation function of the input and hidden
layers of the DNN models was a rectified linear unit (ReLU). Through multiple iterations of
training on the measured data, a well-trained DNN can generalize its learned features to make
accurate predictions on new test data (Larochelle et al., 2009). The depth and complexity of DNN
models allow them to automatically extract important features, which in turn makes them highly
effective in predicting plant uptake.

Deep RNN models are neural networks that handle sequential data by incorporating memory
mechanisms. It consists of multiple layers of interconnected computational neurons, each
processing information over time (Kanagachidambaresan et al., 2021). In this study, the RNN
models had one input layer and two hidden layers with 150 computational neurons. Unlike
traditional feedforward neural networks, deep RNN models have connections that form directed

cycles. This allows them to maintain a memory of previous inputs and leverage temporal
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information for prediction. For training the RNN models, the network is iteratively exposed to
sequential input data. The network adjusts its internal parameters to minimize the discrepancy
between predicted and measured outputs (Sutskever, 2013). The weights and biases of the RNN
models were adjusted using adaptive moment estimation. Similar to the DNNs, the activation
function of the input and hidden layers of the RN N models was a rectified linear unit.

The LSTM models are RNNs that capture long-term dependencies in sequential data and
address vanishing gradient problems (Sherstinsky, 2020). During training, LSTMs utilize
backpropagation through time to compute gradients and adjust the weights. The activation
functions play a crucial role in information flow and memory cell modulation. LSTMs introduce
memory cells with self-regulating mechanisms, including input, forget, and output gates. The input
gate determines which information is stored, the forget gate regulates what information is
discarded, and the output gate decides what information is passed to the next time step (Manaswi
and Manaswi, 2018). This architecture enables LSTM models to selectively retain or forget
information over long sequences and allows them to capture and remember relevant patterns. The
LSTM models for predicting TSCF and RCF had an input layer and two hidden layers with 40
computational neurons in the optimal conditions. The activation function of the input and hidden
layers was a rectified linear unit. The adaptive moment estimation outperformed other methods in

adjusting the weights and biases.

2.5. Performance evaluation
Evaluating the performance of deep learning models is a critical step in assessing the
effectiveness and reliability of their predictions. Mean squared error (MSE), which is a common

loss function in regression problems, was used to measure the average squared difference between



O J o0 wWwN

OO OO U1 U1 OO OO U BB DDDEDSEDSDNWWWWWWWWWWNNDNDNDNDNDNNDNNMDNNMNRPRRRRRRRRER
O wdhbhProwoo-JdJould WP OOWOJdJOHUDdWNDNDRPFRPROOOJOHU D WNDNREPOWOWOJOU D WNDRE O WOJo)Uu dwdhEr o

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

predicted values and actual values. The lower values of MSE indicate better performance. The
coefficient of determination (R-squared or R?) was used to evaluate the goodness of fit of
regression models. The MSE and R? are calculated as follow:

MSE = 1/n 311 (Vpi — Yu)? (1)

R =1-3L (Vi — ypi)? / Zit1 (Ve —¥)? (2)
where’y is the average of y over the n data, y is the actual value, and y, is the predicted value.

The performance of XGBoost for the feature importance analysis was examined based on the
F1 score. The F1 score combines precision and recall into a single metric, considering both false
positives and false negatives of the predictions. The F1 is calculated as follow:

F1 score = TP/(TP + 1/2(FP + FN)) (3)

where TP is true positive, FP is false positive, and FN is false negative.

2.6. Plant macromolecular compositions

Chemicals either accumulate in the roots or cross the plant root membranes and transport to
the upper tissues through the vascular pathways. Plant roots and shoots are composed of water,
wayx, lignin, cellulose, lipids, phenolics, and non-structural carbohydrates (Gupta and Singh, 1981).
While lipophilicity is an important factor, predicting the uptake of emerging contaminants solely
based on lipids is a simplified approach. The fraction of root macromolecules such as protein is
not negligible since these materials (protein, lignin, and cellulose) were shown to be important in
other biological systems (Endo et al., 2012; Jonker, 2008; Stoklosa et al., 2013). It is assumed that
the partitioning of emerging contaminants into plant roots and other tissues is equal to the
partitioning of compounds into macromolecules. In this study, the changes in concentration

factors, including TSCF and RCF, will be examined over a wide range of root macromolecular
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fractions. The results of feature extraction will be used to analyze the uptake and translocation of

emerging contaminants based on the fractions of lipids and proteins in the roots.

3. Results and Discussion
3.1. Hidden patterns in the data

The results of pattern recognition using t-SNE to visualize the possible clusters in the TSCF
and RCF data sets are shown in Fig. 2. The first dimension is derived in such a way that similar
data points in the original space are also close to each other in this new dimension. Similarly, the
second dimension is also obtained by preserving pairwise similarities between data points. The
results for both TSCF and RCF showed different clusters in the data sets. For the RCF, the clusters
for the compounds with the higher root concentration factors formed separate clusters. The
perfluoroalkyl family of chemicals was found to have higher RCFs, as shown in the separate
clusters in Fig. 2. The observations of another study also indicated that the clusters in the RCF data
reflect the similarities across different combinations of chemicals, plants, and soils (Gao et al.,
2022). For the TSCF, the clusters are less distinguishable compared to the RCF data. However,
the plant species and compounds with higher uptake efficiency were clustered closer. This is in
line with the results of a previous study, which stated that tomato is a species with higher uptake

potential (Bagheri et al., 2019).

3.2. Significant features for predicting TSCF and RCF
The feature importance analysis using XGBoost based on nine physicochemical properties
and two plant root properties yielded insightful findings (Fig. 3). The octanol/water partition

coefficient (log Kow) and molecular weight (MW) were two paramount predictors for both TSCF
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and RCF, as reflected by their high F1 scores. Particularly, the log Kow, with F1 scores of 209 and
215 for TSCF and RCF, respectively, emphasized its critical role in predicting these concentration
factors. The F1 scores of the MW for predicting TSCF and RCF were 167 and 131. Previous
studies using statistical methods such as stepwise regression also demonstrate that log Kow and
MW are significant variables in the prediction of both TSCF and RCF (Bagheri et al., 2020;
Bagheri et al., 2019). The feature importance analysis using XGBoost also showed that lipid and
protein fractions are other significant predictors, with high F1 scores for both variables. The lipid
fraction with high F1 scores of 189 and 187 for the TSCF and RCF models was the second
significant predictor. The feature importance analyses using neural networks and regression trees
also indicated the lipid fraction as a major predictor for the RCF (Gao et al., 2022). The protein
fraction of the plant roots, with high F1 scores of 126 and 100 for the TSCF and RCF, was found
to be another significant predictive feature. Despite their importance, the role of proteins and
macromolecules other than lipids in the uptake and translocation of emerging contaminants in
plants has never been deeply studied. These results underscore the importance of understanding
the interactions between chemical and root properties in plant uptake modeling and provide

valuable insights for risk assessments and ecological management strategies.

3.3. Predictive models for TSCF

The three deep learning models showed improved accuracy on the test data sets for the
prediction of TSCF. The results indicated that deep RNN models have the highest performance
based on R-squared and MSE values (Fig. 4). The deep RNN achieved the highest accuracy with
an R? of 0.67 and an MSE of 0.35. The training history based on train and test data sets indicated

that the RNN models are reliable without any overfitting or underfitting. The close values for the
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train and test losses confirm the reliability of the predictions by the RNN models. The performance
of the RNN models based on the tests was positive compared to the traditional models and simple
neural networks, with MSEs of 0.25 and 0.037, respectively (Bagheri et al., 2019; Doucette et al.,
2018; Schriever and Lamshoeft, 2020). Despite the high accuracy of the simple neural networks,
their predictive performance was not consistent for different compounds since the models did not
consider important chemical and plant properties (Bagheri et al., 2019). The RNN models were
followed by DNNs with an R? of 0.62 and an MSE of 0.55. The training history for the DNN
models showed that train and test losses are close over 100 epochs. The LSTM model predicted
the TSCF with lower accuracy compared to the RNN and DNN models. The best values of R? and
MSE on the test data set for the LSTM models were 0.56 and 0.06, respectively.

The results of this study demonstrated the importance and need for considering plant
properties in the modeling of plant uptake. The macromolecular compositions were significant and
relevant parameters for the prediction of concentration factors. One of the main drawbacks of the
single-parameter models based on lipophilicity was their applicability to specific chemicals or
plant species (Limmer and Burken, 2014). The models considered fractions of lipids and proteins
in the plant roots, which in turn make the models applicable for different plant species. The model
also considered vapor pressure and biodegradation half-lives for the chemicals as two new input
parameters. These chemical properties improved the reliability of the predictive models,
particularly for volatile and degradable compounds. The feature importance analysis showed that
these properties are important since they had relatively high F1 scores. The vapor pressure had F1
scores of 105 and 114, and the biodegradation half-lives had F1 scores of 100 and 51 for the TSCF

and RCF.
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3.4. Predictive models for RCF

The deep learning algorithms predicted the RCF with higher performance compared to the
TSCF. The three deep learning models outperformed previous traditional and data-driven models
for predicting the RCF. The three deep learning models predicted the logarithm of the RCF for
better visualization representation. Similar to the results for the TSCF, the deep RNN models
indicated the highest performance for the prediction of the RCF (Fig. 5). The deep RNN achieved
the highest accuracy with an R? of 0.91 and an MSE of 0.071. This model was followed by the
DNN with an R? of 0.9 and an MSE of 0.124. The training of the RNN and DNN models was
successful, as shown by the decreasing losses of the train and test data sets. The close and
decreasing losses for train and test sets proved the lack of overfitting or underfitting in both deep
learning models. The RNN and DNN models showed significant improvement over the traditional
single-parameter relationships with low accuracy and specificity for limited compounds (Briggs
et al., 1982; Chen et al., 1989). These deep learning models indicated a higher accuracy for the
prediction of the RCF than simple neural networks, with an R-squared of 0.82 (Bagheri et al.,
2020). The prediction of the log RCF using fully connected neural networks and by considering
different chemical and plant properties achieved an accuracy of 0.79 and a mean average error of
0.22 (Gao et al., 2022). In this study, even the LSTM models with an R? of 0.84 and an MSE of
0.126 showed higher performance compared to these neural network models (Fig. 5). The results
of this study indicated that the three deep learning models outperformed traditional and classical

machine learning models in predicting the TSCF and RCF (Table 2).
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3.5. Plant uptake and root macromolecular fractions

The feature importance analyses and previous studies have emphasized the role of
macromolecules in plant uptake of emerging contaminants. Correlation analysis was performed to
examine the roles of fractions of root macromolecules in the accumulation and distribution of
emerging contaminants in plants. Fig. 6 demonstrates the correlation of fractions of the lipids and
proteins in the plant roots with the log RCF. The results of this study indicated that RCFs for the
emerging contaminants correlate negatively with the root lipids (P < 0.05) and positively with the
root proteins (P < 0.05). The result for the lipids is supported by the generally accepted
understanding that compounds with higher lipophilicity have higher TSCFs and lower RCFs
(Burken and Schnoor, 1998; Dettenmaier et al., 2009). The results of a study on the uptake and
accumulation of perfluorooctane sulfonate and perfluorooctanoate emphasized the importance of
both lipids and proteins (Wen et al., 2016). The results indicated that the perfluorooctane sulfonate
and perfluorooctanoate accumulations in roots correlate positively with root protein contents and

negatively with root lipid contents.

4. Conclusions

This study employed deep neural networks (DNN), recurrent neural networks (RNN), and
long short-term memory (LSTM) models to enhance the predictive accuracy of TSCF and RCF.
The findings demonstrated significant improvements in the predictive accuracy of these deep
learning models compared to the traditional models. DNN showed the highest accuracy in
predicting the TSCF and FCF with coefficients of determination equal to 0.67 and 0.91,
respectively. The mean squared error for TSCF and FCF was 0.035 and 0.071, respectively. The

findings of this study underscore the potential of deep learning techniques to improve predictive
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328 models for plant uptake and translocation of emerging contaminants. This study also indicated the
329 importance of physicochemical properties and fractions of macromolecules for reliable prediction
330 of the TSCF and RCF. Including important physicochemical properties such as degradation and
331  fractions of macromolecules such as lipids and proteins in the modeling process enhanced the
332 reliability of predictions.
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Lists of figure captions:
Fig. 1. Architecture of the deep neural networks with eleven inputs for predicting TSCF and RCF.
Fig. 2. Visualization of the hidden patterns in the TSCF and RCF data sets using t-SNE.

Fig. 3. Significance of different predictive variables for the TSCF and RCF models based on
feature importance analysis using XGBoost.

Fig. 4. Performance of the deep learning models for the TSCF based on test data. Regression plots
and training history for the deep neural networks (A1 and A2), recurrent neural networks (B1 and
B2), and long short-term memory (C1 and C2).

Fig. 5. Performance of the deep learning models for the RCF based on test data. Regression plots
and training history for the deep neural networks (A1 and A2), recurrent neural networks (B1 and
B2), and long short-term memory (C1 and C2).

Fig. 6. Relationships between lipid and protein contents in plant roots and RCFs of emerging
contaminants.
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Table 1 Characteristics of the parameters used in the deep learning modeling processes.
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Minimum—Maximum Output

Input parameter  Tqcp RCF parameter Min-Max
log Kow -2.19-6.75 -0.88-8.15 TSCF 0.001-1.16
MW (Da) 32-616.4 52-765 RCF 0.009-497.15
HBD 0-6 0-5 log RCF -2.046—2.696
HBA 0-16 0-11

RB 0-36 0-13

PSA (A?) 0-196.2 0-161

VP (mm Hg) 4.6e-18-538  0-167

HL (day) 0.5-832 3-832

WS (mg/L) 2.0e-4—1.0e-6  2.0e-4—1.0e-6

Root lipids (%) 0.1-7.2 0.16-9

Root proteins (%)  1.35-23 1.35-28
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Table 2 Predictive performance of the three deep learning models compared to the reported studies.

Model Input Output R? Error Reference

RNN Nine chemical and two 0.91 MSE =0.071

DNN lant root broperties logRCF 090 MSE =0.124 This study

Lstm P prop 084 MSE =0.126

RNN Nine chemical and two 0.67 MSE =0.035

DNN ant root oroserties | TSCF 062 MSE =0.055 This study

Lstm P prop 0.56  MSE = 0.060

ANN  SPxphysicochemical - pooe 50 MSE=0037  Bagheri et al. (2019)
properties

ANN  Stxphysicochemical o e 00 MsE=9222  Bagheri et al. (2020)
properties

GBRT 0.76  MAE =0.23

RF Molecular, soil, and 0.71 MAE =0.25

FCNN root properties log RCF 0.79 MAE =0.22 Gao et al. (2022)

SVR 0.68 MAE =0.26

ppNN  Tnvee physicochemical oo g, - Wang et al. (2021)

and soil properties
RNN: Recurrent neural networks, DNN: Deep neural networks, LSTM: Long short-term memory,
ANN: Artificial neural networks, GBRT: Gradient boosted regression trees, RF: Random forest,
FCNN: Fully connected neural networks, SVR: Support vector regression, BPNN:
Backpropagation neural networks.



https://www2.cloud.editorialmanager.com/hazmat/download.aspx?id=5852290&guid=b0b6db35-8110-4c28-8107-91d1602a2365&scheme=1
https://www2.cloud.editorialmanager.com/hazmat/download.aspx?id=5852290&guid=b0b6db35-8110-4c28-8107-91d1602a2365&scheme=1

Figure 1 Click here to access/download;Figure;Figure 1.docx %

dense_input [ Input [ [(None, 11)]
InputLayer | output: | [(None, 11)]
ol v |
o :
. dense input: (None, 11) !
é* Dense output: | (None, 128)
dropout input: | (None, 128)
Dropout output: | (None, 128)
5 | dense_1 input: | (None, 128) ;
> :
= Dense output: | (None, 64)
3 * i
*é ! dropout_1 input: (None, 64)
ol Dropout | output: | (None, 64) ;
E_; ] dense_2 input: | (None, 64) I
< ‘
o | Dense output: | (None, 32) :
wn ! '
g . '
Cf v s
'8 : dropout_2 input: (None, 32) :
o :
Q. |
A : Dropout output: | (None, 32) ;
- _::ZZZZZZZZZZZZZZZZ*’ZZZZZZZZZZZZZZZZZ:_
o \
> '
= dense_3 input: | (None, 32) !
5 i
% Dense Output | (None, 1)
S '


https://www2.cloud.editorialmanager.com/hazmat/download.aspx?id=5852291&guid=aa8f6de5-e8df-49bd-90b8-4c3bb0718136&scheme=1

Figure 2 Click here to access/download;Figure;Figure 2.docx %

t-SNE visualization of TSCF

10.0 .
®
754 s, 1.0
‘-‘ 2@y
& e ®
5.0 - % 2 e o
s o *.s . 0.8
. ﬂ-""‘ ™
it 2.5 5 ., a’ . :‘J J
| » [ ] [ ] .w:a .
LLi e - 4 0.6
E 0.0 . 3 g oy
) ] ® ae O .
o) @ L q__'
=2.54 gﬂi g _ . 58 0.4
-l.-l,.l .‘.5.9
~504 %%%° .
e o 0.2
S on
H"'"
T T T T
=20 0 20 40
ESNE_1
t-SNE visualization of RCF
1.5 4
o
5.0 1 :J 2z
.,
i L’:
2.5 4 o =J-a.l£
i9 i
es o .
0.0 "=’ e 1
NI 'L- = - ?‘- g& . [ ]
L 'Y 2 "
=z -2571 ¥ o
ab ®e . 0
L]
=5.0 4 X
@
~7.5 4 oy
_1GID _
T T T T T T _2
—40 =20 0 20 40 60


https://www2.cloud.editorialmanager.com/hazmat/download.aspx?id=5852292&guid=069d7e3d-8824-4f88-9434-fb4bc6cf49bb&scheme=1

Figure 3

Predictive Features

Predictive Features

Click here to access/download;Figure;Figure 3.docx %

Feature Impoerance for TSCF

20589

log Kow

189.0

Lipids

167.0

126.0-

Protein

VP
PSA

16850
162:0

HL

100-0
98.0

RB
HBA
HBD -

— 05

_—5.0

58.0

T T T
50 100 150 200

F1 score

Feature Impoerance for RCF

2150

log Kow

187.0:

Lipids
MW

131.0-

114.06

VP

1000

Protein
W5

100:0

RE 1
HL A
PSA -
HBA -
HBD ~

=130
120

_—==N0 )

26:.0—

T T T
50 100 150 200

F1 score


https://www2.cloud.editorialmanager.com/hazmat/download.aspx?id=5852293&guid=215526c8-d68f-40e0-9f8b-d55ec2fcf079&scheme=1

Figure 4 Click here to access/download;Figure;Figure 4.docx %

1.0 1 ] (X X ] — Train

" = 0.8
R-Squared = 0.62 L ° st

55 DNN & 0.7 1

0.6 4

0.5 1

Loss

0.4 1

Predicted TSCF

0.3 1

0.2 A

0.1 4

0.0 L ; 0.0 4 A2

T T T T T T
0.0 0.2 0.4 0.6 0.8 0 50 100 150 200 250 300
Measured TSCF Number of Epochs

[ ] 0 | m— Tradn
104 PR-Sguared = 0.67 o —— Test

RNN . ) 0.7

Loss

0.4 1

Predicted TSCF

0.3

0.2 4

01 A

: . . - ) . no{B2

og 0.2 0.4 oé 0.8 Lo a Fi] 40 &0 BO 109
Measured TSCF Humber of Epochs

10 2 L —— Train
R R-Squared = 0.56
9 ® ° 6.30 4 —— Toest

LSTM & & « o

0.25 4

0.20

Predicted TSCF

0.15 A

0.10 4

0.05 4 C2

. ‘ T : T T T
0.0 0.2 0.4 0.6 0.8 0 100 200 300 400
Measured TSCF Number of Epochs



https://www2.cloud.editorialmanager.com/hazmat/download.aspx?id=5852294&guid=acdfc0a1-0037-4ce5-895c-3b1a0ea4666b&scheme=1

Figure 5 Click here to access/download;Figure;Figure 5.docx %

R-Squared = 0,90 ¥ o8 ey
20 FSqua ) o' — st
0.7
™ DNN .
.
0.6 -
TR
2 h
3 0.5 | I
o . |
= 0.4 1
E 00 4 H
0.3
_uls P
0.2
—1.|:| -
Al | ©11A2
15 10 05 0o £5 10 15 20 o s 100 %0 200 240 00 340
Measured lag RCF Number of Epochs
25
R-Squared = 0.91 101 kil
: -l
201 ™ » Test
RNN " a
151 0.8 4
B 1 D -
&2
g s 0.6 4
T §
H FEUE |'
E 0.4 1
-0.5 - L
=1.01 0.2 4 l[
ey M
o Bl B2
15 -10 -05 ©0 05 10 15 20 0 50 100 150 200 250
Measwred log RCF Mumber of Epochs
.
20 ReSquared = 0.84
LSTM . ®
15-
w L0
Fd
£ s
|
'-E 0.0 -
0.5 -
-10-
-1.5 4 Cl1
-15 -10 -05 00 ©5 1.0 15 2.0 H 100 200 300 200 =00

Measured log RCF Mumber of Epachs


https://www2.cloud.editorialmanager.com/hazmat/download.aspx?id=5852295&guid=65180aa9-c742-4cbe-9914-7511fda06fba&scheme=1

Figure 6 Click here to access/download;Figure;Figure 6.docx %

y =-0.1107x+0.7895

‘ R-squared = 0.13
@

log RCF

1] 2 4 L] a8
Fraction of lipids

y = 0.0439x-0.0827
! R-squared = 0.07

log RCF

Fraction of proteins


https://www2.cloud.editorialmanager.com/hazmat/download.aspx?id=5852296&guid=463fe82c-4945-455c-a9c2-b82f16c36a06&scheme=1

