
inc uding the role of plant macromolecular compositions
--Manuscript Draft--

Journal of Hazardous Materials
Deep learning

l
models for predicting plant uptake of emerging contaminants by

Manuscript Number:

Article Type:

Keywords:

Corresponding Author:

First Author:

Order of Authors:

Suggested Reviewers:

HAZMAT-D-24-12549R1

Research Paper

Emerging contaminants; TSCF; RCF; machine learning; deep learning

Majid Bagheri
Savannah State University
Savannah, UNITED STATES

Majid Bagheri

Majid Bagheri

Shai McKenney

Julie Gabriella Ware

Nakisa Farshforoush

Amin Shams, PhD
amin.shams@semnan.ac.ir

Lorenzo Rossi, PhD
l.rossi@ufl.edu

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



Graphical Abstract

TSCF
RCF

Data

Deep Learning Models



Revised Manuscript (clean version) Click here to view linked References

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1 Deep learning models for predicting plant uptake of emerging contaminants by including
2                                                      the role of plant macromolecular compositions
3
4 Majid Bagheri1, *, Shai McKenney1, Julie Gabriella Ware1, Nakisa Farshforoush2

5
6 1 Department of Engineering Technology, Savannah State University, Savannah, GA 31404.
7                   2 Department of Electrical and Computer Engineering, Tabriz University, Tabriz, Iran.
8

9 *Corresponding author: Majid Bagheri. Department of Engineering Technology, Savannah
10                                                          State University, Savannah, GA 31404, USA.
11 Email: bagherim@savannahstate.edu, Phone: 912-358-3262

12
13
14 Abstract

15 Deep learning models can predict uptake of emerging contaminants in plants with improved

16 accuracy because they leverage advanced data-driven approaches to capture non-linear

17 relationships that traditional models struggle to address. Traditional models suffer from low

18 accuracy in predicting transpiration stream concentration factor (TSCF) and root concentration

19 factor (RCF). This study applied deep neural networks (DNN), recurrent neural networks (RNN),

20 and long short-term memory (LSTM) to enhance the accuracy of predictive models for TSC F  and

21 RCF.  The three models used nine chemical properties and two plant root macromolecular

22 compositions for predicting TS C F  and RCF. The results indicated that deep learning models

23 predict TSCF  and R C F  with improved accuracy compared to mechanistic models. The coefficient

24 of determination (R2) for the DNN, RNN, and LSTM models in predicting TS C F  was 0.62, 0.67,

25 and 0.56, respectively. The corresponding mean squared error (MSE) on the test set for the models

26 was 0.055, 0.035, and 0.060, respectively. The R2 for the DNN, RNN, and LSTM models in

27 predicting R C F  was 0.90, 0.91, and 0.84, respectively. The corresponding MSE for the models

28 was 0.124, 0.071, and 0.126, respectively. The results of feature extraction using extreme gradient

29 boosting underlined the importance of lipophilicity and root lipid fraction.

30 Keywords: Emerging contaminants, TSCF, RCF, machine learning, deep learning.
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31 1. Introduction

32 Predictive models aid in risk assessments, regulatory frameworks, and the formulation of

33 sustainable strategies for mitigating environmental and human health concerns associated with

34 emerging contaminants (Liu et al., 2024; Villeneuve et al., 2019). Predicting the uptake and

35 translocation of emerging contaminants in plants is a critical task, especially in the context of

36 assessing potential risks and impacts on both ecosystems and human health (Shi et al., 2022). This

37 research area investigates the mechanisms by which plants take up and distribute emerging

38 contaminants, such as pharmaceuticals and industrial chemicals, from soil or water into various

39 plant tissues (Bagheri et al., 2023). Understanding these processes is essential for evaluating the

40 bioaccumulation potential and potential transfer of contaminants along the food chain (Chormare

41 and Kumar, 2022; Rossi et al., 2019). The modeling of transpiration stream concentration factor

42 (TSCF) and root concentration factor (RCF) plays a vital role in unraveling the intricate dynamics

43 of plant-contaminant interactions (Trapp, 2000). The TS C F  represents the ratio of the

44 concentrations of emerging contaminants in the plant's transpiration stream to those in the

45 surrounding soil (exposure media). This factor sheds light on the contaminant's mobility within

46 the plant and its potential transfer to other tissues (Bagheri et al., 2021). The R C F  characterizes

47 the accumulation of contaminants in the plant roots relative to the concentration in the exposure

48 media (Li  et al., 2022).

49 Uptake, translocation, and accumulation of contaminants in plants are generally encapsulated

50 in mathematical models that integrate factors such as plant physiology, soil characteristics, and the

51 physicochemical properties of chemicals (Dourado Junior et al., 2017). These mechanistic models

52 provide valuable insights into the fate and transport of emerging contaminants (Brunetti et al.,

53 2021; Trapp, 2004). Since 1974, a number of modeling studies have offered relationships between
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54 the physicochemical properties of contaminants and their uptake by plants, mainly using the

55 octanol/water partition coefficient (Briggs et al., 1982). These single-parameter relationships

56 suffered from low accuracy and limited applicability for different plant species and chemical

57 compounds. Compartmental models, which take into account more physicochemical and

58 environmental properties and incorporate the complexity of uptake and translocation processes,

59 did not offer high predictive accuracy (Collins and Finnegan, 2010). The accuracy of predictions

60 for TS CF  was improved by considering more physicochemical properties in a numerical modeling

61 process (Limmer and Burken, 2014).

62 The applications of artificial intelligence (AI) and machine learning (ML) models to predict

63 TS C F  and R C F  offered several advantages over traditional modeling approaches (Zhong et al.,

64 2021). Multi-layer perceptron neural networks significantly improved the accuracy of predictions

65 for both TSCF  and R CF  compared to the previous approaches. With solely relying on six

66 physicochemical properties, the multi-layer perceptron neural networks outperformed traditional

67 models and complemented the findings of previous studies in some aspects (Bagheri et al., 2020).

68 The fuzzy logic technique also indicated that molecular weight is a significant factor in explaining

69 the uptake efficiency of moderately hydrophobic and hydrophilic compounds (Bagheri et al.,

70 2019). In a more recent study (Gao et al., 2022), the applications of several classical ML and

71 ensemble learning algorithms resulted in improved prediction accuracy for RCFs. These ML

72 models achieved high accuracy by learning nonlinear relationships between RCFs and the

73 properties of contaminants, soils, and plants. Among ensemble learning models, gradient-boosted

74 regression trees showed higher predictive performance for the root uptake of per- and

75 polyfluoroalkyl substances, with accuracies up to 0.85 (Xiang et al., 2023).



1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

76 The current research is an effort to improve the accuracy of predicting the TS CF  and R C F  by

77 applying three deep learning models. To the best of our knowledge, this is the first study that

78 employs deep neural networks (DNN), recurrent neural networks (RNN), and long short-term

79 memory (LSTM) models to predict both TS C F  and R C F  for emerging contaminants. The

80 predictions are based on nine chemical properties and two plant root macromolecular

81 compositions. The feature importance analysis is performed for the input variables of the models

82 using extreme gradient boosting (XGBoost). The relationship between fractions of

83 macromolecules in the plant roots and concentration factors (TSCF and RCF) for the emerging

84 contaminants is missing. The role of root macromolecular fractions in the uptake of emerging

85 contaminants is examined through feature importance analysis.

86

87 2. Materials and Methods

88 2.1. Data sets

89 Comprehensive data sets were compiled from published studies for the modeling of both

90 TS C F  and RCF, see Supplementary Material. The selected TSCF  values included 288 records of

91 151 compounds measured in 33 plant genera under various experimental approaches from 42

92 studies. The R C F  data set included 342 values for 96 compounds in 44 plant genera measured

93 under various experimental approaches from 19 studies. The inclusion of various chemicals and

94 plant species in the data sets makes it possible to develop models that are not compound- or plant-

95 specific. The data sets did not include TSCFs and RCFs from studies when there was no evidence

96 of reaching a steady state, roots were damaged, depletion of dosing solution was higher than 50%,

97 other modes of exposure were included, or calculations were not reliable (Limmer and Burken,
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98 2014). The data sets also did not include TSCFs and RCFs when the metabolism of the parent

99 compound in plants was observed or measurements included metabolites.

100 The data sets included nine physicochemical properties and two plant root properties. The

101 physicochemical properties were octanol/water partition coefficient (log KOW), molecular weight

102 (MW), hydrogen bond donor (HBD), hydrogen bond acceptor (HBA), rotatable bonds (RB), polar

103 surface area (PSA), vapor pressure (VP), half-life (HL), and water solubility (WS). The

104 experimental values of the properties were considered in the analyses when both predicted and

105 experimental values were available. The chemical properties were obtained from chemical

106 structure databases, including the US EPA Chemistry Dashboard and ChemSpider. The two plant

107 root properties were fractions of the lipids and proteins in the roots. The macromolecular

108 composition of the plant roots was obtained from published studies. Table 1 represents a summary

109 of the chemical and plant root properties used for developing deep learning models for both TSC F

110 and RCF.

111

112 2.2. Pattern recognition analysis

113 t-distributed stochastic neighbor embedding (t-SNE) was used for exploratory data analysis

114 and to detect important patterns in the data sets. t-SNE involves a dimensionality reduction method

115 to reveal and visualize patterns within complex data sets (Zhu et al., 2019). It focuses on preserving

116 local relationships and capturing the intrinsic structure of the data. t-SNE is particularly effective

117 for identifying clusters that might be challenging to discern in the high-dimensional spaces of plant

118 uptake problems (Kim et al., 2023). This technique facilitates the visualization of intricate patterns

119 and clusters within the T S C F  and R C F  data sets by mapping data points to a lower-dimensional

120 space. However, t-SNE preserves pairwise similarities between the high-dimensional spaces.
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121 2.3. Feature importance analysis

122 Feature importance analysis is an ML approach for examining the contribution of each input

123 parameter to the predictive models (Zien et al., 2009). It particularly helps determine which

124 parameters have the most influence on the prediction of TS C F  and RCF.  In this study, XGBoost

125 was used to analyze the importance of the nine physiochemical and two plant root properties for

126 the modeling processes. Feature extraction in XGBoost often refers to the importance scores

127 assigned to each feature during the training process. XGBoost assigns weights to features based

128 on their contribution to predictive accuracy (Wade and Glynn, 2020). These importance scores

129 quantify the influence of each input parameter of the models in making predictions for the TSC F

130 and RCF. The XGBoost models were developed using scikit-learn, which is an ML library in

131 Python (Hackeling, 2017). Each data set was divided into 80% for training and 20% for testing the

132 models. Both data sets were rescaled using StandardScaler to have a standard normal distribution

133 with a mean of 0 and a standard deviation of 1. The hyperparameters of the XGBoost models were

134 optimized through randomized search cross-validation (Bergstra and Bengio, 2012). The XGBoost

135 models showed the highest performance, with a maximum depth of 4 and a learning rate of 0.15.

136

137 2.4. Deep learning model training

138 Three deep learning models, including DNN, RNN, and LSTM, were applied to predict TS CF

139 and RCF. The models were designed and developed in Python using TensorFlow, which is an

140 open-source machine learning library (Ramsundar and Zadeh, 2018). For the three deep learning

141 models, 80% of the data was used for training and 20% for testing. The data was rescaled using

142 StandardScaler to have a standard normal distribution before training. Optimized hyperparameters

143 for the three deep learning models were achieved through randomized search cross-validation.
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144 The DNN models are neural networks with multiple layers, typically including an input layer,

145 one or more hidden layers, and an output layer. The DNN for predicting TS C F  and R C F  had two

146 hidden layers. The architecture of the DNN model with eleven input variables for predicting TS C F

147 and R C F  is shown in Fig. 1. The input layer, first hidden layer, and second layer had 128, 64, and

148 32 computational neurons, respectively. A  dropout of 0.2 was implemented after input and hidden

149 layers to make the predictions reliable. During the training steps, the network adjusts its weights

150 and biases through a backpropagation, minimizing the difference between predicted and measured

151 outputs (Zhu et al., 2018). Adaptive moment (Adam), which is a replacement optimization

152 algorithm for stochastic gradient descent, was used as the optimizer of the DNN models. Each

153 layer of the DNN performs computations on the input data and transforms it into abstract

154 representations. Activation functions apply non-linearity and enable the network to capture

155 relationships within the data (Ding et al., 2018). The activation function of the input and hidden

156 layers of the DNN models was a rectified linear unit (ReLU). Through multiple iterations of

157 training on the measured data, a well-trained DNN can generalize its learned features to make

158 accurate predictions on new test data (Larochelle et al., 2009). The depth and complexity of DNN

159 models allow them to automatically extract important features, which in turn makes them highly

160 effective in predicting plant uptake.

161 Deep RNN models are neural networks that handle sequential data by incorporating memory

162 mechanisms. It consists of multiple layers of interconnected computational neurons, each

163 processing information over time (Kanagachidambaresan et al., 2021). In this study, the RNN

164 models had one input layer and two hidden layers with 150 computational neurons. Unlike

165 traditional feedforward neural networks, deep RNN models have connections that form directed

166 cycles. This allows them to maintain a memory of previous inputs and leverage temporal
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167 information for prediction. For training the RNN models, the network is iteratively exposed to

168 sequential input data. The network adjusts its internal parameters to minimize the discrepancy

169 between predicted and measured outputs (Sutskever, 2013). The weights and biases of the RNN

170 models were adjusted using adaptive moment estimation. Similar to the DNNs, the activation

171 function of the input and hidden layers of the RNN models was a rectified linear unit.

172 The LSTM models are RNNs that capture long-term dependencies in sequential data and

173 address vanishing gradient problems (Sherstinsky, 2020). During training, LSTMs utilize

174 backpropagation through time to compute gradients and adjust the weights. The activation

175 functions play a crucial role in information flow and memory cell modulation. LSTMs introduce

176 memory cells with self-regulating mechanisms, including input, forget, and output gates. The input

177 gate determines which information is stored, the forget gate regulates what information is

178 discarded, and the output gate decides what information is passed to the next time step (Manaswi

179 and Manaswi, 2018). This architecture enables LSTM models to selectively retain or forget

180 information over long sequences and allows them to capture and remember relevant patterns. The

181 LSTM models for predicting TS C F  and R C F  had an input layer and two hidden layers with 40

182 computational neurons in the optimal conditions. The activation function of the input and hidden

183 layers was a rectified linear unit. The adaptive moment estimation outperformed other methods in

184 adjusting the weights and biases.

185

186 2.5. Performance evaluation

187 Evaluating the performance of deep learning models is a critical step in assessing the

188 effectiveness and reliability of their predictions. Mean squared error (MSE), which is a common

189 loss function in regression problems, was used to measure the average squared difference between
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190 predicted values and actual values. The lower values of MSE indicate better performance. The

191 coefficient of determination (R-squared or ᵄ�2) was used to evaluate the goodness of fit of

192 regression models. The MSE and ᵄ�2 are calculated as follow:

193 MSE = 1⁄n∑i=1(ypi − yti)
2 (1)

194 R2 = 1 − ∑i=1(yti − ypi)
2 /∑i=1(yti − y̅)2 (2)

195 where y̅ is the average of y over the n data, ᵆ�ᵆ� is the actual value, and ᵆ� is the predicted value.

196 The performance of XGBoost for the feature importance analysis was examined based on the

197 F1 score. The F1 score combines precision and recall into a single metric, considering both false

198 positives and false negatives of the predictions. The F1 is calculated as follow:

199 F1 score = TP⁄(TP + 1/2(FP + FN)) (3)

200 where TP is true positive, FP is false positive, and FN is false negative.

201

202 2.6. Plant macromolecular compositions

203 Chemicals either accumulate in the roots or cross the plant root membranes and transport to

204 the upper tissues through the vascular pathways. Plant roots and shoots are composed of water,

205 wax, lignin, cellulose, lipids, phenolics, and non-structural carbohydrates (Gupta and Singh, 1981).

206 While lipophilicity is an important factor, predicting the uptake of emerging contaminants solely

207 based on lipids is a simplified approach. The fraction of root macromolecules such as protein is

208 not negligible since these materials (protein, lignin, and cellulose) were shown to be important in

209 other biological systems (Endo et al., 2012; Jonker, 2008; Stoklosa et al., 2013). It is assumed that

210 the partitioning of emerging contaminants into plant roots and other tissues is equal to the

211 partitioning of compounds into macromolecules. In this study, the changes in concentration

212 factors, including TSC F  and RCF, will be examined over a wide range of root macromolecular
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213 fractions. The results of feature extraction will be used to analyze the uptake and translocation of

214 emerging contaminants based on the fractions of lipids and proteins in the roots.

215

216 3. Results and Discussion

217 3.1. Hidden patterns in the data

218 The results of pattern recognition using t-SNE to visualize the possible clusters in the TS CF

219 and R C F  data sets are shown in Fig. 2. The first dimension is derived in such a way that similar

220 data points in the original space are also close to each other in this new dimension. Similarly, the

221 second dimension is also obtained by preserving pairwise similarities between data points. The

222 results for both TS CF  and RC F  showed different clusters in the data sets. For the RCF, the clusters

223 for the compounds with the higher root concentration factors formed separate clusters. The

224 perfluoroalkyl family of chemicals was found to have higher RCFs, as shown in the separate

225 clusters in Fig. 2. The observations of another study also indicated that the clusters in the RC F  data

226 reflect the similarities across different combinations of chemicals, plants, and soils (Gao et al.,

227 2022). For the TSCF,  the clusters are less distinguishable compared to the R C F  data. However,

228 the plant species and compounds with higher uptake efficiency were clustered closer. This is in

229 line with the results of a previous study, which stated that tomato is a species with higher uptake

230 potential (Bagheri et al., 2019).

231

232 3.2. Significant features for predicting TSCF and RCF

233 The feature importance analysis using XGBoost based on nine physicochemical properties

234 and two plant root properties yielded insightful findings (Fig. 3). The octanol/water partition

235 coefficient (log KOW) and molecular weight (MW) were two paramount predictors for both TSC F
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236 and RCF, as reflected by their high F1 scores. Particularly, the log KOW, with F1 scores of 209 and

237 215 for TSCF  and RCF, respectively, emphasized its critical role in predicting these concentration

238 factors. The F1 scores of the MW for predicting TS CF  and R C F  were 167 and 131. Previous

239 studies using statistical methods such as stepwise regression also demonstrate that log KOW and

240 MW are significant variables in the prediction of both TSC F  and R C F  (Bagheri et al., 2020;

241 Bagheri et al., 2019). The feature importance analysis using XGBoost also showed that lipid and

242 protein fractions are other significant predictors, with high F1 scores for both variables. The lipid

243 fraction with high F1 scores of 189 and 187 for the TSCF  and R C F  models was the second

244 significant predictor. The feature importance analyses using neural networks and regression trees

245 also indicated the lipid fraction as a major predictor for the R C F  (Gao et al., 2022). The protein

246 fraction of the plant roots, with high F1 scores of 126 and 100 for the TSCF  and RCF, was found

247 to be another significant predictive feature. Despite their importance, the role of proteins and

248 macromolecules other than lipids in the uptake and translocation of emerging contaminants in

249 plants has never been deeply studied. These results underscore the importance of understanding

250 the interactions between chemical and root properties in plant uptake modeling and provide

251 valuable insights for risk assessments and ecological management strategies.

252

253 3.3. Predictive models for TSCF

254 The three deep learning models showed improved accuracy on the test data sets for the

255 prediction of TSCF.  The results indicated that deep RNN models have the highest performance

256 based on R-squared and MSE values (Fig. 4). The deep RNN achieved the highest accuracy with

257 an R2 of 0.67 and an MSE of 0.35. The training history based on train and test data sets indicated

258 that the RNN models are reliable without any overfitting or underfitting. The close values for the
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259 train and test losses confirm the reliability of the predictions by the RNN models. The performance

260 of the RNN models based on the tests was positive compared to the traditional models and simple

261 neural networks, with MSEs of 0.25 and 0.037, respectively (Bagheri et al., 2019; Doucette et al.,

262 2018; Schriever and Lamshoeft, 2020). Despite the high accuracy of the simple neural networks,

263 their predictive performance was not consistent for different compounds since the models did not

264 consider important chemical and plant properties (Bagheri et al., 2019). The RNN models were

265 followed by DNNs with an R2 of 0.62 and an MSE of 0.55. The training history for the DNN

266 models showed that train and test losses are close over 100 epochs. The LSTM model predicted

267 the TSC F  with lower accuracy compared to the RNN and DNN models. The best values of R2 and

268 MSE on the test data set for the LSTM models were 0.56 and 0.06, respectively.

269 The results of this study demonstrated the importance and need for considering plant

270 properties in the modeling of plant uptake. The macromolecular compositions were significant and

271 relevant parameters for the prediction of concentration factors. One of the main drawbacks of the

272 single-parameter models based on lipophilicity was their applicability to specific chemicals or

273 plant species (Limmer and Burken, 2014). The models considered fractions of lipids and proteins

274 in the plant roots, which in turn make the models applicable for different plant species. The model

275 also considered vapor pressure and biodegradation half-lives for the chemicals as two new input

276 parameters. These chemical properties improved the reliability of the predictive models,

277 particularly for volatile and degradable compounds. The feature importance analysis showed that

278 these properties are important since they had relatively high F1 scores. The vapor pressure had F1

279 scores of 105 and 114, and the biodegradation half-lives had F1 scores of 100 and 51 for the TSCF

280 and RCF.

281
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282 3.4. Predictive models for RCF

283 The deep learning algorithms predicted the R C F  with higher performance compared to the

284 TSCF. The three deep learning models outperformed previous traditional and data-driven models

285 for predicting the RCF. The three deep learning models predicted the logarithm of the R C F  for

286 better visualization representation. Similar to the results for the TSCF, the deep RNN models

287 indicated the highest performance for the prediction of the RC F  (Fig. 5). The deep RNN achieved

288 the highest accuracy with an R2 of 0.91 and an MSE of 0.071. This model was followed by the

289 DNN with an R2 of 0.9 and an MSE of 0.124. The training of the RNN and DNN models was

290 successful, as shown by the decreasing losses of the train and test data sets. The close and

291 decreasing losses for train and test sets proved the lack of overfitting or underfitting in both deep

292 learning models. The RNN and DNN models showed significant improvement over the traditional

293 single-parameter relationships with low accuracy and specificity for limited compounds (Briggs

294 et al., 1982; Chen et al., 1989). These deep learning models indicated a higher accuracy for the

295 prediction of the R C F  than simple neural networks, with an R-squared of 0.82 (Bagheri et al.,

296 2020). The prediction of the log R C F  using fully connected neural networks and by considering

297 different chemical and plant properties achieved an accuracy of 0.79 and a mean average error of

298 0.22 (Gao et al., 2022). In this study, even the LS TM models with an R2 of 0.84 and an MSE of

299 0.126 showed higher performance compared to these neural network models (Fig. 5). The results

300 of this study indicated that the three deep learning models outperformed traditional and classical

301 machine learning models in predicting the TSC F  and R C F  (Table 2).

302

303

304



1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

305 3.5. Plant uptake and root macromolecular fractions

306 The feature importance analyses and previous studies have emphasized the role of

307 macromolecules in plant uptake of emerging contaminants. Correlation analysis was performed to

308 examine the roles of fractions of root macromolecules in the accumulation and distribution of

309 emerging contaminants in plants. Fig. 6 demonstrates the correlation of fractions of the lipids and

310 proteins in the plant roots with the log RCF. The results of this study indicated that RCFs for the

311 emerging contaminants correlate negatively with the root lipids (P < 0.05) and positively with the

312 root proteins (P < 0.05). The result for the lipids is supported by the generally accepted

313 understanding that compounds with higher lipophilicity have higher TSCFs and lower RCFs

314 (Burken and Schnoor, 1998; Dettenmaier et al., 2009). The results of a study on the uptake and

315 accumulation of perfluorooctane sulfonate and perfluorooctanoate emphasized the importance of

316 both lipids and proteins (Wen et al., 2016). The results indicated that the perfluorooctane sulfonate

317 and perfluorooctanoate accumulations in roots correlate positively with root protein contents and

318 negatively with root lipid contents.

319

320 4. Conclusions

321 This study employed deep neural networks (DNN), recurrent neural networks (RNN), and

322 long short-term memory (LSTM) models to enhance the predictive accuracy of TSCF  and RCF.

323 The findings demonstrated significant improvements in the predictive accuracy of these deep

324 learning models compared to the traditional models. DNN showed the highest accuracy in

325 predicting the TSC F  and FCF  with coefficients of determination equal to 0.67 and 0.91,

326 respectively. The mean squared error for TS CF  and FCF  was 0.035 and 0.071, respectively. The

327 findings of this study underscore the potential of deep learning techniques to improve predictive
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328 models for plant uptake and translocation of emerging contaminants. This study also indicated the

329 importance of physicochemical properties and fractions of macromolecules for reliable prediction

330 of the TSCF  and RCF. Including important physicochemical properties such as degradation and

331 fractions of macromolecules such as lipids and proteins in the modeling process enhanced the

332 reliability of predictions.
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484 Lists of figure captions:

485 Fig. 1. Architecture of the deep neural networks with eleven inputs for predicting TS CF  and RCF.

486 Fig. 2. Visualization of the hidden patterns in the TSCF  and R C F  data sets using t-SNE.

487 Fig. 3. Significance of different predictive variables for the TSCF  and R C F  models based on
488 feature importance analysis using XGBoost.

489 Fig. 4. Performance of the deep learning models for the TSCF  based on test data. Regression plots
490 and training history for the deep neural networks (A1 and A2), recurrent neural networks (B1 and
491 B2), and long short-term memory (C1 and C2).

492 Fig. 5. Performance of the deep learning models for the R C F  based on test data. Regression plots
493 and training history for the deep neural networks (A1 and A2), recurrent neural networks (B1 and
494 B2), and long short-term memory (C1 and C2).

495 Fig. 6. Relationships between lipid and protein contents in plant roots and RCFs of emerging
496 contaminants.

497
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Table 1 Characteristics of the parameters used in the deep learning modeling processes.
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0.5–832
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52–765 RC F
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Table 2 Predictive performance of the three deep learning models compared to the reported studies.

Model Input Output R2 Error Reference

DNN plant root properties
o log R C F 0.90

MSE = 0.126
This study

RNN       Nine chemical and two                          0.67 MSE = 0.035

LSTM plant root properties 0.56 MSE = 0.060

ANN Six physicochemical T SCF 0.54 MSE = 0.037 Bagheri et al. (2019)

ANN Six physicochemical R C F 0.80 MSE = 922.2 Bagheri et al. (2020)

GBRT                                                                        0.76         MAE = 0.23
RF             Molecular, soil, and                             0.71         MAE = 0.25

FCNN             root properties                                  0.79         MAE = 0.22
S V R                                                                           0.68         MAE = 0.26

BPNN Three physicochemical R C F 0.80 - Wang et al. (2021)

RNN: Recurrent neural networks, DNN: Deep neural networks, LSTM: Long short-term memory,
ANN: Artificial neural networks, GBRT: Gradient boosted regression trees, RF: Random forest,
FCNN: Fully connected neural networks, SVR: Support vector regression, BPNN:
Backpropagation neural networks.
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