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Abstract—Underwater localization is a challenging but an
essential task for Autonomous Underwater Vehicles (AUV) op-
erations. In this paper, we purpose utilizing learning-based
methods to perform relative location estimation base on an active
light source. This approach avoids the large latency associated
with acoustic-based localization and the reduced detection range
inherent in other vision-based techniques that rely on passive
features or fiducial markers. Two styles of neural networks, a
feedforward neural network (FNN) and a convolution neural
network (CNN), with variation on the configurations, are imple-
mented. Additionally, image processing pipeline for light features
and feature concatenation of camera exposure time for CNN are
discussed. Finally, the neural networks are evaluated on their
capability of estimating relative location using a light in an indoor
tank environment.

I. INTRODUCTION

Accurate underwater localization is crucial for Autonomous
Underwater Vehicles (AUV) operations and especially impor-
tant in tasks such as docking that requires fast and precise
prediction in complex and dynamics environments. Yet, it
remains a challenging task as underwater is a GPS denial
environment. Inertial sensors such as IMU and gyroscope com-
bined with filtering techniques, can provide acceptable short-
term localization results, but the error will growth unbounded
over a long time horizon [1].

While acoustic baseline systems, such as the long baseline
(LBL) or ultra-short baseline (USBL), provide good localiza-
tion estimates at long range, they require additional setup [2].
Their acoustic properties also limits their operation frequency
to few hertz [1], limiting the usefulness for localization at
closed range.

Vision system paired with fiducial markers [3] has been used
to achieve centimeter localization accuracy on ground robotics
[4], however they are limited in underwater. For instance,
the viewing distance of camera systems is greatly reduced
and highly variable due to the nature of low ambient light
and water clarity, resulting in a detectable distance of several
meters in many scenarios [5].

On the other hand, active light markers have been explored
for underwater localization [6], [7] due to their ability to
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overcome the issues with low visibility caused by low ambient
light. However, previous works have been focused on either
detecting the light on the image and control via lining up the
light with the image center [6], or using multiple light markers
with known baseline between the lights for pose estimation [7].
The first method of detecting light on the image is simple and
straight forward but it has the drawback of only providing a
relative location between the light and the vehicle in pixel
coordinates, making its application limited to line-of-sight
(LOS) style control. The second method of using multiple light
markers converts the localization problem into a perspective-
n-points (PnP) problem, making it capable of solving for pose
in the physical world coordinates. However, to solve the PnP
problem, it requires at at least 3 lights to be observed, which
cannot be guaranteed when the AUV is in motion.

This paper explores the feasibility of a light-based relative
localization using a single light source with a monocular
camera. Relative local position [X, y, z] is estimated from a
single image frame using two neural network configurations: a
deep Feedforward Neural Network (FNN) and a Convolutional
Neural Network (CNN). Both networks are trained on data we
collected from an indoor tank.

In the remaining paper, we will present related works in
Section II. The data collection, image processing, and neural
network implementations are described in Section III. The
evaluation of the neural networks are presented in Section I'V.
Lastly, conclusion and future work are discussed in Section
V.

II. BACKGROUND AND RELATED WORKS

For short range localization, vision systems (cameras in
particular), are frequently used in many area of field robotics
due to their satisfying accuracy and accessibility from low
cost of implementations. Many methods have been developed
for vision based localization, and they can be separated into
two groups: marker-based methods using fiducial landmarks
placed in the scene, and marker-less approaches using feature
detection and tracking techniques.

A. Marker Based Localization

Vision systems have been using fiducial to perform local-
ization in tasks such as augmented reality with library such as
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ARToolKit [8]. The development of AprilTag [9], a 2D square
pattern that can be printed on any flat surface, has popularized
this type of fiducial marker in the field of robotics. Its ease
of use and robustness in detection, even with low-resolution
cameras and partial occlusion of the marker, have made it
particularly favored. Following this, newer version of AprilTag
such as AprilTag 2 [10] and other variances of 2D planar style
markers, such as ArUco [11], have been since developed and
popularized with claims on enhanced performance.

These 2D planar style makers, such as the AprilTag, are
typically monochromatic and are encoded in pattern of line
that separate the tag into region white and black. These regions
are then used by the detector to decode the identification
information such as the tag family and number. Once detected,
the tag’s position and orientation can be determined in the
camera frame by using the corners of the tag and solving the
perspective-n-points (PnP) problem, which involves matching
the corner pixels to their physical world coordinates. To enable
this, the size of the tag and the intrinsic parameters of the
camera need to be known.

AprilTag style fiducial markers have been used in appli-
cations of localization in underwater environment and have
achieved various level of success [12]. However, their limita-
tions are obvious: they require observable makers to be placed
in the operating environment, which is not always permissible
outside a pool environment, such as in the mid level of a
water body, or when the operating field is large. An additional
complexity in successfully implementing fiducial markers in
underwater environments, compared to ground-based robotics,
is the reduced visibility caused by large fluctuations in ambient
lighting and increased water turbidity. This turbidity leads
to light backscatter from suspended particles, significantly
reducing the detection rate and limiting the detection range
to only a few meters [5].

For application of underwater localization, active light emit-
ting sources have been used in place of 2D planar style
markers. In purposed methods of underwater docking for
AUV system ([7], [13]-[16]), a common approach shared by
these works are attaching lights to the docking station and
detecting the light as a point in the image. With this setup,
the localization problem can then be decomposed into finding
a solution of the PnP problem. When the number of lights is
greater or equal to 3, the relative position can be resolved. This
active light approach, as opposite to AprilTag style marker,
is favorable for the underwater environment as it effectively
improve the usable range of the marker, making detection up
around 15 meters possible as shown in [13].

A substantial downfall of the active light approach is when
the number of observable light is less than 3, where the PnP
problem is impossible to solve. This often occurs when the
AUV is close to the light fixture (e.g. during entering), or
when the AUV is viewing them from the side instead of
directly facing towards them. Various works have used line-
of-sight (LOS) method, where control goal is to align the
light to the image center, instead for localization ([6], [17]).
However, this method only provides the relative location of

the light on the image in terms of pixels, and thus cannot
be used to calculate physical distances. Consequently, it is
primarily used for controlling the AUV rather than aiding in
AUV localization.

B. Marker-less Localization

Marker-less localization are commonly used in field robotics
with minimum modifications to the environments. They re-
lies on the natural features present in the scene, such as
edges and textures, or directly operate on the image features,
such as intensities [18]. Techniques such as visual odometry
[19] and Simultaneous Localization and Mapping (SLAM)
are commonly employed and showed success in underwater
environment such as seafloor mapping [20]. However, the
performance of these systems heavily depend on the presents
of features, and this is limits their usefulness for AUV systems
beside those operating near the bottom of the sea.

Herein, we purpose a novel learning-based underwater lo-
calization scheme using a single light and monocular camera
setup. To achieve pose estimation with a single light, we
employ neural networks to learn the mapping between the
photometric representation of the light in the image to the
distance between the light and the camera.

III. METHOD

In this section, we first introduce the photometric image
formation process, then we will discuss our data collection
process, and present the network configurations.

A. Photometric Image Formation

The amount of radiance L inside the camera FOV from
a light source can be formulated in Eq. 1, where ® is the
radiant flux emitted, A-cos#@ is the projected area normal to the
incident flux, and w is the solid angle [21]. The amount of light
received at the camera sensor is called the Irradiance E, and
it is not always equal to the radiance L due to the vignetting
effect where intensities value drops toward the image boarder
due to lens geometry. This can be modeled by the Cosine-
Forth law [22], where Irradiance at sensor spatial location x
to the light, can be modeled as the product of the vignetting
function V' (z) and the radiance L as formulated in Eq. 2.

L e M
E(x)=V(z)-L (2)
Eiotar(z) =1 E(z) 3)
I(z) =G(t-V(x)cot L) 4)
I(x) = G(t - L(x)) (5)
F(x) = f(G(t- L(x))) (6)

The camera sensor produce an image by opening the shutter
for certain amount of time, which is called the exposure time
t, and the total irradiance captured by the sensor is irradiance
integrated over time, calculated following Eq. 3. The final pixel
intensity, valued from 0 to 255 for an 8-bit image, is mapped
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from the total irradiance by the camera response function
(CRF) G : R — [0,255] [23]. This is computed using Eq.
4.

In scenarios where the camera’s dynamic range cannot
balance the light from the light source against the background
light, we can ignore the vignetting factor, as we are only inter-
ested in the light from the light source, which will saturate the
pixel intensity. Then the image formation equation becomes
Eq. 5, where L is a function of camera spatial location x
because the radiant flux ¢ and solid angle w are constant and
the only changes is in A-cosf which is a function of x. Then,
the goal of the neural network is to learn the function (Eq. 6)
which maps the pixel values, or some features extracted from
the pixel values, to the camera location .

B. Data Collection

The instrument, camera, Apriltag markers, and light, used in
data collection is shown in Fig. 1. A FLIR camera (packaged
inside a 2 inch pressure housing with a flat view port) is used
to collect images in an indoor water tank (7.5 m long, 4 m
wide, 3.3 m deep). A Blue Robotics Lumen light is used as
the source of lighting. Six Apriltag markers (3 on the left
and 3 on the right of the light) are used for obtaining the
ground truth position of the light to the camera. To obtain the
ground truth relative location from the camera to the light,
the relative locations of the AprilTag markers are estimated
first. Then, a fixed transformation is applied to determine the
relative location of the light.

Blue Robotics
Lumen Light

FLIR Camera Apriltags

Fig. 1. The data collection instruments. Left: The FLIR camera used for data
collection. Right: The configuration of Apriltag markers and the Lumen light
for the Middleton tank data collection.

TABLE I
INDOOR TANK DATASET
Exposure Time (ms) 8 10 15 30 Total
Images 1848 770 565 123 | 3306

Before the collection process, a geometric calibration is
performed on the camera using a checkerboard pattern in
the tank. The focus on the FLIR camera is only manually
adjustable, thus it is fixed for the rest of the data collection
process after performing the calibration. During the collection
process, the FLIR camera is configured at 20 fps, and a
constant exposure time (range from 8 ms to 30 ms) is set
during each run.

We placed the camera at nine locations in the indoor tank
to view the light from different distances and angles. Every
fourth frame from the image data is selected, and only images
with at least four detected AprilTags are used to ensure robust
ground truth pose estimation. Overall, a total of 3306 images
are obtained for training and testing. The dataset consists of
images with the distance to the light ranging from 2 m to
7.5 m. This range is limited by the size of the tank and the
minimum distance to get the Apriltags in the field of view of
the camera for obtaining the ground truth location.

Table I listed the numbers of images we obtained at different
exposure time. We used 2214 images for model training,
covering eight locations in the tank and all four exposure time
settings, and the remaining 1092 images are used for testing,
covering four locations with three exposure time settings (8
ms, 10 ms, 15 ms). The train and test sets are separated in
this fashion to ensure that the test set consist only of images
unseen during training, making over fitting to the test set less
likely.

Algorithm 1: Shape Features Extraction

1 Igsvy < cvtColor(Irgs)

/* Segment Light =/
(H,S,V)threshotds (H, S, V)mask < Otsu(Im s,v)
LCrask < Smask & Vimask

LRpask < Hmask & Vinask

/* Find Light Contours =/
LCcontours < findcontOUTs(Lcﬂlask)
LRcontours  findContours(LRpyask)
/+ Find the correct contour =/

7 for contour € LCrontours, LRcontours do
/+ Shape features =/

FSEE RN

o o

8 Areact, Centroider, Eccentet, ...
Roundnessq; < ShapeFeature(contour)

9 if contour € LC.ontours then

10 imaz_area < argmaz(Areact)

/+ Closest to image bottom =/
1 iy < argmax(cy)

12 if imac_area = iy then
13 L LCcontour < LCcontours[’imaz_area]
14 return Areact, Centroid.,, Eccent s
15 Roundnessct, (H,S,V)threshold
16 if contour € LRcontours then
17 tmaz_area — argmaz(Areact)
/+ Closest to light center =/
18 idistance <~ argmin(llCentroidc,, - Lccf”)
19 if i7naz_a7‘ea = tdistance then

LRcontour LRcontom-s[imaw_area]
return Areac:, Centroid.., Eccent s
Roundnessct, (H, S, V)threshold

20
21
22

C. Data Processing

Two deep neural networks are setup to compare the efficacy
for pose estimation. We have configured a lightweight feedfor-
ward neural network (FNN) that requires pre-processing of the
image data, and a more resource intensive convolution neural
network (CNN) that is fully end-to-end. The architectures for
each network is shown in Fig. 2. For CNN, the raw image is
directly treated as the input. In contrast, we extracted several
light features from the image as FNN inputs. For each image,
two distinct features are extracted: light center and light ring.
Light center is the bright saturated area at the light source,
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Fig. 2. The Top: FNN with two 32 neurons hidden layers. Bottom: CNN with 5 convolution layers and 3 fully connected layers.

while the light ring is outside the light center appeared as a
abnormal ring of color that is most likely due to chromatic
aberration.

In order to separate these two features out, we converted
the raw RGB images into Hue (H), Saturation (S), Value (V)
color space. Otsu’s method [24], a method for maximizing the
inter-class variance, is then applied. We applied Otsu’s method
to extract the light center mask (S and V channels) and light
ring mask (H and V channels). The binary images are further
analyzed and we have extracted ten features to be used as
the input for FNN: the pixel location of the light center (P,
and P,), the area and the roundness of the light center and
light ring (Apc, Apgr, Roundnesspc and Roundnesspg),
Otsu’s thresholds (chreshold, Sthreshold’ ‘/threshold)a and the
exposure time of the camera (tczposure). The pseudo-code of
the detailed procedure is shown in Algorithm 1 and 2.

D. Network Setups

Two configurations of feedforward neural network (FNN)
with 2 hidden layers and 3 hidden layers each with 32 neurons
are used. Ten features extracted from image processing are
passed into the FNN. For each configuration, two variants of
FNN are trained. The first one directly outputs the relative
position [x, y, z] values, while the second outputs only predicts
[z] and [x, y] are obtained using the re-projection equations in

Algorithm 2: Shape feature function

1 Function ShapeFeature (contour):
2 M < moments(contour)
/* Contour area =/
3 Areacy < M[mO00]
/% Contour centroid =/
4 cx < int(M[m10]/M[m00])
5 cy + int(M[m01]/M[m00])
6 Centroides + (cx, cy)
/+ Contour eccentricity =/
7 musgg < M[mu20], mui < M[mull]
mugz < M[mu02] // 2nd order moments
8 cov + [[musgg, mui1], [mui1, mugz]]
9 eigval < eigvals(cov)
Eccentcy + /(1 — min(eigval) /maz(eigval))
/* Contour Roundness x/
hull < convex Hull(contour)
perimeter < arcLength(hull)
Roundnessq; < 4 * m * Areaut/(perimeteTQ)
return Areact, Centroides
FEccent.t, Roundness .t

Eq. 7, where P,, P, are the pixel coordinates of the light center
obtained from the shape features, c;, c; and f;, f, are camera
principal point offsets and camera focal lengths obtained from
camera calibration. Both variants of the FNN are trained for
100 epochs with a learning rate of 0.001.
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TABLE II
MEAN ABSOLUTE ERROR (MAE) AND STANDARD DEVIATION OF ABSOLUTE ERROR (0) OF X, Y, Z, AND EUCLIDEAN DISTANCE

Method ‘ Output ‘ MAEy (m) Oz MAEy (m) oy MAE; (m) o2 MAEgp (m) ogp
FNN (32, 32) X, Y, Z 0.21 0.14 0.11 0.09 0.47 0.36 0.56 0.34
FNN (32, 32, 32) X, Y, Z 0.12 0.11 0.10 0.09 0.39 0.22 0.44 0.22
FNN (32, 32) z 0.05 0.06 0.06 0.06 0.51 0.33 0.52 0.33
FNN (32, 32, 32) z 0.04 0.03 0.04 0.03 0.31 0.23 0.32 0.23
CNN X, Y, z 0.17 0.15 0.21 0.28 0.74 0.43 0.83 0.47
CNN (texposure) X, Y, Z 0.10 0.07 0.27 0.27 0.94 0.47 1.02 0.47
CNN Px, Py, z 0.21 0.16 0.40 0.32 1.16 0.61 1.28 0.65
CNN (texposure) Px, Py, z 0.21 0.14 0.22 0.30 1.03 0.53 1.13 0.51

FNN variant that only outputs z has lower MAE, and MAE,

r=Z (P — ) y = 2(Py —¢y) (7) as it directly uses the pixel value of the light center extracted

) . . . .
fa Ty in the light features to re-project back to the world coordinate

Two configurations of convolutional neural network (CNN)
with two variation of outputs are also tested, with the base
convolutional layers adapted from [15]. The first CNN directly
outputs the relative position [X, y, z] values and the second
CNN outputs [Py, Py, z] and the values of [x, y] are obtained
by using Eq. 7. Two variations are tested for each CNN
configuration, one with the input being just the image, and
the second with exposure time as an additional input. The
exposure time is passed through two layers of fully connected
layers to convert into a feature vector of size 128. It is then
concatenated with a feature vector of 4096 from the output of
the convolution layers after passing through a fully connected
layer. This balances the dimension to make the exposure time
have similar influence for the subsequent layers.

The base convolutional module consists of 9 convolutional
layers, with the first 6 layers performing a max pool operation
to shrink the spatial dimension in half. All 9 layers uses a 3
by 3 kernel with a stride of 1 and padding of 1. BatchNorm
operations are applied in each layer. Then, the output from
the final convolutional layer is flatten and passed in to 4 fully
connected layers. The CNN is a fully end-to-end network that
require no manual processing of the data. All configurations
and variants are trained for 100 epochs, with the [x, y, z]
output configuration using a learning rate of 10 and the [P,
Py, z] configuration using a learning rate of 10~.

IV. RESULTS

The Mean Absolute Error (MAE) of X, y, z, and Euclidean
distance (ED) are calculated for each network and are com-
pared in Table II. Euclidean distance is the length of the
line segment between the 3D coordinates of the light and the
camera, and it can be calculated as shown in Eq. 8.

ED=\/(t; =22+ (1 —ye)2 + (21— 202 (8)

From Table II, it is evident that FNN networks generally
outperformed CNN networks. The 3-hidden-layer FNN, which
outputs z, performed the best, achieving the lowest MAE in
[x, y, z, ED], with MAEgp equal to 0.32 m

For the FNN network configurations, 3 hidden layers out-
performed 2 hidden layers with the same output generally. The

[x, y], compared to counterparts that output [X, y, z] that has
to learn the mapping of all light features to [x, y]. MAE, is an
important metrics as it directly compute the error in estimating
the range of the light, and the 3 hidden layers predicted lower
MAE, compared to 2 hidden layers, meaning that it has more
capability in learning the mapping function from light features
to range.

(32,32
FNN{2)

(.N\(t(“ rpr).s"m‘r)

CNNry: szP;/:

Q
~
=
~
=
IS

1 T (f(.T'[I(M‘ ure
CNNzy2

Fig. 3. The largest error in estimating the euclidean distance (ED) from
each network is re-projected back onto the image (cropped). The prediction
is labeled in orange and the ground truth is labeled in red.

For the CNN network configurations, the variants that
output [x, y, z] performed better than the variants that output
[Py, Py, z], indicating that training with the outputs in the same
scale might allow the network to learn the mapping from pixel
values to camera location relative to the light more effectively.

Reason for the worse performance of CNN networks com-
pared to FNN can be seen in Fig. 3. The predictions of the test
set with the worst MAEgp are re-projected back to the image
marked in orange and ground truth marked in red. A surface
reflection of the light can be observed for all pictures, and the
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Fig. 4. The distribution of Mean Absolute Error (MAE) of Euclidean Distance (ED) clustered with ED are plotted for each networks.

CNN s tends to predict a location near the middle between the immediately obvious that for FNNs, the predictions have larger

actual light and reflection. The FNNs have prediction centered error extreme toward further away data. On the other hands,

near the actual light and unaffected by the surface reflection the CNNs produced large error even for closer distance data.

because the surface reflection is filtered out during image It can also be observed for the additional exposure time input

processing for the light features. reduced the error for further away data but has the reverse
impact for closer data.

Furthuermore, the distributions of the MAEgp from the
test set prediction of each networks are plotted in Fig. 4.
Each distribution is based on one location in the test, making In this paper, we proposed the use of learning-based
a total of 4 distributions, and the distribution is plotted at methods for estimating the relative location of the camera
the average euclidean distance of that particular location. It using a single light. We have investigated two styles of

V. CONCLUSION
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neural networks, a feedforward neural network (FNN) and a
convolution neural network (CNN), and tested with multiple
configurations. Data was collected from an indoor tank at
various locations and with various exposure time settings
for the camera. First, we have demonstrated a pipeline for
image processing, and using the feature extracted from the
process, we have successfully trained 2 FNN configurations,
each with 2 variants, and produced a lowest MAEgp of 0.32
m. Second, we have implemented 2 CNN configurations, each
with 2 variants, that is fully end-to-end without any manual
processing or image processing. We have also constructed
a method to include exposure time as a input to the CNN
network. The lowest MAEgp achieved with the CNN is 0.83
m. In future work, we plan to collect data from various water
turbidity levels and utilize acoustic modems to extend the
range at which we can obtain ground truth locations. This
will help expand the effective range of our networks.
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