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Abstract

A key parameter of any bottom-up proteomics mass spectrometry experiment is the identity of the
enzyme that is used to digest proteins in the sample into peptides. The Casanovo de movo sequencing
model was trained using data that was generated with trypsin digestion; consequently, the model prefers
to predict peptides that end with the amino acids “K” or “R.” This bias is desirable when Casanovo
is used to analyze data that was also generated using trypsin, but can be problematic if the data was
generated using some other digestion enzyme. In this work, we modify Casanovo to take as input the
identity of the digestion enzyme, alongside each observed spectrum. We then train Casanovo with data
generated using several different enzymes, and we demonstrate that the resulting model successfully
learns to capture enzyme-specific behavior. However, we find, surprisingly, that this new model does not
yield a significant improvement in sequencing accuracy relative to a model trained without the enzyme
information but using the same training set. This observation may have important implications for future
attempts to make use of experimental metadata in de novo sequencing models.
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1 Introduction

In bottom-up tandem mass spectrometry (MS/MS) proteomics, a digestion enzyme cleaves proteins in a
given biological sample into peptide sequences for further fragmentation and analysis. The enzyme trypsin
is by far the most commonly used due to its reliability and stability, specificity in targeting lysine and arginine
at the C-terminus of the peptide, and consequent tendency to yield peptides with a basic C-terminal residue
which retains a positive charge, allowing for the generation of high quality spectra 2.

Although trypsin is a standard digestion enzyme for MS/MS, the use of alternative enyzmes and even
cocktails of multiple enzymes has been shown to improve peptide detection and proteome coverage in some
settings*4. For example, the use of multiple digestion enzymes can allow for the creation of overlapping
protein fragments, improving peptide detection® as well as protein coverage in the de novo setting. Protein
quantification has also been shown to improve using optimized mixtures of enyzmes beyond just tryptic
digestion©.

In general, for the task of peptide sequencing using database search, accounting for the digestion enzyme
used in an MS/MS experiment is straightforward. Typical database search algorithms perform an in silico
digestion of all the proteins in the database to generate a set of possible peptide sequences based on known
digestion enzyme cleavage rules?. This approach works well, although it inevitably misses peptides that
result from enzymes occurring naturally within the sample, peptides created by non-standard enzymatic
activity, or peptides affected by aminopeptidase trimming and degradation.



Explicitly accounting for these digestion rules is more challenging in the de novo sequencing setting, where
a target peptide sequence is directly inferred from an observed mass spectrum. In recent years, deep learning
models have become the preferred method for de novo sequencing”''. Although such models demonstrate
excellent performance in sequencing proteins from MS/MS data, they are sensitive to the biases in their
training data created by the use of a particular digestion enzyme.

Given the prevalence of trypsin as a digestion enzyme, most deep learning de novo sequencing methods
have been nearly exclusively trained on tryptic data. That the models trained on this data learn a tryptic
bias is sensible. For instance, given a spectrum that can be equally well explained by the sequences “PEP-
TIDEK” and “PEPTIDKE,” the former is a priori preferable given the digestion rules of trypsin. However,
this preference for peptides that terminate with K or R will degrade sequencing performance in settings
where the cleavage sites targeted by a digestion enzyme significantly differ from trypsin. In the example
above, “PEPTIDKE” becomes the preferred sequence under digestion by gluC instead of trypsin. Therefore,
the accuracy of these data-driven de novo sequencing models suffers when they are applied to non-tryptic
data %13,

The problem of augmenting deep learning de novo sequencing methods to account for the diverse digests
generated by non-tryptic peptides has previously been handled in two different ways. First, one can train a
single model on a training set containing a wide variety of digestion enzymes to try to account for as wide
a range of digestion rules as possible. This approach has the advantage of potentially allowing the model to
generalize to many different enzymes or enzyme combinations. Second, one can train a collection of models,
with each one trained exclusively on data generated by a particular enzyme or enzyme cocktail. This approach
avoids the need to balance different types of data during training; however, training a large collection of
models is computationally expensive and may suffer from a lack of available data for less commonly used
digestion enzymes. Moreover, this approach does not allow the model to generalize to settings where an
MS/MS experiment makes use of novel combinations of digestion enzymes. Gueto-Tettay et al. experiment
with both of these approaches, first training models on data generated using a single enzyme and then
training on multi-enzyme datasets to increase their models’ generalizability 3.

In this work, we experiment with a third approach to account for enzymatic digestion: we provide the
model with a representation of the identity of the enzyme used to generate each spectrum, and then we
train the model to condition its predictions accordingly during training and inference. Specifically, we adapt
the Casanovo de novo sequencing model to take into account the identity of the digestion enzyme used to
generate a given precursor peptide. In the new model, Casanovoe,,, each enzyme is mapped to a learned,
high-dimensional latent representation, which is then passed as input to the model’s peptide decoder. To
allow for data generated by cocktails of multiple enzymes, we sum the representations of each individual
enzyme and pass the combined latent representation to the model’s decoder. We train Casanovo.,, on a
dataset consisting of spectra generated from many different digestion enzymes and enzyme cocktails. We
hypothesized that this modification of the Casanovo architecture would significantly improve generalizability
to non-tryptic digests without degrading performance on tryptic data, outperforming a model that is trained
from the same data but without the enzyme embedding.

Surprisingly, this hypothesis turns out to be false. Our empirical results suggest that providing Casanovo
with explicit information about what digestion enzyme was used to generate a given spectrum yields only a
very modest improvement in performance, relative to a model that is trained from the same data without
any explicit enzyme information. We further provide evidence that the model successfully learns the diges-
tion rules associated with a given enzyme, and that labeling spectra with the incorrect enzyme induces a
predictable bias in the terminal amino acid distribution. Based on these results, we therefore trained a new
version of Casanovo using data from a variety of different enyzmes, and we suggest that this single model
be used for data generated using any enzyme or combination of enzymes.

Our motivation for reporting this negative result is three-fold. First, these results may help others to
avoid carrying out similar experiments testing the same or closely related hypotheses. A priori, the idea of
encoding various experimental parameters about a given spectrum, such as its associated collision energy or
the precision of its m/z values, may seem like it would help boost de novo sequencing accuracy. But our
results suggest otherwise. Second, and conversely, our results may spur others to come up with alternative,
creative ways to represent and make use of such metadata in Casanovo or other de novo sequencing tools.
Third, in the course of investigating the behavior of Casanovo and Casanovoe,,,, we uncovered evidence of
significant batch effects, and these observations may be of more general interest. Finally, we also report on



the training and public release of a new Casanovo model that performs substantially better than the previous
model on data generated from non-tryptic digestion without any loss of accuracy on tryptic data.

2 Methods

2.1 Modifying Casanovo to account for digestion enzyme

Casanovo uses a transformer architecture to perform a sequence-to-sequence modeling task, translating from
the sequence of peaks in a spectrum to the sequence of amino acids of the generating peptide. In Casanovo,
each peak in an observed MS2 spectrum is treated as an element in a variable-length sequence. The m/z
and intensity values of each peak are encoded into n-dimensional latent representations using, respectively, a
collection of sinusoidal functions and a learned linear layer, and these encodings are summed. The encoded
peaks are then input into the transformer encoder, where the transformer’s attention mechanism learns the
context between pairs of peaks in the spectrum. The n-dimensional, contextualized peak encodings are then
used as input to the transformer decoder for predicting the peptide sequence.

The decoding process proceeds in an iterative, autoregressive manner. We begin by providing the mass
and charge of the observed precursor. Similar to the m/z and intensity values, the mass and charge are each
encoded into n-dimensional latent representations using, respectively, a sinusoidal function and a learned
linear layer, and these representations are summed. The transformer decoder uses the contextualized peak
encodings and the precursor information to begin predicting amino acids of the peptide. Each amino acid
is encoded into an m-dimensional latent representation by summing the outputs of two linear layers, one
operating on a one-hot encoded representation of the amino acid and one operating on the amino acid
position. To predict the amino acid at position 4, the decoder takes as input ¢ n-dimensional embeddings,
representing the precursor mass and charge as well as the preceding ¢ — 1 amino acids. Casanovo uses a
beam search decoding strategy, where at each decoding step, we retain the top-scoring k& beams, where k is
a user-selected value. In each subsequent iteration, amino acids are added to the decoded peptide sequence,
retaining the top k sequences until the decoded sequences for all of the beams have terminated or exceeded
the precursor mass. Finally, the sequence with the highest score is retained as the putative peptide that
generated the provided MS/MS spectrum. Casanovo also includes a post-processing step in which peptides
whose precursor mass falls outside a specified range (in ppm) from the observed precursor mass receive a -1
score penalty. In this work, we use a fixed 50 ppm threshold for this step.

To modify Casanovo to account for the identity of the digestion enzyme, we only need to change the
decoding process. In the original model, the initial input to the decoder is the summed latent representations
of mass and charge; in the extended model, we also include in this summation a latent representation of the
enzyme. The enzyme identity is represented implicitly as a Boolean vector, with a single “1” corresponding
to the selected enzyme. This one-hot encoding vector is then mapped to a k-dimensional latent vector via
a learned embedding layer. For peptides digested by multiple enzymes we map each “component” enzyme
to its own learned latent representation and then sum these latent vectors together, effectively treating the
output as a superposition of the latent representations for each component. Everything else in the decoder,
including the beam search procedure, remains unchanged. From the user’s perspective, this change requires
specifying an additional “digest” option associated with a given spectrum file.

In this work, all of Casanovo’s hyperparameters (e.g., the number of transformers in the encoder and
decoder, the number of heads per transformer, etc.) are as previously described!2. The one exception is
that, for efficiency reasons, the experiments reported in Sections 3.2-3.4 use six-layer rather than nine-layer
transformers. When we train our final model in Section 3.5, we use the nine-layer architecture.

2.2 Augmenting Casanovo with an enzyme classifier

We implemented a variant of Casanovo that incorporates an enzyme classifier (Section 3.3). The classifier
is a single, fully connected layer that takes as input the logits produced by the decoder transformer for
the C-terminal amino acid. The classifier uses this information to predict which enzyme was responsible for
generating the given spectrum. During training, this classifier is trained jointly with the rest of the Casanovo
model by summing the two cross-entropy loss terms.



Enzymes Runs MSV IDs PSMs

lys-C 8 5 316873
glu-C 8 5 214657
chymotrypsin 8 3 180435
arg-C 8 2 114684
lys-N 6 1 49542
asp-N 8 2 45269
lysarginase 6 2 14967
asp-N, trypsin 6 1 10582
glu-C, trypsin 6 1 8863
elastase, trypsin 6 1 8027
chymotrypsin, trypsin 6 1 7923
arg-C, asp-N 6 1 7760
asp-N, glu-C 6 2 7745
asp-N, chymotrypsin 6 1 6377
lys-C, elastase 6 1 6326
asp-N, elastase 6 1 6276
glu-C, lys-C 6 1 6273
asp-N, lys-C 4 1 6233
arg-C, glu-C 6 1 6119
glu-C, elastase 6 1 5516
elastase 6 1 5488
lys-C, chymotrypsin 6 1 5437
chymotrypsin, elastase 6 1 5347
arg-C, chymotrypsin 6 1 5265
glu-C, chymotrypsin 4 1 5192
arg-C, elastase 4 1 4877
arg-C, elastase, trypsin 6 1 4346
arg-C, lys-C, trypsin 6 1 3917
arg-C, chymotrypsin, trypsin 6 1 3707
glu-C, elastase, trypsin 6 1 2726
glu-C, lys-C, trypsin 6 1 2658
chymotrypsin, elastase, trypsin 6 1 2416
glu-C, chymotrypsin, trypsin 6 1 2335
arg-C, glu-C, lys-C 6 1 2269
arg-C, glu-C, trypsin 6 1 2255
glu-C, chymotrypsin, elastase 6 1 2245
lys-C, chymotrypsin, trypsin 6 1 2245
glu-C, lys-C, elastase 6 1 2218
arg-C, lys-C, elastase 6 1 2072
lys-C, chymotrypsin, elastase 6 1 1906
arg-C, chymotrypsin, elastase 6 1 1854
glu-C, lys-C, chymotrypsin 6 1 1821
arg-C, glu-C, chymotrypsin 6 1 1808
arg-C, glu-C, elastase 6 1 1782
lys-C, elastase, trypsin 6 1 1721
arg-C, lys-C, chymotrypsin 6 1 1630
Total 1,109,984

Table 1: Datasets employing various digestion enzymes. The columns indicate the total number of
runs, the number of experiments (i.e., distinct MassIVE IDs), and the number of PSMs associated with each
enzyme or combination of enzymes.

2.3 Data

In this work, we draw training, validation, and test data from two sources.

The first source, which we refer to as the “tryptic data,” is the data that was previously used in the
development of Casanovo'?. It consists of ~30 million PSMs from the MassIVE knowledge base (MassIVE-
KB; v.2018-06-15) ', all from experiments using trypsin. These 30 million PSMs were previously randomly
split so that the training, validation, and test sets are disjoint at the peptide level, yielding approximately
28 million training PSMs, 1 million validation PSMs, and 1 million test PSMs.

The second source, the “multi-enzyme data,” is a collection of ~1.1 million peptide-spectrum matches
(PSMs) from MassIVE-KB v2.0.15, annotated as “proteomics experiments digested with various different
enzymes.” The data includes PSMs from 812 mass spectrometry runs, using nine different digestion enzymes:
arg-C, asp-N, chymotrypsin, elastase, glu-C, lys-C, lys-N, lys-arginase, and trypsin (Table 1). We first
removed a set of 16,302 PSMs that had been produced by digestion with three different combinations of
enzymes: arg-C and elastase; asp-N and lys-C; and glu-C and chymotrypsin. We then randomly split the
remaining PSMs into training, validation, and testing sets in two stages. First, we placed PSMs involving
peptides that appear in the MassIVE-KB data into the appropriate subset. Second, PSMs involving peptides
that do not appear in the MassIVE-KB set were segregated at the peptide level into train, test, and validation



MassIVE ID Enzyme Spectra PI Subset

MSV000083508 arg-C 110,664 Kuster Train
MSV000081607 arg-C 4,020 Mirzaei Test

MSV000083508 asp-N 26,126 Kuster Train
MSV000081607 asp-N 19,143 Mirzaei Train

MSV000081563 chymotrypsin 90,521  Olsen Train
MSV000083508 chymotrypsin 81,363 Kuster Train
MSV000081607 chymotrypsin 8,551 Mirzaei Test

MSV000083982  glu-C 8,015 Xu Train
MSV000086491 glu-C 63,169 Xu Train
MSV000081563 glu-C 90,576  Olsen Train
MSV000083508 glu-C 41,297 Kuster  Test

MSV000081607 glu-C 11,600 Mirzaei Train
MSV000081563 lys-C 110,981 Olsen Train
MSV000083508 lys-C 63,016 Kuster Test

MSV000086491  lys-C 77,062 Xu Train
MSV000083982  1ys-C 57,796 Xu Train
MSV000081607 lys-C 8,018 Mirzaei Train

Table 2: Details of the batch-aware splits.

with a ratio of approximately 8:1:1. We used the multi-enzyme test set to evaluate tryptic bias in Figures 1
and Figure 5B, and we used the tryptic test set in Figure 5A. This procedure resulted in a train-test-validation
split of, respectively, 883,281, 104,946, and 105,455 PSMs.

For the final analysis in Figure 5, we used a simpler split of our original dataset, repeating the above
procedure but without eliminating the 16,302 PSMs mentioned above. This resulted in a final train-test-
validation split of 896,373, 106,933, and 106,678 PSMs, respectively.

For training and evaluation of Casanovo with an enzyme embedding (Figures 2-3, Section 3.2-3.3) we
further downsampled our data to make trypsin less common. Starting from the combined multi-enzyme
and trypsin training, validation, and test splits, we randomly downsampled the number of tryptic PSMs to
277,045 training and 27,437 test and validation set PSMs. These values were chosen to approximate those
of the highest frequency enzyme classes (glu-C and lys-C) to prevent the problem of severe class imbalance
due to tryptic training data. Finally, we created a test set of 200,000 PSMs from MassIVE-KB, subsampled
from the aforementioned 1 million test PSMs, which we used to evaluate the tryptic sequencing performance
of all of our models.

2.4 Batch-aware splitting procedure

In Section 3.4, to avoid leakage of batch-level information between the training and test set, we designed an
additional train/test split that ensured that all spectra associated with a given MassIVE accession number
were grouped together (Table 2). In this splitting procedure, we also aimed to keep all data associated with a
given lab in either the train or the test set. Enzymes such as elastase and lysarginase were excluded entirely,
because we only had data for these enzymes from a single lab. For the remaining five enzymes, we designed
the splits to allocate more spectra to the training than the test set. Ultimately, our training set contained
713,286 spectra, and our test set contained 120,658 spectra. This dataset was used to generate Figure 4.

3 Results

3.1 The existing Casanovo model exhibits a tryptic bias

Before setting out to modify Casanovo to take in information about digestion enyzmes, we first quantified
the extent to which the existing Casanovo model exhibits a tryptic bias. The model distributed with
Casanovo version v4.1.0 was trained from a set of 28 million spectra, all of which were generated using
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Figure 1: Casanovo has a tryptic bias at the C-terminus. Each panel corresponds to a different
digestion enzyme. Each vertical bar indicates the frequency of an amino acid at the C-terminus of Casanovo’s
incorrect predictions. Each enzyme group includes bars for “K” and “R” as well as each of the expected C-
terminal amino acids for that enyzme. Horizontal lines indicate the corresponding frequencies in the ground
truth set of peptides.

tryptic digestion!2. To evaluate the extent of enzymatic bias in this model, we ran Casanovo v4.1.0 on a

data set consisting of 106,933 PSMs from MassIVE-KB v2.0.15, generated by five different enzymes. For
this experiment, we excluded spectra generated using combinations of enzymes as well as enzymes with
N-terminal digestion rules. For each enzyme, we considered only those PSMs for which Casanovo made
an incorrect prediction, and we analyzed the frequency of different amino acids at the C-terminus of these
predictions.

The results of this analysis suggest that Casanovo’s errors frequently involve incorrectly predicting a K or
R at the C-terminus, in agreement with the tryptic digestion rule (Figure 1). Casanovo exhibits the greatest
bias towards K and R and against the expected digestion sites for the enzymes chymotrypsin, elastase,
and glu-C. For arg-C, which typically cleaves only after R, Casanovo over-predicts peptides that end in K.
Conversely, for lys-C, which typically cleaves only after K, Casanovo under-predicts peptides that end in K
and over-predicts peptides that end in R.

3.2 Adding enzyme embeddings to Casanovo does not improve performance on
nontryptic data

We hypothesized that providing Casanovo with information about the digestion enzyme during training will
allow the model to capture enzyme-specific biases in the distribution of terminal amino acids, improving the
accuracy of predictions. To test this hypothesis, we trained a modified version of Casanovo, Casanovo,,
that includes the digestion enzyme embedding in the decoding step. The training set included the data sets
described in Section 2.3: ~277,045 PSMs from MassIVE-KB and ~883,281 PSMs from the multi-enzyme
training set. As a control, we also trained Casanovo on the same data, but without the use of an enzyme
embedding. We then evaluated our two models, Casanovoe,, and Casanovo, on a held out multi-enzyme
dataset consisting of 105,455 nontryptic PSMs generated with nine different digestion enzymes in 43 distinct
combinations.

Suprisingly, the enzyme-aware model shows only a very small improvement in performance relative to
the standard model trained on the same data (Figure 2A). In particular, we observe a 2.3% improvement in
the average precision when we include enzyme information in the model. We also evaluated the performance
of both models on a held out dataset of 200,000 PSMs from MassIVE-KB generated with a tryptic digest.
We find that the models yield nearly identical average precisions in this setting (Figure 2B).
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Figure 3: Evaluating C-terminal biases. (A-C) Each panel plots, for a given digestion enzyme, the
frequency of C-terminal amino acids among the “true” peptides in the gold standard (horizontal line), the
peptides predicted by Casanovo (orange), and the peptides predicted by Casanovoey,, (blue). Only the amino
acids “K” and “R” plus amino acids corresponding to expected cleavage sites are included in each plot. The
three panels correpond to the three enzymes with the most associated data. (D) Similar to panels A-C, but
for glu-C data that was relabeled as being generated using chymotrypsin.



To investigate whether including the enzyme embedding biases Casanovoe,,’s predicted peptide se-
quences, we compared the distributions of C-terminal amino acids predicted by Casanovo and Casanovoey,,
on the held-out test set. In this analysis, we segregated the spectra into groups based on the digestion enzyme
and plotted the frequency of each C-terminal amino acid for the two models. The results of this experiment
(Figure 3A—C) mirror the evaluations of the two models’ average precision on the multi-enzyme test set:
both models perform approximately equally as well at predicting the expected terminal amino acids.

To further investigate this enyzme-specific bias, we performed a second experiment in which we intention-
ally mislabeled some of the data at test time. Specifically, we extracted from the test set all spectra generated
by glu-C, and we relabeled the data as chymotrypsin. The model’s C-terminal amino acid predictions show
a marked shift towards the expected chymotrypsin distribution, which nominally cleaves after F, W, Y, and
L (Figure 3D). Thus, we conclude that the model is successfully learning the digestion rule associated with
a given enzyme.

3.3 Modifying Casanovo to incorporate an enzyme classifier suggests that batch
effects may be at play

One possible explanation for the relatively small performance improvement offered by the enzyme embeddings
is that Casanovoe,, is not paying enough attention to the enzyme component of its input. We therefore
designed a modified version of Casanovo with the aim of encouraging the model to retain and make use of
the enzyme information. This modification involves adding to Casanovo a simple linear layer classifier that
takes as input the latent embedding produced after decoding the first amino acid and aims to predict the
identity of the enzyme associated with the spectrum (details in Section 2.2). The new model has two terms
in its loss function: the original cross-entropy loss employed by Casanovo that compares the observed and
predicted peptide sequences, plus a second cross-entropy term that compares the observed and predicted
enzyme. We created two variants of this classifier-enhanced model, one that includes the enzyme embedding
in its input (Casanovo®®**) and one that does not (Casanovo®®**). Note that, because Casanovo.%** receives
the enzyme identity as part of its input, we expected that the model should be able to easily re-identify the
enzyme based on the latent embeddings produced during decoding.

We started by comparing the performance of the Casnovoe,, model with and without the auxiliary
enzyme classifier. As expected, we found that the Casanovo<l2*s model does an excellent job at the enzyme
classification task, achieving an accuracy of 100.0% when evaluated on an independent test set. However,
we also observed that this same model performs slightly worse than a model that does not include the
auxiliary classifier: the average precision on the test set changes from 68.8% for Casanovo.,, to 66.1%
for Casanovol®s. Thus, it appears that encouraging the model to retain the identity of the enzyme by
incorporating the classifier in the loss function is not helpful.

Next, we investigated the effects of adding the enzyme classifier to a Casanovo model that does not
receive the enyzme identity in its input. We found that adding the classifier to the Casanovo model actually
caused its performance to deteriorate by a substantial amount, with the test set average precision dropping
from 66.5% for Casanovo to 50.4% for Casanovo®®s*. Apparently, forcing the model to try to ascertain
the identity of the associated enzyme, which is presumably a difficult task, hindered the model’s ability
to carry out accurate de novo sequencing. Intriguingly, however, we also observed that Casanovo®?®** was
surprisingly good at identifying the enzyme associated with a given spectrum, achieving a test set accuracy
of 82.6%. Indeed, we conjectured that this accuracy is higher than should be achievable in principle, even
in conjunction with a perfectly accurate de novo sequencer.

To test this conjecture, we carried out a simple experiment, in which we trained a classifier to predict
the identity of the enzyme associated with a spectrum, when given as input the associated peptide sequence.
Specifically, we encoded the peptide sequence into 60 features, with 20 representing the identity of each of
the terminal amino acids, and 20 representing the counts of amino acids in the remaining (non-terminal)
positions of the peptide. We used as a classifier a single linear layer similar to the one used in Casanovo®®ss.
When trained and evaluated on the same set of spectra, this classifier achieves an accuracy of only 58.2%,
substantially lower than the 82.6% accuracy achieved by Casanovo®®*$. From these observations, we conclude
that when we ask Casanovo®?*® to identify the enzyme associated with a given spectrum, the model may
instead be learning to identify batch effects associated with this spectrum.
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Figure 4: Comparing two Casanovo models using batch-aware splits.

3.4 After eliminating batch effects, the enzyme embedding is still not helpful

Based on these analyses, we returned to our original analysis, but we modified the way spectra are randomly
partitioned with the aim of eliminating leakage of batch-level information between the training and test sets.
For this purpose, we used the MassIVE accession number as a proxy for batch effect, and we carried out a
splitting procedure that places some MassIVE accessions in the training set and others in the test set while
at the same time ensuring that (1) MassIVE accessions from the same lab are kept together, (2) each enzyme
is represented in the training set and the test set, and (3) no peptides are shared between the training and
test sets (details in Section 2.4). The splitting procedure placed five MassIVE accessions in the training
set and two in the test set, yielding a total of 713,286 training PSMs and 120,658 test PSMs. The dataset
contains data associated with the enzymes glu-C, arg-C, lys-C, lys-N, and asp-N.

Repeating our training and testing procedure using Casanovo®?** strongly supports the conclusion that,
in our previous experiments, the classifier was learning to identify batch effects rather than inferring the
enzyme identity: when we split in a batch-aware fashion, the classifier’s accuracy drops from 82.6% to
17.8%. It seems likely that the initial classifier was able to identify properties of the spectra that differ
systematically across experiments.

In light of this result, we repeated the comparison of Casanovo and Casanovo.,,. We reasoned that,
now that Casanovo cannot “cheat” by using batch-level information as a surrogate for the enzyme identity,
the enzyme embedding might allow Casanovo.,, to substantially improve its performance relative to the
no-embedding model.

Surprisingly, this expectation turned out again to be incorrect: using the batch-aware splits, Casanovo,,,,
improves upon Casanovo by only a very small amount (1.2% average precision, Figure 4). The batch effects
in our previous experiment led us to conjecture that Casanovo,,, was able to improperly infer the identity
of the generating enzyme based on other properties of the spectrum, but having controlled for those batch
effects, we now conclude that knowing the enzyme identity appears not to be as beneficial to Casanovo as
we had expected a priori.

3.5 Training a new version of Casanovo that includes multi-enzyme data

Providing a version of Casanovo that works well on data that was generated using enzymes other than
trypsin is still an important goal. However, in light of the modest performance improvement that we
observed from adding an enzyme embedding to Casanovo’s architecture, we opted for the simpler strategy
of simply re-training Casanovo on training data generated using multiple enzymes. Specifically, we trained
a standard 9-layer version of Casanovo on a combination of our multi-enzyme training set (896,373 PSMs
from 46 different enzymes) and 2,000,000 tryptic PSMs randomly selected from MassIVE-KB. We selected
this training set size based on empirical results suggesting that Casanovo’s test set performance plateaus
when trained on increasingly larger subsets of the MassIVE-KB data!2. The training procedure converged
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Figure 5: Comparison of the old and new Casanovo models. (A) On a held-out test set of tryptic
data, the old and new Casanovo models perform similarly. (B) On a test set containing non-tryptic data,
the new model improves upon the old model. (C—-G) Comparison of tryptic bias in old and new Casanovo
models. Each panel corresponds to a different digestion enzyme. Each vertical bar indicates the frequency
of an amino acid at the C-terminus of Casanovo’s incorrect predictions. Each enzyme group includes bars
for “K” and “R” as well as each of the expected C-terminal amino acids for that enyzme. Horizontal lines
indicate the corresponding frequencies in the ground truth set of peptides.




after seven epochs of training. We compared the performance of our previous model, v4.0.0, and the newly
trained model, v4.2.0, on our multi-enzyme test set as well as a test set of 200,000 MassIVE-KB PSMs.

The results of this experiment show that adding multi-enzyme data to the training set leads to no
reduction in sequencing performance on tryptic data and markedly improved performance on non-tryptic
data. On the tryptic test set, the two models exhibit very similar average precision values of 0.953 and 0.950
for v4.0.0 and v4.2.0, respectively (Figure 5A). In contrast, on the multi-enzymatic test set, the new model
achieves a boost of 12.8% in average precision, from 0.561 for v4.0.0 to 0.689 for v4.2.0 (Figure 5B). Note
that, because the peptide assignments for the tryptic and multi-enzyme data sets were made using different
protocols, we do not expect the average precision values to be comparable between these two test sets.

To further validate the performance of Casanovo v4.2.0, we repeated our first experiment, in which we
compared the frequency of C-terminal amino acids between the model’s predictions and the ground truth.
Reassuringly, the new model does a markedly better job than the old model at correctly matching the
C-terminal distribution (Figure 5C-G). The only notable remaining bias appears at lysine C-termini for
elastase, for which the tryptic bias is reduced by half but not eliminated. This residual bias may be because
our training data contained the smallest number of elastase training examples, relative to the other enzymes.
Overall, these results suggest that simply adding non-tryptic data to the training set can dramatically reduce
the observed tryptic bias.

4 Discussion

Our experiments lead us to several important conclusions. First, from a practical standpoint, it appears that
providing Casanovo with information about the digestion enzyme provides only a very modest improvement
in performance—on the range of 1-2% in our experiments. We made the decision not to push this modification
into the released version of Casanovo because this small improvement must be weighed against the additional
complexity associated with adding this embedding functionality. Nonetheless, we provide a new model that
delivers substantially improved performance on non-tryptic data while maintaining Casanovo’s excellent
performance on tryptic data.

Several caveats come with this first observation. For example, the quality and variety of non-tryptic
data could potentially impact the utility of this embedding; i.e., if we had 10 times the data of much
higher quality then the embedding might be more useful. In addition, it is possible that hyperparameter
optimization—selecting the dimensions of the model or the learning rate parameters—might have an impact
on our results.

Our second conclusion is that the experiments in Section 3.2 suggest that Casanovo may be capable
of identifying and exploiting batch effects. This observation has implications for how train/test splits are
created for Casanovo and other deep learning de novo sequencing models, to ensure that test PSMs come
from different experiments than training PSMs. This type of batch-aware splitting will likely be especially
important for data-limited settings in which the data is derived from a small number of experiments. Thus,
quantifying the impact of these batch effects on performance with respect to a larger variety of datasets
seems like a potentially fruitful direction.

Although our primary result here is negative, we are not giving up entirely on the idea of encoding
metadata into the input of Casanovo. Our experiments suggest that knowing the enzyme identity is not very
helpful; however, other types of metadata—sample preparation details, liquid chromatography conditions,
and instrument type and settings—may be useful in boosting the predictive accuracy of de novo sequencing
methods like Casanovo. Exploring how best to incorporate such information into deep learning methods is
a promising avenue for future research.

Data availability Data used for training and inference as well as model predictions used to generate
results are available on Zenodo at https://doi.org/10.5281/zenodo.12587317.
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