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Abstract 
In order to deal with a complex environment, animals form a diverse range of neural 

representations that vary across cortical areas, ranging from largely unimodal sensory input to 

higher-order representations of goals, outcomes, and motivation. The developmental origin of 

this diversity is currently unclear, as representations could arise through processes that are 

already area-specific from the earliest developmental stages or alternatively, they could emerge 

from an initially common functional organization shared across areas. Here we use 

spontaneous activity recorded with two-photon and widefield calcium imaging to reveal the 

functional organization across the early developing cortex in ferrets, a species with a well 

characterized columnar organization and modular structure of spontaneous activity in visual 

cortex. We find that in animals 7-14 days prior to eye opening and ear canal opening, 

spontaneous activity in both sensory areas (auditory and somatosensory cortex, A1 and S1, 

respectively) and association areas (posterior parietal and prefrontal cortex, PPC and PFC, 

respectively) showed an organized and modular structure that is highly similar to the 

organization in V1. In all cortical areas, this modular activity was distributed across the cortical 

surface, forming functional networks that exhibit millimeter-scale correlations. Moreover, this 

modular structure was evident in highly coherent spontaneous activity at the cellular level, with 

strong correlations amongst local populations of neurons apparent in all cortical areas 

examined. Together, our results demonstrate a common distributed and modular organization 

across the cortex during early development, suggesting that diverse cortical representations 

develop initially according to similar design principles.  

Significance Statement 
How the diversity of functional organization across brain areas emerges during 

development is unclear. By imaging spontaneous activity in both sensory and higher order 

cortices, we find that a distributed and modular functional architecture with long-range 

correlations is a common feature of the developing cortex. This suggests that instead of 

displaying area-specific specializations already from early development, cortical areas that 

ultimately reflect diverse representations develop from an initially similar structure. These 

modular functional networks exhibits strong quantitative similarity across areas, suggesting that 

similar organizing principles might operate throughout the early cortex. Our findings therefore 

suggest a common modular organization might serve as a generic cortical substrate upon which 

later area-specific influences generate the functional specificity found in the mature brain.  
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Main text 

Introduction 
The information represented by neural activity varies greatly across different regions of the 

neocortex. Neurons in primary sensory areas encode specific features of the external 

environment, for example visual orientation (1) or auditory frequency (2), whereas neural activity 

in higher-order association areas represents complex aspects of both internal and external 

state, such as motivation and goal-directed planning (3, 4). The functional specification of these 

diverse cortical areas and their varied neural representations is thought to begin at the earliest 

stages of nervous system development with coarse gradients of gene expression that establish 

the rough layout and identity of cortical areas, which are then refined in an activity-dependent 

manner (5, 6). This refinement is initially driven by structured patterns of endogenously 

generated spontaneous activity and, subsequently, by sensory experience (7). The sources of 

these early cortical spontaneous patterns are themselves area specific, involving, for instance, 

spontaneous activity in modality-specific inputs from the sensory periphery such as the retina, 

cochlea, or whisker pad (8). Moreover, the onset of sensory stimulation varies greatly across 

sensory cortical areas, with orderly peripheral input to somatosensory cortex already occurring 

prior to birth (9), whereas normal visual experience is only achieved with eye opening, which in 

several species, including mice and ferrets, takes place several weeks later (10).  

Thus, in order to build a diversity of representations, the early functional organization of 

these endogenously generated networks might be expected to already vary considerably across 

areas of the developing cortex, tailored towards the area-specific representations of the mature 

brain. However, currently we lack a clear understanding of the degree to which the organization 

of these early networks, and the processes leading to the development of mature 

representations, actually varies across neocortex. This leaves open an intriguing alternative 

possibility – that network structure across diverse cortical areas is initially shaped by generic 

and cortex-wide mechanisms, giving rise to a functional organization common to all cortical 

areas before later undergoing diversification through experience-dependent processes.  

The columnar architecture in the primary visual cortex (V1) of primates and carnivores (11), 

such as the ferret, provides a particularly well-suited point of reference for exploring where the 

developing cortex operates on this spectrum between diversity and uniformity.  Here, nearby 

neurons share similar selectivity for stimulus features, such as orientation, which are organized 

into repetitive patterns in which patches or modules of co-tuned neurons several hundred 

microns in diameter are distributed across the cortical surface, giving rise to the well-known 
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maps of stimulus features (12–17). Notably, this distributed modular representational 

architecture is also reflected in the organization of functional networks during spontaneous 

activity, with strong correlations between co-tuned modules extending across millimeters (18–

20). This modular spontaneous activity is already apparent during early development, where 

correlated network activity more than a week prior to eye opening predicts features of the future 

columnar orientation preference map (20).  

Such a modular organization has been hypothesized to be a fundamental unit of cortical 

computation (reviewed in (21)). Indeed, functional modules reflecting stimulus features have 

been reported in other sensory cortices, including the visual areas V2 (22), V4 (23), MT (24) and 

IT (25). Likewise, although the functional mapping of stimulus features across the cortex is 

arguably less clear than in visual areas, functional modules have also been reported in auditory 

cortex (26–28) and somatosensory cortex (29, 30), building on the roughly linear topographic 

mappings of cochleotopy (2) and somatotopy (31). Similarly, the anatomical clustering of inputs 

carrying distinct streams of information has been observed in higher-order areas, including 

prefrontal cortex (32). However, throughout most of neocortex, little is known about the 

functional organization of cortical networks at an early stage in development and whether such 

networks exhibit this modular structure.  

Therefore, in order to determine if the modular functional organization that is a hallmark of 

V1 and already apparent at an early age is also present elsewhere in the early developing 

neocortex, we investigated the patterns of ongoing spontaneous activity in multiple distinct 

cortical areas on both millimeter and cellular scales, examining both primary sensory (auditory - 

A1, somatosensory - S1, and visual - V1) and higher-order association cortices (posterior 

parietal cortex - PPC and prefrontal cortex - PFC) in the ferret. Critically, measuring 

spontaneous activity allows us to both compare network organization across multiple brain 

regions without relying on precisely designed stimulation paradigms for each area, which is a 

considerable challenge beyond primary sensory areas; and also to examine network structure at 

an early stage in development when sensory drive is still limited. Using this approach, we 

demonstrate a common modular organization showing quantitative similarity at both the cellular 

and columnar scale across both sensory and association areas in early development. 

Additionally, in all areas examined, spontaneous activity exhibited distributed and modular 

correlations extending across millimeters, demonstrating the presence of a common functional 

network structure. Our results therefore indicate that highly diverse cortical areas emerge from a 

common architecture of functional organization in early development.  
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Results 
Spontaneous activity is modular across diverse cortical areas 

To assess the mesoscopic functional organization in different cortical areas, we performed 

widefield imaging of virally expressed GCaMP6s (33) in the developing ferret cortex (P21-24), 

targeting both primary sensory (V1, A1, S1) and association areas (PPC, PFC) (Figure 1a,b). 

This age is approximately 7-14 days before eye-opening and ear canal opening in the ferret, 

and is a time in which neural activity in V1 is both highly modular and already exhibits long-

range correlations that reflect aspects of future columnar representations of visual features (20). 

Spontaneous activity was imaged under light isoflurane anesthesia, conditions which were 

previously shown in V1 to preserve the modular spatial characteristics of spontaneous activity 

found in awake animals (20).  

We found that spontaneous activity in the primary sensory areas A1 and S1 (in addition to 

V1 as previously shown) exhibited pronounced modular spatial structure. Events consisted of 

multiple patches of elevated activity, each several hundred microns in diameter, that were  

distributed across the approximately 3 millimeter field of view (Figure 1c-d, Fig. S1, Movies S1-

5). The patterns of active modules varied across spontaneous events in each area, showing a 

range of modular patterns. We next turned to the association areas PPC and PFC, where 

spontaneous activity in both regions was likewise strongly modular and appeared highly similar 

in structure to sensory areas (Figure 1c,d). In all areas, the temporal autocorrelations across 

activity decayed to near zero within 10 sec (Fig. S2), indicating the lack of temporal correlations 

on long timescales. Thus, spatially organized, modular patterns of functional activity appear to 

be a common feature shared across areas in the developing ferret cortex.  

To quantify this modular structure, we first used the spatial autocorrelation function 

computed for each event to calculate event modularity across cortical areas, which assesses 

the regularity in size and spacing of patchy activity patterns (see Methods, Fig. S3a-c). When 

examined across areas, we found that activity in all cortical regions exhibited highly significant 

modularity versus surrogate controls drawn from frames without spontaneous events (25 of 25 

FOVs significant vs. surrogate at p<0.01, bootstrap test), that did not differ significantly across 

areas (Figure 1e, (mean ± SEM) PFC: 0.10 ± 0.01 (n = 1252 events from 6 animals, see table 

S1); PPC: 0.10 ± 0.01 (n = 1228 events, 5 animals); A1: 0.10 ± 0.01 (n = 1931 events, 4 

animals); S1: 0.10 ± 0.01(n = 1092 events, 5 animals); V1: 0.11 ± 0.01 (n = 1971 events, 5 

animals); Kruskal-Wallis (KW) test H(4) = 0.24, p = 0.993). We next computed the wavelength of 

modular activity from event autocorrelation patterns (see Methods, Fig. S3c), likewise finding 
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that the spatial wavelength of events was also highly similar across cortical areas (Figure 1f, 

(mean ± SEM) PFC: 0.92 ± 0.01 (n = 6 animals); PPC: 0.87 ± 0.04 (n = 5); A1: 0.84 ± 0.04 (n = 

4); S1: 0.83 ± 0.03 (n = 5); V1: 0.86 ± 0.02 (n = 5); KW: H(4) = 7.33, p = 0.120). Notably, this 

common wavelength was similar to that observed for functional maps of orientation preference 

in mature V1(34). To assess the degree to which activity was localized to modular patches 

versus more diffuse and widespread activity, we computed the amplitude of activity within 

modular domains compared to surrounding cortex (termed ‘module amplitude’). Module 

amplitude was strong and generally similar across areas, although amplitude was significantly 

lower in S1 and higher in V1 relative to some other areas, indicating that, quantitatively, they 

exhibited subtle differences in their modular structure (Figure 1g, (mean ± SEM) PFC: 2.72 ± 

0.19 (n = 6 animals); PPC: 2.92 ± 0.10 (n = 5); A1: 3.09 ± 0.16 (n = 4); S1: 2.38 ± 0.13 (n = 5); 

V1: 3.74 ± 0.28 (n = 5); KW: H(4) = 16.28, p = 0.03; post-hoc: PPC vs. S1: p=0.0240, A1 vs. S1: 

p=0.0101, V1 vs. S1: p=0.0001, PFC vs. V1: p=0.0011, Table S3). Together, these results 

demonstrate that in the developing cortex, modular functional organization is a common feature 

that is shared across both sensory and association areas.  

Long-range correlated networks exist within diverse cortical areas 

A central feature of the functional organization in visual cortex of carnivores and primates is 

that activity is not only modular, but it also exhibits long-range correlations in activity (35) that 

are distributed across the cortical surface such that specific sets of spatially distributed modules 

tend to be co-active. These long-range correlations define functional cortical networks and are 

already present in V1 in early development, going on to reflect aspects of the mapped selectivity 

for visual features (20) and corresponding clustered long-range horizontal connections present 

in mature animals, which are thought to link similar feature detectors across different locations 

in the visual field (36–38). It is possible that such a correlated network structure exists in other 

cortical areas that also exhibit modular activity. Alternatively, the activity of individual modules in 

these regions could be independent of each other, reflecting only local coherence within 

modular domains, but not the presence of millimeter-scale functional networks. To address this, 

we computed the spatial correlation of activity across all events imaged in each area. We found 

that in both sensory and association areas, the pattern of correlations over spontaneous events 

exhibited both strong positive and negative correlations that extended over multiple millimeters, 

covering our full imaging window (Figure 2a).  In all cases, the spatial pattern of correlations 

varied for different seed points within the field-of-view (Figure 2a, Fig. S4), indicating the 

presence of multiple distinct functionally correlated networks within each brain area.  
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We next compared the strength of these correlations as a function of distance, finding that 

correlations in spontaneous activity were statistically significant vs. surrogate data up to at least 

2 mm away from the seed point (the limit imposed by our FOV size) in all areas examined 

(Figure 2b; 24 of 24 FOVs significantly different from shuffle control, 1 A1 FOV excluded due to 

size limitations), and were similar across areas, with a non-significant trend towards weaker 

correlations in V1 relative to other areas (PFC: 0.43 ± 0.03 (mean ± SEM)  (n = 6 animals); 

PPC: 0.42 ± 0.03 (n = 5); A1: 0.34 ± 0.09 (n = 3); S1: 0.43 ± 0.03 (n = 5); V1: 0.30 ± 0.02 (n = 

5), KW:H(4) = 8.66 p = 0.070). Similar results were obtained when we alternatively assessed 

correlation strength through the variance of pixelwise correlations, and when controlling for the 

finite number of spontaneous events recorded in each imaging session (Fig. S5). 

The presence of these strong long-range correlations suggests that the patterns of active 

modules across spontaneous events occupies a constrained and low dimensional space of all 

possible activity patterns, where not all possible combinations of all possible module locations 

are equally likely to occur. To assess this, we computed the principal components (PCs) over all 

events within an area, finding that the leading PCs exhibited a clear modular structure (Fig. S6), 

and that the majority of the variance across events could be explained by a relatively low 

number of PCs (Figure 2c, left; PCs for 75% variance: (mean ± SEM) PFC: 6.0 ± 0.73 (n = 6 

animals) (mean ± SEM); PPC: 8.8 ± 0.58 (n = 5); A1: 8.5 ± 0.96 (n = 4); S1: 6.0 ± 0.95 (n = 5); 

V1: 9.4 ± 0.68 (n = 5)). We confirmed this by computing the participation ratio (39, 40), which 

provides a measure of the number of effective dimensions occupied by spontaneous activity 

patterns, thereby providing an estimate of the diversity of activity patterns across events. This 

measure roughly estimates the effective number of (linear) independent patterns present in 

spontaneous activity. Our analysis shows that spontaneous activity in all cortical areas 

examined resides in a moderately low dimensional space, with significantly lower dimensionality 

in S1 compared with V1 (Figure 2c, right; (mean ± SEM) PFC: 7.48 ± 1.01 (n = 6 animals); PPC: 

10.17 ± 0.66 (n = 5); A1: 10.13 ± 1.54 (n = 5); S1: 6.16 ± 1.21 (n = 5); V1: 11.07 ± 0.83 (n = 5); 

KW: H(4) = 10.85, p = 0.028; post-hoc: V1 vs. S1 p = 0.029, Table S4). Together, these results 

show that distributed networks with long-range modular correlations underlie a common 

functional organization that is highly similar across diverse cortical areas during early 

development.  

Modular organization at cellular resolution throughout the cortex  

The presence of widespread modular activity at millimeter scale throughout the cortex 

suggests a degree of coordinated activity amongst local populations of neurons. However, given 
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that widefield imaging lacks the spatial resolution to identify individual neurons and instead 

reports the pooled contributions of local populations, it is possible that the functional modules 

we observe actually reflect a more heterogeneous local structure. In such a case, an active 

module might result from the activation of only a sub-population of neurons in a local region, 

potentially intermixed in a salt-and-pepper fashion with non-participating inactive neurons. In 

order to address this, we performed 2-photon imaging of spontaneous activity in layer 2/3 

neurons in all cortical areas. We observed that spontaneous events in layer 2/3 neurons in all 

areas exhibited a clear tendency for nearby neurons to be co-active, with events showing clear 

spatially contiguous patches of active neurons extending several hundred microns, largely 

without intermixed inactive neurons (Figure 3a, Fig. S7). The patterns of co-active neurons 

exhibited strong local pairwise correlations across events, which decreased as a function of 

distance in all areas (Figure 3b,d). Correlations between nearby neurons were statistically 

significant in all areas (Figure 3d; 30-100 μm: (mean ± SEM) PFC: 0.67 ± 0.02 (n = 10 FOV, 6 

animals, 589 total events); PPC: 0.77 ± 0.05 (n = 5 FOV, 4 animals, 423 events); A1: 0.67 ± 

0.03 (n = 5 FOV, 4 animals, 419 events); S1: 0.49 ± 0.04 (n = 7 FOV, 4 animals, 645 events); 

V1: 0.73 ± 0.03 (n = 6 FOV, 5 animals, 508 events), 33 of 33 FOVs significant vs. shuffle 

control, event numbers in Table S2). Local correlations between neurons in S1, while highly 

significant versus control, were slightly but significantly weaker than those in other areas (KW: 

H(4) = 18.18, p = 0.001; post-hoc: PFC vs. S1: p=0.0114, PPC vs. S1: p=0.0001, A1 vs. S1: 

p=0.0208, V1 vs. S1: p=0.0003, Table S5). This strong local organization in correlated 

functional activity was readily apparent in the local coherence index (LCI), which reflects the 

sign of correlations (positive vs. negative) irrespective of strength (see Methods). LCI was highly 

similar across areas over distance, showing a similar spacing of the transition from locally 

positive to more distant negative correlations, consistent with the similar wavelength of modular 

activity seen above in widefield data and reflecting a similar size of functional modules across 

areas (Figure 3e; (mean ± SEM) PFC: 0.98 ± 0.01 (n = 10 FOVs); PPC: 1.00 ± 0.00 (n = 5); A1: 

0.99 ± 0.01 (n = 5); S1: 0.97 ± 0.02 (n = 7); V1: 1.00 ± 0.00 (n = 6); KW: H(4) = 10.19, p = 

0.037;  post-hoc: PPC vs. S1 p = 0.0168, Table S6). Moreover, we found that all areas exhibited 

a moderately low dimensionality within local populations of individual neurons, consistent with 

the presence of strong local neural correlations (Figure 3f; dimensionality for subsets of 50 

neurons (see Methods): (mean ± SEM)  PFC: 3.25 ± 0.53 (n = 10 FOVs); PPC: 4.61 ± 1.03 (n = 

5); A1: 4.21 ± 0.82 (n = 5); S1: 3.71 ± 0.73 (n = 7); V1: 3.97 ± 0.41 (n = 6);  KW: H(4) = 2.71, p = 

0.607). 
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To assess whether the spatial layout of the millimeter-scale networks observed with 

widefield imaging is reflected at the cellular level, we aligned our 2-photon FOVs to the widefield 

images collected in the same animal. In all cases, we found that the patterns of correlations 

showed a strong correspondence to those seen in widefield (Figure 3b,c). These results indicate 

that the modular patterns of activity observed with widefield imaging in all cortical areas reflect 

the locally clustered activity of layer 2/3 neurons, consistent with prior results in V1(16, 20). 

Collectively, these results demonstrate that highly coherent modular organization is a common 

motif of spontaneous activity amongst local populations of layer 2/3 neurons in the developing 

cortex across both sensory and association cortices.  

Discussion 
By examining spontaneous activity early in cortical development, we show that diverse 

cortical areas including both sensory and association regions share a surprisingly similar 

network activity structure: a distributed and modular organization of neural activity that reveals 

millimeter-scale functionally correlated networks. In fact, we find that this common structure of 

spontaneous activity at both the cellular and columnar level across these diverse areas is highly 

similar to that previously found in V1 in early development, where such modular structure is 

predictive of future sensory representations (20) and has long been known as a hallmark of 

functional activity (11, 12). These results argue strongly that the diverse representations found 

across brain areas in the mature cortex emerge during development from an initially common 

functional organization that is shared across the cortex – a pluripotent cortical substrate – and 

suggests the developmental origin of these diverse representations adheres to common design 

principles.   

This idea has its roots in the ‘protocortex’ hypothesis (41), holding that the early cortex is 

relatively homogeneous, with functional specialization emerging over development in response 

to area-specific inputs. While much subsequent work has shown that areal specialization 

involves a complex interplay of genetic and activity dependent mechanisms (reviewed in (5, 6)), 

the concept of a canonical cortical organization with a modular or columnar structure has 

remained powerful, although the structure of this organization may vary, ranging from mini-

columns of a few cells to the so-called macro-columns seen in V1 orientation maps (21). The 

modular activity patterns we observe across areas are consistent with this latter spatial scale, 

arguing that such features are present across many areas in the developing cortex. Additionally, 

our results extend this idea by showing that within these diverse areas modular activity is 



 

  11 of 27 

functionally organized into distributed millimeter-scale correlated networks, suggesting the 

presence of a shared large-scale network structure that is common across cortical regions.  

We performed our experiments under light isoflurane anesthesia. Such an approach 

allowed us to obtain stable and high-quality imaging from very young animals, at a timepoint 

when the training and habituation required for awake head-fixed recordings is challenging. 

Importantly, prior work in V1 has demonstrated that while anesthesia impacts the rate of 

spontaneous events, it does not impact their modular spatial structure or their spatial 

correlations, both of which were indistinguishable between awake and anesthetized recordings 

(20). These prior results argue that the correlation structure of spontaneous activity reflects 

features of the cortical network organization rather than state dependent motifs.  

Our finding of a quantitatively similar modular structure across areas raises the possibility 

that the circuit level mechanisms generating this functional organization may likewise be 

common across regions. In V1, the columnar organization has been attributed to feed-forward 

influences such as the organization of retinal ganglion cell mosaics (42, 43) or orderly inputs 

driven by retinal waves (44). However, our results challenge these explanations, as these 

features are specific to the visual pathway and therefore cannot readily account for modular 

organization in non-visual areas, as the transfer of modular patterns between areas would 

require isotropic and retinotopically-mapped projections from V1, which are not known to exist 

(45). Although it is possible that the inputs to diverse areas such as PFC and S1 each have their 

own independent organizing structure, perhaps involving thalamic waves in a manner 

analogous to that of the retina for V1, a simpler explanation could be that modular functional 

activity is generated independently and locally within each cortical area. This hypothesis is 

supported by data from V1 showing that modular spontaneous activity in this region appears to 

be generated intracortically (20, 35), potentially through mechanisms of self-organization (46–

48, 34, 49–51). Future studies will be required to determine whether such intracortical 

mechanisms operate locally in diverse cortical areas during early development.  

If this is the case, then the presence of modular organization in a cortical area would result 

from the structure of the cortical circuits themselves, and not simply reflect the organization 

imposed by external inputs. This contrast is highlighted in classic experiments showing that A1 

can be re-wired with visual input to generate a modular map of orientation preference (52, 53), 

experiments which were originally interpreted as evidence for an organizing role of feed-forward 

visual input (54). However, our results instead argue that auditory cortex itself already 

possesses a modular functional organization in early development prior to any rewired visual 
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inputs. This then raises an intriguing possibility: that universal and generic intracortical circuitry 

gives rise to distributed modular networks through self-organizing mechanisms that then serve 

as a pluripotent cortical substrate for feed-forward inputs to generate area-specific modular 

neural representations.  

In such a regime, the functional specificity found across areas in the mature brain may 

emerge later, in response to area-specific influences acting upon an initially common modular 

organization. Intriguingly, while highly similar to other areas in most respects, S1 did show 

statistically significant differences in several measures, including module amplitude and local 

correlation strength, raising the possibility that such area-specific impacts might already be 

influencing S1 at these timepoints. Sensory evoked representations emerge in S1 prior to other 

sensory areas (8), suggesting an earlier time course of maturation. Indeed, well-organized 

peripherally driven cortical responses can be elicited as early as E18.5 in mice (9). Future 

studies looking at earlier developmental timepoints will be able to determine whether modular 

spontaneous activity in S1 more closely matches other cortical areas, or rather exhibits 

functional differences throughout development.  

The large-scale correlations seen in our results are based on calcium imaging, which has 

relatively slow temporal resolution, leaving open the question of faster temporal dynamics in the 

developing cortex. Multiple studies from a range of species have utilized voltage-sensitive dye 

(VSD) imaging or multi-electrode arrays to reveal fast propagating waves of activity across the 

cortical surface (reviewed in (55, 56)). Such waves have been observed across a range of 

cortical areas, including (but not limited to) V1, MT, somatosensory, and motor cortex (e.g (57–

62)), and have been linked to both perception(60) and motor output(63). In some cases, the 

propagation of these waves appear to be restricted to single cortical areas (e.g. V1 versus V2 in 

awake monkeys (64)), whereas in other situations (such as in rodents under anesthesia) activity 

appears to spread across area boundaries (57). Notably, the propagation of activity in V1 

appears to align with the columnar arrangement of orientation preference(58, 59), suggesting 

that such propagating activity may not always exhibit a single continuous wave front, but rather 

can reflect modular organization. These fast propagating waves seen in VSD and local field 

potentials largely reflect subthreshold depolarization that can promote spiking activity, thereby 

potentially contributing to the modular organization we observe with calcium imaging. As such 

propagating activity may play a role in the functional maturation of cortical circuits (reviewed in 

(65)), future experiments will examine the relationship of fast propagating activity to the modular 

organization of developing cortex.  
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Is modular activity a general principle of cortical organization? Modular structures have 

been shown to be potentially advantageous in a number of contexts, both from a wire-

minimization perspective (66), as well as conveying advantages in information processing 

including increased robustness and adaptability (67). For example, in primary visual cortex, a 

modular representation of edge orientation may facilitate the detection of object contours from 

images (68). Additionally, previous work in V1 has shown that the modular structure of 

spontaneous activity in early development serves as a precursor to these mature 

representations (20). Thus, our results suggest the possibility that the modular networks we 

observe in cortical areas such as PFC during early development may likewise go on to encode 

modular representations of features in the mature cortex, an idea supported by prior work 

showing spatially-clustered afferent projections in PFC (32, 69). Additionally, the presence of 

clustered patchy horizontal projections in many regions of mature cortex is also consistent with 

the widespread presence of distributed modular organization (70, 71). While a functional 

characterization of these mature cortical networks will require future study, our results highlight 

the ability of spontaneous activity to reveal features of network organization even without 

precisely designed stimulation paradigms, thereby providing a powerful tool to investigate areas 

with unknown or complex neural representations, such as higher-order association cortices. 

Furthermore, by examining spontaneous activity across cortical regions in more mature animals, 

it will be possible to determine whether the common modular organization we observe 

throughout the early developing cortex is maintained across development, or rather undergoes 

area-specific changes, for instance through sparsification of neural activity patterns.  

What role might a common modular functional organization play in the early cortex? Such 

organization could allow the establishment of local neural representations coupled through long-

range projections in an efficient coarse (module) to fine (cellular) manner over development. In 

this way, the correlated spontaneous activity we observe throughout the cortex could serve as 

an instructive signal, driving Hebbian plasticity both within and among locally clustered circuits. 

Such a role is supported by the finding in V1 that early modular correlations in spontaneous 

activity are predictive of structural attributes of future sensory representations (20). Notably, 

such a structure could also facilitate the formation of cross-area connectivity: as the 

dimensionality of spontaneous activity is roughly matched across brain areas, plasticity 

mechanisms would be readily able to operate at equivalent scales throughout the cortex, 

promoting cross-area communication and the establishment of distributed, multimodal and 

cortex-wide representations early in development. In this way, our findings suggest that rather 

than only potentially acting to optimize coding in the mature cortex, a modular organization may 
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also serve as a developmental guidepost for circuit assembly that is maintained in some cortical 

areas but perhaps not in others. 

Materials and Methods 
Data collection 

Animals. All experimental procedures were approved by the University of Minnesota 
Institutional Animal Care and Use Committee and were performed in accordance with guidelines 

from the US National Institutes of Health. We obtained 8 male and female ferret kits from 

Marshall Farms and housed them with jills on a 16-h light/8-h dark cycle. No statistical methods 

were used to predetermine sample sizes, but our sample sizes are similar to those reported in 

previous publications. 

Viral Injection. Viral injections were performed as previously described (Smith & 
Fitzpatrick, 2016). Briefly, we expressed GCaMP6s (33) in neurons by microinjecting 

AAV1.hSyn.GCaMP6s.WPRE.SV40 (Addgene) into layer 2/3 of targeted cortical areas at P13-

15, 7-10 d before imaging. Anesthesia was induced with isoflurane (4–5%) and maintained with 

isoflurane (1–1.5%). Glycopyrolate (0.01 mg/kg) and bupivacaine/lidocaine (1:1 mixture) were 

both administered, and animal temperature was maintained at approximately 37 °C with a water 

pump heat therapy pad (Adroit Medical HTP-1500, Parkland Scientific). Animals were also 

mechanically ventilated and both heart rate and end-tidal CO2 were monitored throughout the 

surgery (Digicare LifeWindow). Using aseptic surgical technique, skin and muscle overlying 

target areas were retracted, and a small burr hole was made with a handheld drill (Fordom 

Electric Co.). Approximately 1 µL of virus contained in a pulled-glass pipette was pressure 

injected into the cortex at two depths (~200 µm and 400 µm below the surface) over 20 min 

using a Nanoject-III (World Precision Instruments). The craniotomy was sealed and the skin 

sutured closed. 

Targets for different cortical areas were as follows:   

V1: ~6-8 mm lateral from midline, ~1-2 mm anterior to the Sinus  

PPC: ~1-2 mm lateral from midline, ~4 mm posterior to Bregma 

A1: ~7-9 mm lateral to midline, ~3 mm posterior to Bregma 

S1: ~2-3 mm lateral to midline, ~ 1 mm anterior to Bregma 

PFC: ~1-2 mm lateral to midline, ~7-8 mm anterior to Bregma  
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We injected virus into and imaged 1- 5 areas per animal.  For a full list of animal ages and 

targets, See Fig. S8. 

Cranial window surgery.  On the day of experimental imaging, ferrets age P21-24 were 
anesthetized with 3%–4% isoflurane and atropine (0.2 mg/kg) or glycopyrrolate (0.01 mg/kg) 

was administered. Animals were placed on a feedback-controlled heating pad to maintain an 

internal temperature of 37 ⁰C. Animals were intubated and ventilated. Isoflurane was delivered 

between 1 and 2% throughout the surgical procedure to maintain a surgical plane of anesthesia. 

An intraperitoneal or intravenous catheter was placed to deliver fluids. EKG, end tidal CO2, and 

internal temperature were continuously monitored during the procedure and subsequent 

imaging session. The scalp was retracted and a custom titanium headmount adhered to the 

skull using C&B Metabond (Parkell). A 6 to 7 mm craniotomy was performed over areas of viral 

expression and the dura was retracted to reveal the cortex.  Cover glass (round, #1.5 thickness, 

Electron Microscopy Sciences) adhered to the bottom of a custom titanium or 3-D printed plastic 

insert was placed onto the brain to gently compress the underlying cortex and dampen 

biological motion during imaging. Upon completion of the surgical procedure, isoflurane was 

gradually reduced (0.6 to 1.0%) and then vecuronium bromide (2 mg/kg/hr) was delivered to 

reduce motion and prevent spontaneous respiration.  

Widefield epifluorescence and two-photon imaging. Spontaneous activity was recorded 
in a quiet darkened room for 10-40 minutes. Widefield epifluorescence imaging was performed 

with a Zyla 5.5 sCMOS camera (Andor)  controlled by MicroManager software (72). Images 

were acquired at 15 Hz with 4 × 4 binning to yield 640 × 540 pixels. Two-photon imaging was 

performed on a Neurolabware microscope with Scanbox software (Los Angeles, California, 

USA) using either a 16x (Nikon) or 25x (Olympus) objective.  Excitation was provided by an 

InSight X3 femtosecond laser (Spectra Physics) at 940 nm.  Images were acquired at 512 x 768 

pixels at 30 Hz.   

Histology. Following imaging, animals were euthanized with 5% Isoflurane and 
pentobarbital.  Animals were perfused with heparinized saline solution followed by 4% 

paraformaldehyde, then the brains were removed and kept for histology. Viral expression of 

GCaMP was documented in the intact brain with appropriate excitation and emission filters. 

Images of expression were aligned to a common coordinate system using prominent brain 

features (sulci, fissures, and external edges of brain).  Areas of expression from each brain 

were outlined manually in Matlab, and are shown in Fig. S8. 

Analysis methods 
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Widefield data pre-processing.  Widefield data pre-processing, event extraction and 
calculation of spontaneous correlations was performed largely as described (20) for all imaged 

areas. Briefly, to correct for mild brain movement during imaging, we registered each imaging 

frame by maximizing phase correlation to a common reference frame.  A region of interest (ROI) 

was manually drawn around the cortical area with high and robust spontaneous activity. ROIs 

were also drawn to remove any artifacts or debris in the visible field of view (FOV).  The 

baseline fluorescence (F0) for each pixel was obtained by applying a median filter to the raw 

fluorescence trace with a window between 10 and 23 seconds. Filter width was chosen for each 

imaging session individually, such that the baseline followed faithfully the slow trend of the 

fluorescence activity. The baseline corrected activity was calculated as  

(F-F0)/F0 = ΔF/F0.           (1) 

Event detection. To detect spontaneously active events, we first determined active pixels 
on each frame using a pixel-wise threshold set to 3 standard deviations above each pixel’s 

mean value across time. Active pixels not part of a contiguous active region of at least 0.01mm2 

were considered ‘inactive’ for the purpose of event detection in order to minimize detecting 

noise as ‘active’ pixels. Active frames were taken as frames with a spatially extended pattern of 

activity (>40% of pixels were active). Consecutive active frames were combined into a single 

event starting with the first high activity frame and then either ending with the last high activity 

frame or, if present, an activity frame defining a local minimum in the fluorescence activity. In 

order to assess the spatial pattern of an event, we extracted the maximally active frame for each 

event (the “event frame”), which was defined as the frame with the highest activity averaged 

across the ROI. Temporal autocorrelation was computed using all frames in the imaging 

session, including event and non-event frames, for lags up to 10 seconds (155 frames).  

Calculation of correlation patterns. To assess the spatial correlation structure of 
spontaneous or evoked activity, we applied a Gaussian spatial band-pass filter (with SD of 

Gaussian filter kernel shigh=195µm, slow=26-41µm) to each event frame and down-sampled it to 

160 x 135 pixels. The resulting patterns, named Ai in the following, where i=1,…,N, were used to 

compute the spontaneous correlation patterns as the pairwise Pearson’s correlation between all 

locations x within the ROI and the seed point s 

!(#, %) = !
"
∑ (%!(&)()%!(&)*)(%!(+)()%!(+)*)"
!#$

,%,&
  (2) 
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Here the brackets < > denote the average over all N patterns and σx denotes the standard 

deviation of A over all N patterns at location x.  

Note that the spatial structure of spontaneous activity was already evident without filtering 

(Fig. S1), and our results did not sensitively depend on filtering. 

Shuffled control ensemble and surrogate correlation patterns. To evaluate the 
statistical significance of quantities characterizing the correlation patterns observed during 

spontaneous activity, we compared the real ensemble of spontaneous activity patterns from a 

given experiment with a control ensemble, obtained by eliminating most of the spatial 

relationships between the patterns. To this end, all activity patterns were randomly rotated 

(rotation angle drawn from a uniform distribution between 0° and 360° with a step size of 10°) 

and reflected (with probability 0.5, independently at the x- and y-axis at the center of the ROI), 

resulting in an equally large control ensemble with similar statistical properties, but little 

systematic interrelation between patterns. Surrogate correlation patterns were then computed 

from these ensembles as described above. 

Dimensionality of spontaneous activity. We estimated the cross-validated dimensionality 
deff of the subspace spanned by spontaneous activity patterns (see (40)). First we randomly 

divided the activity patterns into two non-overlapping subsets X1 and X2, and then performed 

PCA on X1 to find the axis spanned by it. Next, we projected X2 onto these PCs to estimate the 

variance explained by each PC λi. Lastly, dimensionality was calculated as (39): 

(-.. = (∑ /!"
!#$ )'

(∑ /!'"
!#$ )⬚																	         (3) 

Spatial range of correlations. To assess the strength of spontaneous correlations over 
distance (Figure 2), we identified the local maxima (minimum separation between maxima 800 

µm) in the correlation pattern for each seed point. The amplitude of correlations at these 

maxima was then pooled across all seed points. For this analysis we standardized the number 

of events across animals and areas by calculating correlation patterns on N=100 events 

randomly subsampled from all recorded events. To assess the statistical significance of long-

range correlations ~2 mm from the seed point, we compared the median correlation strength for 

maxima located 1.8-2.2 mm away against a distribution obtained from 100 surrogate correlation 

patterns. For individual animals, the p-value was taken as the fraction of correlation strength 

values from surrogate data greater than or equal to the median correlation strength for real 

correlation patterns. The ROI for one A1 FOV was too small to compute a surrogate dataset at 

2mm, and was excluded from this analysis.  
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As an alternate approach to determine the spatial range of correlations, we computed the 

variance of pixelwise correlation values located at a given distance from a seed point (73). 

Closer to the seed point (e.g. gray shaded region in Fig. S5a) correlations will have both 

strongly positive and strongly negative values, leading to a high variance. In contrast, further 

away from the seed point (e.g. magenta shaded region in Fig. S5a) correlations will be closer to 

zero and exhibit reduced variance.  We computed the variance within a ring of increasing radius 

(0.2 mm bins, from 0.8 – 2.2 mm from seed point). To control for the finite number of events in 

our dataset, we also computed the variance for surrogate correlation patterns (see above) 

generated for each experiment using a matched number of patterns (Fig. S5c-e). Subtracting 

the control variance for each experiment allows for comparison across experiments with varying 

numbers of events (Fig. S5f,g).  

Modularity and wavelength estimation. To estimate the wavelength of individual calcium 
events, we calculated the 1-D radial average of the spatial autocorrelation of the band-pass-

filtered activity pattern (Fig. S3a-c). The wavelength of the event was taken as twice the 

distance to the first minimum from the origin. Modularity is a measure of the regularity of the 

spatial arrangement of activity domains within the pattern. The modularity of each event was 

calculated as the absolute difference in amplitude between the first minimum and the 

subsequent maximum of the 1-D radial averaged autocorrelation. 

To determine if the modularity observed during spontaneous events was statistically 

significant, we compared it to a distribution of modularity values for inactive frames used as the 

control. Control frames were drawn from the bottom 10% of frames lacking an identified 

spontaneous event (see above) based on mean activity within the ROI. For each experiment, 

we obtained 100 sets of control frames containing an event-matched number of frames and 

calculated the median modularity across these frames, generating a distribution of 100 control 

modularity values. This was then compared to the median modularity across spontaneous 

events to obtain a p-value. 

Module amplitude.  We defined the module amplitude of an individual widefield event as 
the average amplitude (in ∆F/F, prior to spatial filtering) of the module peaks divided by the 

background activity. Peaks in activity for each event were first obtained by using the 

FastPeakFind.m function in Matlab (74). Background activity was taken as the median 

amplitude (in ∆F/F) of activity in locations ½ wavelength from the peak. Here, the average 

wavelength across all events was used for each FOV. The module amplitude of an event was 

taken as the average amplitude across all peaks in the event. 
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2-photon data pre-processing. 2-photon images were registered to remove any motion 
artifacts using Scanbox and Matlab.   We selected cellular regions of interest (ROIs) in our 2-

photon data manually using the cell magic wand tool (75) in ImageJ, and imported these ROIs 

into Matlab via MIJ (76). Fluorescence traces were then extracted from these ROIs and neuropil 

subtracted:  

     Fcell = Fraw – **Fneuropil.                     (5) 

Where * = 0.4 and Fneuropil was taken as the average signal in a 20 +m window around the 
neuron excluding other labeled cells.  We obtained the F0 value for these calcium signals by 

using a median filter with a 60 second window.  The baseline corrected activity was calculated 

as (F-F0)/F0 = ΔF/F0.  In comparisons, our results were qualitatively similar with and without 

neuropil subtraction.  Data were smoothed with a median filter over 7 frames. In several cases 

we recorded more than one 2-photon FOV in a single cortical area of a single ferret (at a 

different x-y location within the area of expression). 2-photon FOVs were aligned to widefield 

imaging in the same animal using surface and penetrating blood vessels as reference points.  

2-p spontaneous event detection. For a given frame, active neurons were identified as 
cells with ΔF/F0 2 standard deviations above their mean. Frames with over 5 % of neurons 

active were taken as spontaneous events.   Consecutive active frames were combined into a 

single event starting with the first high activity frame and then either ending with the last high 

activity frame or, if present, an activity frame defining a local minimum in the number of active 

cells. We extracted a single event frame as the frame with the highest average signal across all 

cells during the event.  The activity of cells within these event frames was z-scored across the 

frame, and pairwise correlations across all cells were calculated.  Correlations were compared 

against a distribution of 100 surrogate correlation patterns obtained by first shuffling activity 

within each cell across all events. For individual animals, the p-value was taken as the fraction 

of median correlation strength from surrogate data greater than or equal to the median 

correlation strength for real correlation patterns. The local coherence index (LCI) was calculated 

for each seed neuron as (Npos  - Nneg)/ (Npos  + Nneg), where Npos (Nneg) is the number of positively 

(negatively) correlated cells within an annulus of increasing radius, excluding cells with 

correlations -0.01 < x < 0.01. Values range from 1 (all cells within annulus positively correlated) 

to -1, and were averaged over all seed points in a FOV. 

Dimensionality of cellular activity. Similar to EPI-dimensionality, cross-validation was 
used to estimate PCs and explained variances. We drew 100 random samples of 50 cells and 
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100 event frames from each FOV to control for the sample size. Dimensionality was calculated 

using equation (3), and we averaged over these 100 samples to obtain the final dimensionality 

value. 

Statistical Methods 

Nonparametric statistical analyses were used throughout the study. All tests were two-sided 

unless otherwise noted. Comparisons across areas were performed using a Kruskal-Wallis test 

(KW). Significant across group differences (alpha = 0.05) were followed by pairwise post-hoc 

Conover-Iman tests with Holm’s correction for multiple comparisons. Post-hoc tests were 

implemented with the conover.test package in R (77). All pairwise post-hoc comparisons are 

listed in Supplementary Tables 3-6, only post-hoc comparisons with p<0.05 are also listed in 

main text, for space considerations. We used alpha = 0.05 unless otherwise stated.  

Data analysis was performed in Matlab (Mathworks), Python, and R (v3.6.0; R Core Team 

2019).  

Data, Materials, and Software Availability 

All study data are included in the article and/or supporting information. Data and code used 

to produce all figures is available at https://github.com/SmithNeuroLab/multiarea.  
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Figure legends 
Figure 1: Spontaneous activity is highly modular in early development across diverse 
cortical areas. a. Experimental schematic. Spontaneous activity is imaged at P21-24, 7-14 
days prior to eye-opening and ear canal opening. b. Activity was imaged in primary 
somatosensory (S1), auditory (A1), and visual (V1) cortices, and in the association areas 

prefrontal cortex (PFC) and posterior parietal cortex (PPC). c. Time course of spontaneous 
activity (mean activity across ROI) in each brain area imaged in independent experiments. d. 
Individual spontaneous events (times indicated in (c)) show highly modular activity in all areas. 

e. The modularity of spontaneous events does not vary across cortical areas. For panels (e-g): 
Left plot shows distribution across all events, Right plot shows median of distribution for each 

animal (dots) and mean across animals (horizontal bar). f. The wavelength of activity for 
spontaneous events is similar across events from different areas. g. Module amplitude (active 
module vs. adjacent cortex) is generally similar across areas, with significantly lower amplitude 

in S1 and higher amplitude in V1. Significant post-hoc pairwise comparisons indicated by 

horizontal lines. Error bars: ± SEM. 

Figure 2: Diverse cortical areas show distributed and modular long-range correlations. a. 
Correlations across spontaneous events reveal distributed and modular networks that extend 

across several millimeters in both sensory and association areas. Pixelwise correlations are 

shown for two different seed points (top / bottom), revealing the presence of multiple distributed 

modular networks within each cortical region. b. (Left) The strength of correlations declines with 
distance in all cortical areas, remaining statistically significant versus surrogate controls (dashed 

lines, 1 per area) up to at least 2 mm, the limits of our imaging window. (Right) The strength of 

long-range correlations (1.8-2.2 mm away from seed point) is similar across areas. Dots show 

individual animals, horizontal bar indicates mean across animals. Open squares show mean ± 

SEM for surrogate controls. c. Spontaneous activity is moderately low dimensional in all cortical 
areas. Variance explained by principal components (left) and participation ratio of spontaneous 

activity (right) are similar across areas. Significant post-hoc pairwise comparisons indicated by 

horizontal lines. Error bars: ± SEM. 

Figure 3: Spontaneous activity shows strong local organization with cellular resolution 
across the cortex. a. Modular organization of spontaneous activity in layer 2/3 neurons is 
evident in individual events. b. Activity across events is locally correlated and modular. 
Correlations for individual neurons are shown relative to seed neuron (in green) and are overlaid 

on correlations from widefield imaging in the same animal (see below), showing a strong 
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correspondence between millimeter-scale networks in widefield imaging and local organization 

at the cellular level.  c. Widefield correlation patterns for seed point matching location of seed 
neuron shown in (b). Box indicates 2-photon FOV shown in (a,b). d. (Left) The amplitude of 
correlations between neurons shows a similar pattern with distance across areas. (Right) 

Nearby correlations (30 – 100 µm) are strong in all cases. Correlations in S1 are significantly 

weaker than other areas. e. Local coherence (LCI) of spontaneous correlations shows highly 
organized functional networks. (Left) The reversal from positive to negative correlations occurs 

at a similar distance in all cortical areas. (Right) Coherence is nearly uniform (near 1) for nearby 

populations of neurons (30 – 100 µm). f. Dimensionality of spontaneous activity within local 
populations of neurons is moderately low and does not vary significantly across areas. (Left) 

Cumulative variance explained and (Right) participation ratio for populations of 50 neurons in 

each area. Horizontal lines in (d, e) indicate significant post-hoc pairwise comparisons. Error 

bars: ± SEM. 

 

 



Figure 1

Figure 1: Spontaneous activity is highly modular in early development across diverse cortical areas. 
a. Experimental schematic. Spontaneous activity is imaged at P21-24, 7-14 days prior to eye-opening and ear 
canal opening. b. Activity was imaged in primary somatosensory (S1), auditory (A1), and visual (V1) cortices, 
and in the association areas prefrontal cortex (PFC) and posterior parietal cortex (PPC). c. Time course of 
spontaneous activity (mean activity across ROI) in each brain area imaged in independent experiments. d.
Individual spontaneous events (times indicated in (c)) show highly modular activity in all areas. e. The 
modularity of spontaneous events does not vary across cortical areas. For panels (e-g): Left plot shows 
distribution across all events, Right plot shows median of distribution for each animal (dots) and mean across 
animals (horizontal bar). f. The wavelength of activity for spontaneous events is similar across events from 
different areas. g. Module amplitude (active module vs adjacent cortex) is generally similar across areas, with 
significantly lower amplitude in S1 and higher amplitude in V1. Significant post-hoc pairwise comparisons 
indicated by horizontal lines. Error bars: ± SEM.
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Figure 2

Figure 2: Diverse cortical areas show distributed and modular long-range correlations. a. Correlations 
across spontaneous events reveal distributed and modular networks that extend across several millimeters in 
both sensory and association areas. Pixelwise correlations are shown for two different seed points (top / 
bottom), revealing the presence of multiple distributed modular networks within each cortical region. b. (Left) 
The strength of correlations declines with distance in all cortical areas, remaining statistically significant 
versus surrogate controls (dashed lines, 1 per area) up to at least 2 mm, the limits of our imaging window. 
(Right) The strength of long-range correlations (1.8-2.2 mm away from seed point) is similar across areas. 
Dots show individual animals, horizontal bar indicates mean across animals. Open squares show mean ± 
SEM for surrogate controls. c. Spontaneous activity is moderately low dimensional in all cortical areas. 
Variance explained by principal components (left) and participation ratio of spontaneous activity (right) are 
similar across areas. Significant post-hoc pairwise comparisons indicated by horizontal lines. Error bars: ± 
SEM.



Figure 3

Figure 3: Spontaneous activity shows strong local organization with cellular resolution across the 
cortex. a. Modular organization of spontaneous activity in layer 2/3 neurons is evident in individual events. b. 
Activity across events is locally correlated and modular. Correlations for individual neurons are shown relative 
to seed neuron (in green) and are overlaid on correlations from widefield imaging in the same animal (see 
below), showing a strong correspondence between millimeter-scale networks in widefield imaging and local 
organization at the cellular level.  c. Widefield correlation patterns for seed point matching location of seed 
neuron shown in (b). Box indicates 2-photon FOV shown in (a,b). d. (Left) The amplitude of correlations 
between neurons shows a similar pattern with distance across areas. (Right) Nearby correlations (30 – 100 
µm) are strong in all cases. Correlations in S1 are significantly weaker than other areas. e. Local coherence 
(LCI) of spontaneous correlations shows highly organized functional networks. (Left) The reversal from 
positive to negative correlations occurs at a similar distance in all cortical areas. (Right) Coherence is nearly 
uniform (near 1) for nearby populations of neurons (30 – 100 µm). f. Dimensionality of spontaneous activity 
within local populations of neurons is moderately low and does not vary significantly across areas. (Left) 
Cumulative variance explained and (Right) participation ratio for populations of 50 neurons in each area. 
Horizontal lines in (d, e) indicate significant post-hoc pairwise comparisons. Error bars: ± SEM.



Figure S1

Fig. S1.  Modular structure of spontaneous activity is readily apparent without spatial filtering. a.
Example spontaneous events in PFC. Top row: events shown without spatial band-pass filtering exhibit clear 
modular organization. Bottom row: same events after band-pass filtering. b-e. Same for PPC, A1, S1, and V1, 
respectively.
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Figure S2

Fig. S2: Temporal autocorrelation of spontaneous activity. a. Temporal autocorrelation for all frames for 
each cortical area. Thin lines show individual animals, thick line shows mean across animals. b. 
Autocorrelations are similar across areas. Shaded area indicates mean ± SEM across animals within each 
area. 



Figure S3

Fig. S3: Determination of event modularity and wavelength. The modularity and wavelength of events are 
calculated from the radial average of the spatial autocorrelation of individual spontaneous events. a. Example 
spontaneous event. b. 2-D spatial autocorrelation. c. 1-D radial average of autocorrelation. Modularity is 
measured as the height of the first peak after the origin above the first trough. Wavelength is taken as twice 
the distance of the first trough (indicated by blue star). d. Autocorrelation patterns averaged across events for 
representative FOVs for each area show similar spatial structure indicating similar domain size and spacing. 
e. 1-D autocorrelations averaged across all animals. Right: expanded view of region shown in box to left. 
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Figure S4

Fig. S4.  Multiple distributed and modular functional networks exist within each cortical area. For each 
area, additional examples of correlation patterns for differing seed points reveal the presence of multiple 
correlated networks within each imaged region. Correlation patterns can vary greatly for nearby seed points 
(e.g. left, middle columns). Distant seed points can also participate in highly similar long-range correlated 
networks (middle, right columns). Seed point for displayed correlation pattern is shown in green, open circles 
show locations for seed points displayed in adjacent columns. 
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Figure S5

Fig. S5. Assessment of long-range correlations in spontaneous activity through correlation variance. 
a,b. Correlation strength was measured by computing the variance of the distribution of correlation values 
within bins of increasing distance from the seed point. Correlation pattern with distance bins is shown in (a) 
and the distribution of correlation values within these bins in (b). Regions of strong correlations have both 
strongly positive and strongly negative values within the bin, leading to a high variance (e.g. near a seed 
point, black line). Weak correlations (e.g. further from a seed point, magenta) will be closer to zero and exhibit 
reduced variance. c,d. Same as for (a,b) but for a surrogate correlation pattern computed for an equal 
number of patterns as in (a) (see Methods). Distributions of correlation values are narrow, and vary little with 
distance. e. Plot of correlation variance as a function of distance from the seed point for the ‘actual’ 
correlation pattern (a) and the surrogate pattern (c). The variance of the surrogate was subtracted from that of 
the actual correlation pattern to control for the finite number of events recorded during imaging. f. Variance of 
correlations as a function of distance for all cortical areas after subtracting surrogate values. Data shown as 
mean ± SEM across all FOVs within an area. g. Correlation variance 2 mm from seed points is similar across 
cortical areas (KW: H(4) = 5.34 p = 0.254). Filled circles (24 of 25 FOVs) indicate experiments with 
statistically significant correlations at 2 mm relative to surrogate controls (dashed line at zero). 
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Figure S6

Fig. S6. Principal components of spontaneous activity are modular. Figure shows the first 5 principal 
components of spontaneous activity for the example experiments shown in Figure 2. 
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Figure S7

Fig. S7. Modular spontaneous events at cellular level across brain areas. For all brain areas imaged: a. 
Time course of cellular spontaneous activity extracted from 2-photon recordings. Numbers indicate events 
shown in (c), letters indicate cells labeled in (b). b.  Field of view showing location of 5 example cells shown in 
(a). c. Three spontaneous events at times indicated in (a).  



Figure S8

Fig. S8. Histological reconstruction of imaged locations. a. Whole brain image from P24 animal with 
GCaMP expressing in PFC, S1, A1, PPC, and V1. In most experiments, only a subset of cortical areas were 
labeled and imaged in a given animal (range: 1-5, median 3). b. Region locations represented on a model 
brain image.  c. Imaged locations reconstructed from histology for all animals, colored based on assigned 
cortical area. d. List of all animals with areas imaged and ages for all experiments. 
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List of animals used in experiments
Animal Areas Injection Age Imaging Age

F0155 PFC,PPC 13 23
F0223 A1,PFC,PPC,S1,V1 14 22
F0224 A1,PFC,PPC,S1,V1 15 24
F0231 A1,PPC,S1 14 22
F0232 PFC,S1,V1 14 21
F0233 PFC,S1,V1 14 23
F0234 A1,PFC,PPC 14 24
F0263 V1 14 21



Table S1-2

Table S1: Number of spontaneous events recorded with widefield imaging across areas. Table lists number of 
animals, total number of events across all animals, median number of events per animal, and range across 
animals. 

Table S2: Number of spontaneous events recorded with 2-photon imaging across areas. Table lists numbers 
of animals and FOVs, total number of events across all animals, median number of events per animal, and 
range across animals.

Table 1: Number of widefield events by area
Area N animals Total events Median events Range
PFC 6 1252 175 119 - 422
PPC 5 1228 231 166 - 399
A1 4 1931 412 233 - 874
S1 5 1092 253 100 - 324
V1 5 1971 424 165 - 521

Table 2: Number of 2-photon events by area
Area N animals N FOVs Total events Median events Range
PFC 6 10 589 58 15 - 111
PPC 4 5 423 77 47 - 150
A1 4 5 419 78 64 - 117
S1 4 7 645 75 44 - 181
V1 5 6 508 82.5 42 - 128



Table 3: Module amplitude (widefield): post-hoc Conover-Iman test (related to Figure 1g)

Table 4: Dimensionality (widefield): post-hoc Conover-Iman test (related to Figure 2c)

Table 5: Local correlation strength (2-p): post-hoc Conover-Iman test (related to Figure 3d)

Table 6: Local coherence index (2-p): post-hoc Conover-Iman test (related to Figure 3e)

Area PPC A1 S1 V1
PFC p = 0.1786 p = 0.0915 p = 0.4009 p = 0.0011 *
PPC p = 0.5427 p = 0.0240 * p = 0.1086
A1 p = 0.0101 * p = 0.2985
S1 p = 0.0001 *

Area PPC A1 S1 V1
PFC p = 0.2847 p = 0.7282 p = 1.0000 p = 0.1053
PPC p = 0.6578 p = 0.0977 p = 1.0000
A1 p = 0.2793 p = 1.0000
S1 p = 0.0290 *

Area PPC A1 S1 V1
PFC p = 0.0984 p = 0.7697 p = 0.0114 * p = 0.2760
PPC p = 0.3030 p = 0.0001 * p = 0.9831
A1 p = 0.0208 * p = 0.5680
S1 p = 0.0003 *

Area PPC A1 S1 V1
PFC p = 0.5332 p = 0.9273 p = 0.3719 p = 1.0000
PPC p = 0.7049 p = 0.0168 * p = 1.0000
A1 p = 0.4589 p = 1.0000
S1 p = 0.2041

Table S3-6

Table S3-6: Tables showing p-values for all pairwise comparisons for measures with significant group 
differences (Kruskal Wallis, p<0.05). Post-hoc tests were performed as described in Methods, via the 
Conover-Iman test with Holm’s correction for multiple comparisons. 



Movie S1-5

SI Movies 1-5: Spontaneous activity imaged in PFC, PPC, A1, S1, and V1, respectively. Movies show 10s of 
activity, in real-time (1x speed). Movies are shown as ∆F/F. Scale bar: 1 mm. 

Movie S1: Spontaneous activity in PFC.

Movie S2: Spontaneous activity in PPC.

Movie S3: Spontaneous activity in A1.

Movie S4: Spontaneous activity in S1.

Movie S5: Spontaneous activity in V1.


