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Abstract

In order to deal with a complex environment, animals form a diverse range of neural
representations that vary across cortical areas, ranging from largely unimodal sensory input to
higher-order representations of goals, outcomes, and motivation. The developmental origin of
this diversity is currently unclear, as representations could arise through processes that are
already area-specific from the earliest developmental stages or alternatively, they could emerge
from an initially common functional organization shared across areas. Here we use
spontaneous activity recorded with two-photon and widefield calcium imaging to reveal the
functional organization across the early developing cortex in ferrets, a species with a well
characterized columnar organization and modular structure of spontaneous activity in visual
cortex. We find that in animals 7-14 days prior to eye opening and ear canal opening,
spontaneous activity in both sensory areas (auditory and somatosensory cortex, A1 and S1,
respectively) and association areas (posterior parietal and prefrontal cortex, PPC and PFC,
respectively) showed an organized and modular structure that is highly similar to the
organization in V1. In all cortical areas, this modular activity was distributed across the cortical
surface, forming functional networks that exhibit millimeter-scale correlations. Moreover, this
modular structure was evident in highly coherent spontaneous activity at the cellular level, with
strong correlations amongst local populations of neurons apparent in all cortical areas
examined. Together, our results demonstrate a common distributed and modular organization
across the cortex during early development, suggesting that diverse cortical representations

develop initially according to similar design principles.

Significance Statement

How the diversity of functional organization across brain areas emerges during
development is unclear. By imaging spontaneous activity in both sensory and higher order
cortices, we find that a distributed and modular functional architecture with long-range
correlations is a common feature of the developing cortex. This suggests that instead of
displaying area-specific specializations already from early development, cortical areas that
ultimately reflect diverse representations develop from an initially similar structure. These
modular functional networks exhibits strong quantitative similarity across areas, suggesting that
similar organizing principles might operate throughout the early cortex. Our findings therefore
suggest a common modular organization might serve as a generic cortical substrate upon which

later area-specific influences generate the functional specificity found in the mature brain.
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Main text

Introduction

The information represented by neural activity varies greatly across different regions of the
neocortex. Neurons in primary sensory areas encode specific features of the external
environment, for example visual orientation (1) or auditory frequency (2), whereas neural activity
in higher-order association areas represents complex aspects of both internal and external
state, such as motivation and goal-directed planning (3, 4). The functional specification of these
diverse cortical areas and their varied neural representations is thought to begin at the earliest
stages of nervous system development with coarse gradients of gene expression that establish
the rough layout and identity of cortical areas, which are then refined in an activity-dependent
manner (5, 6). This refinement is initially driven by structured patterns of endogenously
generated spontaneous activity and, subsequently, by sensory experience (7). The sources of
these early cortical spontaneous patterns are themselves area specific, involving, for instance,
spontaneous activity in modality-specific inputs from the sensory periphery such as the retina,
cochlea, or whisker pad (8). Moreover, the onset of sensory stimulation varies greatly across
sensory cortical areas, with orderly peripheral input to somatosensory cortex already occurring
prior to birth (9), whereas normal visual experience is only achieved with eye opening, which in

several species, including mice and ferrets, takes place several weeks later (10).

Thus, in order to build a diversity of representations, the early functional organization of
these endogenously generated networks might be expected to already vary considerably across
areas of the developing cortex, tailored towards the area-specific representations of the mature
brain. However, currently we lack a clear understanding of the degree to which the organization
of these early networks, and the processes leading to the development of mature
representations, actually varies across neocortex. This leaves open an intriguing alternative
possibility — that network structure across diverse cortical areas is initially shaped by generic
and cortex-wide mechanisms, giving rise to a functional organization common to all cortical

areas before later undergoing diversification through experience-dependent processes.

The columnar architecture in the primary visual cortex (V1) of primates and carnivores (11),
such as the ferret, provides a particularly well-suited point of reference for exploring where the
developing cortex operates on this spectrum between diversity and uniformity. Here, nearby
neurons share similar selectivity for stimulus features, such as orientation, which are organized
into repetitive patterns in which patches or modules of co-tuned neurons several hundred

microns in diameter are distributed across the cortical surface, giving rise to the well-known
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maps of stimulus features (12—17). Notably, this distributed modular representational
architecture is also reflected in the organization of functional networks during spontaneous
activity, with strong correlations between co-tuned modules extending across millimeters (18—
20). This modular spontaneous activity is already apparent during early development, where
correlated network activity more than a week prior to eye opening predicts features of the future

columnar orientation preference map (20).

Such a modular organization has been hypothesized to be a fundamental unit of cortical
computation (reviewed in (21)). Indeed, functional modules reflecting stimulus features have
been reported in other sensory cortices, including the visual areas V2 (22), V4 (23), MT (24) and
IT (25). Likewise, although the functional mapping of stimulus features across the cortex is
arguably less clear than in visual areas, functional modules have also been reported in auditory
cortex (26—28) and somatosensory cortex (29, 30), building on the roughly linear topographic
mappings of cochleotopy (2) and somatotopy (31). Similarly, the anatomical clustering of inputs
carrying distinct streams of information has been observed in higher-order areas, including
prefrontal cortex (32). However, throughout most of neocortex, little is known about the
functional organization of cortical networks at an early stage in development and whether such

networks exhibit this modular structure.

Therefore, in order to determine if the modular functional organization that is a hallmark of
V1 and already apparent at an early age is also present elsewhere in the early developing
neocortex, we investigated the patterns of ongoing spontaneous activity in multiple distinct
cortical areas on both millimeter and cellular scales, examining both primary sensory (auditory -
A1, somatosensory - S1, and visual - V1) and higher-order association cortices (posterior
parietal cortex - PPC and prefrontal cortex - PFC) in the ferret. Critically, measuring
spontaneous activity allows us to both compare network organization across multiple brain
regions without relying on precisely designed stimulation paradigms for each area, which is a
considerable challenge beyond primary sensory areas; and also to examine network structure at
an early stage in development when sensory drive is still limited. Using this approach, we
demonstrate a common modular organization showing quantitative similarity at both the cellular
and columnar scale across both sensory and association areas in early development.
Additionally, in all areas examined, spontaneous activity exhibited distributed and modular
correlations extending across millimeters, demonstrating the presence of a common functional
network structure. Our results therefore indicate that highly diverse cortical areas emerge from a

common architecture of functional organization in early development.
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Results

Spontaneous activity is modular across diverse cortical areas

To assess the mesoscopic functional organization in different cortical areas, we performed
widefield imaging of virally expressed GCaMP6s (33) in the developing ferret cortex (P21-24),
targeting both primary sensory (V1, A1, S1) and association areas (PPC, PFC) (Figure 1a,b).
This age is approximately 7-14 days before eye-opening and ear canal opening in the ferret,
and is a time in which neural activity in V1 is both highly modular and already exhibits long-
range correlations that reflect aspects of future columnar representations of visual features (20).
Spontaneous activity was imaged under light isoflurane anesthesia, conditions which were
previously shown in V1 to preserve the modular spatial characteristics of spontaneous activity

found in awake animals (20).

We found that spontaneous activity in the primary sensory areas A1 and S1 (in addition to
V1 as previously shown) exhibited pronounced modular spatial structure. Events consisted of
multiple patches of elevated activity, each several hundred microns in diameter, that were
distributed across the approximately 3 millimeter field of view (Figure 1c-d, Fig. S1, Movies S1-
5). The patterns of active modules varied across spontaneous events in each area, showing a
range of modular patterns. We next turned to the association areas PPC and PFC, where
spontaneous activity in both regions was likewise strongly modular and appeared highly similar
in structure to sensory areas (Figure 1c,d). In all areas, the temporal autocorrelations across
activity decayed to near zero within 10 sec (Fig. S2), indicating the lack of temporal correlations
on long timescales. Thus, spatially organized, modular patterns of functional activity appear to

be a common feature shared across areas in the developing ferret cortex.

To quantify this modular structure, we first used the spatial autocorrelation function
computed for each event to calculate event modularity across cortical areas, which assesses
the regularity in size and spacing of patchy activity patterns (see Methods, Fig. S3a-c). When
examined across areas, we found that activity in all cortical regions exhibited highly significant
modularity versus surrogate controls drawn from frames without spontaneous events (25 of 25
FOVs significant vs. surrogate at p<0.01, bootstrap test), that did not differ significantly across
areas (Figure 1e, (mean + SEM) PFC: 0.10 £ 0.01 (n = 1252 events from 6 animals, see table
S1); PPC: 0.10 £ 0.01 (n = 1228 events, 5 animals); A1: 0.10 £ 0.01 (n = 1931 events, 4
animals); S1: 0.10 £ 0.01(n = 1092 events, 5 animals); V1: 0.11 £ 0.01 (n = 1971 events, 5
animals); Kruskal-Wallis (KW) test H(4) = 0.24, p = 0.993). We next computed the wavelength of

modular activity from event autocorrelation patterns (see Methods, Fig. S3c), likewise finding
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that the spatial wavelength of events was also highly similar across cortical areas (Figure 1f,
(mean £ SEM) PFC: 0.92 + 0.01 (n = 6 animals); PPC: 0.87 £ 0.04 (n =5); A1:0.84 £ 0.04 (n =
4); S1: 0.83 £ 0.03 (n =5); V1: 0.86 £ 0.02 (n = 5); KW: H(4) = 7.33, p = 0.120). Notably, this
common wavelength was similar to that observed for functional maps of orientation preference
in mature V1(34). To assess the degree to which activity was localized to modular patches
versus more diffuse and widespread activity, we computed the amplitude of activity within
modular domains compared to surrounding cortex (termed ‘module amplitude’). Module
amplitude was strong and generally similar across areas, although amplitude was significantly
lower in S1 and higher in V1 relative to some other areas, indicating that, quantitatively, they
exhibited subtle differences in their modular structure (Figure 1g, (mean £+ SEM) PFC: 2.72
0.19 (n = 6 animals); PPC: 2.92 £ 0.10 (n =5); A1: 3.09 £ 0.16 (n =4); S1: 2.38 £ 0.13 (n = 5);
V1:3.74 £ 0.28 (n = 5); KW: H(4) = 16.28, p = 0.03; post-hoc: PPC vs. S1: p=0.0240, A1 vs. S1:
p=0.0101, V1 vs. S1: p=0.0001, PFC vs. V1: p=0.0011, Table S3). Together, these results
demonstrate that in the developing cortex, modular functional organization is a common feature

that is shared across both sensory and association areas.

Long-range correlated networks exist within diverse cortical areas

A central feature of the functional organization in visual cortex of carnivores and primates is
that activity is not only modular, but it also exhibits long-range correlations in activity (35) that
are distributed across the cortical surface such that specific sets of spatially distributed modules
tend to be co-active. These long-range correlations define functional cortical networks and are
already present in V1 in early development, going on to reflect aspects of the mapped selectivity
for visual features (20) and corresponding clustered long-range horizontal connections present
in mature animals, which are thought to link similar feature detectors across different locations
in the visual field (36—38). It is possible that such a correlated network structure exists in other
cortical areas that also exhibit modular activity. Alternatively, the activity of individual modules in
these regions could be independent of each other, reflecting only local coherence within
modular domains, but not the presence of millimeter-scale functional networks. To address this,
we computed the spatial correlation of activity across all events imaged in each area. We found
that in both sensory and association areas, the pattern of correlations over spontaneous events
exhibited both strong positive and negative correlations that extended over multiple millimeters,
covering our full imaging window (Figure 2a). In all cases, the spatial pattern of correlations
varied for different seed points within the field-of-view (Figure 2a, Fig. S4), indicating the

presence of multiple distinct functionally correlated networks within each brain area.
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We next compared the strength of these correlations as a function of distance, finding that
correlations in spontaneous activity were statistically significant vs. surrogate data up to at least
2 mm away from the seed point (the limit imposed by our FOV size) in all areas examined
(Figure 2b; 24 of 24 FOVs significantly different from shuffle control, 1 A1 FOV excluded due to
size limitations), and were similar across areas, with a non-significant trend towards weaker
correlations in V1 relative to other areas (PFC: 0.43 £ 0.03 (mean = SEM) (n = 6 animals);
PPC: 0.42 +0.03 (n=5); A1: 0.34 £ 0.09 (n = 3); S1: 0.43 £ 0.03 (n =5); V1: 0.30 £ 0.02 (n =
5), KW:H(4) = 8.66 p = 0.070). Similar results were obtained when we alternatively assessed
correlation strength through the variance of pixelwise correlations, and when controlling for the

finite number of spontaneous events recorded in each imaging session (Fig. S5).

The presence of these strong long-range correlations suggests that the patterns of active
modules across spontaneous events occupies a constrained and low dimensional space of all
possible activity patterns, where not all possible combinations of all possible module locations
are equally likely to occur. To assess this, we computed the principal components (PCs) over all
events within an area, finding that the leading PCs exhibited a clear modular structure (Fig. S6),
and that the majority of the variance across events could be explained by a relatively low
number of PCs (Figure 2c, left, PCs for 75% variance: (mean + SEM) PFC:6.0£0.73(n=6
animals) (mean + SEM); PPC: 8.8 + 0.58 (n =5); A1: 8.5+ 0.96 (n=4); S1: 6.0 £ 0.95 (n = 5);
V1:9.4 £ 0.68 (n = 5)). We confirmed this by computing the participation ratio (39, 40), which
provides a measure of the number of effective dimensions occupied by spontaneous activity
patterns, thereby providing an estimate of the diversity of activity patterns across events. This
measure roughly estimates the effective number of (linear) independent patterns present in
spontaneous activity. Our analysis shows that spontaneous activity in all cortical areas
examined resides in a moderately low dimensional space, with significantly lower dimensionality
in S1 compared with V1 (Figure 2c, right; (mean + SEM) PFC: 7.48 + 1.01 (n = 6 animals); PPC:
10.17 £ 0.66 (n = 5); A1: 10.13 £ 1.54 (n = 5); S1: 6.16 £ 1.21 (n = 5); V1: 11.07 £ 0.83 (n = 5);
KW: H(4) = 10.85, p = 0.028; post-hoc: V1 vs. S1 p = 0.029, Table S4). Together, these results
show that distributed networks with long-range modular correlations underlie a common
functional organization that is highly similar across diverse cortical areas during early

development.

Modular organization at cellular resolution throughout the cortex

The presence of widespread modular activity at millimeter scale throughout the cortex

suggests a degree of coordinated activity amongst local populations of neurons. However, given
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that widefield imaging lacks the spatial resolution to identify individual neurons and instead
reports the pooled contributions of local populations, it is possible that the functional modules
we observe actually reflect a more heterogeneous local structure. In such a case, an active
module might result from the activation of only a sub-population of neurons in a local region,
potentially intermixed in a salt-and-pepper fashion with non-participating inactive neurons. In
order to address this, we performed 2-photon imaging of spontaneous activity in layer 2/3
neurons in all cortical areas. We observed that spontaneous events in layer 2/3 neurons in all
areas exhibited a clear tendency for nearby neurons to be co-active, with events showing clear
spatially contiguous patches of active neurons extending several hundred microns, largely
without intermixed inactive neurons (Figure 3a, Fig. S7). The patterns of co-active neurons
exhibited strong local pairwise correlations across events, which decreased as a function of
distance in all areas (Figure 3b,d). Correlations between nearby neurons were statistically
significant in all areas (Figure 3d; 30-100 uym: (mean + SEM) PFC: 0.67 £ 0.02 (n=10 FOV, 6
animals, 589 total events); PPC: 0.77 £ 0.05 (n =5 FOV, 4 animals, 423 events); A1: 0.67
0.03 (n=5FOV, 4 animals, 419 events); $S1: 0.49 £ 0.04 (n =7 FOV, 4 animals, 645 events);
V1:0.73 £ 0.03 (n = 6 FOV, 5 animals, 508 events), 33 of 33 FOVs significant vs. shuffle
control, event numbers in Table S2). Local correlations between neurons in S1, while highly
significant versus control, were slightly but significantly weaker than those in other areas (KW:
H(4) = 18.18, p = 0.001; post-hoc: PFC vs. S1: p=0.0114, PPC vs. S1: p=0.0001, A1 vs. S1:
p=0.0208, V1 vs. S1: p=0.0003, Table S5). This strong local organization in correlated
functional activity was readily apparent in the local coherence index (LCI), which reflects the
sign of correlations (positive vs. negative) irrespective of strength (see Methods). LCI was highly
similar across areas over distance, showing a similar spacing of the transition from locally
positive to more distant negative correlations, consistent with the similar wavelength of modular
activity seen above in widefield data and reflecting a similar size of functional modules across
areas (Figure 3e; (mean + SEM) PFC: 0.98 £ 0.01 (n = 10 FOVs); PPC: 1.00 £ 0.00 (n = 5); A1:
0.99£0.01 (n=5); S1: 0.97 £0.02 (n =7); V1: 1.00 £ 0.00 (n = 6); KW: H(4) = 10.19, p =
0.037; post-hoc: PPC vs. S1 p = 0.0168, Table S6). Moreover, we found that all areas exhibited
a moderately low dimensionality within local populations of individual neurons, consistent with
the presence of strong local neural correlations (Figure 3f; dimensionality for subsets of 50
neurons (see Methods): (mean + SEM) PFC: 3.25 £ 0.53 (n = 10 FOVs); PPC: 4.61 £ 1.03 (n =
5);,A1:421+082(n=5);S1:3.71+£0.73 (n=7); V1: 3.97 £ 0.41 (n =6); KW: H(4)=2.71,p =
0.607).
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To assess whether the spatial layout of the millimeter-scale networks observed with
widefield imaging is reflected at the cellular level, we aligned our 2-photon FOVs to the widefield
images collected in the same animal. In all cases, we found that the patterns of correlations
showed a strong correspondence to those seen in widefield (Figure 3b,c). These results indicate
that the modular patterns of activity observed with widefield imaging in all cortical areas reflect
the locally clustered activity of layer 2/3 neurons, consistent with prior results in V1(16, 20).
Collectively, these results demonstrate that highly coherent modular organization is a common
motif of spontaneous activity amongst local populations of layer 2/3 neurons in the developing

cortex across both sensory and association cortices.

Discussion

By examining spontaneous activity early in cortical development, we show that diverse
cortical areas including both sensory and association regions share a surprisingly similar
network activity structure: a distributed and modular organization of neural activity that reveals
millimeter-scale functionally correlated networks. In fact, we find that this common structure of
spontaneous activity at both the cellular and columnar level across these diverse areas is highly
similar to that previously found in V1 in early development, where such modular structure is
predictive of future sensory representations (20) and has long been known as a hallmark of
functional activity (11, 12). These results argue strongly that the diverse representations found
across brain areas in the mature cortex emerge during development from an initially common
functional organization that is shared across the cortex — a pluripotent cortical substrate — and
suggests the developmental origin of these diverse representations adheres to common design
principles.

This idea has its roots in the ‘protocortex’ hypothesis (41), holding that the early cortex is
relatively homogeneous, with functional specialization emerging over development in response
to area-specific inputs. While much subsequent work has shown that areal specialization
involves a complex interplay of genetic and activity dependent mechanisms (reviewed in (5, 6)),
the concept of a canonical cortical organization with a modular or columnar structure has
remained powerful, although the structure of this organization may vary, ranging from mini-
columns of a few cells to the so-called macro-columns seen in V1 orientation maps (21). The
modular activity patterns we observe across areas are consistent with this latter spatial scale,
arguing that such features are present across many areas in the developing cortex. Additionally,

our results extend this idea by showing that within these diverse areas modular activity is
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functionally organized into distributed millimeter-scale correlated networks, suggesting the

presence of a shared large-scale network structure that is common across cortical regions.

We performed our experiments under light isoflurane anesthesia. Such an approach
allowed us to obtain stable and high-quality imaging from very young animals, at a timepoint
when the training and habituation required for awake head-fixed recordings is challenging.
Importantly, prior work in V1 has demonstrated that while anesthesia impacts the rate of
spontaneous events, it does not impact their modular spatial structure or their spatial
correlations, both of which were indistinguishable between awake and anesthetized recordings
(20). These prior results argue that the correlation structure of spontaneous activity reflects

features of the cortical network organization rather than state dependent motifs.

Our finding of a quantitatively similar modular structure across areas raises the possibility
that the circuit level mechanisms generating this functional organization may likewise be
common across regions. In V1, the columnar organization has been attributed to feed-forward
influences such as the organization of retinal ganglion cell mosaics (42, 43) or orderly inputs
driven by retinal waves (44). However, our results challenge these explanations, as these
features are specific to the visual pathway and therefore cannot readily account for modular
organization in non-visual areas, as the transfer of modular patterns between areas would
require isotropic and retinotopically-mapped projections from V1, which are not known to exist
(45). Although it is possible that the inputs to diverse areas such as PFC and S1 each have their
own independent organizing structure, perhaps involving thalamic waves in a manner
analogous to that of the retina for V1, a simpler explanation could be that modular functional
activity is generated independently and locally within each cortical area. This hypothesis is
supported by data from V1 showing that modular spontaneous activity in this region appears to
be generated intracortically (20, 35), potentially through mechanisms of self-organization (46—
48, 34, 49-51). Future studies will be required to determine whether such intracortical

mechanisms operate locally in diverse cortical areas during early development.

If this is the case, then the presence of modular organization in a cortical area would result
from the structure of the cortical circuits themselves, and not simply reflect the organization
imposed by external inputs. This contrast is highlighted in classic experiments showing that A1
can be re-wired with visual input to generate a modular map of orientation preference (52, 53),
experiments which were originally interpreted as evidence for an organizing role of feed-forward
visual input (54). However, our results instead argue that auditory cortex itself already

possesses a modular functional organization in early development prior to any rewired visual
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inputs. This then raises an intriguing possibility: that universal and generic intracortical circuitry
gives rise to distributed modular networks through self-organizing mechanisms that then serve
as a pluripotent cortical substrate for feed-forward inputs to generate area-specific modular

neural representations.

In such a regime, the functional specificity found across areas in the mature brain may
emerge later, in response to area-specific influences acting upon an initially common modular
organization. Intriguingly, while highly similar to other areas in most respects, S1 did show
statistically significant differences in several measures, including module amplitude and local
correlation strength, raising the possibility that such area-specific impacts might already be
influencing S1 at these timepoints. Sensory evoked representations emerge in S1 prior to other
sensory areas (8), suggesting an earlier time course of maturation. Indeed, well-organized
peripherally driven cortical responses can be elicited as early as E18.5 in mice (9). Future
studies looking at earlier developmental timepoints will be able to determine whether modular
spontaneous activity in S1 more closely matches other cortical areas, or rather exhibits
functional differences throughout development.

The large-scale correlations seen in our results are based on calcium imaging, which has
relatively slow temporal resolution, leaving open the question of faster temporal dynamics in the
developing cortex. Multiple studies from a range of species have utilized voltage-sensitive dye
(VSD) imaging or multi-electrode arrays to reveal fast propagating waves of activity across the
cortical surface (reviewed in (55, 56)). Such waves have been observed across a range of
cortical areas, including (but not limited to) V1, MT, somatosensory, and motor cortex (e.g (57—
62)), and have been linked to both perception(60) and motor output(63). In some cases, the
propagation of these waves appear to be restricted to single cortical areas (e.g. V1 versus V2 in
awake monkeys (64)), whereas in other situations (such as in rodents under anesthesia) activity
appears to spread across area boundaries (57). Notably, the propagation of activity in V1
appears to align with the columnar arrangement of orientation preference(58, 59), suggesting
that such propagating activity may not always exhibit a single continuous wave front, but rather
can reflect modular organization. These fast propagating waves seen in VSD and local field
potentials largely reflect subthreshold depolarization that can promote spiking activity, thereby
potentially contributing to the modular organization we observe with calcium imaging. As such
propagating activity may play a role in the functional maturation of cortical circuits (reviewed in
(65)), future experiments will examine the relationship of fast propagating activity to the modular

organization of developing cortex.
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Is modular activity a general principle of cortical organization? Modular structures have
been shown to be potentially advantageous in a number of contexts, both from a wire-
minimization perspective (66), as well as conveying advantages in information processing
including increased robustness and adaptability (67). For example, in primary visual cortex, a
modular representation of edge orientation may facilitate the detection of object contours from
images (68). Additionally, previous work in V1 has shown that the modular structure of
spontaneous activity in early development serves as a precursor to these mature
representations (20). Thus, our results suggest the possibility that the modular networks we
observe in cortical areas such as PFC during early development may likewise go on to encode
modular representations of features in the mature cortex, an idea supported by prior work
showing spatially-clustered afferent projections in PFC (32, 69). Additionally, the presence of
clustered patchy horizontal projections in many regions of mature cortex is also consistent with
the widespread presence of distributed modular organization (70, 71). While a functional
characterization of these mature cortical networks will require future study, our results highlight
the ability of spontaneous activity to reveal features of network organization even without
precisely designed stimulation paradigms, thereby providing a powerful tool to investigate areas
with unknown or complex neural representations, such as higher-order association cortices.
Furthermore, by examining spontaneous activity across cortical regions in more mature animals,
it will be possible to determine whether the common modular organization we observe
throughout the early developing cortex is maintained across development, or rather undergoes

area-specific changes, for instance through sparsification of neural activity patterns.

What role might a common modular functional organization play in the early cortex? Such
organization could allow the establishment of local neural representations coupled through long-
range projections in an efficient coarse (module) to fine (cellular) manner over development. In
this way, the correlated spontaneous activity we observe throughout the cortex could serve as
an instructive signal, driving Hebbian plasticity both within and among locally clustered circuits.
Such a role is supported by the finding in V1 that early modular correlations in spontaneous
activity are predictive of structural attributes of future sensory representations (20). Notably,
such a structure could also facilitate the formation of cross-area connectivity: as the
dimensionality of spontaneous activity is roughly matched across brain areas, plasticity
mechanisms would be readily able to operate at equivalent scales throughout the cortex,
promoting cross-area communication and the establishment of distributed, multimodal and
cortex-wide representations early in development. In this way, our findings suggest that rather

than only potentially acting to optimize coding in the mature cortex, a modular organization may
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also serve as a developmental guidepost for circuit assembly that is maintained in some cortical

areas but perhaps not in others.

Materials and Methods

Data collection

Animals. All experimental procedures were approved by the University of Minnesota
Institutional Animal Care and Use Committee and were performed in accordance with guidelines
from the US National Institutes of Health. We obtained 8 male and female ferret kits from
Marshall Farms and housed them with jills on a 16-h light/8-h dark cycle. No statistical methods
were used to predetermine sample sizes, but our sample sizes are similar to those reported in

previous publications.

Viral Injection. Viral injections were performed as previously described (Smith &
Fitzpatrick, 2016). Briefly, we expressed GCaMP6s (33) in neurons by microinjecting
AAV1.hSyn.GCaMP6s.WPRE.SV40 (Addgene) into layer 2/3 of targeted cortical areas at P13-
15, 7-10 d before imaging. Anesthesia was induced with isoflurane (4-5%) and maintained with
isoflurane (1-1.5%). Glycopyrolate (0.01 mg/kg) and bupivacaine/lidocaine (1:1 mixture) were
both administered, and animal temperature was maintained at approximately 37 °C with a water
pump heat therapy pad (Adroit Medical HTP-1500, Parkland Scientific). Animals were also
mechanically ventilated and both heart rate and end-tidal CO2 were monitored throughout the
surgery (Digicare LifeWindow). Using aseptic surgical technique, skin and muscle overlying
target areas were retracted, and a small burr hole was made with a handheld drill (Fordom
Electric Co.). Approximately 1 yL of virus contained in a pulled-glass pipette was pressure
injected into the cortex at two depths (~200 pm and 400 pym below the surface) over 20 min
using a Nanoject-11l (World Precision Instruments). The craniotomy was sealed and the skin

sutured closed.
Targets for different cortical areas were as follows:
V1: ~6-8 mm lateral from midline, ~1-2 mm anterior to the Sinus
PPC: ~1-2 mm lateral from midline, ~4 mm posterior to Bregma
A1: ~7-9 mm lateral to midline, ~3 mm posterior to Bregma
S1: ~2-3 mm lateral to midline, ~ 1 mm anterior to Bregma

PFC: ~1-2 mm lateral to midline, ~7-8 mm anterior to Bregma

14 of 27



We injected virus into and imaged 1- 5 areas per animal. For a full list of animal ages and

targets, See Fig. S8.

Cranial window surgery. On the day of experimental imaging, ferrets age P21-24 were
anesthetized with 3%—4% isoflurane and atropine (0.2 mg/kg) or glycopyrrolate (0.01 mg/kg)
was administered. Animals were placed on a feedback-controlled heating pad to maintain an
internal temperature of 37 °C. Animals were intubated and ventilated. Isoflurane was delivered
between 1 and 2% throughout the surgical procedure to maintain a surgical plane of anesthesia.
An intraperitoneal or intravenous catheter was placed to deliver fluids. EKG, end tidal CO2, and
internal temperature were continuously monitored during the procedure and subsequent
imaging session. The scalp was retracted and a custom titanium headmount adhered to the
skull using C&B Metabond (Parkell). A 6 to 7 mm craniotomy was performed over areas of viral
expression and the dura was retracted to reveal the cortex. Cover glass (round, #1.5 thickness,
Electron Microscopy Sciences) adhered to the bottom of a custom titanium or 3-D printed plastic
insert was placed onto the brain to gently compress the underlying cortex and dampen
biological motion during imaging. Upon completion of the surgical procedure, isoflurane was
gradually reduced (0.6 to 1.0%) and then vecuronium bromide (2 mg/kg/hr) was delivered to

reduce motion and prevent spontaneous respiration.

Widefield epifluorescence and two-photon imaging. Spontaneous activity was recorded
in a quiet darkened room for 10-40 minutes. Widefield epifluorescence imaging was performed
with a Zyla 5.5 sCMOS camera (Andor) controlled by MicroManager software (72). Images
were acquired at 15 Hz with 4 x 4 binning to yield 640 x 540 pixels. Two-photon imaging was
performed on a Neurolabware microscope with Scanbox software (Los Angeles, California,
USA) using either a 16x (Nikon) or 25x (Olympus) objective. Excitation was provided by an
InSight X3 femtosecond laser (Spectra Physics) at 940 nm. Images were acquired at 512 x 768

pixels at 30 Hz.

Histology. Following imaging, animals were euthanized with 5% Isoflurane and
pentobarbital. Animals were perfused with heparinized saline solution followed by 4%
paraformaldehyde, then the brains were removed and kept for histology. Viral expression of
GCaMP was documented in the intact brain with appropriate excitation and emission filters.
Images of expression were aligned to a common coordinate system using prominent brain
features (sulci, fissures, and external edges of brain). Areas of expression from each brain

were outlined manually in Matlab, and are shown in Fig. S8.

Analysis methods
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Widefield data pre-processing. Widefield data pre-processing, event extraction and
calculation of spontaneous correlations was performed largely as described (20) for all imaged
areas. Briefly, to correct for mild brain movement during imaging, we registered each imaging
frame by maximizing phase correlation to a common reference frame. A region of interest (ROI)
was manually drawn around the cortical area with high and robust spontaneous activity. ROls
were also drawn to remove any artifacts or debris in the visible field of view (FOV). The
baseline fluorescence (Fo) for each pixel was obtained by applying a median filter to the raw
fluorescence trace with a window between 10 and 23 seconds. Filter width was chosen for each
imaging session individually, such that the baseline followed faithfully the slow trend of the

fluorescence activity. The baseline corrected activity was calculated as

(F-Fo)/Fo = AF/Fo. (1)

Event detection. To detect spontaneously active events, we first determined active pixels
on each frame using a pixel-wise threshold set to 3 standard deviations above each pixel’s
mean value across time. Active pixels not part of a contiguous active region of at least 0.01mm?
were considered ‘inactive’ for the purpose of event detection in order to minimize detecting
noise as ‘active’ pixels. Active frames were taken as frames with a spatially extended pattern of
activity (>40% of pixels were active). Consecutive active frames were combined into a single
event starting with the first high activity frame and then either ending with the last high activity
frame or, if present, an activity frame defining a local minimum in the fluorescence activity. In
order to assess the spatial pattern of an event, we extracted the maximally active frame for each
event (the “event frame”), which was defined as the frame with the highest activity averaged
across the ROI. Temporal autocorrelation was computed using all frames in the imaging

session, including event and non-event frames, for lags up to 10 seconds (155 frames).

Calculation of correlation patterns. To assess the spatial correlation structure of
spontaneous or evoked activity, we applied a Gaussian spatial band-pass filter (with SD of
Gaussian filter kernel shigh=195um, siw=26-41pm) to each event frame and down-sampled it to
160 x 135 pixels. The resulting patterns, named A; in the following, where i=1,...,N, were used to
compute the spontaneous correlation patterns as the pairwise Pearson’s correlation between all
locations x within the ROI and the seed point s

1 2N (4i(5)=<Ai(8)>) (A (1) —<Ay(1)>)
N Ox0g

C(x,s) =

(2)
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Here the brackets < > denote the average over all N patterns and ox denotes the standard

deviation of A over all N patterns at location x.

Note that the spatial structure of spontaneous activity was already evident without filtering

(Fig. S1), and our results did not sensitively depend on filtering.

Shuffled control ensemble and surrogate correlation patterns. To evaluate the
statistical significance of quantities characterizing the correlation patterns observed during
spontaneous activity, we compared the real ensemble of spontaneous activity patterns from a
given experiment with a control ensemble, obtained by eliminating most of the spatial
relationships between the patterns. To this end, all activity patterns were randomly rotated
(rotation angle drawn from a uniform distribution between 0° and 360° with a step size of 10°)
and reflected (with probability 0.5, independently at the x- and y-axis at the center of the ROI),
resulting in an equally large control ensemble with similar statistical properties, but little
systematic interrelation between patterns. Surrogate correlation patterns were then computed

from these ensembles as described above.

Dimensionality of spontaneous activity. We estimated the cross-validated dimensionality
der of the subspace spanned by spontaneous activity patterns (see (40)). First we randomly
divided the activity patterns into two non-overlapping subsets Xs and Xz, and then performed
PCA on X; to find the axis spanned by it. Next, we projected Xz onto these PCs to estimate the
variance explained by each PC A. Lastly, dimensionality was calculated as (39):

_ G
derr = Gay )

Spatial range of correlations. To assess the strength of spontaneous correlations over
distance (Figure 2), we identified the local maxima (minimum separation between maxima 800
pm) in the correlation pattern for each seed point. The amplitude of correlations at these
maxima was then pooled across all seed points. For this analysis we standardized the number
of events across animals and areas by calculating correlation patterns on N=100 events
randomly subsampled from all recorded events. To assess the statistical significance of long-
range correlations ~2 mm from the seed point, we compared the median correlation strength for
maxima located 1.8-2.2 mm away against a distribution obtained from 100 surrogate correlation
patterns. For individual animals, the p-value was taken as the fraction of correlation strength
values from surrogate data greater than or equal to the median correlation strength for real
correlation patterns. The ROI for one A1 FOV was too small to compute a surrogate dataset at

2mm, and was excluded from this analysis.
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As an alternate approach to determine the spatial range of correlations, we computed the
variance of pixelwise correlation values located at a given distance from a seed point (73).
Closer to the seed point (e.g. gray shaded region in Fig. S5a) correlations will have both
strongly positive and strongly negative values, leading to a high variance. In contrast, further
away from the seed point (e.g. magenta shaded region in Fig. S5a) correlations will be closer to
zero and exhibit reduced variance. We computed the variance within a ring of increasing radius
(0.2 mm bins, from 0.8 — 2.2 mm from seed point). To control for the finite number of events in
our dataset, we also computed the variance for surrogate correlation patterns (see above)
generated for each experiment using a matched number of patterns (Fig. S5c-e). Subtracting
the control variance for each experiment allows for comparison across experiments with varying

numbers of events (Fig. S5f,9).

Modularity and wavelength estimation. To estimate the wavelength of individual calcium
events, we calculated the 1-D radial average of the spatial autocorrelation of the band-pass-
filtered activity pattern (Fig. S3a-c). The wavelength of the event was taken as twice the
distance to the first minimum from the origin. Modularity is a measure of the regularity of the
spatial arrangement of activity domains within the pattern. The modularity of each event was
calculated as the absolute difference in amplitude between the first minimum and the

subsequent maximum of the 1-D radial averaged autocorrelation.

To determine if the modularity observed during spontaneous events was statistically
significant, we compared it to a distribution of modularity values for inactive frames used as the
control. Control frames were drawn from the bottom 10% of frames lacking an identified
spontaneous event (see above) based on mean activity within the ROI. For each experiment,
we obtained 100 sets of control frames containing an event-matched number of frames and
calculated the median modularity across these frames, generating a distribution of 100 control
modularity values. This was then compared to the median modularity across spontaneous

events to obtain a p-value.

Module amplitude. We defined the module amplitude of an individual widefield event as
the average amplitude (in AF/F, prior to spatial filtering) of the module peaks divided by the
background activity. Peaks in activity for each event were first obtained by using the
FastPeakFind.m function in Matlab (74). Background activity was taken as the median
amplitude (in AF/F) of activity in locations 2 wavelength from the peak. Here, the average
wavelength across all events was used for each FOV. The module amplitude of an event was

taken as the average amplitude across all peaks in the event.
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2-photon data pre-processing. 2-photon images were registered to remove any motion
artifacts using Scanbox and Matlab. We selected cellular regions of interest (ROIs) in our 2-
photon data manually using the cell magic wand tool (75) in Imaged, and imported these ROls
into Matlab via MIJ (76). Fluorescence traces were then extracted from these ROIs and neuropil

subtracted:

Feell = Fraw— a*Fneuropil. (5)

Where a = 0.4 and Freuropil Was taken as the average signal in a 20 um window around the
neuron excluding other labeled cells. We obtained the Fy value for these calcium signals by
using a median filter with a 60 second window. The baseline corrected activity was calculated
as (F-Fo)/Fo = AF/Fo. In comparisons, our results were qualitatively similar with and without
neuropil subtraction. Data were smoothed with a median filter over 7 frames. In several cases
we recorded more than one 2-photon FOV in a single cortical area of a single ferret (at a
different x-y location within the area of expression). 2-photon FOVs were aligned to widefield

imaging in the same animal using surface and penetrating blood vessels as reference points.

2-p spontaneous event detection. For a given frame, active neurons were identified as
cells with AF/Fo 2 standard deviations above their mean. Frames with over 5 % of neurons
active were taken as spontaneous events. Consecutive active frames were combined into a
single event starting with the first high activity frame and then either ending with the last high
activity frame or, if present, an activity frame defining a local minimum in the number of active
cells. We extracted a single event frame as the frame with the highest average signal across all
cells during the event. The activity of cells within these event frames was z-scored across the
frame, and pairwise correlations across all cells were calculated. Correlations were compared
against a distribution of 100 surrogate correlation patterns obtained by first shuffling activity
within each cell across all events. For individual animals, the p-value was taken as the fraction
of median correlation strength from surrogate data greater than or equal to the median
correlation strength for real correlation patterns. The local coherence index (LCI) was calculated
for each seed neuron as (Npos - Nneg)/ (Npos + Nneg), Where Npos (Nneg) is the number of positively
(negatively) correlated cells within an annulus of increasing radius, excluding cells with
correlations -0.01 < x < 0.01. Values range from 1 (all cells within annulus positively correlated)

to -1, and were averaged over all seed points in a FOV.

Dimensionality of cellular activity. Similar to EPI-dimensionality, cross-validation was

used to estimate PCs and explained variances. We drew 100 random samples of 50 cells and
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100 event frames from each FOV to control for the sample size. Dimensionality was calculated
using equation (3), and we averaged over these 100 samples to obtain the final dimensionality

value.

Statistical Methods

Nonparametric statistical analyses were used throughout the study. All tests were two-sided
unless otherwise noted. Comparisons across areas were performed using a Kruskal-Wallis test
(KW). Significant across group differences (alpha = 0.05) were followed by pairwise post-hoc
Conover-Iman tests with Holm’s correction for multiple comparisons. Post-hoc tests were
implemented with the conover.test package in R (77). All pairwise post-hoc comparisons are
listed in Supplementary Tables 3-6, only post-hoc comparisons with p<0.05 are also listed in

main text, for space considerations. We used alpha = 0.05 unless otherwise stated.

Data analysis was performed in Matlab (Mathworks), Python, and R (v3.6.0; R Core Team
2019).

Data, Materials, and Software Availability

All study data are included in the article and/or supporting information. Data and code used

to produce all figures is available at https://github.com/SmithNeuroLab/multiarea.
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Figure legends

Figure 1: Spontaneous activity is highly modular in early development across diverse
cortical areas. a. Experimental schematic. Spontaneous activity is imaged at P21-24, 7-14
days prior to eye-opening and ear canal opening. b. Activity was imaged in primary
somatosensory (S1), auditory (A1), and visual (V1) cortices, and in the association areas
prefrontal cortex (PFC) and posterior parietal cortex (PPC). ¢. Time course of spontaneous
activity (mean activity across ROI) in each brain area imaged in independent experiments. d.
Individual spontaneous events (times indicated in (c)) show highly modular activity in all areas.
e. The modularity of spontaneous events does not vary across cortical areas. For panels (e-g):
Left plot shows distribution across all events, Right plot shows median of distribution for each
animal (dots) and mean across animals (horizontal bar). f. The wavelength of activity for
spontaneous events is similar across events from different areas. g. Module amplitude (active
module vs. adjacent cortex) is generally similar across areas, with significantly lower amplitude
in S1 and higher amplitude in V1. Significant post-hoc pairwise comparisons indicated by

horizontal lines. Error bars: + SEM.

Figure 2: Diverse cortical areas show distributed and modular long-range correlations. a.
Correlations across spontaneous events reveal distributed and modular networks that extend
across several millimeters in both sensory and association areas. Pixelwise correlations are
shown for two different seed points (top / bottom), revealing the presence of multiple distributed
modular networks within each cortical region. b. (Left) The strength of correlations declines with
distance in all cortical areas, remaining statistically significant versus surrogate controls (dashed
lines, 1 per area) up to at least 2 mm, the limits of our imaging window. (Right) The strength of
long-range correlations (1.8-2.2 mm away from seed point) is similar across areas. Dots show
individual animals, horizontal bar indicates mean across animals. Open squares show mean %
SEM for surrogate controls. ¢. Spontaneous activity is moderately low dimensional in all cortical
areas. Variance explained by principal components (/eft) and participation ratio of spontaneous
activity (right) are similar across areas. Significant post-hoc pairwise comparisons indicated by

horizontal lines. Error bars: + SEM.

Figure 3: Spontaneous activity shows strong local organization with cellular resolution
across the cortex. a. Modular organization of spontaneous activity in layer 2/3 neurons is
evident in individual events. b. Activity across events is locally correlated and modular.
Correlations for individual neurons are shown relative to seed neuron (in green) and are overlaid

on correlations from widefield imaging in the same animal (see below), showing a strong
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correspondence between millimeter-scale networks in widefield imaging and local organization
at the cellular level. c¢. Widefield correlation patterns for seed point matching location of seed
neuron shown in (b). Box indicates 2-photon FOV shown in (a,b). d. (Left) The amplitude of
correlations between neurons shows a similar pattern with distance across areas. (Right)
Nearby correlations (30 — 100 uym) are strong in all cases. Correlations in S1 are significantly
weaker than other areas. e. Local coherence (LCI) of spontaneous correlations shows highly
organized functional networks. (Leftf) The reversal from positive to negative correlations occurs
at a similar distance in all cortical areas. (Right) Coherence is nearly uniform (near 1) for nearby
populations of neurons (30 — 100 um). f. Dimensionality of spontaneous activity within local
populations of neurons is moderately low and does not vary significantly across areas. (Left)
Cumulative variance explained and (Right) participation ratio for populations of 50 neurons in
each area. Horizontal lines in (d, e) indicate significant post-hoc pairwise comparisons. Error
bars: + SEM.
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Figure 1: Spontaneous activity is highly modular in early development across diverse cortical areas.
a. Experimental schematic. Spontaneous activity is imaged at P21-24, 7-14 days prior to eye-opening and ear
canal opening. b. Activity was imaged in primary somatosensory (S1), auditory (A1), and visual (V1) cortices,
and in the association areas prefrontal cortex (PFC) and posterior parietal cortex (PPC). ¢. Time course of
spontaneous activity (mean activity across ROI) in each brain area imaged in independent experiments. d.
Individual spontaneous events (times indicated in (c)) show highly modular activity in all areas. e. The
modularity of spontaneous events does not vary across cortical areas. For panels (e-g): Left plot shows
distribution across all events, Right plot shows median of distribution for each animal (dots) and mean across
animals (horizontal bar). f. The wavelength of activity for spontaneous events is similar across events from
different areas. g. Module amplitude (active module vs adjacent cortex) is generally similar across areas, with
significantly lower amplitude in S1 and higher amplitude in V1. Significant post-hoc pairwise comparisons
indicated by horizontal lines. Error bars: + SEM.
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a b _C Correlation strength
PFC PPC S1 VA1 %
N, .
F h.@.'n\" -~
- 3 ‘,-.f" [&]
P“‘ O & 8 ‘p 'O‘.' s u e 5
B K N S J : 3
% "r -, 4 . - E
O S S
O
Distance (mm)
E f L R ot C Dimensionalit
6. 0 ® imensionality

S\ T ¥ N o x> . e Rel

.o -4 T e o - g E

& - - [\ c

/ > o

o £ g

_ Correlation mm g S

© Seed point | — = 5

075 0 075 3 o

Figure 2: Diverse cortical areas show distributed and modular long-range correlations. a. Correlations
across spontaneous events reveal distributed and modular networks that extend across several millimeters in
both sensory and association areas. Pixelwise correlations are shown for two different seed points (fop /
bottom), revealing the presence of multiple distributed modular networks within each cortical region. b. (Left)
The strength of correlations declines with distance in all cortical areas, remaining statistically significant
versus surrogate controls (dashed lines, 1 per area) up to at least 2 mm, the limits of our imaging window.
(Right) The strength of long-range correlations (1.8-2.2 mm away from seed point) is similar across areas.
Dots show individual animals, horizontal bar indicates mean across animals. Open squares show mean +
SEM for surrogate controls. ¢. Spontaneous activity is moderately low dimensional in all cortical areas.
Variance explained by principal components (/eft) and participation ratio of spontaneous activity (right) are
similar across areas. Significant post-hoc pairwise comparisons indicated by horizontal lines. Error bars: +
SEM.
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Figure 3: Spontaneous activity shows strong local organization with cellular resolution across the
cortex. a. Modular organization of spontaneous activity in layer 2/3 neurons is evident in individual events. b.
Activity across events is locally correlated and modular. Correlations for individual neurons are shown relative
to seed neuron (in green) and are overlaid on correlations from widefield imaging in the same animal (see
below), showing a strong correspondence between millimeter-scale networks in widefield imaging and local
organization at the cellular level. ¢. Widefield correlation patterns for seed point matching location of seed
neuron shown in (b). Box indicates 2-photon FOV shown in (a,b). d. (Left) The amplitude of correlations
between neurons shows a similar pattern with distance across areas. (Right) Nearby correlations (30 — 100
pMm) are strong in all cases. Correlations in S1 are significantly weaker than other areas. e. Local coherence
(LCI) of spontaneous correlations shows highly organized functional networks. (Left) The reversal from
positive to negative correlations occurs at a similar distance in all cortical areas. (Right) Coherence is nearly
uniform (near 1) for nearby populations of neurons (30 — 100 um). f. Dimensionality of spontaneous activity
within local populations of neurons is moderately low and does not vary significantly across areas. (Left)
Cumulative variance explained and (Right) participation ratio for populations of 50 neurons in each area.
Horizontal lines in (d, e) indicate significant post-hoc pairwise comparisons. Error bars: £ SEM.
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Fig. S1. Modular structure of spontaneous activity is readily apparent without spatial filtering. a.
Example spontaneous events in PFC. Top row: events shown without spatial band-pass filtering exhibit clear

modular organization. Bottom row: same events after band-pass filtering. b-e. Same for PPC, A1, S1, and V1,
respectively.
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Fig. S2: Temporal autocorrelation of spontaneous activity. a. Temporal autocorrelation for all frames for
each cortical area. Thin lines show individual animals, thick line shows mean across animals. b.
Autocorrelations are similar across areas. Shaded area indicates mean + SEM across animals within each
area.
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Fig. S3: Determination of event modularity and wavelength. The modularity and wavelength of events are
calculated from the radial average of the spatial autocorrelation of individual spontaneous events. a. Example
spontaneous event. b. 2-D spatial autocorrelation. c. 1-D radial average of autocorrelation. Modularity is
measured as the height of the first peak after the origin above the first trough. Wavelength is taken as twice
the distance of the first trough (indicated by blue star). d. Autocorrelation patterns averaged across events for
representative FOVs for each area show similar spatial structure indicating similar domain size and spacing.
e. 1-D autocorrelations averaged across all animals. Right: expanded view of region shown in box to left.



Figure S4
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Fig. S4. Multiple distributed and modular functional networks exist within each cortical area. For each
area, additional examples of correlation patterns for differing seed points reveal the presence of multiple
correlated networks within each imaged region. Correlation patterns can vary greatly for nearby seed points
(e.g. left, middle columns). Distant seed points can also participate in highly similar long-range correlated
networks (middle, right columns). Seed point for displayed correlation pattern is shown in green, open circles
show locations for seed points displayed in adjacent columns.
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Fig. S5. Assessment of long-range correlations in spontaneous activity through correlation variance.
a,b. Correlation strength was measured by computing the variance of the distribution of correlation values
within bins of increasing distance from the seed point. Correlation pattern with distance bins is shown in (a)
and the distribution of correlation values within these bins in (b). Regions of strong correlations have both
strongly positive and strongly negative values within the bin, leading to a high variance (e.g. near a seed
point, black line). Weak correlations (e.g. further from a seed point, magenta) will be closer to zero and exhibit
reduced variance. c¢,d. Same as for (a,b) but for a surrogate correlation pattern computed for an equal
number of patterns as in (a) (see Methods). Distributions of correlation values are narrow, and vary little with
distance. e. Plot of correlation variance as a function of distance from the seed point for the ‘actual’
correlation pattern (a) and the surrogate pattern (c). The variance of the surrogate was subtracted from that of
the actual correlation pattern to control for the finite number of events recorded during imaging. f. Variance of
correlations as a function of distance for all cortical areas after subtracting surrogate values. Data shown as
mean + SEM across all FOVs within an area. g. Correlation variance 2 mm from seed points is similar across
cortical areas (KW: H(4) = 5.34 p = 0.254). Filled circles (24 of 25 FOVs) indicate experiments with
statistically significant correlations at 2 mm relative to surrogate controls (dashed line at zero).
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Fig. S6. Principal components of spontaneous activity are modular. Figure shows the first 5 principal
components of spontaneous activity for the example experiments shown in Figure 2.
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Fig. S7. Modular spontaneous events at cellular level across brain areas. For all brain areas imaged: a.
Time course of cellular spontaneous activity extracted from 2-photon recordings. Numbers indicate events
shown in (c), letters indicate cells labeled in (b). b. Field of view showing location of 5 example cells shown in
(a). c. Three spontaneous events at times indicated in (a).



Figure S8
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List of animals used in experiments
Animal Areas Injection Age Imaging Age

FO0155 PFC,PPC 13 23
F0223 A1,PFC,PPC,S1,V1 14 22
F0224 A1,PFC,PPC,S1,V1 15 24
F0231 A1,PPC,SH1 14 22
F0232 PFC,S1,V1 14 21
F0233 PFC,S51,V1 14 23
F0234 A1,PFC,PPC 14 24
F0263 VA 14 21

Fig. S8. Histological reconstruction of imaged locations. a. Whole brain image from P24 animal with
GCaMP expressing in PFC, S1, A1, PPC, and V1. In most experiments, only a subset of cortical areas were
labeled and imaged in a given animal (range: 1-5, median 3). b. Region locations represented on a model
brain image. c. Imaged locations reconstructed from histology for all animals, colored based on assigned
cortical area. d. List of all animals with areas imaged and ages for all experiments.



Table S1-2

Table 1: Number of widefield events by area

Area | N animals | Total events Median events Range

PFC 6 1252 175 119 - 422

PPC 5 1228 231 166 - 399
A1 4 1931 412 233 - 874
S1 5 1092 253 100 - 324
V1 5 1971 424 165 - 521

Table 2: Number of 2-photon events by area

Area | N animals N FOVs Total events Median events | Range
PFC 6 10 589 58 15-111
PPC 4 5 423 77 47 - 150
A1 4 5 419 78 64 - 117
S1 4 7 645 75 44 - 181
V1 5 6 508 82.5 42 -128

Table $1: Number of spontaneous events recorded with widefield imaging across areas. Table lists number of
animals, total number of events across all animals, median number of events per animal, and range across
animals.

Table S2: Number of spontaneous events recorded with 2-photon imaging across areas. Table lists numbers
of animals and FOVs, total number of events across all animals, median number of events per animal, and
range across animals.



Table S3-6

Table 3: Module amplitude (widefield): post-hoc Conover-Iman test (related to Figure 1g)

Area | ppc | At | st | wvi |
PFC p=0.1786  p=0.0915 p=04009  p=0.0011"*
PPC p=05427 p=00240* p=0.1086
Al p=00101* p=0.2985
St

p =0.0001 *

Table 4: Dimensionality (widefield): post-hoc Conover-Iman test (related to Figure 2c)

Area PPC At | st | vi |
PFC p=02847 p=07282 p=1.0000  p=0.1053
PPC p=06578 p=00977  p=1.0000
A1 p=02793  p=1.0000
St p =0.0290 *

Table 5: Local correlation strength (2-p): post-hoc Conover-Iman test (related to Figure 3d)

Area PPC A1 St vi |
PFC p=00984 p=07697 p=00114* p=0.2760
PPC p=03030  p=00001* p=0.9831
IN p=00208" p=0.5680
St p =0.0003 *

Table 6: Local coherence index (2-p): post-hoc Conover-Iman test (related to Figure 3e)

Area PPC At | st | vt
PFC p=05332 p=09273 p=03719  p=1.0000
PPC p=07049  p=00168* p=1.0000
A1 p=04589  p=1.0000
St p = 0.2041

Table $3-6: Tables showing p-values for all pairwise comparisons for measures with significant group
differences (Kruskal Wallis, p<0.05). Post-hoc tests were performed as described in Methods, via the
Conover-Iman test with Holm’s correction for multiple comparisons.



Movie S1-5

S| Movies 1-5: Spontaneous activity imaged in PFC, PPC, A1, S1, and V1, respectively. Movies show 10s of
activity, in real-time (1x speed). Movies are shown as AF/F. Scale bar: 1 mm.

Movie S1: Spontaneous activity in PFC.
Movie S2: Spontaneous activity in PPC.
Movie S3: Spontaneous activity in A1.
Movie S4: Spontaneous activity in S1.

Movie S5: Spontaneous activity in V1.



