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Abstract 

This work concerns the laser powder bed fusion (LPBF) additive manufacturing process. 

Currently, LPBF parts are inspected post-process using such techniques as X-ray computed 

tomography, optical and scanning electron microscopy, among others. This empirical build-and-

test approach for qualification of part quality is prohibitively expensive and cumbersome. To 

enable rapid and accurate in-situ qualification of LPBF part quality, in this work, we developed a 

physics and data-integrated digital twin approach. To demonstrate the approach, Inconel 718 parts 

of various shapes were manufactured under differing LPBF processing conditions. The process 

was continuously monitored using in-situ thermal and optical tomography imaging cameras. The 

part-scale thermal history was predicted using an experimentally validated computational thermal 

simulation. The simulation-derived thermal history and sensor signatures were used as inputs to a 

k-nearest neighbor machine learning model. The machine learning model was trained with ground 

truth porosity and microstructure data obtained from post-process characterization. The approach 

predicted the onset of porosity, meltpool depth, grain size, and microhardness with an accuracy 

exceeding 90% (R2). This work thus takes a critical step towards realizing an in-situ Born Qualified 

part quality assessment paradigm in LPBF.  

Keywords: Laser powder bed fusion, digital twin, thermal and optical imaging, thermal 
simulations, porosity, microstructure prediction, Inconel 718. 
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1 Introduction 

1.1 Objective and Motivation 

The objective of this work is to predict porosity and microstructure-related characteristics of 

Inconel 718 parts made using the laser powder bed fusion (LPBF) additive manufacturing (AM) 

process. To realize this objective, we developed and applied a physics and data-integrated digital 

twin approach. The key idea is to use part-level thermal history estimated from a physics-based 

process simulation and real-time data acquired from an heterogenous in-situ sensor array as inputs 

to a machine learning model. The machine learning model is trained to predict lack-of-fusion 

porosity, and three microstructure-related characteristics, namely, solidified meltpool depth, grain 

size and microhardness. The foregoing porosity and microstructure characteristics are 

consequential to functional properties, such as strength and fatigue life [1-3].  

In the LPBF process, as visualized in Figure 1, a thin layer (~30 µm) of metal powder is spread 

on a substrate and selectively fused with energy from a scanning laser [4, 5]. This process is 

favored for its ability to manufacture intricate, high-performance and high-value components; 

reduce weight and part count in assemblies; and enhance responsiveness and resiliency of the 

manufacturing supply chain [6, 7].  

 
Figure 1: A schematic of the laser powder bed fusion (LPBF) additive manufacturing process. 
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Despite these compelling advantages, safety-critical aerospace and defense sectors have been 

slow to adopt LPBF due to the tendency of the process to form flaws, which causes large part-to-

part variation in functional properties [8-11]. As exemplified in the context of Figure 2, these 

deleterious flaws range across multiple scales from inconsistencies in the microstructure and 

porosity at the microscale, to macro-scale cracking and deformation. Consequently, to ensure the 

quality of LPBF parts, an extensive empirical build-and-test approach is often mandated [12]. Parts 

are manufactured under a priori optimized processing conditions, followed by post-process non-

destructive and destructive characterization. It is estimated that such empirical-driven frameworks 

for part qualification cost millions of dollars and require multiple years’ effort [13-16]. 

 
Figure 2: The multi-scale nature of flaw formation in LPBF. This work focuses on detection of 
lack-of-fusion porosity, microhardness, grain size, and meltpool depth.  

One common approach for non-destructive inspection of porosity, surface texture, and 

geometric integrity of internal surfaces is X-ray computed tomography (X-ray CT). The fidelity of 

X-ray CT is contingent on the material and geometry of the sample [17]. The interaction of X-rays 

with the part geometry, along with motion-, temperature-, humidity- and reconstruction-related 

noise effects can cause artefacts, such as beam hardening, streaking, and distortion, among others 

[17]. For examination of dense alloys, e.g., Inconel and Stainless Steel, the X-ray beam is 
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progressively attenuated with increasing thickness of the sample [18]. With a typical 225 kV X-

ray source the maximum thickness of Stainless Steel that can be penetrated is ~25 mm [19, 20]. 

Hence, despite recent advances in precision beam positioning and image reconstruction, it often 

requires several hours to X-ray CT parts made from dense alloys [18]. The restricted penetration 

of X-ray CT for dense materials entails that only larger flaws, typically greater than 50 µm, can be 

detected reliably. Further, the limited resolution of X-ray CT is insufficient to characterize 

microstructural aspects, such as meltpool depth and grain size [17].  

To quantify microstructural characteristics, representative coupons are manufactured 

alongside the actual component [14]. These so-called witness coupons, which are typically simple 

cuboid or cylindrical geometries, are characterized using metallographic techniques, such as 

optical and scanning electron microscopy, among others [3, 21]. This witness coupon approach for 

indirect qualification of the microstructure is prone to uncertainty [14]. This is because, different 

LPBF part shapes, albeit produced under identical processing parameters, seldom result in similar 

microstructure, owing to variations in their thermal history and inherent process stochasticity [22]. 

To explain further, it is implicitly assumed that the witness coupon would have microstructure 

characteristics similar to the actual part. However, the spatiotemporal temperature distribution of 

a part, also called the thermal history, is a key determinant of flaw formation and microstructure 

evolved [23]. Apart from processing parameters and part shape, the thermal history is influenced 

by several factors [24]. Researchers have reported that minor changes in the part orientation, build 

layout, including addition and removal of other parts from a build plate, adding pauses between 

layers, among others, can substantially alter the thermal history resulting in differences in 

microstructure evolved [25-27]. Consequently, the assumed similitude of the microstructure 

evolved between a standardized witness coupon and actual part is suspect.  
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1.2 Hypothesis, Approach and Limitations 

The hypothesis of this work is that a digital twin strategy combining real-time information 

from heterogeneous in-situ sensors and thermal history estimated with a physics-based model 

would predict porosity and microstructure-related characteristics in LPBF parts with greater 

statistical accuracy than either sensor data-driven modeling or physics-based modeling alone. 

The approach to test this hypothesis is outlined in Figure 3. We manufactured Inconel 718 

parts encompassing 22 different shapes and LPBF process parameter combinations. During the 

process, optical tomography and thermal imaging data were acquired from an in-situ sensor suite. 

Features (process signatures) were extracted from the sensor data. The thermal history of each part 

was predicted using an experimentally validated physics-based computational model. The process 

signatures and model-derived thermal history aspects were subsequently combined in a 

computationally tractable machine learning model (k-nearest neighbors, kNN). The kNN machine 

learning model was trained on offline metallographic characterization data to predict porosity, 

meltpool depth, grain size, and microhardness.   

 
Figure 3: The digital twin approach implemented in this work. Physics-based model predictions 
of the part-scale thermal history are combined with in-situ process signatures inside machine 
learning.  

There are two limitations in this work. First, it does not consider detailed microstructure 

aspects, such as grain texture and orientation, material composition and segregation, and material 
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phases that occur in LPBF of Inconel 718 [3]. Nor does it predict the effect of microstructure on 

mechanical properties. Characterizing the foregoing microstructure aspects requires techniques 

such as electron back scatter diffraction and X-ray diffraction. These measurements are 

cumbersome and expensive to acquire for an entire part due to their localized nature [28].  

Second, in LPBF, physical models are stratified into three phenomenological scales, namely, 

(i) micro-scale, meltpool-level thermal-fluid phenomena (< 100 µm); (ii) meso-scale, track- and 

layer-level solidification (100 to 500 µm); and (iii) macro-scale, part-level thermal gradients (> 

500 µm) [29]. In this work, macro-scale, part-level thermal history is predicted, and the track-level 

and meltpool-level thermal-fluid phenomena are not considered. In the literature, the track- and 

meltpool-level thermal-fluid phenomena are modeled as a Navier-Stokes system [30, 31]. The 

part-level thermal phenomena are predicted by solving the heat diffusion equation, a linear 

differential equation which is more computationally tractable [32-34]. Consolidating multi-scale 

phenomena is avoided due to its prohibitive computational burden [29]. This drawback is 

addressed by incorporating in-situ sensor data that partially captures meltpool-level phenomena.   

The rest of this paper is organized as follows. Sec. 2 provides an overview of the literature 

with respect to porosity and microstructure prediction in LPBF along with a summary of the state-

of-the-art relating to the implementation of digital twins in additive manufacturing. Sec. 3 details 

the experimental setup, design of experiments, and post-process measurement of part quality. The 

digital twin methodology is detailed in Sec. 4 in the context of the acquired sensor signatures, 

calibration and validation of the graph theory-based thermal model, and the machine learning 

model. The results are reported in Sec. 5, stratified into prediction of porosity, meltpool depth, 

grain size, and microhardness. Conclusions and future work are summarized in Sec. 6.  
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2 Prior Work and Challenges 

2.1 Sensor-based Monitoring and Machine Learning 

As an alternative to post-process empirical assessment, researchers have explored using in-

situ sensor data for qualification of LPBF parts [35]. As evident from recent review articles, in-

situ sensor data, such as infrared thermal imaging, pyrometry, optical imaging, among others, have 

been used extensively to detect porosity, and macro-scale part warpage and recoater crashes [36-

38]. The sensor data is correlated to specific flaws using data-driven, machine learning models 

e.g., Gaussian process modeling, neural networks, deep learning, among others [39-43].  

There is a large body of prior research demonstrating detection of lack-of-fusion porosity 

using in-situ sensor data [44, 45]. For example, Smoqi et. al. [46] used a two-wavelength imaging 

pyrometer for the detection of lack-of-fusion and keyhole porosity in LPBF. From meltpool images 

acquired from a two-wavelength imaging pyrometer, Smoqi et. al. [46] extracted signatures, such 

as meltpool shape and temperature distribution, and used these as inputs to machine learning 

models. These models were trained to classify the type of porosity (keyhole and lack-of-fusion 

porosity) and its severity with fidelity exceeding 97% F1-score. Likewise, Nguyen et. al. [47] 

instrumented an optical camera into an LPBF machine to monitor the top surface of the powder 

bed. These images were subsequently used as inputs into deep neural networks trained to predict 

lack-of-fusion porosity with statistical fidelity over 95%.  

Predicting meltpool depth has remained relatively unstudied in LPBF in comparison to other 

material characteristics. The meltpool depth (dp), which has been recently suggested by NASA as 

an indicator of process stability, refers to the depth of the solidified meltpool at the topmost layer 

relative to the layer height set on the machine [48]. In a recent work, Mossallanejad et. al. [49] 

used processing parameters along with known material properties of various popular alloys to 
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predict the meltpool depth with a statistical accuracy ~ 90% (R2). Several results correlating 

microhardness to the processing conditions have been presented in the literature [50, 51]. Recently, 

Zhang et. al. [52] used data from a photodiode instrumented coaxial to the laser with a random 

forest machine learning model to predict microhardness with an accuracy exceeding 90% (R2). 

However, these models do not account for the effect of the thermal history. 

Prediction of microstructural characteristics, such as grain size, using sensor data is in its 

infancy [53]. This is because microstructure evolution is contingent on both surface-level 

phenomena, as well as sub-surface temperature and cooling rates [54]. In LPBF, because the part 

is progressively buried under powder, existing sensing approaches, such as infrared and optical 

imaging, cannot penetrate the top surface of the part. Consequently, existing sensing approaches 

are incapable of observing the sub-surface thermal phenomena that influence microstructure 

evolution. Albeit, ultrasound and laser acoustic spectroscopy approaches have been implemented 

for ex-situ, non-destructive microstructure characterization [55-57].  

Despite the success of these prior works, there are two main drawbacks in using purely data-

driven machine learning for assessment of part quality. 

• Typically, data-driven models, are trained based on sensor data obtained for simple cuboid or 

cylinder-shaped coupons [58]. These models are adept at detecting one type of flaw, such as 

porosity, often based on data from one type of sensor [44, 59]. However, such data-driven 

approaches perform poorly when applied to practical, complex shapes [60]. In other words, the 

scalability and transferability of purely data-driven approaches is poor, because they ignore the 

causal effect of part shape and material properties on the thermal phenomena that cause flaw 

formation [42].  
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• Machine learning models, due to their black-box nature, occlude interpretability and are 

reactive in nature, which mitigates their ability to prevent and correct flaw formation [61, 62]. 

Further, machine learning models rely on extensive datasets, and the sensor data (input) and 

flaws (outputs) must be aligned spatially. These data sets are expensive to obtain given the 

small batch sizes of LPBF, and the expense associated with obtaining ground truth 

characterization data [63].  

2.2 Physics-based Modeling  

Three physics-based approaches are currently popular for the prediction of microstructural 

characteristics in LPBF, these are: (i) cellular automaton, (ii) Monte Carlo, and (iii) phase-field 

modeling [64, 65]. Using these methods, an image-based representation of the predicted 

microstructure can be generated [23, 66]. Researchers have successfully used these microstructure 

evolution models to predict the grain shape, orientation, and texture [61, 67, 68].  

However, these physics-based models are computationally demanding. They require several 

days to predict the evolved microstructure for only a few layers [30, 69, 70]. Consequently, 

prediction of microstructural characteristics using physics-based models have been used primarily 

for small, local regions in place of simulating the entire part geometry [71]. Another drawback 

with using physics-based models for part qualification is that they do not consider the inherent 

stochasticity of the LPBF process.  

2.3 Combined Physics and Data-driven Modeling (Digital Twin) 

An emerging approach to enable rapid qualification of LPBF parts is called grey-box 

modeling, which combines predictions from physics-based (white-box) models and real-time 

sensor data with the predictive ability of machine learning (black-box modeling) [54, 72]. Another 

name for the approach is the digital twin, owing to its integration of an a priori model of the 
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process with real-time data concerning its current state. The rationale for the grey-box or digital 

twin approach is that it augments the interpretability of physics-based models with real-time 

information of the process state from sensor data [73]. Thus, both the causal physical phenomena 

and stochastic aspects inherent to the process are combined.  

Recent review articles concerning data- and physics-integrated modeling of AM are provided 

by Kouraytem et. al. [74], Shen et. al. [75], Gunasegaram et. al. [76], Mukherjee et. al. [54], Zhang 

et. al. [77], and Guo et. al. [78]. These review articles delineate the need and utility of the digital 

twin for AM in the following contexts: (1) in-situ monitoring, prediction, and control of process 

state including flaw formation and microstructure; (2) mitigate the computational burden of the 

multi-scale physics-based models; (3) overcome the lack of interpretability and bias inherent to 

machine learning models; (4) accelerate parameter optimization and process qualification across 

different materials and systems from sparse data; and (5) obtain site specific microstructure, i.e., 

functional grading of the microstructure.  

Gunasegaram et. al. [76] note that a key constraint limiting the implementation of digital twins 

in AM is in the computational burden and proprietary nature of commercial packages currently 

available for physics-based modeling. They also underscore the importance of cross-validation 

between black- and white-box modeling inside of the digital-twin, in which the output of the 

physics-based model is compared to the real-world sensor data. We overcome the foregoing 

drawbacks, noted by Gunasegaram et. al. [76], by employing an experimentally validated, 

computationally tractable thermal simulation model [24, 27]. We also provide a visual, as well as 

statistical correlation between the physics-based model and sensor data for lack-of-fusion porosity 

and each type of microstructure characteristic predicted.   
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Feng et. al. [79] classified the potential uses for digital twins in AM into three levels. Level 3 

is in-situ monitoring of process drifts and flaw formation; Level 2 the prediction of microstructural 

characteristics, and Level 1 the prediction of mechanical properties. This work straddles Levels 3 

and 2 of Feng et. al.’s [79] hierarchical classification of digital twins. Our future works will attempt 

to encompass all three levels.  

As an example of a Level 3-type of application of digital twin for process monitoring, Roy et. 

al. [80] continually tracked the status of a friction stir deposition AM machine using sensors, such 

as oil level, rotary sensors, turbidity sensor, and other machine-level sensors. These sensors tracked 

variations in the machine status from the predetermined target level. By monitoring the variation 

between the ideal condition and actual states, appropriate maintenance actions were successfully 

recommended using a simple support vector machine learning model.  

 A recent work by Riensche et. al. [81] demonstrates a Level 2-type use case of the digital 

twin toward predicting the microstructure. Aspects of the thermal history, such as cooling time 

and end-of-cycle temperature were estimated from a part-level thermal simulation. These 

simulation-derived features were subsequently used as inputs to a simple support vector machine 

learning model trained to classify the meltpool penetration depth and grain size with accuracy 

exceeding 80% (statistical F1-score). However, no in-situ data was used to supplement model 

predictions. The current paper augments the work of Riensche et. al. [81] by combining physics- 

derived thermal history aspects with statistical features (signatures) extracted from in-situ sensor 

data for the prediction of lack-of-fusion porosity, meltpool depth, grain size, and microhardness. 
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3 Experiments 

3.1 Setup 

As shown in Figure 4, an optical tomography and longwave infrared thermal camera were 

installed on an Open Additive Panda LPBF machine. The sensor specifications and resolutions are 

provided in Table 1. These sensors are synchronized in time and capture complementary process 

phenomena. The optical tomography camera tracks the thermal behavior at the local, meltpool-

scale initiated by the rapid transition of the laser. The thermal camera acquires the global, layer-

wise surface temperature. Representative sensor data obtained in this work are shown in Figure 5.  

The optical tomography camera was installed on top of the machine at an 83° angle to the 

horizontal. The camera is equipped with a near infrared bandpass filter (~800 nm) and is set for an 

exposure time of 250 ms with a pixel resolution of 346 pixels per mm2 as detailed in Table 1. This 

relatively long exposure time allows tracking the most intense light radiated for every image pixel 

scanned by the laser. In other words, the optical tomography camera tracks the nearly instantaneous 

heating (106 °C∙s-1) initiated by the laser strike and captures the relative meltpool intensity of every 

pixel for every layer [82, 83].  

A Micro-Epsilon TIM 640 infrared thermal camera was installed inside the build chamber at 

a 60° angle to the horizontal. It captures thermal images of the powder bed at a rate of 30 Hz 

continuously for the entire duration of the build with a pixel resolution of 10 pixels per mm2 as 

detailed in Table 1. The thermal camera measures the longwave infrared (LWIR) radiation in the 

range of 8 µm to 14 µm. Such LWIR thermal cameras have been typically used in LPBF for 

tracking the temperature of the top surface of the powder bed after the laser has melted a layer, 

and a new layer is deposited on top but is yet to be melted [25, 84]. This signature, termed the end-

of-cycle temperature (Te), or inter-layer temperature, and described later in Sec. 4.1.1, has been 



13 
 

linked to part-scale thermal phenomena and microstructure evolution [27, 81]. In this work, the 

relative temperature readings of the LWIR thermal camera were calibrated to absolute scale using 

an industry standard procedure that references in-process thermocouple measurements [24].   

 

Figure 4: Location and positioning of the optical tomography and infrared thermal camera in the 
LPBF machine. 
 
3.2 Design of Experiments 

3.2.1 Exemplar Parts 

As shown in Figure 5, 22 Inconel 718 parts of different shapes were manufactured under 

varying processing conditions. The build consisted of 733 layers and required ~6 hours to finish. 

Inconel 718 is a precipitation hardening nickel-based alloy that is favored in high-temperature 

applications [3, 28]. Of the 22 parts on the build plate, herein we study 18 parts encompassing six 

different shapes. Representative thermal and optical imaging data for three layers obtained during 

the build are depicted in Figure 5(c) and (d), respectively.  

As detailed in Figure 6, the shapes studied in this work are labeled as follows: psi (Ψ), solid 

vase (VS), hollow vase (VH), cone (C), overhang (O), and tower (T). All parts are 22 mm tall (733 

layers), except for the cone, viz., 15 mm tall (500 layers). None of the parts had visually apparent 
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flaw formation, such as warpage or delamination, and the build was never halted to rectify any 

errors. These part geometries (Figure 6) have features, such as steep overhangs, thin walls, and 

enclosed cavities that would engender complex thermal history trends, and consequently, induce 

variation in the microstructure [85]. Similar part shapes have been studied in our previous work 

[26, 27, 81]. The rationale for each type of part shape is described herewith in the context of Figure 

6, and their processing conditions are described in the following Sec. 3.2.2 

 
Figure 5: (a) CAD diagram and (b) physical picture of the build plate used in this work. Note that 
there are no visually apparent flaw formation such as warpage or delamination. Three layers of 
representative data from the (c) longwave infrared (LWIR) thermal camera and (d) optical 
tomography camera. 
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(a) Psi (Ψ) 

Three psi-shaped (Ψ) geometries were manufactured under different processing conditions. 

Each psi-shaped part has a central pillar flanked by two arches with differing wall thickness to 

facilitate differential heat dissipation.  

(b) Vase (VS & VH) 

A total of four vase-shaped parts were manufactured under varying processing conditions. 

Two of these vases were hollow (VH) and had a 1 mm central cavity, and two solid vases (VS) 

did not have a central cavity.  

(c) Cone (C) 

Three cone geometries (C) with a 35° overhang angle were manufactured. In our prior works, 

it was observed that the latter layers of the cone-shaped geometries tend to retain heat, resulting in 

grain coarsening [26, 27].  

(d) Overhang (O) 

The six overhang geometries (O) with 30° angle from the horizontal were manufactured under 

different processing conditions. These geometries contain an 8×8×10 mm cuboid section at the 

bottom and two struts supporting the overhang section. In our previous works, we observed that 

the overhang section tends to retain heat contingent on the processing conditions resulting in 

different microstructure evolution [26].  

(e) Tower (T) 

Two tower geometries (T) were manufactured under different processing conditions. The 

powder trapped in the hexagonal cavity and thin-wall struts at the bottom tend to impede heat flux 

through the part, resulting in heat retention.  
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Figure 6: Schematic of the 6 types of part shapes (geometries) studied in this work. 
 
3.2.2 Processing conditions 

As depicted in Figure 7, the parts were built under varying laser power (P) and scan velocity 

(V) conditions. The treatment conditions labeled P1-P4 represent changes in laser power (P) only, 

and those labeled E1-E4 incorporate changes in both P and V simultaneously. The processing 

parameter combinations span a wide range of energy densities (Ev) to induce porosity and 

microstructure variations. Energy density is calculated as E𝑉𝑉 =  P
V×H×L

 [J∙mm-3] where H = 90 µm 

and L = 30 µm are the hatch spacing and layer thickness, respectively.  

To facilitate interpretation, the treatment conditions in Figure 7 are color coded, e.g., the 

nominal treatment conditions (N) is demarcated in black. The nominal treatment condition (N), 
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recommended by the machine manufacturer has a laser power P = 230 W, V = 1200 mm·s-1 

resulting in Ev = 71 J∙mm-3. In this labeling scheme, the lowest level of laser power P1 = 160 W, 

and the highest level P4 = 255 W. Likewise, E1 denotes the lowest energy density setting of P = 

175 W, V = 1400 mm·s-1 resulting in Ev = 46 J∙mm-3. The applied energy density increases to E4 

= 100 J∙mm-3 in which P = 270 W, V = 1000 mm·s-1. For example, the six overhang parts were 

manufactured under constant processing conditions and are labeled O-E1, O-E2, O-N, O-E3, and 

O-E4 with the nominal condition (N) replicated. Likewise, the three psi-shaped parts were also 

manufactured under constant conditions and are labeled, Ψ-E1, Ψ-N, and Ψ-E4.  

Further, for certain parts, the processing conditions are not maintained constant but are 

changed during processing in an attempt to control the thermal history in the part. For example, 

one of the two tower geometries, labeled (T-NP3P4) was manufactured with changing processing 

conditions, with the first 11 mm (366 layers) under nominal conditions (N), the next 4 mm (133 

layers) at treatment condition P3, and the last 7 mm (233 layers) under treatment condition P4. 

Similarly, one of the solid vases (VS-NP2) and hollow vases (VH-NP2), and one of the cones (C-

NP1) were printed under varying processing conditions. As demarcated in Figure 7, it was observed 

that setting laser power P ≤ 185 W and Ev ≤ 57 J∙mm-3 resulted in lack-of-fusion porosity. In other 

words, conditions P1, P2, E1, and E2 cause lack-of-fusion porosity.  
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Table 1: Nominal processing parameters, material properties and sensor specifications used in 
this work. 

Process Parameter [Units] Values  
Nominal Laser Power, P [W] 230 
Nominal Scanning Velocity, V [mm‧s-1] 1200  
Hatch Spacing, H [mm] 0.09  
Layer Thickness, L [mm] 0.03 
Volumetric Global Energy Density Ev [J‧mm-3]  71 
Build Atmosphere Argon 
Build Plate Preheat Temperature [°C] 50 
Recoater Cycle Time [sec] 10 

Recoater Blade Type  Metal 
Powder Material Properties Values 
Material Type Inconel 718 
Material Manufacturer Carpenter Addtive 
Powder Size Range [μm] 15-45 (D10–D90) 
IR Thermal Camera Specifications  Values 
Brand and Model Micro Epsilon – thermoImager Tim 640 
Resolution [pixels] , [pixels per mm2] 640 × 480 , 10 
Frame Rate [Hz] 33 
Spectral Rang [μm] 8–14 
Optical Tomography Camera Specifications  Values 
Brand and Model Basler acA4024–29 μm 
Resolution [pixels] , [pixels per mm2] 3036 × 4024 , 346 
Frame Rate [Hz] 4 
Spectral Rang [nm] 750–1000 
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Figure 7: Design of experiments varying laser power (P), scan velocity (V), and processing 
parameter within a part. The nominal condition is demarcated as N and color coded in black.  
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3.3 Materials Characterization 

After manufacturing, samples were removed from the build plate using wire electrical 

discharge machining, cross-sectioned, and mounted in graphite infused resin for microstructural 

characterization. The samples were successively ground using 300, 480, 600, 800, and 1200 grit 

polishing pads, and polished to mirror finish using 50 nm silica suspension.  

3.3.1 Porosity 

To discern the occurrence of lack-of-fusion porosity, the samples were examined using optical 

microscopy (Keyence VK-X3000). All 18 samples were assessed for porosity, of these, 7 samples 

depicted lack-of-fusion porosity. The samples with lack-of-fusion porosity were: Ψ-E1, VS-NP1, 

VH-NP2, C-E1, C-NP1, O-E1, and O-E2. Shown in Figure 8(a) is a stitched optical microscopy 

image for Ψ-E1. The optical micrograph depicts significant occurrence of lack-of-fusion porosity 

with its characteristic non-circular, jagged edge with a high aspect ratio noted in Figure 8(b) [46]. 

The lack-of-fusion pores observed in this work typically exceeded 100 µm in diameter. Further 

examination of individual lack-of-fusion pores with scanning electron microscopy (SEM, JEOL 

IT-500HR), exemplified in Figure 8(c), revealed the presence of unmelted powder. Indeed, all 

processing conditions where laser power P ≤ 185 W, viz., 20% reduction in laser power from 

nominal P = 230 W, resulted in lack-of-fusion porosity. Keyhole melting and gas porosity were 

not observed in any of the samples.  
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Figure 8: Lack-of-fusion porosity characterized using optical and scanning electron microscopy 
(SEM). (a) Stitched confocal microscopy image of the psi-shaped part Ψ-E1, along with (b) optical 
and (c) SEM images. Considerable lack-of-fusion porosity of size > 100 µm is observed when laser 
power P ≤ 185 W.  

3.3.2 Meltpool Depth (dp) 

To determine meltpool depth (dp), the samples devoid of lack-of-fusion porosity were 

chemically etched with aqua regia (3:1 = HCl:HNO3). In total 10 samples were measured for 

meltpool depth analysis. Subsequently, images of the cross-section, as shown in Figure 9, were 

acquired with optical microscopy. In Figure 9 the laser moves in and out of the plane of the page.  

The meltpool depth (dp) was measured in accordance with NASA MSFC-SPEC-3717 [48]. 

Shown in Figure 9 are meltpool measurements for Ψ-E1, Ψ-N, and Ψ-E4. Large variation in the 

meltpool depth (dp) between parts processed under identical conditions is considered an indicator 

of process instability. This specification instructs that the meltpool depth should only be measured 

with reference to the topmost surface, and not at the preceding layers. This is because the laser 

remelts the previous layers, hence the datum is lost. The meltpool depth quantifies the penetration 
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of the laser into previous layers. Between 2 to 3 layers of penetration, viz., in this work, dp = 60 to 

90 µm with L = 30 µm, is considered ideal for obtaining dense samples without porosity. An ideal 

degree of meltpool penetration is observed for Ψ-N. A shallower penetration indicates insufficient 

melting, while deeper penetration is correlated with occurrence of keyhole porosity and grain 

coarsening [86]. The penetration of Ψ-E1 is less than 2 layers; this sample had substantial lack-of 

fusion porosity as observed in Figure 8. A total of 515 measurements of meltpool depth were 

obtained.  

 
Figure 9: Meltpool depth (dp) measured in samples Ψ-E1, Ψ-N, and Ψ-E4. based on the NASA 
MSFC-SPEC-3717. Sample meltpool depths are shown for (a) Ψ-E1, (b) Ψ-N, and (c) Ψ-E4. The 
laser scans each hatch perpendicular to the plane of the page. 

3.3.3 Grain Size (Primary dendritic arm spacing, PDAS, λ1) 

Consistent with prior findings concerning LPBF of Inconel 718, all parts in this work 

portrayed columnar dendritic-type microstructure [3, 4, 28]. Consequently, the grain size is 

assessed in terms of the primary dendritic arm spacing (λ1). Depending on the part geometry, the 

grain size was measured at 10 to 12 sample locations as depicted in Figure 10. These measurement 

locations were selected to assess the effect of thermal history at certain regions where heat 

retention would lead to microstructure heterogeneity, e.g., overhang regions and around cavities. 

At each of the annotated locations in Figure 10, two SEM images were obtained. Within each SEM 

image, the grain size was measured at 2 sample locations, using the industry standard bounding 
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box procedure discussed in our pervious work [81]. A total of 852 individual measurements of 

grain size were obtained.   

3.3.4 Microhardness 

Microhardness measurements were acquired at the same locations as SEM images for grain 

size, depicted in Figure 10. At each location, five Vickers microhardness indentations (Buehler 

Wilson VH1102) were conducted at 0.3 kgf in the standard star indentation pattern for a duration 

of 10 seconds (Hv0.3,10). These five microhardness indentations were averaged per each 

measurement location. In all, 1,065 individual hardness measurements were acquired. 

 
Figure 10: Locations of grain size (SEM) and microhardness measurements for 6 part geometries. 
Two SEM images and five microhardness indentations were taken per location. A total of 10 parts 
without lack-of-fusion porosity were assessed; 852 grain size and 1,065 individual microhardness 
readings were acquired.  
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4 Digital Twin Modeling 

4.1 Sensor Signatures  

Three process signatures are extracted from the data acquired by the infrared and optical 

cameras. These are the end-of-cycle temperature (Te, [°C]), meltpool intensity (Im, [unitless]), and 

inter-layer time (tI, [s]). Each of these is described herewith, noting that the data from the sensors 

are synchronized.  

4.1.1 End-of-cycle Temperature (Te) 

The data from the LWIR thermal camera is processed to extract the end-of-cycle temperature 

(Te, [°C]). Shown in Figure 11(a) is the as-received LWIR image at layer 20. A zoomed in section 

of the temperature history data is shown in Figure 11(b), where the end-of-cycle temperature for 

the observed pixel location is demarcated with a red dot. The end-of-cycle temperature is 

essentially the minimum temperature attained at a location prior to the commencement of laser 

melting. In Figure 11(c), the end-of-cycle temperatures for all pixel locations are consolidated over 

an entire layer to generate a layer-wise 2D image. Figure 11 (d-f) shows the change in end-of-

cycle temperature for 3 select layers; note the heat retention in certain samples. 

In Figure 12, the end-of-cycle (Te) images in Figure 11 are rendered in 3D for all layers of the 

build. In this 3D rendering the effect of part shape on Te is evident. For example, comparing the 

psi (Ψ-N), vase (VS-N), overhang (O-N), and cone (C-N) geometries processed under identical 

nominal parameter conditions, C-N and VS-N tend to retain significantly more heat near the top 

layers compared to Ψ-N and O-N. 
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Figure 11: (a) As-received thermal imaging data is converted to (b) point-wise and (c) 2D image 
representation of end-of-cycle temperature (Te). (d-f) 2D Te images for three representative layers. 

 

Figure 12: 3D rendering of the end-of-cycle (Te) images. Prominent variation in thermal history 
is observed contingent on the part geometry. Note the difference between C-N, VS-N, and O-N. 
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4.1.2 Meltpool Intensity (Im) 

The optical tomography camera captures light emitted at wavelengths > 750 nm over a 250 

ms exposure time. This long exposure allows the optical camera to detect the most intense light 

emitted in the near infrared regime at each pixel. We extract this maximum light intensity recorded 

at each pixel and term this feature as the meltpool intensity (Im). This corresponds to the instant 

when the laser interacts with the metal powder.  

Exemplified in Figure 13 is the meltpool intensity for each pixel for four representative layers. 

A prominent variation in the meltpool intensity is evident between identically-shaped parts 

processed under different conditions, for example, note the difference in Im over time (layers) for 

the overhang parts O-N, O-E1, and O-E3. Further, Im also changes between parts of different shapes 

processed under identical conditions, as observed in C-N, VS-N, and O-N. A 3D rendering of the 

meltpool intensity images (Im) is shown in Figure 14. 

 
Figure 13: The meltpool intensity (Im) images obtained from the optical tomography camera. Note 
the difference between O-N, O-E1, and O-E4. 
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Figure 14: 3D rendering of the meltpool intensity (Im) for the entirety of the build. The meltpool 
intensity (Im) is primarily influenced by the processing parameters.  

Continuing with the analysis, in Figure 15, the layer-average end-of-cycle temperature (Te) 

and layer-average meltpool intensity (Im) are mapped for the three psi-shaped parts Ψ-E1, Ψ-N, Ψ-

E4. We note that substantial lack-of-fusion porosity was observed in Ψ-E1. In Figure 15(b) the 

average end-of-cycle temperature (Te) for each layer not only varies between the different 

processing conditions, but also changes between layers of the same part on account of its changing 

cross-section. In contrast, in Figure 15(a) the mean layer intensity (Im) responds to change in 

processing conditions more than the effect of part geometry. Thus, compared to the end-of-cycle 

temperature (Te), the meltpool intensity (Im) is less responsive to the change in part shape. 

However, as evident from comparison of Ψ-N and Ψ-E1, Im varies to a greater magnitude with 

change in input energy compared to Te. Similar trends were observed for other part geometries. 



28 
 

 
Figure 15: Layer-wise sensor signatures for the three psi geometries, Ψ-E1, Ψ-N, Ψ-E4. (a) change 
in meltpool intensity (Im). (b) end-of-cycle temperature (Te). The meltpool intensity (Im) responds 
to processing parameters while the end-of-cycle temperature (Te) is influenced by change in the 
layer-by-layer cross-section.  
 
4.1.3 Inter-layer time (tI) 

A third sensor signature called the inter-layer time (tI, [s]) is derived from the time 

synchronized Te and Im data. A representative cooling curve for a layer is shown in Figure 16. The 

peak of this curve corresponds to the meltpool intensity (Im) at the instant of the laser strike 

acquired from the optical tomography camera. The bottom of the cooling curve is the end-of-cycle 

temperature (Te) observed from the thermal camera. From the time stamp of the Im data the 

approximate instant of the laser strike for a location is obtained. Likewise, the time stamp of Te 

images provides the moment when the end-of-cycle temperature is attained. The inter-layer time 

(tI) is the duration between the peak of the laser strike to the end-of-cycle temperature of the 

cooling curve.  
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Visualized in Figure 17 is the inter-layer time (tI) for every layer of the build. Changes in the 

inter-layer time (tI) are caused by changes in the surface area of the build. For example, at 15 mm 

(500 layers) of build height, the three cone geometries are completed and the inter-layer time (tI) 

decreases from ~ 37 s to ~ 24 s.   

 
Figure 16: The approach to obtain the inter-layer time (tI) with the aid of optical tomography and 
thermal imaging data. The instant where the cooling curve peaks is captured by Im and the end-
of-cycle temperature is represented with Te. The inter-layer-time (tI) is the duration between the 
peak (Im) and end-of-cycle temperature (Te). 

 
Figure 17: Inter-layer time (tI) is extracted for all layers in the build, in which the cross-sectional 
area directly impacts the time taken for cooling. 
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4.2 Thermal Modeling 

4.2.1 Background 

The thermal history T(𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑡𝑡) of an LPBF part is the temperature T at every location 

(x,y,z) at time (t). The thermal history of a part is a function of its material properties, geometry, 

and processing parameters, and is obtained by solving the heat diffusion equation, Eq. (1) [87, 88]. 
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In the heat diffusion equation, the material properties are assumed constant and consist of 

the bulk material density, 𝜌𝜌 [kg·m-3]; specific heat capacity, cp [J·kg-1·K-1]; thermal conductivity, 

𝑘𝑘 [J·s-1·m-1·K-1]; volumetric heat flux, Q [W·m-3] viz., is the magnitude of heat supplied per second 

to melt a unit volume of the material.  The volumetric heat flux 𝑄𝑄 = P
V∙H∙L∙tq

. is a function of the 

LPBF process parameters: laser power (P, [W]), scan speed (V, [m·s-1]), hatch spacing (H, [m], 

layer thickness (L, [m]), and active laser time (tq, [s]), which is the length of time that the laser is 

on while generating the fixed volumetric heat flux. The second derivative in Eq. (1) is called the 

continuous Laplacian operator and captures the effect of part shape.  

 The finite element (FE) method is the most common approach used to solve the heat 

diffusion equation [88, 89]. A computational disadvantage of using FE analysis for predicting the 

thermal history in LPBF is that the part geometry has to be repeatedly remeshed to account for its 

changing cross-section with the deposition of each new layer [34, 89, 90]. It takes hours if not days 

to ascertain the thermal history of practical LPBF parts [32-34]. To overcome this computational 

disadvantage, commercial FE-based simulation packages have advanced adaptive meshing 



31 
 

techniques [88, 91]. In adaptive meshing the element size changes continually, with location-

specific mesh coarsening and refinement between time steps. This variation in element size 

impacts the prediction accuracy of cooling rates and end-of-cycle temperature.  

To overcome the shortcomings of FE-based analysis, in this work we use a rapid and 

meshless graph theory-based approach to predict the thermal history [24, 27, 81, 92-94]. The 

approach, summarized in Figure 18, is a discrete, mesh-free method to rapidly solve the heat 

diffusion equation [92]. The graph theory approach, which has been experimentally validated in 

our previous work, is found to 10 to 20-times faster than research-based FE analysis with accuracy 

within 5% of observed surface temperature distribution [24, 81, 92]. Additionally, the temperature 

and cooling rate at each node can be readily probed and tracked with the graph theory model. In 

contrast, commercial FE-based simulation software is typically user-locked and only outputs 

visualizations of the simulated results. By implementing the graph theory model, the thermal 

history was predicted between 6 minutes (hollow vase) and 38 minutes (cone) depending on the 

part volume.  

 
Figure 18: A schematic representation of the mesh-free graph theory approach used in this study 
to simulate the thermal history. Shown here is the example of the psi geometry. 
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In the graph theory approach, the temperature distribution T(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡) in Eq. (2) is solved as 

a function of the eigenvectors (ϕ), and eigenvalues (Λ) of the Laplacian Matrix (L) over the 

discrete nodes [94]. The approach provides a semi-analytical solution to the heat diffusion equation 

shown in Eq. (2). 

T(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡) = ϕ𝑒𝑒
− 𝑘𝑘
𝜌𝜌𝑐𝑐𝑝𝑝

𝑔𝑔Λ𝑡𝑡
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𝜌𝜌𝑣𝑣𝑣𝑣𝑝𝑝

𝑃𝑃
𝑉𝑉

+ 𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝� (2) 

 In Eq. (2), the effective laser absorptivity is denoted by 𝐴𝐴𝑒𝑒; volume of melted material 𝑣𝑣 

[mm3]; total length scanned per layer 𝑆𝑆𝑙𝑙 [mm]; scan speed as V [mm·s-1]; laser power P [W]; and 

temperature of the previously deposited layer predicted Tprev [°C]. A non-dimensional constant g 

= 0.6 is used as a scaling factor.  For this work 𝐴𝐴𝑒𝑒 = 0.60 based on experiments conducted by Ye 

et. al. [95].  

To facilitate rapid convergence, a meta-layer or super-layer modeling approach is used, 

wherein deposition of several layers is simulated at once – as commonly implemented in 

commercial and research-based FE approaches [89]. In this work, the super-layer size is 5 layers 

(150 µm).  These and other model parameters are listed in Table 2.  The resolution and accuracy 

of the model is contingent on the node density, i.e., number of nodes per unit volume, in this work 

the node density is maintained in the range of 4 to 7.5 nodes per mm3. A higher node density is 

needed for larger volume parts. A higher node density improves model accuracy at the expense of 

computation time; the relationship is O3.  

The thermal model considers the material properties, such as specific heat to be temperature 

independent and ignores the effect of phase change and latent heat of melting. These materials 

properties are listed in Table 2 and considered at 50% of the melting point of the material.  The 

errors due to maintaining material properties fixed is compensated by calibrating the boundary 
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conditions (explained in forthcoming Sec. 4.2.2). Since the end of cycle temperature and cooling 

time occur below the melting point of the material, the effects of latent heat and phase change are 

further mitigated.  

Table 2: Simulation parameters obtained after model calibration. 
Simulation Parameters Values 

Heat loss coefficient part to powder, hp [W·m-2· °C] 30 
Heat loss coefficient part to substrate, hs [W·m-2· °C] 8,000 
Heat loss coefficient to gas flow, hg [W·m-2· °C] 60 
Thermal Conductivity (k) [W·m-1·°C] 19.47  
Density (ρ) [kg·m-3] 8,193  
Specific Heat (cp) [J·Kg-1·°C-1] 626 
Melting Point [°C] 1,609 
Ambient chamber temperature [°C] 50 
Node density [nodes·mm3] 4 to 7.5 
Superlayer thickness [mm] 0.15 (5 actual layers)  
Gain factor (g) [unitless] 0.6 

Computational hardware Intel(R) Core(TM) i9-9900K CPU, @ 
3.60 GHz 

 
4.2.2  Thermal History Quantifiers  

Two quantifiers of the part-scale thermal history were derived from the graph theory thermal 

model, namely, the end-of-cycle temperature (T�e), [°C] and cooling time (t̂c), [s]. In our previous 

works, the grain size and meltpool depth were correlated to T�e and t̂c [81]. From a metallurgical 

perspective, these are analogous to thermal gradient (G, °C∙m-1) and solidification velocity (R, m∙s-

1) respectively [5]. The end-of-cycle temperature (T�e) predicted from the thermal model is the 

counterpart to the end-of-cycle surface temperature (Te) observed from the thermal camera.  

(a) End-of-cycle temperature (𝑇𝑇�e), and Model Calibration and Validation 

The average top surface end-of-cycle temperature predicted by the thermal model (𝑇𝑇�e) is 

calibrated with the extracted average top surface end-of-cycle temperature (Te) observed from the 

thermal camera. First, the nominal solid vase (VS-N) was used to calibrate the boundary 

conditions and heat loss coefficients of the graph theory model [27]. The calibrated model 
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parameters were subsequently used for all other parts. The procedure for model calibration is 

summarized in our prior publications [24, 27], and briefly summarized herewith.  

Three heat transfer-related boundary conditions were calibrated (Table 2): (i) heat loss from 

the part to the build plate (hs); (ii) heat loss by radiation and forced convection to the gas (hg); 

and (iii) heat loss to the surrounding powder (hp) [93, 94]. Heat losses are considered in the graph 

theory thermal simulation by adjusting the Laplacian matrix with type 3 (convection) boundary 

conditions [93, 94]. These boundary conditions, listed in Table 2, are calibrated by comparing the 

model-predicted top surface temperature to experimentally obtained measurements from the IR 

thermal camera. The IR camera was calibrated using reference thermocouple measurements as 

described in our previous works [24, 27].  

In Figure 19 the end-of-cycle temperature (T�e) for VS-N predicted by the graph theory model 

is overlaid on the end-of-cycle temperature (Te) measured from the thermal camera. The mean 

average percentage error (MAPE) and root mean squared error (RMSE) of the predicted T�e with 

respect to Te are within 6 % and 11 °C, respectively. For VS-N part the graph theory simulation 

was completed within 9 minutes.  The accuracy of the thermal model is further affirmed in the 

context of Ψ-E4 and Ψ-E1. Shown in Figure 20(a) and (b) are the predicted (T�e) and observed (Te) 

end-of-cycle temperatures for Ψ-E4 and Ψ-E1, respectively. These parts were simulated with 

identical parameters obtained from the calibration step for VS-N. For both parts MAPE was < 

5.5%, and the simulation required less than 10 minutes to complete per part. The error between 

the model-predicted 𝑇𝑇�e and observed Te shown in Figure 20(a) and (b) is likely due to stochastic 

machine level effects, such as effect of gas flow, uneven recoating, and location-related variation 

in heating of the substrate. Thus, it is important to monitor both physical model predictions with 

real-time observations. 
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Figure 19: Model calibration. The predicted end-of-cycle temperatures (𝑇𝑇�e) from the thermal 
model compared to the end-of-cycle temperature measurements (Te) observed from the thermal 
camera for the solid vase (VS-N). The heat loss parameters in the graph theory were calibrated. 
The model converged within 9 minutes with MAPE < 7%.  

 
Figure 20: Model validation. The end-of-cycle temperature (𝑇𝑇�e) from the thermal model compared 
to the end-of-cycle temperature measurements (Te) observed from the thermal camera for the two 
psi-shaped parts Ψ-E4 and Ψ-E1 manufactured under different processing conditions. The model 
parameters are not changed from the calibration step. The model converges within 10 minutes 
with MAPE < 5.5% 

(b) Cooling time (𝑡̂𝑡c), 

From the graph theory-based part thermal history predictions, a metric termed cooling time t̂c 

[s] is extracted for every layer [81]. Shown in Figure 21(a) is the cooling curve obtained from the 

graph theory model. As demarcated in Figure 21(a), the cooling time (t̂c) is the duration for the 

temperature to reach 700 °C from its peak at the instant of laser strike. The 700 °C temperature 

threshold was chosen as it is approximately 0.5× the melting temperature of Inconel 718, which 
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has a wide liquidus ranging from 1260 to 1330 °C [28]. The rationale is that repeated heating 

below 700 °C is unlikely to change the microstructure characteristics, such as grain size [86]. In 

our previous works, a longer cooling time (t̂c) was found to be positively correlated with grain 

coarsening and increase in primary dendritic arm spacing (λ1) [81]. 

The cooling time (t̂c) for the three psi-shaped geometries Ψ-N, Ψ-E4 and Ψ-E1 are plotted in 

Figure 21(b). The cooling time increases in proportion to the input energy density, indicating the 

propensity for heat retention in the sample. Further, the cooling time increases sharply at the 

overhang regions Ψ-N and Ψ-E4 on account of impeded heat flux through the thin walls (layer 667) 

and powder trapped underneath. A relatively constant cooling time t̂c < 0.3 s is predicted for Ψ-E1, 

noting that this sample has considerable lack-of-fusion porosity, as first shown in Figure 8. 

 
Figure 21: (a) Procedure for estimation of the cooling time (𝑡̂𝑡c) from the cooling curve obtained 
from the thermal model. (b) Cooling time for each layer of the three psi-shaped geometries Ψ-N, 

Ψ-E4 and Ψ-E1. Cooling time increases with input energy (Ev) due to heat retention. Cooling time 
for Ψ-E1 was the lowest, and almost constant throughout and had extensive lack-of-fusion porosity. 
4.3 Machine Learning  

4.3.1 Model Architecture 

A hierarchical machine learning architecture, shown in Figure 22, is used for assessing the 

part quality. The first echelon of the model discerns between parts with and without lack-of-fusion 

porosity. The next echelon concerns prediction of the meltpool depth (dp), grain size (λ1), and 
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microhardness (Hv). A hierarchical approach is implemented because the presence of lack-of-

fusion porosity in parts for safety-critical applications is considered unacceptable, and the parts 

are often rejected [96]. Hence, it would be impractical to predict microstructure evolution in 

samples with lack-of-fusion porosity. We note that the first echelon is a classification-type 

machine learning problem as its aim is to distinguish between porosity and no-porosity conditions. 

The second echelon is a regression problem, as the aim is to predict the value of dp, λ1, and Hv. 

 
Figure 22: Schematic of the hierarchical machine learning approach used for the digital twin 
approach. There are two echelons, the first involves predicting the occurrence of lack-of-fusion 
porosity. The second echelon is aimed at the prediction of meltpool depth, grain size, and 
microhardness of samples in which no lack-of-fusion porosity was detected.  

A supervised k-nearest neighborhood (kNN) machine learning model is employed at both 

hierarchical levels. A kNN model is selected owing to its simplicity, and its applicability to both 

classification and regression problems prevalent in the first and second echelons, respectively [97]. 

While more complex machine learning models, such as artificial neural networks were assessed, 

the results were only marginally better than kNN. On the other hand, the performance of simpler 

polynomial and logistic regression models deteriorated precipitously for prediction of grain size 

and microhardness.   
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4.3.2 Model Inputs, Training, and Testing. 

To test the digital twin hypothesis, the prediction accuracy is assessed for four combinations 

of inputs to the kNN model: (i) processing parameters, power (P) and velocity (V); (ii) layer-wise 

mean and standard deviation of the sensor signatures, meltpool intensity (Im), end-of-cycle 

temperature (Te), and the interlayer time (tI); (iii), layer-wise mean and standard deviation of the 

two thermal simulation-derived quantifiers end-of-cycle temperature (T�e) and cooling time (t̂c); 

and (iv) the digital twin model combining both the sensor signatures and simulation-derived 

quantifiers. Depending on the complexity of the task, between four and eight features are used in 

the digital twin. The classification results are reported in terms of the F1-score and the regression 

accuracy is quantified with the R2-adjusted measure [98]. These accuracy metrics are reported only 

for the testing data.  

In this work, all sensor signatures were extracted on a layer-by-layer basis for each part as 

previously discussed in Sec. 4.1. The thermal history quantifiers, discussed in Sec. 4.2 and 

summarized in Figure 22, were extracted from the model based on a super-layer basis. Three 

actual layers were agglomerated into a super-layer. These model-derived quantifiers were 

assigned to each of the three agglomerated actual layers and spatially aligned to the 

corresponding sensor data.  

Towards the prediction of part quality metrics, the measured porosity, meltpool depth, grain 

size, and microhardness must also be spatially aligned and aggregated on a layer-by-layer basis 

for each part. These are detailed below: 

(a) Porosity 

Lack-of-fusion porosity was spatially aligned on a layer-by-layer basis to the as-printed part 

by measuring the distance from the top surface. In other words, we ascertain the distance of each 
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layer which contained lack-of-fusion porosity to the as-processed surface. The sensor signatures, 

thermal history quantifiers, and part quality metric (porosity) are thus spatially aligned on a layer-

by-layer basis for machine learning training and testing.  

(b) Meltpool Depth 

Meltpool depth (dp) is measured only at the topmost as-processed surface of each sample in 

accordance with NASA MSFC-SPEC-3717 standard [48]. Consequently, only the top 10 actual 

layers of sensor signatures and thermal history quantifiers were used to predict the average 

meltpool depth for each sample. Thus the top 10 layers of sensor signatures and thermal history 

quantifiers are accorded the same measured meltpool depth (dp).  

(c) Grain Size & Microhardness 

Both grain size and microhardness measurements, visualized in Figure 10, were spatially 

aligned on a layer-by-layer basis using the same methodology. For each part, all grain size and 

microhardness measurements taken at the same z-height were averaged. The surrounding 

approximately 125 layers were assigned the averaged grain size (λ1) and microhardness (Hv) 

measurements taken. These λ1 and Hv measurements are aligned to their corresponding sensor 

data and thermal history quantifiers.  

Thus, the model learns the inherent variation in sensor signatures and thermal history 

quantifiers that generate meltpool depth (dp), grain size (λ1), and microhardness (Hv). For model 

training and testing, a conservative 60-40 split is used; 60% of the data is randomly selected for 

model training and 40% for testing. The train-test procedure is repeated 10 times to mitigate bias 

(10-fold cross-validation).  
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5 Results 

5.1 Porosity  

As first noted in the context of Figure 7, lack-of-fusion porosity was observed when the laser 

power P ≤ 185 W, viz., ~20% below the nominal laser power P = 230 W. This occurrence of lack-

of-fusion porosity is further examined in Figure 23 in the context of the vase-shaped parts VS-N 

and VS-NP2. VS-N was processed under constant nominal laser power condition. For VS-NP2 the 

laser power was reduced from the nominal to P2 = 185 W at a height of 16 mm (533 layers). Shown 

in Figure 23 are visualizations of the meltpool intensity (Im) and end-of-cycle temperature (Te) 

measured from the optical tomography and thermal sensors, respectively; the end-of-cycle 

temperature (T�e) from the thermal simulation; and the optical micrographs at two representative 

locations on each sample.  

In Figure 23, the occurrence of lack-of-fusion porosity in VS-NP2 corresponds to regions of 

reduced meltpool intensity (Im), which in turn is correlated to the locations where laser power was 

reduced from nominal level of 230 W to 185 W at 16 mm build height. However, the occurrence 

of lack-of-fusion porosity is not visually apparent from either the end-of-cycle temperature (Te) 

measurements obtained from the thermal camera, nor in the predicted thermal simulations (T�e).  
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Figure 23: Representative meltpool intensity (Im) and end-of-cycle (Te) for the two solid vase 
shaped parts VS-N and VS-NP2; simulation of thermal history using the graph theory model; and 
optical microscopy at two locations. Lack-of-fusion porosity was observed at locations of VS-NP2 
when the laser power was reduced from 230 W to 185 W at 16 mm of build height.  
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Continuing with the analysis, in Figure 24 the occurrence of lack-of-fusion porosity is 

correlated to meltpool intensity (Im) from the optical tomography camera and the cooling time (t̂c) 

derived from the thermal model. In Figure 24(a) the mean meltpool intensity (Im) over a layer for 

each part is plotted for the pore (red) and pore-free (blue) conditions. A clear segregation in the 

data is evident; lack-of-fusion porosity typically occurs when Im < 50 units. Similarly, in Figure 

24(b), lack-of-fusion porosity is stratified with respect to the simulation-derived cooling time (t̂c). 

The occurrence of lack-of-fusion porosity is exacerbated when t̂c ≤ 0.3 s. This is to be expected as 

lack-of-fusion porosity results from insufficient input energy, which in turn is correlated with 

reduced meltpool intensity (Im), and rapid dissipation of heat, i.e., shorter duration of t̂c.  

 
Figure 24: Histogram comparing the areas with no pores (blue) with pores (red) for all 18 parts 
analyzed in this work (n = 11,466). (a) Lack-of-fusion porosity is observed when meltpool intensity 
Im < 50 units (optical tomography). Likewise, lack-of-fusion porosity occurs when 𝑡̂𝑡c < 0.3 s 
(thermal simulation). 
  

Four features are used as inputs to the digital twin kNN model: (i) the mean meltpool intensity 

(Im), (ii) mean of end-of-cycle temperature (Te) observed from the thermal camera, (iii) mean of 

end-of-cycle temperature (T�e) from the physics-based model, and (iv) mean of cooling time (t̂c). 

The model is trained to classify the part quality into lack-of-fusion porosity vs. no porosity, viz., a 

two-class problem. The kNN model utilized 11,466 data points with a conservative 60-40 train-
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test split. To explain further, 60% of the data (6,880 data points) were randomly selected for 

training. The remaining 40% of the data (4,586 data points) were used for testing the model. This 

randomized train-test split was performed 10 times to ensure that the model did not fit on a 

favorable selection of data points (10-fold cross-validation).  

The testing results are reported in Table 3. First, when using only the processing parameters 

of laser power (P) and scan velocity (V), the model detected lack-of-fusion porosity on a layer-by-

layer basis with an F1-score of 96.6% (std. dev. of 10-fold cross-validation, σ = 0.3%). This 

confirms that lack-of-fusion porosity is primarily parameter induced, as demarcated in Figure 7. 

When only the two sensor-based features are used, the presence of lack-of-fusion porosity is also 

detected with a statistical F1-score of 96.6% (σ = 0.3%), due to the high correlation between input 

energy density (Ev) and the mean meltpool intensity (Im). Next, when only the two quantifiers from 

the thermal model, i.e., T�e and t̂c, were used as inputs to the kNN, the prediction fidelity increased 

to F1-score ~ 98.5% (σ = 0.4%). Finally, when the digital twin is implemented, where both sensor 

signatures and thermal history quantifiers (total of 4 features) are used as inputs to the kNN model, 

the F1-score improves to 99.3% (σ = 0.1%). Additionally, the digital twin model resulted in a false 

positive rate α = 0.5% and a false negative rate, β = 0.04%. The low standard deviation over the 

10 train-test cycles indicates that the model results are repeatable and not stochastic.  

Table 3: kNN results for the binary prediction of lack-of-fusion porosity as a function of different 
inputs. The model fidelity is quantified in terms of the F1-score with 10-fold cross-validation 
standard deviation reported in parenthesis. Testing data (n = 4,586 data points) is reported. 

Data Source Predictors (Model Inputs) F1-Score 
Processing 
Parameters 

• Laser power (P) 
• Laser Velocity (V) 96.6% (0.3%) 

Sensor Signatures 
(A) 

• Mean Meltpool Intensity [Im] 
• Mean end-of-cycle Temperature [Te,°C] 96.6% (0.3%) 

Thermal History 
Quantifiers (B) 

• Mean end-of-cycle Temperature [T�e,°C] 
• Mean Cooling Time [t̂c,s] 98.5% (0.4%) 

(A+B) Digital 
Twin Use both sensor and model features (4 features) 99.3% (0.1%) 
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5.2 Meltpool Depth  

The meltpool depth (dp) was measured based on NASA MSFC-SPEC-3717 standard [48]. In 

Figure 25, the meltpool depth (dp) is plotted as a function of the energy density (Ev) for 10 samples 

without lack-of-fusion porosity. The data are stratified as under penetration (dp ≤ 60 µm, ≤ 2 

layers), nominal penetration (60 µm < dp ≤ 90 µm, 2-3 layers), and over penetration (dp > 90 um, 

> 3 layers). Under nominal parameters with Ev = 71 J∙mm-3, the measured meltpool depth is ~70 

µm which is between the desired 2-3 layers of meltpool penetration. Noting that the layer height 

L = 30 µm. In Figure 25 the average meltpool depth (dp) increases proportionally with Ev, however, 

the trend is not linear.  

 

Figure 25: The effect of energy density (Ev) on meltpool depth (dp) for all parts. Three clusters 
were segmented in this work. Note the nonlinear trend between input energy and meltpool depth. 

Figure 26 compares the meltpool intensity (Im), end-of-cycle temperature (Te), and thermal 

simulation for two of the psi-shaped geometries, Ψ-N and Ψ-E4. Also shown in Figure 26 are the 

corresponding optical micrographs depicting the meltpool boundaries at the top layers. For Ψ-N 

dp = 73.5 µm, viz., 2.5 layers deep; in the case of Ψ-E4, dp ≈ 144 µm, viz., 4.8 layers deep indicating 
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over-penetration. In Figure 26, the meltpool depth (dp) is correlated positively to Im and Te. A 

positive correlation is also visually evident between dp and simulation-derived T�e.  

 
Figure 26: Representative meltpool intensity (Im) and end-of-cycle (Te) for two psi shaped parts 
Ψ-N and Ψ-E4; simulation of thermal history using the graph theory model; and optical 
microscopy at the top surface. The meltpool depth (dp) was observed to be significantly deeper in 
Ψ-E4 than Ψ-N due to increased thermal input energy and heat retention.  
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Visualized in Figure 27(a) and (b), respectively, is the correlation of the measured meltpool 

depth (dp) with the sensor-based signature meltpool intensity (Im), and the model-predicted cooling 

time (t̂c). Figure 27 confirms that Im and t̂c are positively correlated to dp, confirming that deeper 

solidified meltpools are symptomatic of increased heat retention.  Further, Figure 27 reveals that 

Im and t̂c are capable of distinguishing between under penetration (dp ≤ 60 µm, ≤ 2 layers), nominal 

penetration (60 µm < dp < 90 µm, 2-3 layers), and over penetration (dp > 90 um, > 3 layers). In 

Figure 27 sensor signatures and model quantifiers for only the top 10 layers from the 10 samples 

without lack-of-fusion porosity are used, corresponding to 100 measurements of meltpool depth 

(dp).  

 
Figure 27: Histogram of the meltpool depth (dp) as a function of the (a) meltpool intensity (Im), 
and (b) cooling time (𝑡̂𝑡c) (n = 100). The meltpool depth (dp) is proportional to both Im and 𝑡̂𝑡c.  

To predict meltpool depth (dp), four features, namely, the mean meltpool intensity (Im), and 

mean of end-of-cycle (Te) from the thermal camera, end-of-cycle temperature (T�e), and cooling 

time (t̂c) are used in a regression kNN machine learning model. These same four features were also 

used for the prediction of porosity in Sec. 5.1. The model uses 100 data points with a 60-40 train-

test split, in which 60% of the data points were randomly selected for training the regression model 

and the remaining 40% of the data was used for testing the developed regression model to predict 
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the specific meltpool depth at the top surface of each part. The randomized train-test split was 

performed 10-fold to mitigate overfitting (10-fold cross-validation).  

As depicted in Table 4, when using only the processing parameters of laser power (P) and 

scan velocity (V), the model accurately predicted the meltpool depth with an R2-adj of 98.1% (std. 

dev. over 10-fold cross-validation σ = 0.8%). This indicates that meltpool depth is primarily 

dependent on the input energy from the laser. When the two sensor-based features are used, the 

meltpool depth is predicted with an increased fidelity R2-adj ~ 99.3%. When only the thermal 

history quantifiers are used as inputs the prediction accuracy of meltpool depth remains consistent 

at R2-adj ~ 99.3%, albeit model uncertainty increases to σ = 2.3% from σ = 1.7%. Finally, when 

both the thermal history quantifiers and sensor signatures are used as inputs, the prediction 

accuracy improves marginally to R2-adj ~ 99.6% with a mean squared error (MSE) of ~1 µm. The 

relatively high prediction accuracy is on account of the positive correlation between the sensor 

signatures, thermal history quantifiers, and different levels of meltpool depth (dp) as shown in 

Figure 27.  

Table 4: kNN results for the regression prediction of meltpool depth as a function of different 
inputs. The model fidelity is quantified in terms of R2-adj. with 10-fold cross-validation standard 
deviation reported in parenthesis.  

Data Source Predictors (Model Inputs) R2-adj. 
Processing 
Parameters 

• Power (P) 
• Velocity (V) 98.1% (0.8%) 

Sensor Signatures 
(A) 

• Mean Meltpool Intensity [Im] 
• Mean EOC Temperature [Te,°C] 99.3% (1.7%) 

Thermal History 
Quantifiers (B) 

• Mean EOC Temperature [T�e,°C] 
• Mean Cooling Time [t̂c,s] 99.3% (2.3%) 

(A+B) Digital  
Twin Use both sensor and model features (4 features) 99.6% (1.0%) 
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5.3 Grain Size  

Plotted in Figure 28 is the grain size, in terms of the primary dendritic arm spacing (PDAS, 

λ1), as a function of the energy density (Ev) for 10 of the 18 parts without lack-of-fusion porosity. 

The grain size measurements are stratified into three levels for visualization purposes. The three 

levels are: small grains, λ1 ≤ 550 nm; medium grains, 550 nm < λ1 ≤ 600 nm; and large grains λ1 

> 600 nm. As the energy density (Ev) is increased beyond the nominal conditions of Ev = 71 J∙mm-

3, λ1 also increases on account of grain coarsening. To explain further, as Ev increases, heat 

retention increases, and the cooling rate decreases, which provides the dendrites more time to grow 

(grain coarsening) [99]. However, the trend between λ1 vs. Ev is nonlinear due to the complex effect 

of part shape.  

 
Figure 28: The effect of energy density (Ev) on primary dendritic arm spacing (λ1) for all 10 parts 
without porosity. Three clusters are observed in the data. An increasing, albeit nonlinear, trend in 
λ1 vs. Ev is discerned, indicating that heat retention results in grain coarsening.  
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This grain coarsening effect is visualized in Figure 29 for three overhang geometries (O-N, 

O-E3, and O-E4) with progressively increasing energy density. Figure 29 depicts the meltpool 

intensity (Im) from optical tomography and end-of-cycle infrared images (Te), the thermal 

simulation results, and representative SEM images. The increase in energy density manifests in 

higher meltpool intensity Im and Te, and heat retention in the overhang section, which leads to 

increase in the grain size (λ1). For example, O-N at the demarcated location, viz. layer ~600 (~18 

mm), λ1 = 471 nm. A similar location on O-E3 the λ1 = 593 nm, and for O-E4 λ1 = 640 nm.  

 
Figure 29: Representative meltpool intensity (Im) and end-of-cycle (Te) for three of the overhang 
shaped parts O-N, O-Ev3, and O-Ev4; simulation of thermal history using the graph theory model; 
and SEM images in the overhang region. The grain size (λ1) increased proportional to the input 
energy and heat retention. 
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In Figure 30, the distribution of the meltpool intensity (Im) and model-predicted cooling time 

(t̂c) are stratified for the three levels of primary dendritic arm spacing (λ1). This stratification is 

done only for visualization purposes. The data in Figure 30 encompasses 5,271 data points. These 

histograms confirm the general trend that an increase in Im and t̂c is correlated positively with λ1. 

However, there is significant overlap between the three classes. Therefore, prediction of λ1 is 

considerably more challenging than prediction of lack-of-fusion porosity and meltpool depth.  

 
Figure 30: Histogram of grain size (λ1) as a function of the (a) meltpool intensity (Im), and (b) 
cooling time (𝑡̂𝑡c) estimated from the thermal model (n = 5,271). The grain size is generally 
proportion to Im and 𝑡̂𝑡c, albeit there is considerable overlap. 

Next, a kNN is trained to predict the specific grain size value λ1 on a layer-by-layer basis, as 

a function of processing parameters, sensor signatures, and thermal history quantifiers as listed in 

Table 5. These kNN regression models used 5,271 data points (layers). A 60-40 train-test split is 

implemented, in which 60% of the data points were randomly selected for training the regression 

model and the remaining 40% of the data was used for testing the model. This randomized train-

test cycle was iterated 10-fold. As depicted in Table 5, using the processing parameters, λ1 is 

predicted with R2-adj. ~ 44% (σ = 1.8%). Thus, grain size is not predicted with appreciable 

accuracy as a function of processing parameters alone.  
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When the three sensor-based signatures indicated in Table 5 are used as inputs, λ1 is predicted 

with an R2-adj. ~ 85%. With just the two thermal history quantifiers as inputs the prediction 

accuracy decreases to R2-adj ~ 80%. Finally, when both sensor signatures and thermal history 

quantifiers (5 input features) are used, the prediction accuracy increases significantly to R2-adj. ~ 

93% with a MSE of ~0.4 nm. Notably the prediction uncertainty, quantified in terms of the standard 

deviation (σ) over the 10 cross-validation cycles, for the digital twin approach is significantly 

smaller (σ ~ 0.6%) compared to using either sensor signatures (σ ~ 1.3%) or thermal history 

quantifiers (σ ~ 1.9%) alone. Indeed, this result is in accordance with our previous work, where 

the two thermal history quantifiers were used for the prediction of grain size (λ1) in Inconel 718. 

The prediction accuracy in this previous work was ~ 80% [81].  

Table 5: kNN regression results for the regression prediction of grain size (PDAS, λ1) as a function 
of different inputs. The model fidelity is quantified in terms of the R2-adj. value with 10-fold cross-
validation standard deviation reported in parenthesis. 

Data Source Predictors (Model Inputs) R2-adj. 
Processing 
Parameters 

• Power (P)  
• Scan Velocity (V) 43.9% (1.8%) 

Sensor Signatures 
(A) 

• Mean Meltpool Intensity [Im] 
• Mean End-of-Cycle Temperature [Te, °C] 
• Inter-Layer-Time [tl,s] 

85.7% (1.3%) 

Thermal History 
Quantifiers (B) 

• Mean End-of-Cycle Temperature [T�e, °C] 
• Mean Cooling Time [t̂c, s] 80.8% (1.9%) 

(A+B) Digital 
Twin • Use both sensor and model features (5 features) 93.7% (0.6%) 
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5.4 Microhardness  

In Figure 31, the microhardness (Hv) for 11 samples without lack-of-fusion porosity is plotted 

as a function of energy density (Ev), summarizing 6,279 data points. The microhardness increases 

as the input energy (Ev) increases. In Figure 31, the microhardness is stratified into two levels, for 

visualization purposes, with mean Hv0.3 ≤ 320 (low microhardness), and Hv0.3 > 320 (high 

hardness). The large relative variation in the microhardness, even under nominal processing 

conditions of Ev = 71 J∙mm-3, indicates complex interaction of thermal history, metallurgical 

phenomena, and process stochasticity.  

 

Figure 31: The effect of energy density (Ev) on microhardness (Hv) for all 10 parts without 
porosity. Two clusters are observed in the data at mean Hv ~ 320 and Hv ~ 330 (n = 6, 279) 
 

Comparing Figure 28 and Figure 31 it is observed that both grain size (λ1) and microhardness 

(Hv) increase with increasing Ev. However, microhardness (Hv) is typically inversely proportional 

to grain size (λ1) on account of the Hall-Petch effect [100]. A potential explanation for the 

counterintuitive trend of microhardness increasing with grain size is on account of the precipitation 
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hardening nature of Inconel 718. The increased heat retention and increased cooling time (reduced 

cooling rate) at elevated Ev is likely to facilitate the precipitation of nano-scale γ" Ni3Nb particles 

in Inconel 718 (precipitation hardening) [100-102]. The formation of γ" phases enhances 

microhardness and mechanical properties, such as yield strength. Investigating the cause of 

increase in microhardness with increase in Ev is beyond the scope of this work.  

Figure 32 visualizes the optical tomography, infrared images, and thermal simulations for the 

two tower geometries, T-N and T-NP3P4. Additionally reported in Figure 32 are microhardness 

readings in the vicinity of the hexagon-shaped cavity. Unlike previous cases for porosity and 

meltpool depth, the difference in the sensor data and thermal simulation are not significant between 

the two parts, albeit the meltpool intensity (Im) responds to change in processing conditions in T-

NP3P4. The subtle change in the thermal distribution affects the microhardness. The microhardness 

of the region around the cavity for T-N is markedly higher compared to T-NP3P4, however there 

tends to be a large variation in microhardness in sample T-N; with a range in microhardness 

greater-than 30 Hv0.3 in comparison to a range of ~15 Hv0.3 for sample T-NP3P4. 
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Figure 32: Representative meltpool intensity (Im) and end-of-cycle (Te) for the two tower-shaped 
geometries T-N and T-NP3P4; simulation of thermal history using the graph theory model; and 
microhardness readings near the hexagonal cavity. The microhardness is higher by 30 units for 
T-N, however the microhardness is generally higher. 
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Shown in Figure 33 are histograms comparing meltpool intensity obtained from the optical 

tomography camera (Im) and cooling time (t̂c) from the thermal model for three levels of 

microhardness (Hv), encompassing 6,279 data points. For visualization purposes, the three levels 

of microhardness are: Hv < 300 (low); 300 < Hv < 325 (medium); and Hv > 325 (high). Unlike 

porosity and meltpool depth, there is significant overlap between the various levels of Hv found 

in this work. Consequently, compared to previous cases, the prediction of microhardness would 

require more input features to the kNN machine learning model.  

 
Figure 33: Histogram of the microhardness (Hv) as a function of (a) meltpool intensity (Im), and 
(b) cooling time (𝑡̂𝑡c) estimated from the thermal model (n = 6,279). The microhardness is 
proportional to Im and 𝑡̂𝑡c, however the large variation in the data evades visual clustering.  
 

The specific microhardness value for each layer is predicted using kNN regression models 

with processing parameters, sensor signatures, and thermal history quantifiers as inputs. The kNN 

models used 6,279 data points, with a 60-40 train-test split and 10-fold cross-validation. As shown 

in Table 6, using only processing parameters, laser power (P) and velocity (V), the microhardness 

was predicted with accuracy R2-adj ~7.5%. Thus, confirming that the variation in microhardness 

cannot be predicted as a function of parameters. When the sensor signatures were used as inputs, 

the microhardness is predicted with an R2-adj. ~ 84%. Using the thermal history quantifiers, the 
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prediction accuracy improves to R2-adj. ~ 85%. When both in-situ sensor data and sensor 

signatures are used together in a digital twin model (8 input features), the accuracy increases 

significantly to R2-adj ~ 91% with a MSE of ~0.62 Hv0.3.  

Table 6: kNN results for the regression prediction of microhardness as a function of different 
inputs. The model fidelity is quantified in terms of the R2-adj. value with 10-fold cross-validation 
standard deviation reported in parenthesis. 

Data Source Predictors (Model Inputs) R2-adj. 

Process Parameters • Power (P) 
• Scan Velocity (V) 7.5% (2.3%) 

Sensor Signatures 
(A) 

• Mean Meltpool Intensity [Im] 
• Std. Dev. Meltpool Intensity [σIm] 
• Mean End-of-Cycle Temperature [Te,°C] 
• Std. Dev. End-of-Cycle Temperature [σTe,°C] 
• Inter-Layer-Time [tl,s] 

84.0% (2.3%) 

Thermal History 
Quantifiers (B) 

• Mean End-of-Cycle Temperature [𝑇𝑇�e,°C] 
• Std. Dev. End-of-Cycle Temperature [σT�e,°C] 
• Mean Cooling Time [t̂c, s] 

85.4% (1.8%) 

(A+B) Digital 
Twin • Use both sensor and model features (8 features) 91.1% (1.6%) 

6 Conclusions and Future Work 

Qualification of LPBF part quality is presently dependent on expensive and time-intensive 

post-process characterization using X-ray CT and metallographic analysis. To accelerate part 

qualification, this work developed a digital twin strategy that combined in-situ heterogeneous 

sensor data and computational thermal modeling within machine learning. The approach was 

applied for predicting lack-of-fusion porosity, meltpool depth (dp), grain size (λ1), and 

microhardness (Hv) in Inconel 718 parts across a range of processing parameters and part shapes. 

The approach predicted the foregoing part quality aspects with statistical fidelity exceeding 90%. 

Specific outcomes are as follows: 

(1) In-situ data from an optical tomography and a long wavelength infrared imaging camera 

was captured during the LPBF of Inconel 718 samples encompassing 18 different part 

shapes and processing conditions. From this data instantaneous meltpool intensity and 
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end-of-cycle temperature were extracted. These sensor signatures capture complementary 

aspects of the process. In parallel, a mesh-free physics-based thermal computational 

modeling approach was used to predict consequential aspects of the thermal history, such 

as the end-of-cycle temperature and cooling time. The model was validated with in-situ 

experimental thermal imaging data.  

(2) Signatures acquired from the in-situ sensor data, and quantifiers of the thermal history 

from the physics-based model were used as inputs into a K-nearest neighbors (kNN) 

machine learning algorithm. The ground truth for the kNN was obtained from 

metallographic characterization. The kNN was trained to detect lack-of-fusion porosity 

with a fidelity exceeding 99% (F1-score), meltpool depth (dp) with R2-adj. ~ 99%, grain 

size in terms  (λ1) with R2-adj. ~ 93%, and microhardness (Hv) R2-adj. ~ 91%.  

(3)  The prediction accuracy of the digital twin approach was superior to either using only 

sensor-based or thermal history quantifiers as inputs to the kNN model. For example, the 

digital twin approach predicted grain size (λ1) with accuracy R2-adj. ~ 93%, compared to 

R2-adj. ~ 85% and R2-adj. ~ 80%, respectively, when only sensor-based and thermal 

history quantifiers were used.  

(4) The occurrence of lack-of-fusion porosity and meltpool depth were predicted as function 

of process parameters, namely, laser power and velocity with statistical fidelity exceeding 

95%. However, process parameters would not account for the effect stochastic errors, 

such as disruption of gas flow and variation in the deposition of height of the powder, that 

can greatly affect the porosity formation and meltpool depth. Therefore, it is pertinent and 

advantageous to perform in-situ monitoring for detection of porosity and meltpool depth 

to ascertain that the printing process is stable and performing as expected.  
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This work takes an important first step towards realizing an in-situ Born Qualified quality 

assurance paradigm in LPBF. In addition to the ability to predict coarse level grain size (λ1) and 

microhardness (Hv) on a layer-by-layer basis, the developed approach is capable of monitoring 

process stability. Thus, ensuring that no lack-of-fusion porosity is being developed and that the 

meltpool depth (dp) is within nominal parameters. If either of these values vary from the set 

nominal, from processing parameters, machine operators can know that there is a systemic problem 

with the machine such as improper gas flow.   

Remark on transferability of the proposed digital twin approach: In our previously published 

work, we have used the same machine, material (Inconel 718), and sensing setup under similar 

operating conditions as those described in this paper to detect a variety of flaw formation ranging 

from porosity, distortion, recoater interactions, and scan path errors [26]. Indeed, the cone and 

overhang geometries described herein was also examined in our prior work. In the prior work 

described in Ref. [26] we showed that there was negligible difference in sensor signatures 

acquired across four different build plates with identical parts. This lack of variability of build 

plates was ensured through calibration of optical tomography and infrared thermal imaging to 

the specific material and ambient process conditions. Given the demonstrated robustness of the 

sensors used for monitoring the process, and that thermal model accounts for the effect of part 

shape, processing conditions, materials properties and build orientation, it would be reasonable 

to surmise that the digital twin approach would be transferable across build plates.  Nevertheless, 

in our future work we will endeavor to ascertain transferability across different build plates. 

Lastly, we are exploring approaches to improve the resolution of the model to predict other 

microstructural characteristics, such as grain orientation and texture.  
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