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Abstract 
This work concerns the laser wire directed energy deposition (LW-DED) additive 

manufacturing process. The objectives were two-fold: (1) process mapping ‒ demarcating the 

process states as a function of the processing parameters; and (2) process monitoring ‒ detecting 

process anomalies (instabilities) using data acquired from an in-situ meltpool imaging sensor. The 

LW-DED process enables high-throughput, near-net shape manufacturing. Without rigorous 

parameter control, however, LW-DED often introduces defects due to stochastic process drifts. To 

enhance scalability and reliability, it is essential to understand how LW-DED parameters affect 

processing regimes, and detect deleterious process drifts. Single-track experiments were conducted 

over 128 combinations of laser power, scanning velocity, and linear mass density. Four process 

states were observed via high-speed imaging and delineated as stable, dripping, stubbing, and 

incomplete melting regimes. Physically intuitive meltpool features were used to train simple 

machine learning models for classifying the process state into one of the four regimes. The 

approach was benchmarked against computationally intense, black-box deep machine learning 

models that directly use as-received meltpool images. Using only six intuitive meltpool 

morphology and intensity signatures, the approach classified the LW-DED process state with 

statistical fidelity approaching 90% (F1-score) compared to F1-score ~85% for deep learning 

models. 

Keywords: LW-DED process mapping, process stability, meltpool imaging, process-aware 
machine learning, deep learning.  
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1 Introduction 

1.1 Objectives and Motivation 

This work concerns the laser wire directed energy deposition (LW-DED) metal additive 

manufacturing process [1]. The objectives were two-fold: (1) process mapping ‒ demarcating the 

process state as a function of the processing parameters; and (2) process monitoring ‒ detecting 

process anomalies (instabilities) using data acquired from an in-situ meltpool imaging sensor. A 

schematic of the LW-DED process is shown in Figure 1(a). In LW-DED, material in the form of 

metal wire is melted using energy from a laser and deposited layer-upon-layer. The relative 

movement of the wire, laser beam, and build plate provided by a machine tool or robot enables 

creation of three-dimensional, geometrically complex, large volume parts [2]. 

 
Figure 1: Depiction of various directed energy deposition (DED) additive manufacturing 
processes. (a) LW-DED (this work); (b) LP-DED; (c) EB-DED; and (d) WA-DED.  
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The LW-DED process is one of a family of directed energy deposition (DED) additive 

manufacturing processes [3]. Other DED-based processes include, laser powder directed energy 

deposition (LP-DED, Figure 1(b)), electron beam wire directed energy deposition (EB-DED 

Figure 1(c)), and wire arc directed energy deposition (WA-DED, Figure 1(d)) [4]. The salient 

aspects of these processes are juxtaposed in Table 1. In LP-DED, material is sprayed from a nozzle 

in powder form and melted using energy from a laser; in EB-DED the feedstock material is metal 

wire with an electron beam as energy source; and in WA-DED metal wire feedstock is melted 

using energy from an electric arc akin to gas metal arc welding. 

While WA-DED has one of the highest deposition rates of all AM processes, nearly 50 times 

that of LP-DED, it suffers from relatively poor precision and feature resolution, which necessitates 

substantial post-process machining and finishing to obtain the final shape [5]. By contrast, LP-

DED, whilst relatively precise, has reduced material deposition rates. In this context, LW-DED 

combines the precision of LP-DED with the large volume deposition capability of WA-DED [6]. 

Additionally, researchers have reported that not only is the deposition rate of LW-DED an order 

of magnitude faster than LP-DED, but also that it produces fewer flaws, such as porosity, while 

maintaining mechanical properties on par with forged components [7, 8]. We note that EB-DED 

requires a near-vacuum environment to avoid interaction of electrons with other molecules.  

Regarding material and mechanical properties, LW-DED also falls in between LP-DED and 

WA-DED. In all DED processes, there is a significant amount of thermal cycling as molten 

material is continuously added and solidified layer-upon-layer [9]. Due to the difference in 

deposition rates, there is a significant difference in the severity of thermal cycling that creates 

distinctive microstructures and residual stresses [10]. For example, Svetlizky et. al. [10] reported 

that the residual stresses in WA-DED samples significantly exceed the residual stresses of LW-
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DED, which in turn had more residual stresses than LP-DED samples. Consequently, given its 

advantages with respect to deposition rates, resolution, and mechanical properties the LW-DED 

process is of growing interest for manufacturing large components to near-net shape, such as rocket 

nose cones, in a rapid and cost-effective manner [10].  Despite these promising capabilities, 

production-level scale-up of the LW-DED process is currently hindered due to the tendency of the 

process to drift, despite extensive a priori process parameter optimization, resulting in malformed 

parts [11]. For example, Figure 2 compares turbine blades processed under two similar LW-DED 

processing conditions. However, the turbine blade in Figure 2 (right) was afflicted by stochastic 

process instabilities. 

Table 1: Comparison of the various types of DED processes [12-14]. The LW-DED process balances the 
tradeoff between resolution and deposition rate of LP-DED and WA-DED. 
 LP-DED LW-DED 

(this work) EW-DED WA-DED 

Feedstock material Powder Wire Wire Wire 
Energy Source Laser Laser Electron Beam Plasma Arc 

Atmosphere Argon, 
Nitrogen, etc. 

Argon, 
Nitrogen, etc.  Vacuum Argon, 

Nitrogen, ect.  
Deposition Rate [kg·hr-1] 2.2  3.0  9.0  10.0  
Feature Resolution [mm] 0.25 0.5  0.5  1  

 

 
Figure 2: Comparison of an acceptable quality sample and ill-formed production sample of an 
LW-DED processed turbine blade. Both parts were manufactured under similar conditions.  
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1.2 Novelty, Approach and Limitations 

The novel contributions of this work lie in rigorous mapping of LW-DED process state as a 

function of key process input variables, and in forwarding an intuitive and computationally 

tractable process-aware machine learning approach for monitoring the process states. From the 

process mapping perspective, three common LW-DED process drifts, or instabilities, resulting in 

sub-optimal deposit geometries are studied in this work, namely, dripping, stubbing, and 

incomplete melting. Such stochastic process drifts destabilize the complex laser-material 

interaction inherent to the LW-DED process. The nature and root cause of these drifts are discussed 

later in the context of Figure 6 in Sec. 3.2. To ensure industrial viability of LW-DED, it is necessary 

to understand and delineate the processing conditions leading to the onset of process instabilities.  

Figure 3 summarizes the approach developed in this work to detect process instabilities. An 

in-situ high-speed camera is used to acquire images of the meltpool and its surrounding region 

during LW-DED of stainless steel 316L deposits. Previous works in laser-based additive 

manufacturing have reported that the morphology (shape) and intensity of the meltpool correlate 

to process instabilities [15-17]. Accordingly, the meltpool images were analyzed using machine 

vision algorithms, and a total of six quantitative features (process signatures) pertaining to the 

meltpool shape and intensity were extracted. These process signatures were used as inputs to 

various simple machine learning models, such as logistic regression (LR), support vector machine 

(SVM), k-nearest neighbors (KNN), K-means clustering, and shallow artificial neural networks 

(ANN). These machine learning models were trained (supervised learning) to classify the LW-

DED process state into one of four possible regimes: stable deposition, dripping, stubbing, and 

incomplete melting. The latter three states are considered unstable processing regimes. The ground 
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truth for the machine learning algorithm was ascertained by depositing single tracks of stainless 

steel 316L under 128 combinations of power, velocity, and linear mass density.  

 
Figure 3: Overview of the approach to correlate in-situ meltpool images to track quality in laser 
wire DED in the work using meltpool morphology and intensity features. 

Lastly, the approach was benchmarked against two deep learning networks that directly use 

raw meltpool images as opposed to meltpool intensity and morphology features. The two deep 

learning networks tested were: (i) a custom designed convolutional neural network (CNN), and 

(ii) a pre-trained CNN called VGG16, which is used in the machine learning community as a 

benchmark [18]. The approach is termed process-aware machine learning, since, physically 

intuitive features were used as inputs. Deep machine learning architecture, such as convolutional 

and artificial neural networks, are inherently computationally complex and need to process and 

store large amounts of raw sensor data [19]. Further, the complexity of deep machine learning 

models comes at the cost of physical interpretability and transferability [20]. By contrast, the 

process-aware, machine learning approach, given its computational simplicity, lends itself to real-
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time implementation. Moreover, the use of physically intuitive process signatures is amenable to 

model interpretability and transferability across different processing conditions.  

 A limitation in the current work is that it is restricted to classification of process states based 

on data from a single imaging sensor obtained from single track experiments. Since single tracks 

are the basic building blocks of LW-DED parts, the ability to track and detect instabilities is the 

first step towards process control in complex parts. Future work will extend the approach to a 

multi-layer part with heterogeneous sensors for controlling specific functional aspects, such as 

microstructure evolved and mechanical properties. We will further improve this work beyond 

process monitoring to in-situ mitigation of process instabilities using a hybrid additive-subtractive 

correction strategy. The key idea is to use a subtractive machining attachment with the LW-DED 

system to remove a flaw afflicted layer before they cascade to succeeding layers.  

2 Prior work 

Whilst several researchers have reported sensor-based monitoring and machine learning for 

flaw detection in LP-DED and WA-DED, such efforts in the context of LW-DED remain in 

nascent stages [21]. These prior works in LP-DED and WA-DED focus on prediction of porosity, 

deformation, and microstructure-related flaws using in-situ sensor data and machine learning [15, 

22, 23]. Likewise, researchers have applied in-situ sensing and machine learning for flaw detection 

in laser welding sans filler wire [24-29]. Rather than meltpool imaging, these works have relied 

on imaging subsurface weld pools or the laser plume. This is one of the first works to delineate the 

processing conditions that are liable to cause process instabilities, as well as demonstrate a 

computationally tractable approach for real-time process monitoring using high-speed meltpool 

imaging data. Herewith, we review select LW-DED literature in a process mapping, sensing, and 

monitoring context; a summary of pertinent literature is provided in Table 2.  
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A major research thrust in LW-DED is toward empirical understanding of process phenomena 

as a function of processing parameters. For example, Abioye et al. [30], conducted an empirical 

study to ascertain the process regimes in LW-DED. They changed the scan velocity (V) and laser 

power (P) to determine the region of stable deposition, dripping, stubbing, and incomplete melting. 

In a similar vein, Ding et al. [31] studied the effect of scan path on surface roughness and surface 

porosity. Other works include understanding the effect of process parameters on solidification 

microstructure [32]. Motta et al. [33] monitored the meltpool with a high-speed camera. They 

conducted a parameter study to visualize changes in meltpool morphology associated with 

nominal, dripping, stubbing, and defective processing regimes for a coaxial wire feed LW-DED 

system. Similarly, Akbari et al. [34] monitored the process using a coaxial camera to correlate the 

meltpool morphology to the microstructure. The present work provides further delineates the 

relationship between processing parameters and instabilities, through an evolved understanding of 

the meltpool dynamics.  

From a process monitoring and control perspective, Gibson et al. [35] and Chen et al. [36] 

used an optical imaging camera installed coaxial to the laser beam to control the meltpool area and 

width, respectively, via a closed loop controller that modulated the laser power. Abadi et al. [37] 

outline critical considerations in the laser and wire interactions for maintaining stable transfer to 

the melt pool. These works report that maintaining a stable meltpool morphology resulted in 

desirable geometric integrity. Sensor-based feedback methods have been key to advancing LW-

DED technology. Hagqvist et al. [38] showed success in maintaining stable wire feed rates using 

resistance-based sensing and machine-learning control during the laser-wire DED process. 

Kisielewicz et al. [39] maintained stable liquid metal transfer in hot-wire laser DED using optical 

vision, spectroscopy, and electrical signals.  



9 
 

Jamnikar et al. [40] predicted the track penetration depth, width, and height using a multi-

sensor array consisting of two optical cameras, three pyrometers, and an acoustic sensor. The 

sensor data in the form of raw images from the optical cameras and time series trends from the 

pyrometers were used as inputs to a convolutional neural network trained to predict the foregoing 

track quality aspects. Likewise, in a recent work, Abranovic et al. [11] installed an optical camera 

on a robot-based LW-DED apparatus to monitor the meltpool behavior. Subsequently, the authors 

trained a convolutional deep learning autoencoder to predict the evolution of meltpool behavior 

for future image frames as a function of prior images. The autoencoder was also leveraged, albeit 

indirectly, to detect process certain process flaws, namely, dripping, arcing, melt pool oscillation, 

and wire stubbing. This research differs from the foregoing prior works by Jamnikar et al. [40] 

and Abranovic et al. [11] in the following two aspects: (i) the focus of this work is in on mapping 

as well as detecting process instabilities, as opposed to predicting  characteristics, such as solidified 

meltpool depth and meltpool behavior; and (ii) computationally tractable, process-aware machine 

learning models with intuitive process signature inputs, such as meltpool intensity and 

morphology, were trained to classify the process state. By contrast deep learning model directly 

use the raw meltpool images at the expense of interpretability. Indeed, we demonstrate that the 

classification fidelity of process-aware machine learning is higher than deep learning.  

Dehaghani et al. [41] recently demonstrated similar forecasting and closed-loop control using 

optical images as inputs to an artificial neural network.  Understanding and predicting the 

processing conditions also enables the prediction of the microstructure evolution. Gao et. al. [42] 

found that as the processing regime varied from incomplete melting to stubbing, the cooling rate 

changed from fast to slow. The varying cooling rate subsequently generated heterogeneous 
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microstructure. This basic physical understanding is vital for future microstructure control of the 

LW-DED process.   

Table 2: Literature review table for LW-DED in the context of process mapping and monitoring.  
Focus Reference Sensor Performed Task 

Process Mapping & 
Understanding 

[30] None Process mapping 
[31] None Scan-path planning 

[32] None Microstructure mapping 

Correlation of 
Meltpool Behavior 
to Processing State 

[33] High-Speed Camera Visualized meltpool at various 
regimes 

[34] Optical Camera Microstructure correlation with 
meltpool shape. 

Control of Meltpool 
Behavior 

[35] Optical Camera Controlled meltpool area to 
improve geometric accuracy. 

[36] Optical Camera Control of meltpool width 
improved geometric integrity. 

Prediction of Part 
Quality 

[40] High-Speed Camera Used convolutional neural network 
to predict track quality 

[11] Optical Camera 
Used convolutional autoencoder to 
predict meltpool behavior, and 
process states. 

3 Methods 

3.1 Experimental setup 

A schematic diagram and picture of the experimental setup are shown in Figure 4. A Hybrid 

Manufacturing Technologies AMBIT FLEX LW-DED system was retrofitted to a Hardinge 

GX250-5 axis vertical milling center. The milling head with the laser optics controls all travel in 

the X, Y, and Z axes relative to the substrate. The laser source consisted of an IPG Photonics Yb-

doped fiber laser (1070 nm) with maximum power output of 2 kW.  

The laser was focused to a nominal 2 mm spot size, and argon gas (flow rate = 20 L·min-1) 

was used for shielding. For in-situ monitoring, an Edgertronic SC2+ high-speed camera was 

installed off-axis to the laser beam, inclined at a 45º angle and focused on the meltpool. The camera 
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was affixed to the laser optic system such that it moved in concert with the beam. Thus, a stationary 

and focused image of the meltpool was obtained throughout the process. The camera captured 

meltpool images at 2,500 frames per second at a resolution of 1280 × 720 pixels. Approximately 

1249 image frames were acquired for each single track at a spatial resolution of 20 µm per pixel.  

 
Figure 4: Depiction of the LW-DED apparatus: (a) schematic; (b) image of the apparatus; and 
(c) exemplar meltpool data. 

3.2 Experimental design 

Stainless steel 316L wire from Lincoln Electric (diameter 1.1 mm) was used as feedstock for 

128 printed single tracks with a length of 40 mm each and an offset height of 11.5 mm. The 

chemical composition of the wire conformed to ASTM standard A580/A580M [43]. The tracks 

were deposited parallel to the X-axis with the machine table stationary and the laser head moving. 

The stainless steel alloy 316L used in this work is an austenitic stainless steel with importance in 

naval applications due to its corrosion resistance [44-46].  

Each single track was produced under distinct process parameters using a full factorial 

experimental design with three main variables: laser power (P, [W]), scanning velocity (V, 

[mm·min-1]), and linear mass density (ld, [g·mm-1]). The scanning velocity refers to the relative 

speed between the substrate and laser beam. Linear mass density (ld) is the ratio of the material 
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feed rate (fr, [g·s-1]) to the laser scanning velocity (V, [mm·s-1]); 𝑙𝑙𝑑𝑑 = 𝑓𝑓𝑟𝑟
𝑉𝑉

. An inordinately large ld 

value would lead to a large accumulation of material ahead of the meltpool, which is characteristic 

of stubbing. Insufficient ld would lead to an incoherent line, as not enough material is available for 

deposition. 

The full factorial experimental design is depicted in Figure 5. The laser power (P) and 

scanning speed (V), respectively, were evenly spaced at 8-levels ranging between 600 W to 1800 

W, and 250 mm·min-1 to 1500 mm·min-1 respectively. The experimental design was repeated such 

that two levels of linear mass density were studied: ld = 0.0086 g·mm-1 and ld = 0.0129 g·mm-1. 

The laser power and velocity levels were chosen with the intent of engendering various types of 

process drifts. The linear mass density levels were selected based on manufacturer settings, and 

with the intent to minimize failure to deposit. The color bar on the right of Figure 5 represents the 

linear energy density 𝐸𝐸𝐿𝐿 = 𝑃𝑃
𝑉𝑉

[𝐽𝐽 ∙ 𝑚𝑚𝑚𝑚−1]. 

 
Figure 5: Processing parameters used in the experiment. The color bar to the right is the ratio of 
laser power to scan velocity (P/V). 
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Four process regimes were observed during experiments: (a) stable, (b) dripping, (c) stubbing, 

and (d) incomplete melting. Figure 6 shows representative meltpool images acquired for each 

regime, and the deposited track. The bottom row of Figure 6 is the cross-section of weld beads 

representing each regime. The ideal case of stable melting is depicted in Figure 6(a). The dripping 

regime (Figure 6(b)) is caused by excess energy delivery to the wire which melts the wire before 

it reaches the meltpool. The surface tension of the melted wire prevents consistent wetting and 

adherence to the previous layers, and in the case of a single track, fusion of material onto the 

substrate. Consequently, instead of homogenous connected tracks, dripping results in inconsistent, 

discontinuous deposits [32, 33].  

The stubbing regime of Figure 6(c) results from insufficient energy to melt both the incident 

wire and previously deposited layers, or the substrate in the case of single-track prints. 

Consequently, stubs of semi-solid wire protrude from the surface of the meltpool. Incomplete 

melting in Figure 6(d) is characterized as an extreme case caused either by insufficient energy or 

insufficient material delivery. The resulting track is characterized by near-complete discontinuity. 

The meltpool behavior changes dramatically for each of these regimes in terms of its shape 

(morphology) and its intensity. 

 Apart from the deposit quality, the width, depth of penetration, and height of the track are 

also contingent on the processing conditions [16]. Since the focus of this work is on classifying 

and detecting the process regime, these track quality aspects were not quantified. As evident from 

Figure 6 (bottom row), under stable processing conditions, the material nominally penetrates the 

substrate material. In the dripping regime, the material penetrates deeper into the substrate, because 

the high energy density causes over-melting of the wire and subsequent deposition of material at 

high temperature. Further, the width of the track in the dripping regime increases as a larger volume 
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of material is melted. Within the stubbing regime, the lower energy density results in insufficient 

penetration into the substrate. Under the incomplete melting regime, there is negligible penetration 

into the substrate, and effectively no material is deposited. 

 
Figure 6: The four processing regimes studied in this work, their meltpool morphologies, and their 
effect on the quality of the track. (a) stable (b) dripping; (c) stubbing; and (d) incomplete melting.  
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3.3 Machine Learning 

Machine learning algorithms were used to detect (classify) the process regimes from the 

acquired meltpool. The approach comprises of the following three steps:  

• Step 1 - Image pre-processing using computer vision step to detect the meltpool boundary.  

• Step 2 - Feature extraction to obtain two types of process signatures from the processed 

meltpool images, namely meltpool morphology (shapes) and meltpool intensity 

(brightness). The melt pool intensity is a surrogate for meltpool temperature. 

• Step 3 - Training of machine learning models to detect the four process regimes based on 

the acquired meltpool features. 

3.3.1 Image pre-processing 

The aim is to separate the meltpool boundary from exogeneous artifacts using well-known 

computer vision algorithms. The key aspects of this procedure are exemplified in Figure 7. The 

detection of the meltpool contour was performed by the combination of three computer vision 

procedures: Gaussian image blurring, binary image thresholding, and image border tracing [47]. 

While the first two procedures transform the meltpool images to reduce noise from 

illumination and vibration, the third procedure defines the meltpool contour. All computer vision 

algorithms were computationally implemented in Python 3.7 with the support of the OpenCV 

library. Each of the steps are described in detail in Appendix I.  
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Figure 7: Depiction of the computer vision approach: (1) a grayscale image of the meltpool is 
captured by the high-speed camera; (2) the image is blurred via a gaussian function; (3) the 
blurred image is binarized; and (4) the meltpool contour is detected via a border tracing 
algorithm. 

3.3.2 Feature extraction 

 Two categories of process signatures are extracted from the synthesized meltpool images. 

These are: (a) meltpool morphology (shape) and (b) meltpool intensity. A total of 6 features were 

extracted to predict track quality in this work. These six features and their origins are visualized in 

Figure 8. The choice of meltpool features was motivated from our previously published 

experimental work in laser-based additive manufacturing processes such as laser powder bed 

fusion (LPBF) and laser power directed energy deposition (LP-DED), and theoretical simulations 

by Khairallah and co-workers [16, 17, 48, 49].  

 
Figure 8: Schematic representative of the source image from which the six used features were 
extracted. 
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Described herein are the meltpool morphology and intensity features extracted in this work.  

(a) Meltpool morphology features 

Morphological features capture the shape of the meltpool as defined by the traced contour. As 

exemplified in Figure 9, they comprise the meltpool area (Am), aspect ratio (εm), and irregularity 

(σm).  

(i) The meltpool area represents the size of the meltpool by summing the number of pixels 

inside of the traced contour image.  

(ii) The meltpool aspect ratio is the length to width ratio of an ellipsoid fitted around the 

bounded contour of the meltpool. An aspect ratio of εm = 1 represents a perfect circle, whereas εm 

> 1 indicates an elongated meltpool.  

(iii) The meltpool irregularity is quantified as the standard deviation of all the radii measured 

from the centroid to each point on the contour borders of the meltpool. As the meltpool contour is 

traced, it is essentially composed of a sequence of point coordinates that form a closed shape 

around the meltpool. The meltpool radii are traced from the centroid of the meltpool to every point 

coordinate along the detected contour. Large meltpool irregularity values indicate ill-shaped 

meltpools.  

 
Figure 9: Depiction of the three meltpool morphological features: meltpool area (Am), aspect ratio 
(εm), and irregularity (σm). 
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(b) Meltpool intensity features 

As shown in Figure 10, meltpool intensity features characterize the grayscale value of all the 

pixels included within the boundary of the traced meltpool contour. The rationale is that the 

meltpool intensity is proportional to the temperature of the meltpool [50]. The meltpool intensity 

features comprise the mean meltpool intensity (μI), standard deviation of meltpool intensity (σI), 

and skewness of meltpool intensity (σ3I). Mean intensity (μI) of the meltpool quantifies the average 

temperature; standard deviation (σI) of the meltpool quantifies the temperature distribution; and 

the skewness (σ3I) captures bias in the meltpool temperature.  

 
Figure 10: Intensity features within the meltpool contour are plotted as a histogram, the mean (μI), 
standard deviation (σI), and skewness (σ3I) of the meltpool intensities are quantified. 
3.3.3 Model Training and Validation  

Supervised machine learning models were used to classify the four process regimes, i.e., 

dripping, incomplete melting, stubbing, and stable, based on the extracted meltpool features. A 

depiction of the machine learning pipeline is shown in Figure 11. The classification task was 

attempted through five simple and easy to implement algorithms, namely: logistic regression (LR), 

support vector machine (SVM), k-nearest neighbors (KNN), shallow artificial neural networks 

(ANN), and naïve K-means clustering [16, 17, 40]. The first four of these algorithms are 
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categorized as supervised learning, while K-means is an unsupervised learning model. Further, 

two deep learning models, convolutional neural network (CNN) and VGG16 were also tested.   

The classification fidelity for each model was assessed in terms of the F1-score. The F1-score 

metric has been extensively used in classification scenarios in the context of additive 

manufacturing [17, 49]. The F1-score considers both false positives and false negative rates, thus 

making it a desirable metric for multi-class classification problem, as shown in Figure 12. The 

salient aspects of each of the process-aware machine learning models used in this work are 

summarized in Table 3. 

 
Figure 11: The computer vision-based features are fed as inputs to supervised and unsupervised 
learning classification algorithms to classify: dripping regime, incomplete melting regime, 
stubbing regime, or stable regime. 
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Figure 12: Illustration of the F-1 score metric in the context of a classification task confusion 
matrix. The F-1 score acts as a harmonic mean that combines precision and recall into a single 
measurement. Both false positive and false negative misclassifications penalize the metric, 
providing a balanced estimation of performance. 

Table 3: Salient aspects of the five process-aware models investigated in this work. 

Model Type Summary 

Logistic Regression  

- Linear discriminating equation 
- L2 regularization penalty 
- Inverse regularization strength (C): 1 
- Tolerance for stopping criterion: 0.00001 
- Solver: L-BFGS 

Support Vector Machine (SVM) 

- Soft margin classifier  
- Nonlinear kernel: Radial Basis 
- L2 Regularization 
- Kernel coefficient (gamma): 0.1 
- Inverse regularization strength (C): 1 
- Tolerance for stopping criterion: 0.001 

K-Nearest Neighbors (KNN) 

- Number of neighbors: 101 
- Weighting function: uniform weights 
- Distance metric: Chebyshev 
- Algorithm: brute-force search 

Artificial Neural Network (ANN) 

- Number of hidden layers: 1 
- Number of neurons: 10 
- Activation function: rectified linear unit 
- L2 Regularization 
- Solver: stochastic gradient descent (sgd) 

K-means  
- Number of clusters: 4 
- Tolerance for convergence: 0.0001 
- Algorithm: Lloyd 
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Prior to training the machine learning algorithm, the dataset was stratified into training and 

testing sets as follows. A total of 159,872 images were acquired in this work; 70% of this data was 

used to train the machine learning algorithms (112,410 images), while 30% of the data was used 

to test the algorithms (47,462 images). To preclude bias in the machine learning models, all images 

derived from a specific single track were consistently grouped into either the training or testing 

dataset. Consequently, the data used for testing the model does not include any data points from 

single tracks used for model training. The prevention of data leakage across training and testing 

sets is essential to ensure accurate model evaluation. To tune the hyperparameters of the 

classification algorithms, an additional 3-fold cross-validation strategy was used within the 

training dataset (37,470 images per fold).  

These process-aware machine learning results were benchmarked against two deep learning 

convolutional neural networks (CNN) which directly used the meltpool images without 

intermediate image pre-processing and extraction steps. The first was a CNN architecture 

specifically designed for this work, and the second CNN was the Visual Graphics Group (VGG16) 

pre-trained CNN to our decision problem [51]. The VGG16 is widely used as a performance 

benchmark for custom-designed CNNs, due to its efficiency with image-related classification tasks 

[20, 52]. To explain further, the VGG16 was pre-trained on the ImageNet dataset (i.e., over 14 

million labelled images), and its application to specific problems was operationalized via transfer 

learning. The CNN and VGG16 models were implemented in Python using the TensorFlow and 

Keras libraries.  

The custom CNN architecture deployed for this work is shown in Figure 13. The input images 

were resized into 128 × 128-pixel images to reduce the computational complexity of the performed 

convolutions. In the first convolution layer, 64 kernels of 3 × 3-pixel size were used to produce 
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distinct feature maps from the same input image. Each kernel traverses the input image and alters 

its original pixel values according to specific weights learned during the network training process. 

Subsequently, a pooling layer was used to reduce the spatial complexity of the feature maps by 

shrinking their size by half in both dimensions. The convolution and pooling steps were then 

repeated for a second time. Lastly, a dense layer with 256 neurons was used to take the flattened 

output of the convolution and pooling steps to perform the 4-way classification task, i.e., 

classification into dripping, incomplete melting, stubbing, or stable regime.  

 
Figure 13: Depiction of the employed convolutional neural network architecture to perform the 4-
way classification into dripping, incomplete melting, stubbing, or stable regime. 
4 Results 

4.1 Effect of processing conditions on process regimes and track morphology 

The effect of laser power (P) and scan velocity (V) on the processing regimes is depicted 

schematically in Figure 14(a) for the representative case of linear material density ld = 0.0129 

g∙mm-1. The four regimes, stable, dripping, stubbing and incomplete melting are color-coded. 

Using a discretized version of the regime map from both levels of linear material densities, a 

generalized processing map is visualized in Figure 14(b). We note that observing clear 

demarcations between regimes is a challenging proposition due to inherent stochastic disturbances 

effecting the process. 
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As the laser power (P) increases and scan velocity (V) decreases, the resultant energy density 

(EL = P/V) increases. An inordinate increase in energy density EL > 350 J∙mm-1 results in excessive 

melting of the wire leading to dripping. In contrast, as V increases relative to P, EL decreases, 

eventually resulting in incomplete melting. Typically, incomplete melting was observed for EL < 

60 J∙mm-1. The stubbing regime (60 < EL < 150 J∙mm-1) can be considered as an intermediate 

transition region between stable (150 < EL < 350 J∙mm-1) and incomplete melting (EL < 60 J∙mm-

1).  

 
Figure 14: Regime map for the varying laser powers and scan velocities used in this work. 

In Figure 15, the track quality is further mapped as a function of laser power (P) and scan 

velocity (V). In the stable regime, the tracks maintain a consistent width. Then as the input energy 

increases, the process transitions to the dripping regime in which the line width increases. This is 

in contrast with the incomplete melting regime which occurs at very low input energy levels in 

which there is often no material deposition at all due to insufficient energy for melting the wire. 

Finally, the stubbing regime occurs between the incomplete melting and stable regimes. It is 

characterized by irregular and rough track boundaries where the wire penetrated the meltpool 

during deposition. In confirmation of the validity of the process map summarized in Figure 14 and 
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Figure 15, seven thin-wall parts, as shown in Figure 16, were successfully deposited under stable 

process regime of 1500 W and 500 mm∙min-1, i.e., EL = 180 J∙mm-1. These thin walls measured 

150 mm × 2 mm × 10 mm, consisting of 8 layers. 

 
Figure 15: Effect of processing conditions on the LW-DED track quality. 
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Figure 16: Seven thin-wall parts (150 mm × 2 mm × 10 mm) consisting of 10 layers deposited 
with processing parameters corresponding to the stable regime (P = 1500 W, V = 500 mm∙min-1; 
EL = 180 J∙mm-1). All seven parts were completed successfully.  

4.2 Effect of processing conditions on meltpool characteristics 

4.2.1 Qualitative observations 

The effect of laser power (P) and scanning velocity (V) on the meltpool characteristics is 

shown in Figure 17 for linear mass density ld = 0.0129 g∙mm-1. Representative meltpool images 

for each of the four regimes are presented in Figure 18. Four frames are shown for each regime, 

and the change in shape and intensity features of the meltpool averaged over the four images for 

each regime are also reported. A prominent change in the meltpool morphology and intensity 

between regimes is visually apparent for the four regimes.  

The meltpool behavior, shown in Figure 17 and Figure 18, is consistent with the physical track 

conditions discussed in the context of Figure 15. The apparent size of the meltpool is proportional 

to the energy density. When EL > 350 J∙mm-1, the realm of the dripping regime has a larger 
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meltpool area. The meltpool area becomes progressively smaller as the process transitions from 

stable to stubbing regimes. The area drops to near zero in the incomplete melting regime. 

Additionally, it is evident from observation that meltpool intensity (μI) is proportional to the energy 

density. Two types of features: (i) meltpool morphology and (ii) meltpool intensity pattern are 

plotted as functions of the process regimes in Figure 16.  

 
Figure 17: The effect of processing conditions on the meltpool behaviors. These representative 
meltpools are segmented into the four regimes based on visual observation.  
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Figure 18: Four consecutive meltpools acquired for each regime. The quantified meltpool 
morphology and intensity features are shown for the four frames.  

4.2.2 Effect on Meltpool Morphology 

In Figure 19(a), the mean and ± 1 standard deviation meltpool area (Am) are plotted for the 

four regimes. The data is representative of all 159,872 images acquired, of which 61,201 comprise 

stable, 46,213 dripping, 37,070 stubbing, and 15,388 incomplete melting. Consistent with the 

qualitative observations discussed in the context of Figure 17 and Figure 18, the average meltpool 

area increases in proportion to EL. The average meltpool area is highest for the dripping regime, 

and smallest in the case of incomplete melting. Indeed, statistical analysis revealed that the average 

meltpool area is one of the most prominent distinguishing facets across the four regimes. However, 

the difference between the meltpool area for the stable and stubbing regimes is statistically 
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indistinguishable, which would hinder clear differentiation between the two process states. This is 

consistent with the stubbing regime being intermediate to incomplete and stable melting regimes. 

 
Figure 19: Meltpool morphology features for the four process regimes. (a) meltpool area (Am), (b) 
meltpool aspect ratio (εm), (c) meltpool irregularity (σm), and (d) radar plot of each feature with 
respect to the process regime.  

In Figure 19(b), the meltpool aspect ratio (εm), is a prominent discriminator between two 

groups of regimes: (i) dripping and incomplete melting, and (ii) stable and stubbing. The latter 

group exhibits elliptical meltpools that are elongated. Dripping and incomplete meltpools, on the 

other hand, exhibit more circular contours but do not form coherent deposits. However, as in the 

case with meltpool area, there is significant overlap in the meltpool aspect ratio between the 

stubbing and stable state.  
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In Figure 19(c), the meltpool irregularity (σm), mirrors the behavior observed for the aspect 

ratio (εm). It is a prominent differentiator of the incomplete melting regime, which has a 

consistently lower level of irregularity when compared to all other regimes. Further, the meltpool 

irregularity is a potential differentiator between the stable and stubbing regimes. The average 

meltpool irregularity is particularly pronounced in the stubbing regime compared to the stable 

regime. 

Continuing with the analysis, the interactions amongst the three meltpool morphology features 

are presented in Figure 20. The scatter plot depicts a clear separation of dripping and the 

incomplete melting regimes. Further discrimination is also evident between stubbing and 

incomplete melting. However, there is a significant overlap in the meltpool morphology features 

between the stubbing and stable process regimes. This complex nonlinear manifold space 

necessitates the use of machine learning for classification of LW-DED process regimes. 

 
Figure 20: Interactions among the meltpool morphology features for distinct process regimes. 
meltpool area, meltpool aspect ratio, and meltpool irregularity. 
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4.2.3 Effect on Meltpool Intensity 

The three meltpool intensity features as a function of the four process regimes are presented 

in Figure 21. The average meltpool intensity (μI) is proportional to the energy density (EL). 

Consequently, the highest meltpool intensity is observed for the dripping regime, and the lowest 

values for the stubbing and incomplete melting regimes.  

 
Figure 21: Meltpool intensity features under distinct process regimes. Mean and standard 
deviation of each feature is plotted for every process (a) for the meltpool average intensity (μI), 
(b) standard deviation (σI), (c) skewness (σ3I), and (d) Radar plot of each feature with respect to 
the process regime.  
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The meltpool intensity standard deviation (σI) and skewness (σ3I) are particularly valuable for 

differentiating between stable and stubbing regimes. For example, the skewness of the meltpool 

intensity in the stubbing regime is greater than the stable deposition condition indicating an 

asymmetrical temperature distribution. Shown in Figure 22 is the interaction among the three 

meltpool intensity features for the four process regimes. As in the case of the morphological 

features, while the dripping regime is readily demarcated, there is significant overlap in the other 

three regimes, which necessitates the use of machine learning classification in separate regimes. 

 
Figure 22: Interactions among the meltpool intensity features for distinct process regimes. Where 
the dripping regime has a distinctive separation, the other regimes overlap considerably. 
4.3 Detection and Classification of Process States with Machine Learning  

The classification of LW-DED process regimes is achieved by using the three meltpool 

morphology and three intensity features as inputs to regression-based supervised learning 

algorithms, two clustering-based supervised learning algorithms, and one unsupervised learning 

algorithm. Meltpool morphology and intensity features are labelled as A and B respectively. The 

F1-score of the classification task is presented in Table 4 for each of the four process-aware 
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machine learning algorithms, as well as the deep learning algorithms. These reported results were 

obtained when the models were deployed on the testing dataset alone, ensuring their evaluation 

reflects generalization towards unseen data.  

Further, in Table 4, we compare the results when the morphology (A) and intensity (B) 

features were used separately and together as inputs to the four simple machine learning models. 

The results indicate that the morphology-based features alone are capable of distinguishing 

between the process states with an 87% fidelity (F1-score), compared to 70% using intensity 

features alone. Combining both types of features, the prediction fidelity increases to 90%.  The 

meltpool images were used directly as input to the two deep learning models in the form of CNN 

and VGG16. The deep learning models achieved an F1-score of 87%. This result exemplifies the 

effectiveness of using pragmatic process-aware features and simple machine learning models for 

process monitoring in LW-DED.  

Continuing with the analysis, Table 5 shows the confusion matrix obtained from the SVM 

model. The confusion matrix encompasses a total of 47,462 data points. The main diagonal of the 

confusion matrix represents true classifications, while the off-diagonal entries denote 

misclassifications. The greatest number of misclassifications occur between stable and stubbing 

regimes. For instance, nearly 1980 data points belonging to the stable regime were misclassified 

as belonging to stubbing, and 1612 data points from the stubbing regime are incorrectly classified 

as belonging to the stable regime.  The reason for this misclassification is explained in the context 

of Figure 17, the meltpool dynamics at the periphery of the stubbing regime is similar to that of 

the stable regime. Further, referring to Figure 20 and Figure 21, a large overlap was observed in 

the features between the stable and stubbing regimes. Consequently, the limited ability to separate 



33 
 

the stable and stubbing regimes stymies the classification fidelity of machine learning models, 

including the two deep learning models. 

To further evaluate the behavior of process-aware machine learning models, Figure 23 charts 

the probability of each classification regime using the logistic regression model for each of the 38 

single-tracks in the testing data set. In Figure 23, green color represents stable deposition, blue 

represents stubbing, purple represents incomplete melting, and red represents dripping. The 

vertical axis is the probability of either stubbing or dripping, and the horizontal axis represents the 

probability between stable and incomplete melting.  

From Figure 23, it is evident that the onset of incomplete melting was always predicted 

correctly, as there is minimal confusion between it and any of the other three regimes. The 

probability between stable and stubbing deposition follows the influences from the confusion 

matrix. In the stubbing condition, 2 out of the 8 stubbing single tracks were misclassified as stable, 

and 1 out of 16 stable deposits was misclassified as stubbing. Similarly, 1 out of 10 deposits 

classified as dripping belong to the stubbing regime. 

Table 4: F1-score Classification performance for all tested machine learning algorithms. Logistic 
Regression (LR); K-Nearest Neighbors (KNN); Support Vector Machine (SVM); Multi-Layer 
Perceptron (MLP); Convolutional Neural Network (CNN). 

Model 
Complexity Regression Supervised 

Learning 
Unsupervised 

Learning Deep Learning 

Models LR KNN SVM MLP K-Means CNN VGG16 

Morphology 
Features (A) 

82.2
% 

82.5% 87.0% 84.2% 53.3% 

87.4
% 87.5% Intensity   

Features (B) 
55.7
% 

62.2% 69.9% 59.6% 41.5% 

A +B 89.0
% 

85.4% 90.5% 88.4% 64.8% 
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Table 5: The confusion matrix for process regime classification from the SVM model (F1-score > 
90%). 

 Predicted process regime by the SVM model 

A
ct

ua
l p

ro
ce

ss
 re

gi
m

e 
 

 Stable Dripping  Stubbing Incomplete 
melting 

Stable 17650 354 1980 0 
Dripping  174 11875 417 24 
Stubbing 1612 379 8001 0 

Incomplete 
melting 0 39 0 4957 

 
Figure 23: Model decision versus ground truth for each built single track. Model decision 
comprises the average probability designated for all images accrued for a given single track. The 
ground truth comprises the quality assessment of the single track. 
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5 Conclusions 

In this work, process instabilities in laser wire directed energy deposition (LW-DED) were 

detected and classified using meltpool morphology and intensity signatures acquired from an in-

situ high-speed imaging camera. The main contribution of this work is in the demarcation of 

physically intuitive features from meltpool image-based data to distinguish between process states 

using simple machine learning models. Meltpool morphology and intensity features when used 

with computationally tractable models, such as the Support Vector Machine (SVM), were as 

effective in detecting process instabilities as deep learning models, such as convolutional neural 

networks (CNN), that directly use the meltpool images. Such process-aware machine learning 

models are amenable for deployment given their computational tractability and interpretability. 

Specific conclusions from this work are as follows:   

(1) Stainless steel 316L single tracks were deposited under 128 combinations of laser power, 

velocity, and linear material density conditions to engender different process regimes. The 

four regimes with respect to the energy density limits are as follows: dripping (EL > 350 

J∙mm-1); stable (150 < EL < 350 J∙mm-1); stubbing (60 < EL < 150 J∙mm-1); and incomplete 

melting (60 < EL J∙mm-1).  The feasibility of the stable regime parameters was validated by 

successfully depositing thin-wall parts.  

(2) A high-speed imaging camera focused on the meltpool continuously monitored the process 

at a sampling rate of 2500 frames per second and resolution of 1280 × 720 pixels. The 

process was mapped into four regimes: stable deposition, dripping, stubbing, and 

incomplete melting. The latter three regimes correspond to process instabilities that 

manifest in sub-optimal parts.   
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(3) Six physically intuitive features quantifying the meltpool morphology and intensity were 

extracted from the meltpool images. These six features were motivated from experimental 

and theoretical simulation results reported in the literature for laser-based additive 

manufacturing processes. The meltpool signatures were used as inputs to various types of 

simple machine learning models, such as Logistic Regression (LR), K-Nearest Neighbors 

(KNN), Support Vector Machine (SVM), shallow artificial neural networks (ANN), and 

K-means clustering trained to classify the process regime. The regime type was classified 

with a statistical fidelity (F1-score) exceeding 90% with an SVM using both morphology 

and intensity features. Morphology features alone resulted in an F1-score of 87%, whilst 

meltpool intensity features used alone resulted in a lower F1-score of ~70%.   

(4) The results obtained from the SVM were comparable to those obtained from two types of 

deep learning convolutional neural networks - a custom-built network, and the VGG16 

model. These deep learning models directly use raw meltpool images instead of meltpool 

features. The resulting F1-score with the deep learning CCN was ~87%. Thus, process-

aware machine learning models using physically intuitive features performed on par with 

deep learning models.   

The use of easy and interpretable physically intuitive process signatures, coupled with 

process-aware and interpretable machine learning, as opposed to black-box deep learning 

techniques, facilitates rapid detection of process instabilities and can therefore eliminate the 

latency in the data transfer and analysis loop inherent to complex data-driven process monitoring 

algorithms. In effect, this work takes the first step towards future closed loop process control in 

LW-DED. Our future works will focus on prediction of microstructure evolution and functional 

properties in practically relevant complex LW-DED parts using heterogeneous sensor data. 
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Appendix I 

The Gaussian blurring procedure employs a convolution filter with a Gaussian matrix acting 

as the underlying kernel. It substitutes every pixel in the input image by a weighted combination 

of its neighboring pixels. Specifically, the neighbor weights are determined according to a 

Gaussian function [53]. As it allows for every pixel value to become an average blend of nearby 

pixels, Gaussian blurring reduces the effect of sources of noise that appear as localized fluctuation 

in pixel values. For this reason, it has become an established preliminary method in contour 

detection tasks [54]. 

For this application, the blurring was performed via 31-pixel width and 31-pixel height kernels 

applied over the input images of 1280-pixel width and 720-pixel height. After the definition of the 

blurring, a convolution operation was performed between the image and the Gaussian kernel for 

every pixel position. This operation essentially involves moving the kernel over the image and 

calculating the weighted sum of the neighboring pixel values, with the weights provided by the 

Gaussian kernel. Since pixels located on the edges of the image do not have a complete 

neighborhood for the kernel to operate, missing neighboring pixels are filled with the values of the 

nearest border pixels. 

Following the application of blurring, the next procedure in the computer vision pipeline 

comprises a binary image thresholding procedure. Binary thresholding is a technique used to 

highlight regions with distinct color intensity by assigning every pixel grayscale value to either 0 

(black) or 255 (white), based on the comparison of its original value against a predefined threshold 

T. If the intensity of a given pixel is greater than or equal to the threshold value, the pixel is 

assigned a value of 255, while pixels with intensities below the threshold value are assigned a 

value of 0, effectively converting the image into a binary representation. The value of T for this 
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application is defined by an adaptive thresholding algorithm, detailed subsequently. As it 

accentuates the borders between image regions with contrasting colors (e.g., the meltpool border), 

binary thresholding serves as a preliminary step to contour detection [55].  

The next computer vision procedure comprises the use of a border tracing approach to detect 

the contours of the shapes found in the binarized image, and the subsequent definition of the 

meltpool contour. The tracing of the meltpool contour as a result of these algorithms is visualized 

in Figure 24. The representative meltpool is from the dripping regime meltpool that requires a high 

enough threshold parameter to isolate the meltpool area from its surrounding lighting noise. A 

final image processing procedure was added to ensure adequate contour selection in case multiple 

contours were detected. This is a common occurrence in the dripping regime. An example of the 

multiple contour selection procedure can be viewed in Figure 25. 

 
Figure 24: Progressive refinements in contour detection due to the adaptive threshold algorithm. 
The threshold parameter T is increased, within a predefined limit of iterations, while the contour 
roundness is improved and no drastic drops in the area metric occur. 
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Figure 25: Progressive steps of multiple contour selection: (a) an optimized parameter is achieved 
for the binary threshold after the execution of the adaptive thresholding algorithm. (b) two 
contours of significant area are detected after the application of the contour tracing algorithm. (c) 
the adequate meltpool contour is chosen based on its size and brightness characteristics. 
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