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Abstract—Quantum sensing networks (QSNs) incorporate

quantum sensing and quantum communication to achieve Heisen-

berg precision and unconditional security by leveraging quantum

properties such as superposition and entanglement. However,

the QSNs deploying noisy intermediate-scale quantum (NISQ)

devices face near-term practical challenges. In this paper,

we employ variational quantum sensing (VQS) to optimize

sensing configurations in noisy environments for the physical

quantity of interest, e.g., magnetic-field sensing for navigation,

localization, or detection. The VQS algorithm is variationally

and evolutionarily optimized using a genetic algorithm for

tailoring a variational or parameterized quantum circuit (PQC)

structure that effectively mitigates quantum noise effects. This

genetic VQS algorithm designs the PQC structure possessing the

capability to create a variational probe state that metrologically

outperforms the maximally entangled or product quantum state

under bit-flip, dephasing, and amplitude-damping quantum noise

for both single-parameter and multiparameter NISQ sensing,

specifically as quantified by the quantum Fisher information.

Furthermore, the quantum anonymous broadcast (QAB) shares

the sensing information in the VQS network, ensuring anonymity

and untraceability of sensing data. The broadcast bit error

probability (BEP) is further analyzed for the QAB protocol

under quantum noise, showing its robustness—i.e., error-free
resilience—against bit-flip noise as well as the low-noise BEP

behavior. This work provides a scalable framework for integrated

quantum anonymous sensing and communication, particularly in

a variational and untraceable manner.

Index Terms—Integrated sensing and communication, quan-

tum anonymous communication, quantum Cramér–Rao bound,

variational quantum sensing.

I. INTRODUCTION

Q
UANTUM SENSING, combined with quantum commu-
nication, is poised to revolutionize wireless positioning
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and sensing technologies by leveraging quantum properties
to offer unparalleled precision and security [1], [2]. Wireless
positioning and sensing is pivotal for the deployment of
next-generation integrated sensing and communication (ISAC)
technologies for augmented localization services, environmen-
tal monitoring, secure positioning, vehicular safety, real-time
precise surveillance, and seamless immersive experiences [3],
[4], [5], [6], [7], [8], [9], [10], [11], [12]. These services
require ultra-reliable, ultra-secure, and low-latency commu-
nications as well as ultra-precise sensing and hyper-accurate
measurements [13], [14], [15]. However, classical networks
face fundamental limitations in achieving advanced levels
of precision and security. For instance, an intrinsic limi-
tation is imposed by the standard quantum limit (SQL),
which states that the variance of measurement precision
scales as 1/N for a network of N sensors [16]. Although
this degree of precision is sufficient for diverse real-world
applications, emerging fields, such as healthcare networks,
augmented reality, virtual reality, gravitational wave detec-
tion, and autonomous vehicular networks, require even more
precision [17], [18], [19]. Moreover, classical noise such as
shot noise, with a variance that typically scales as 1/N ,
can further undermine classical sensing networks, thereby
reducing their accuracy. In addition, sensing network security
based on computational encryption methods is highly prone
to quantum attacks owing to perpetual quantum computing
capabilities.
Quantum Internet of Things (IoT) incorporates both quan-

tum sensing and quantum communication to further augment
sensing and communication capabilities of classical IoT [20],
[21], [22], [23]. The emerging paradigm not only improves
precision in measuring physical quantities such as electric and
magnetic fields but also invokes unconditional communication
security by harnessing quantum properties such as superposi-
tion and entanglement. Herein, the achievable precision of an
entangled quantum sensing network (QSN) is fundamentally
limited by the Heisenberg limit, exhibiting 1/N2 scaling in
the measurement precision variance [16], [24]. Nonetheless,
deployments of QSNs face hurdles such as the detrimental
noise effects on quantum-enhanced precision. Noise sources,
e.g., thermal fluctuations and particle loss, can markedly
degrade quantum states essential for achieving the Heisenberg-
limit precision, necessitating intricate noise mitigation and
error correction strategies [25], [26]. In terms of security,
post-quantum secure protocols have been posited for QSNs,
employing lattice-based cryptographic schemes resilient to
quantum attacks [27]. Consequently, quantum IoT embod-
ies a potent platform for high-precision measurements while
ensuring robust communication security against quantum
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threats. However, the limitations of noisy intermediate-
scale quantum (NISQ) devices, especially concerning privacy
leakage and quantum noise, hinder the full realization of
the potential benefits of integrating quantum sensing and
communication [28], [29].
Variational quantum sensing (VQS) fully leverages

near-term quantum advantages while addressing inherent
quantum noise effects as well as quantum device
imperfections [30], [31], [32], [33], [34]. VQS algorithms are
resource-efficient, taking into account the qubit count, gate
depth, and robustness against quantum noise [35]. The VQS
algorithms iteratively adjust sensing configurations to optimize
quantum sensing probes to precisely estimate physical
quantities such as magnetic field, electric field, frequency, and
temperature under noisy environments [35]. Employing such
an entangled QSN with hybrid quantum-classical optimization
exhibits quantum advantage in outperforming classical
methods for dynamic sensing environments. In cryptographic
metrology, QSNs are designed for specific security-oriented
sensing tasks related to secure surveillance, privacy-preserving
asset tracking, unauthorized object detection, and anonymous
navigation [36], [37]. Herein, the location of stationary sensing
nodes and the identity of mobile sensing nodes can become
highly relevant in addition to the private data itself. Therefore,
the sensing nodes must operate in an anonymous mode while
sharing the sensing information or estimated parameters with
other network participants. Quantum anonymous communica-
tion (QAC) becomes a primary candidate for such scenarios,
to ensure sensing anonymity, disapprove unauthorized node
access, limit spoofing by blocking malicious nodes, and
render the sensing nodes as untraceable [38], [39], [40],
[41]. Therefore, such integrated quantum anonymous sensing
(QAS) and communication networks can be deployed to
deliver improved precision, enhanced sensitivity, and sensing
privacy in parallel with classical counterparts.
Specifically, in this paper, we propose an integrated frame-

work incorporating VQS with quantum anonymous broadcast
(QAB) for variational QAS networks, as shown in Fig. 1,
where a high-quality sensing probe state is prepared by the
genetic algorithm (GA) and variational quantum algorithm
(VQA) to mitigate the effect of environmental noise. The
GA is utilized to find the fittest parameterized quantum
circuit (PQC) structure, whereas its angle parameters are
optimized variationally. This VQS probe state encodes the
unknown parameter of interest. The encoded VQS probe
state undergoes quantum measurements, where the obtained
measurement outcomes are employed to estimate the unknown
parameter. The extracted sensing information is then anony-
mously broadcast to sensor nodes within the QSN. This
involves modulating the sensing information into the shared
Greenberger–Horne–Zeilinger (GHZ) state. The modulated
information is then extracted by means of quantum measure-
ments performed by all network participants. By harnessing
the power of quantum algorithms, VQS optimizes NISQ
sensors to mitigate quantum noise effects and enhance mea-
surement precision. In parallel, QAB introduces a privacy layer
to QSNs, preserving the anonymity of sensing data. This ISAC
framework promises to achieve both quantum-empowered
sensing precision and privacy, addressing critical classical

Fig. 1. Quantum anonymous ISAC in a variational and untraceable manner by
integrating genetic VQS with QAB. The genetic VQS prepares a high-quality
sensing probe state by variationally and evolutionarily finding the tailored
PQC structure under quantum noise N . The fittest parameters of the tai-
lored PQC are optimized using classical optimization routines. This genetic
VQS probe state interacts with the physical quantity of interest, which is
then estimated by quantum measurement. The sensing information is then
anonymously shared with other sensing nodes in the network using the QAB
protocol. The protocol begins by distributing the GHZ state (broadcast carrier)
among the network participants, followed by the broadcast modulation. The
QAS broadcast is then recovered by measurements of all network parties.
Here, the noisy maps NX , NZ , and NA stand for bit-flip, dephasing, and
amplitude-damping noises, respectively.

constraints in ISAC—with applications in navigation, local-
ization, imaging, and detection (radar), for example. Our main
contributions are summarized in the following.

• We introduce quantum sensing protocols and VQAs
to formally define VQS protocols for single-parameter
and multiparameter sensing tasks in noisy environments.
Since the search space for optimization is vast and
ill-defined, we develop genetic VQS detailing a GA
approach to variationally and evolutionarily optimize
PQCs for VQS state preparation in NISQ sensing, e.g.,
scalar and vector magnetic-field sensing.

• We provide metrologically resourceful ansatzes designed
to create genetic VQS probe states that maximize mea-
surement precision in terms of the quantum Fisher
information (QFI) under anisotropic quantum noise such
as the bit-flip, dephasing (or phase-flip), and amplitude-
damping (or energy-relaxation) noise. These tailored
VQS probe states exhibit high-sensitivity estimation
capacity as quantified by the quantum Cramér–Rao bound
(QCRB) under all inherent quantum noise, compared with
maximally entangled GHZ or product (separable) states.

• We integrate the QAB protocol into VQS networks
to anonymously share sensing information among net-
work sensors—ensuring anonymity and untraceability
of sensing data. This QAS broadcast follows a series
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TABLE I
EXPANSIONS OF IMPORTANT ACRONYMS

of steps—i.e., i) broadcast-carrier preparation (GHZ
distribution); ii) broadcast modulation (Hadamard and
conditional bit-flip operations); iii) broadcast demodu-
lation (computational basis measurement and classical
announcement); and iv) broadcast decision (modulo sum
calculation).

• We derive the broadcast bit error probability (BEP) for the
QAB protocol under anisotropic quantum noise. We show
that this QAS broadcast is error-free, i.e., zero-BEP under
the bit-flip noise, while its BEP under both dephasing and
amplitude-damping noises linearly scales with the noise
parameter and the number of network sensors in the low-
noise regime.

The remainder of this paper is organized as follows.
Section II introduces quantum sensing and its fundamental
limits, Section III briefly reviews the VQAs, and Section IV
formally provides the VQS framework. Section V develops
the integrated framework of genetic VQS and QAB for QAS
networks in noisy environments. Finally, Section VI concludes
the paper with a brief summary. In the Appendix, we give
the derivations of the BEP for the QAB protocol under
bit-flip, dephasing, and amplitude-damping noises. Important
acronyms are summarized in Table I.

II. QUANTUM SENSING

A. Quantum Sensing Frameworks

Generally, quantum sensing follows a series of steps:
probe preparation, probe interaction, probe measurement, and
estimation.
1) Probe Preparation: The initial state |ω0→ of the sensing

protocol is evolved by a specific operator to prepare
the quantum sensor for interaction with a system of
interest using a suitable quantum state. This initial state
|ω0→ is typically set to a known quantum state, such as
|ω0→ = |0→. Using an operator W , the initial state |ω0→
is evolved to probe state |ω→ = W |ω0→ for the sensing
purpose.

2) Probe Interaction: Sensing is performed by the prepared
probe state |ω→ interacting with a system characterized
by a Hamiltonian H. Let ε be the physical quantity to
be sensed. This quantity is encoded in the system by the
unitary operation U (H; ε) acting on the probe state as

follows [42]:

|ω (ε)→ = U (H; ε) |ω→ = exp (↑ıHε) |ω→ (1)

where ı =
↓
↑1.

3) Probe Measurement: To extract information about the
sensing quantity ε, the interacted probe state |ω (ε)→
is measured. Let {|ϑi→} be a nominal measurement
basis. This basis is transformed by applying the unitary
operator V to get a desired measurement basis {V |ϑi→}.

4) Estimation: The final step of the protocol involves esti-
mating the unknown quantity ε encoded in the evolved
state |ω (ε)→ by measuring it using the measurement
basis {V |ϑi→}. The estimate of ε is then a function
ε̂ (µ) of measurement outcome µ.

Due to the probabilistic nature of quantum measurements,
repetitions of sensing are performed to increase the estimation
precision. These repeated measurements can be performed in
parallel to save the protocol’s running time.

B. Quantum Limits
The precision of the estimator ε̂ depends on the sensitivity

of the probe state |ω→ on ε encoded by the unitary operation
U (H; ε). This sensitivity can be quantified with the QFI,
which is a generalization of classical Fisher information to the
quantum regime, obtained by maximizing the classical Fisher
information over all possible quantum measurement settings.
The QFI Jω(ω) is defined using a logarithmic derivative
operator ! for a quantum state (in general a density matrix)
ω (ε) as follows [43]:

Jω(ω) = tr
[
!2

ω (ε)
]

(2)

where tr (·) is the trace operator, ! is implicitly defined as

ϖω (ε)
ϖε

=
1
2
{!,ω (ε)} , (3)

and {A,B} = AB +BA is the anti-commutator. Note that
the operator ! is called the symmetric logarithmic derivative
due to the non-commuting behavior of operators in the quan-
tum state space.
Let F (ω,ε) be the fidelity between two quantum states ω

and ε [44]:

F (ω,ε) =
(
tr

√↓
ωε

↓
ω

)2
, (4)
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which simplifies to the pure-state fidelity F (|ω→ , |ϑ→) =
|↔ω|ϑ→|2 when both ω and ε are pure states, i.e., rank-
1 projectors onto state vectors |ω→ and |ϑ→. The sensitivity of
the probe state |ω→ with respect to the parameterized evolution
state |ω (ε)→ is related to the fidelity |↔ω|ω (ε)→|2 as [45]

Jω(|ω→) = lim
ω→0

8

(
1↑

√
F (|ω→ , |ω (ε)→)

ε2

)
(5)

where the QFI depends on the probe state |ω→ with given
encoding Hamiltonian. For the parameterized evolution in (1)
generated by the Hamiltonian H, the QFI can be expressed
by the variance of the Hamiltonian H as follows [46]:

Jω(|ω→) = 4
(
↔ω|H2 |ω→ ↑ ↔ω|H |ω→2

)
. (6)

With N -qubit unbiased estimates ε̂, a bound on the precision
of estimating ε is given by QCRB, i.e., SQL as follows [47]:

Var [ε̂] ↗ 1
NJω(|ω→)

(7)

where Var [ε̂] is the variance of ε̂.
Quantum metrology aims to beat the SQL by leveraging

quantum properties such as entanglement. Let ϱmax and ϱmin

be the maximum and minimum eigenvalues of the Hamiltonian
H, respectively. Expanding the Hamiltonian in its eigenvector
basis, from (6) it follows that the QFI is maximized when
the measurement outcomes are ϱmax and ϱmin with equal
probability. Hence, the QFI is maximized when the probe state
|ω→ is in an equal superposition of the extreme eigenstates:

|ω→ = |ϱmax→+ |ϱmin→↓
2

. (8)

For N -qubit estimation, the Hamiltonian governing the full
system is H↑N where ↘ denotes the Kronecker sum.1 Hence,
the maximum and minimum eigenvalues of this full Hamilto-
nian are equal to Nϱmax and Nϱmin corresponding to the
extreme eigenvectors |ϱmax→↓N and |ϱmin→↓N , respectively.
To maximize the variance of the total Hamiltonian H

↑N , the
N -qubit probe state |ϑ→ should be prepared as follows [47]:

|ϑ→ = 1↓
2

(
|ϱmax→↓N + |ϱmin→↓N

)
, (9)

which is an entangled state. Using this entangled state, the
estimation precision scales as the Heisenberg limit [47]

Var [ε̂] ↗ 1
N2Jω(|ω→)

. (10)

Hence, the SQL can be surpassed by exploiting quantum
resources such as entanglement.

C. Multiparameter Sensing
Extension toward multiparameter quantum sensing is

not straightforward from a single parameter due to the
non-commuting property of quantum operators. This can cause
incompatibility among the measurement operators for each
parameter. This incompatibility results in an intricate tradeoff

1For two matrices (operators) A and B of dimensions m→m and n→n,
the Kronecker sum is defined as A ↑B = A ↓ In + Im ↓B, where ↓
denotes the tensor product and In is the n→n identity operator. Here, I2 is
denoted by I for the qubit case.

to simultaneously extract information from multiple param-
eters. Let ϖ = (ε1, ε2, . . . , εK) be a vector of unknown
parameters and these K parameters be encoded using the
Hamiltonian H̄ = (H1,H2, . . . ,HK) in a unitary operator
[48]

U
(
H̄;ϖ

)
= exp

(
↑

K∑

k=1

ıHkεk

)
(11)

where Hk is the Hamiltonian that encodes the kth parameter
εk. In a multiparameter case, the (i, j)th element of the QFI
matrix (QFIM) Jω(ω) is defined by [49]

[Jω(ω)]ij =
1
2
tr (ω (ϖ) {!i,!j}) (12)

where the operator !i is the symmetric logarithmic derivative
for the parameter εi, defined as

ϖω (ϖ)
ϖεi

=
1
2
{!i,ω (ϖ)} . (13)

For the probe state |ω→, the (i, j)th element of the QFIM
Jω(|ω→) is given by [49]

[Jω(|ω→)]ij = 2 ↔ω| {Hi,Hj} |ω→ ↑ 4 ↔ω|Hi |ω→ ↔ω|Hj |ω→ ,
(14)

which again depends on the probe state |ω→ with given
encoding Hamiltonian. The QFIM relates to the fidelity as
follows [50]:

ϖJω(|ω→)ϖ
T ≃ 8⇐ϖ⇐2

(
1↑

√
F (|ω→ , |ω (ςϖ/⇐ϖ⇐)→)

ς2

)

(15)

where T is the transpose operator and ς ⇒ 1 is an arbitrary
small number. Using the QFIM, the sum of the individual
variance for the estimator ε̂k is lower bounded by [51]

K∑

k=1

Var [ε̂k] ↗ tr
[
Jω

↔1(|ω→)
]
. (16)

III. VARIATIONAL QUANTUM ALGORITHMS

VQAs have emerged as potential solutions for tackling a
range of problems using currently available quantum devices.
The VQAs are iterative algorithms that combine quantum
and classical computing to find a high-quality solution for a
problem of interest. Quantum computing is used to produce a
trial solution, while classical computing is used to guide the
quantum computer to generate a better solution. Generally, the
VQAs consist of three main components, namely, the PQC,
cost function, and classical optimizer.

A. Parameterized Quantum Circuits
A PQC, often called a variational quantum circuit or ansatz,

is a distinct class of quantum circuits with adjustable param-
eters to be tuned using an optimization algorithm by means
of a cost function. The design of PQCs can be inspired by
insights from a problem of interest. In the case where there
is a lack of information about the problem at hand, the PQC
architecture is designed to be general-purpose.
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The PQC generally consists of a series of L unitary opera-
tions as follows [52]:

U
(
Q̄;ϱ

)
= U (QL; φL) · · ·U (Q2; φ2)U (Q1; φ1) (17)

where ϱ = (φ1, φ2, . . . , φL) is the parameter vector to be opti-
mized, Q̄ = (Q1,Q2, . . . ,QL), and Qε is the Hamiltonian
that encodes the ↼th parameter φε for the PQC. Typically,
U (Qε; φε) is local unitary or controlled unitary. The con-
trolled unitary operators introduce entanglement within the
system. On top of controlled operators, unitary operators with
interacting Hamiltonians can also produce entanglement. The
PQC is required to be able to generate a diverse set of
quantum states in order to explore various potential solutions.
Furthermore, this quantum circuit needs to provide sufficient
entanglement generation and manipulation capability to pro-
duce more intricate entanglement within the system [33].

B. Cost Functions
The quality of a trial solution generated by PQC using

trainable parameters ϱ is evaluated through a cost function.
Typically, the cost function can be written in the form of [33]

C (ϱ) = f ({|ϑi→} , |ϑ (ϱ)→) (18)

where f is a real-valued function and |ϑ (ϱ)→ is the trial
state generated by the PQC. This cost function is highly
reliant on the problem at hand and needs to be trainable by a
classical computer. Minimizing the cost function corresponds
to optimizing the trial solution. As the number of parameters
increases, the landscape of the cost function becomes more
complicated requiring a good classical optimizer to find a high-
quality solution [33].

C. Classical Optimizers
The main task for the classical optimizer is to navigate

the landscape of the cost function to avoid local minima and
converge to global optima by tuning the trainable parameters
ϱ, making it a core component for VQAs. The optimizer seeks
to find the optimal parameter

ϱϑ = argmin C (ϱ) (19)

by minimizing the cost function over the trainable parameters.
As the number of parameters increases, the number of local
minima can also increase, leading to the optimizer being
trapped at this local minima [53]. The ability of the optimizer
to avoid these local traps is crucial for finding a good potential
solution for the problem at hand.
A gradient-based or -free optimizer can be used to train the

parameters of VQAs. The gradient method guides the opti-
mizer to update the parameter in the direction of minimizing
the cost function. Typically, in VQAs, the gradient is obtained
by the parameter-shift rule that amounts to computing the par-
tial derivatives ϖC/ϖφi [54]. The common gradient methods
used in VQAs are stochastic gradient descent and Adam opti-
mizer [55], [56]. The gradient optimizer is prone to be trapped
at local minima and in regions where the gradient of the cost
function is flat, thus hindering its ability to find the global min-
ima [57]. Gradient-free optimizers are used to tackle this issue,

such as the constrained optimization by linear approximations
(COBYLA), Broyden-Fletcher-Goldfarb-Shanno (BFGS), and
evolutionary algorithms [58], [59].

IV. VARIATIONAL QUANTUM SENSING

In line with VQAs, the VQS begins by choosing a PQC.
The chosen PQC is designed to adaptively learn the optimal
settings for both the probe preparation and measurement
operators.

A. Single-Parameter Sensing
Note from (9) that the optimal probe state is in the entangled

form of an equal superposition of two orthogonal states, where
all subsystems for each state are in the same exact state.
1) Probe Preparation: The VQS protocol starts with N

qubits all initialized to |0→, i.e., the N -qubit state |0→↓N . Let
H = (εx + εz) /

↓
2 be the Hadamard operator where εx =

|0→↔1| + |1→↔0| and εz = |0→↔0| ↑ |1→↔1| are the Pauli-x and
-z operators, respectively. Then, by applying the Hadamard
gate H to the first qubit and then sequentially performing
controlled-NOT (CNOT) or controlled-εx gates between the
first qubit (control) and all successive qubits (target), the initial
state |ϑ0→ of the N -qubit sensing system is prepared in the
N -partite (maximally entangled) GHZ state as follows:

|ϑ0→ = GN · · ·G2G1 |0→↓N =
1↓
2

(
|0→↓N + |1→↓N

)
(20)

where

G1 = H ⇑ I
↓(N↔1) (21)

Gi = |0→↔0|⇑ I
↓(N↔1) + |1→↔1|⇑ X̃i,N (22)

with the Pauli operator εx acting on the ith qubit

X̃i,N = I
↓(i↔2) ⇑ εx ⇑ I

↓(N↔i) (23)

for i = 2, 3, . . . , N . After preparing the initial GHZ state |ϑ0→,
a unitary preparation operator for the basis change can be
parameterized such as W ε = U

(
Q̄;ϱ

)
to obtain the trial

probe state |ϑ (ϱ)→ = W ε |ϑ0→, where ϱ are the parameters
to be optimized for probe state preparation. Since the entan-
glement structure of the optimal probe state is embedded in
the initial state |ϑ0→, the PQC for the preparation operator
W ε can be designed by local parameterized unitary operations
only.
2) Probe Interaction: The trial probe state |ϑ (ϱ)→ interacts

with the unknown parameter ε through the unitary operation
U

(
H

↑N ; ε
)
to create the state

|ϑ (ϱ; ε)→ = U
(
H

↑N ; ε
)
|ϑ (ϱ)→ . (24)

This interaction state is then measured by the measurement
operator. Based on the measurement outcomes, the parameter
vector ϱ is updated to minimize a cost function C (ϱ; ε). Note
that the cost function C (ϱ; ε) quantifies how well the trial
probe state |ϑ (ϱ)→ estimates the unknown parameter ε using
the QFI in (5). To maximize the QFI, we utilize the fidelity
as the cost function as follows:

C (ϱ; ε) = |↔ϑ (ϱ) |ϑ (ϱ; ε)→|2 . (25)
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Hence, we need to compute the probability of the interaction
state |ϑ (ϱ; ε)→ collapses to the trial probe state |ϑ (ϱ)→ for
learning the PQC.
3) Probe Measurement: Since the VQS system is initialized

in the computational basis and assuming the measurement is
also performed in computational basis, the unitary operator
V ε for the change of measurement basis can be obtained by
the inverse operation of preparing the trial probe state |ϑ (ϱ)→
from the state |0→↓N as follows:

V
†
ε = W εGN · · ·G2G1 (26)

where † denotes the conjugate transpose. Now, the cost func-
tion can be written as

C (ϱ; ε) =
∣∣↔0|↓N |ς (ϱ; ε)→

∣∣2 (27)

where

|ς (ϱ; ε)→ = V εU
(
H

↑N ; ε
)
V

†
ε |0→

↓N (28)

is the PQC output state ready for the computational basis
measurement. Hence, the cost function C (ϱ; ε) can be seen
as the probability such that the output state |ς (ϱ; ε)→ would
collapses into the state |0→↓N .

B. Multiparameter Sensing
In a single-parameter case, the structure of the optimal probe

state is analytically known, which guides the design of PQCs.
The optimal structure is generally challenging to obtain in a
multiparameter case. Hence, a more generic PQC is designed
to explore a large range of trial solutions.
1) Probe Preparation: To devise a more generic PQC,

consider an entangling unitary operator U (Qε; φε) which can
be written in the form

U (Qε; φε) = |0→↔0|⇑ I + |1→↔1|⇑ exp (↑ıQεφε) . (29)

This is a controlled unitary operator that only performs the
local unitary operation exp (↑ıQεφε) to the target qubit when
the control qubit is in state |1→ and leaves it unchanged, oth-
erwise. Using interaction Hamiltonian Qε, another entangling
unitary operator is in the form

U (Qε; φε) = exp (↑ıQεφε) . (30)

Let the initial state of the quantum sensor be |ϑ0→ = |0→↓N .
Then, the trial probe state is prepared as follows:

|ϑ (ϱ)→ = U
(
Q̄;ϱ

)
|0→↓N . (31)

2) Probe Interaction: The unknown parameters ϖ are
encoded by the total Hamiltonian

H̄
↑N =

(
H

↑N
1 ,H↑N

2 , . . . ,H↑N
K

)
(32)

in the unitary operator U
(
H̄

↑N ;ϖ
)
, which then interacts with

the trial probe state |ϑ (ϱ)→ to generate the state

|ϑ (ϱ;ϖ)→ = U
(
H̄

↑N ;ϖ
)
U

(
Q̄;ϱ

)
|0→↓N . (33)

This multiparameter evolved state is evaluated by the cost
function C (ϱ;ϖ) using the quantum measurement outcomes.
Following (15), we also use the fidelity between the trial probe
state |ϑ (ϱ)→ and the generated state |ϑ (ϱ;ϖ)→ as the cost
function.

3) Probe Measurement: Since the cost function is the
fidelity between the trial probe and generated states, the
unitary operator V ε for the change of measurement basis is
simply given by

V ε = U
† (

Q̄;ϱ
)
. (34)

The cost function is then calculated by evolving the generated
state |ϑ (ϱ;ϖ)→ using U

(
Q̄;ϱ

)
and then computing the

probability of finding the state |0→↓N as follows:

C (ϱ;ϖ) =
∣∣↔0|↓N

U
† (

Q̄;ϱ
)
|ϑ (ϱ;ϖ)→

∣∣2. (35)

V. INTEGRATED VQS WITH QAC

Consider a QSN of M sensors where each quantum sensor
can tailor its quantum state variationally. These sensors employ
a genetic VQA to variationally prepare the probe state. The
PQC is designed by a GA approach for the physical quantity of
interest (e.g., magnetic-field sensing for localization or classifi-
cation). After interacting and estimating the physical quantity,
the sensor anonymously broadcasts the sensing information
to all network sensors. This framework for QAS networks
integrates the genetic VQS with the QAB protocol to ensure
anonymity and untraceability.

A. Genetic VQS
Finding a high-quality PQC is difficult due to the large PQC

space [33]. GAs leverage a population-based method where
multiple potential solutions are evaluated simultaneously to
enhance the algorithms’ ability to converge to a high-quality
solution. Thus, a genetic approach inspired by the process of
natural selection is utilized to heuristically search the PQC
structure for the magnetic-field sensing task.
1) Genetic PQCs: PQCs used in quantum algorithms deter-

mine the quality of a probe state obtained by VQS. A GA
method is employed to find the PQC structure [60]. The
GA begins by initializing the population that consists of q
chromosomes

P =
{
p1,p2, . . . ,pq

}
. (36)

The ith chromosome pi contains a series of genes as follows:

pi =





(Ai1, |ci1→ , |ti1→ , φi1)
(Ai2, |ci2→ , |ti2→ , φi2)

...
(Aiεi , |ciεi→ , |tiεi→ , φiεi)




(37)

where Aij is a Hamiltonian taken from a set {εx,εy,εz}
of Pauli operators, εy = ıεxεz is the Pauli-y operator,
|cij→ is the control qubit, |tij→ is the target qubit, φij is the
parameter, and ↼i is the length of genes. The gene is mapped
into a single- or two-qubit unitary operator. For a single-qubit
unitary operator, the control qubit |cij→ is not defined, and the
unitary operator U (Aij ; φij) = exp (↑ıAijφij) is applied to
the target qubit |tij→. The two-qubit unitary operator is in the
controlled unitary form U (Aij ; φij) = |0→↔0| ⇑ I + |1→↔1| ⇑
exp (↑ıAijφij) and is applied to the control and target qubits
|cij→ ⇑ |tij→.
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All the chromosomes in the population are evaluated by
calculating the QFI for the generated state

|ϑ (ϱ)→ = M
(
gεi

)
· · ·M (g2)M (g1) |ϑ0→ (38)

where M is the map from the gene to the unitary operator,
gk is the kth gene of the chromosome, and |ϑ0→ = |0→↓N .
The density matrix |ϑ (ϱ)→↔ϑ (ϱ)| is evolved using the Lind-
blad master equation. Based on the corresponding QFI, each
chromosome with the best fitness is chosen as a parent for
generating the next generation of the population. In addition
to the best chromosome, the other parents are determined
by using tournament selection, where the tournament round
and size are set to r and s. This makes the total parent
chromosomes of r+1. These parents are included in the next
generation. To generate the offspring, the crossover operation
that takes two parents as the input and generates a new
chromosome is employed. The crossover operation extracts
a sequence of genes with random length from one parent
and it becomes the basis for the child genes. Then, another
sequence of genes with random length from a different parent
is appended to the child’s chromosome. After the child is
generated from the crossover operation, the child undergoes
a series of mutation operations.

• Qubit mutation operator: randomly changes the control
and target qubits of each gene at a specific mutation
probability.

• Parameter mutation operator: adds the parameter of
each gene with a value taken from a zero-mean normal
distribution with a chosen standard deviation at a specific
mutation probability.

• Genes deletion operator: randomly removes a series of
genes within the chromosome.

• Genes insertion operator: generates a random series
of genes which are then inserted randomly in the
chromosome.

• Genes replacement operator: sequentially performs gene
deletion and insertion operators.

• Genes swaping operator: randomly picks two series of
genes and swaps them.

• Genes permutation operator: randomly selects a series of
genes randomly and then randomly shuffles the elements
of the series.

The next generation of the population then repeats the
same procedures for the evaluation, parent selection, crossover
operation, and mutation operation with a specific number of
iterations.
2) Scalar Magnetic-Field Sensing: For the single-parameter

VQS to estimate the amplitude of a magnetic field, consider
that the vector ϖ = (ε1, ε2, ε3) of magnetic field components
is encoded by the Hamiltonian H̄ = 1

2 (εx,εy,εz) in the
unitary operator

U
(
H̄;ϖ

)
= exp


↑ ı

2
(εxε1 + εyε2 + εzε3)


. (39)

To cast it as a single-parameter problem, rewrite the Hamil-
tonian of U

(
H̄;ϖ

)
as H = (εxε1 + εyε2 + εzε3) / (2⇐ϖ⇐)

and the unitary evolution as U (H; ⇐ϖ⇐) = exp (↑ıH⇐ϖ⇐)
for VQS to sense the amplitude of the magnetic field ⇐ϖ⇐.

The eigenvectors of the Hamiltonian H can be identified
by the density matrix form as follows:

ωϖ = |ϱ→↔ϱ| = 1
2
(I + a1εx + a2εy + a3εz) (40)

where a = (a1, a2, a3) = ϖ/⇐ϖ⇐ for |ϱmax→ and a =
↑ϖ/⇐ϖ⇐ for |ϱmin→. Hence, in the noiseless case, the optimal
probe state for the N -qubit sensing system can be obtained
variationally with a simple local PQC such as U

(
Q̄;ϱ

)
=

U
(
ε
↑N
x ;ϱ

)
with the initial GHZ state |ϑ0→ in (20) to achieve

the Heisenberg scaling. In noisy cases, the GHZ-type state may
not be optimal due to its sensitivity to noise. For example,
when the magnetic field is only in the z-axis direction, i.e.,
ϖ = (0, 0, ε3), the GHZ-type and product states have the same
precision scaling under dephasing noise. Hence, it is necessary
to obtain a better probe state [35]. Consider the completely
positive trace-preserving (CPTP) [61] evolution of a quantum
state in a noisy environment to be governed by the Lindblad
master equation [62]

dωϖ (t)
dt

= ↑ı [H⇐ϖ⇐,ωϖ (t)] +L (ωϖ (t)) (41)

L (ωϖ (t)) =
N∑

i=1

↽i


”iωϖ (t)”†

i ↑
1
2


”†
i”i,ωϖ (t)



(42)

where [A,B] = AB↑BA is the commutator, ↽i is the decay
rate, and ”i is the decay operator. The first term in the master
equation (41) corresponds to the noiseless evolution, whereas
the second term L (ωϖ (t)) relates to the interaction between
the system and environment, generating non-unitary dynamics.

1. Bit-Flip Quantum Noise: The decay operator ”i is
given by the bit-flip Pauli operator εx acting on the ith qubit,
i.e., ”i = Xi,N where [63]

Xi,N = I
↓(i↔1) ⇑ εx ⇑ I

↓(N↔i). (43)

Hence, the non-unitary dynamics L (ωϖ (t)) for the bit-flip
noise is given by

L (ωϖ (t)) =
N∑

i=1

↽i
(
Xi,Nωϖ (t)Xi,N ↑ ωϖ (t)

)
. (44)

2. Dephasing (Phase-Flip) Quantum Noise: The decay
operator ”i is given by the phase-flip Pauli operator εz acting
on the ith qubit, i.e., ”i = Zi,N where [63]

Zi,N = I
↓(i↔1) ⇑ εz ⇑ I

↓(N↔i). (45)

The non-unitary dynamics L (ωϖ (t)) for the dephasing noise
is then given by

L (ωϖ (t)) =
N∑

i=1

↽i
(
Zi,Nωϖ (t)Zi,N ↑ ωϖ (t)

)
. (46)

3. Amplitude-Damping (Energy-Relaxation) Quantum
Noise: The decay operator ”i is given by the combined Pauli
operator εxy = (εx + ıεy) /2 acting on the ith qubit as
follows [64]:

”i = I
↓(i↔1) ⇑ εxy ⇑ I

↓(N↔i). (47)
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Fig. 2. Genetic VQS probe state |ω (εω)↔ for scalar magnetic-field sensing (N = 6) under bit-flip noise where the bit-flip noise acts independently on
each qubit at the decay rate of ωi = 0.1 for all qubits. (a) The PQC structure that maximizes the QFI is obtained by the GA for N = 6 where the red
values denote the optimized angle parameters. The PQC consists of single-qubit rotation gates Rv (ε) = exp (↗ıϑvε/2) and two-qubit gates in the form
of controlled-Rx (ε) gates, where v ↘ {x, y, z} and ε ↘ [0, 2ϑ]. (b) The Wigner function W (x, y) for the optimized VQS probe state |ω (εω)↔ is plotted
as a function of phase-space parameters (x, y) using the QuTiP (quantum toolbox in Python) package. (c) The QCRB is plotted for VQS, GHZ, and product
states as a function of the number N of qubits involved in the sensing process, where the noisy quantum-state evolution governed by the Lindblad master
equation in (41) is also simulated using the QuTiP and the VQS probe state is optimized for each N .

Numerical Examples: Figs. 2–4 show the prepared
genetic VQS probe states |ϑ (ϱϑ)→ for scalar magnetic-field
sensing when N = 6 under bit-flip, dephasing, and
amplitude-damping noises, respectively, where the noise acts
independently on each qubit at the decay rate of ↽i =
0.1 for all qubits. The PQC structure that maximizes the
QFI is obtained by the GA with 30 chromosomes (q = 30),
3 tournament rounds (r = 3), and 7 tournament sizes (s = 7)
for each N . The PQC consists of single-qubit rotation gates
Rv (φ) = exp (↑ıεvφ/2) and two-qubit controlled-Rx (φ)
gates, where v ⇓ {x, y, z} and φ ⇓ [0, 2⇀]. The optimized
angle parameters are shown in red values. The Wigner function
W (x, y) for the optimized VQS probe state |ϑ (ϱϑ)→ is plotted
as a function of phase-space parameters (x, y). The Wigner
function is a quasi-probability distribution function on the
position and momentum variables and is defined for ω as

W (x, y) =
1
⇀⊋

 ↗

↔↗
↔x↑ ⇁ |ω |x+ ⇁→ e2ıyϱ/⊋d⇁ (48)

where ⊋ is the reduced Planck’s constant. The negative values
of the Wigner function indicate the non-classical nature of
quantum states [65]. Hence, the Wigner function shows that
the tailored VQS probe states |ϑ (ϱϑ)→ are non-classical as
indicated by their negative values. We also compare the QCRB
for VQS, GHZ, and product states when N = 2, 3, 4, 5, and
6, where the noisy quantum-state evolution governed by the
Lindblad master equation in (41). As can be seen in Figs. 2–4,
VQS probe states exhibit improved precision bounds for all
three types of quantum noise. Both GHZ and product states
are in the eigenbasis of the Hamiltonian H. The GHZ and
product states are shown to be more prone to the bit-flip and
dephasing noises as compared to the amplitude-damping noise.
However, the product state is more robust to the dephasing
noise than the bit-flip noise and outperforms the GHZ for the
amplitude-damping case. The VQS state is also more prone to
the bit-flip and dephasing noises than the amplitude-damping
noise when N = 2, 3, and 4. The VQS state is tailored to have
roughly similar precision bounds for all three noises.

Authorized licensed use limited to: MIT. Downloaded on August 21,2024 at 07:18:48 UTC from IEEE Xplore.  Restrictions apply. 



ULUM et al.: VARIATIONAL ANONYMOUS QUANTUM SENSING 2283

Fig. 3. Genetic VQS probe state |ω (εω)↔ for scalar magnetic-field sensing (N = 6) under dephasing noise with the same parameters as in Fig. 2.

Fig. 5 shows the QFI Jω(|ϑ→) for scalar magnetic-field
sensing as a function of t seconds under quantum noise as in
Figs. 2–4. The maximum value of QFI represents the funda-
mental sensitivity the quantum state can achieve. The required
time to reach this value is an important parameter in quan-
tum sensing, especially in noisy and time-critical scenarios.
Generally, the maximum achievable QFI should be acquired
quickly to enable faster, more precise, and more efficient
parameter estimation. Therefore, the metrological precision
of noisy quantum sensing can be comparatively evaluated
by analyzing temporal dynamics of QFI for respective probe
states. We can see from Fig. 5(a) and 5(b) that the VQS
probe state reaches its larger QFI peak at a negligibly delayed
time than the GHZ or product states, as expected. Fig. 5(a)
shows a negligible QFI difference for VQS and GHZ states
under bit-flip and dephasing noises, while the product probe
state peaks at a delayed time with a large value in dephasing
noise. The GHZ probe state peaks marginally faster, while the
VQS state attains a notably higher maximum QFI. Solving
the Lindblad master equation is not trivial. Therefore, we first
consider the case where the Hamiltonian that encodes the
parameter commutes with the decay operator, allowing us to
obtain the solution of the Lindblad master equation. Then,

we consider the case where the decay operator is assumed to be
fixed and the Hamiltonian is changed slightly. As analytically
derived in [66] for dephasing noise in estimating the magnetic
field in the z-axis direction, where the Hamiltonian and the
decay operator commute, the performance of the GHZ state
degrades N time faster compared to the product state. Hence,
when the Hamiltonian encoding the parameter is slightly
changed so that the Hamiltonian no longer commutes with
the decay operator, we expect the GHZ state performance to
degrade even faster compared to the product state, with the
performance degradation limit being N times faster when the
Hamiltonian and decay operator commute. Since bit-flip noise
can be viewed as dephasing noise in a different basis, this
behavior is also expected under bit-flip noise. Moreover, there
exists a state that can achieve better performance than the GHZ
state, which can be obtained variationally using the VQS probe
state [66]. As seen from Fig. 5(b), the time difference to reach
peak QFI is negligible, but the maximum values significantly
vary in the order of VQS, product, and GHZ probe states under
the amplitude damping noise. Figs. 5(c) and 5(d) show the QFI
achieved by VQS probe states under bit-flip, dephasing, and
amplitude-dampling noises when N = 2, 3, 4, 5, and 6. As the
number N of qubits increases, the maximum achievable QFI
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Fig. 4. Genetic VQS probe state |ω (εω)↔ for scalar magnetic-field sensing (N = 6) under amplitude-damping noise with the same parameters as in Fig. 2.

notably increases, while the time to reach its peak decreases
slightly under bit-flip and dephasing noises or remains largely
unchanged for amplitude-damping noise. We can also see from
Fig. 5(c) that the QFI difference under bit-flip and dephasing
noise nearly vanishes as N increases.

3) Vector Magnetic-Field Sensing: To sense all the mag-
netic field components, multiparameter sensing is employed
for simultaneous parameter estimation. In contrast to using
qubits for individual component estimation, this method lever-
ages all the qubits at once, offering improved precision.
The optimal probe state for simultaneously estimating all
magnetic field components is not as well established as in the
single-parameter case. Using a single- or two-qubit system,
the GHZ state is optimal for two-dimensional magnetic-field
sensing. However, the GHZ state may not be optimal for
larger systems. For the three-dimensional magnetic field, the
GHZ state even leads to a singular QFIM for one or two
qubits.
Since the Pauli operators εx,εy, and εz are traceless and

have ↑1 determinant, the eigenvalues of each Pauli operator
are equal to ±1. Let |±1→v be the normalized eigenvectors
corresponding to eigenvalues ±1 for the Pauli operator εv for
v ⇓ {x, y, z}. The eigenvectors of the Pauli operators εx and
εy are linear combinations of the eigenvectors of εz and εx,

respectively, as follows:

|±1→x = |±→ (49)

|±1→y =
|+→ ⇔ ı |↑→↓

2
(50)

|±1→z = |12 (1⇔ 1)→ (51)

where |±→ = (|0→± |1→) /
↓
2 are the x-basis (Hadamard-basis

or bit-flip) states. Let |ghzN →v be the v-basis GHZ state of N
qubits, given by

|ghzN →v =
1↓
2

(
|+1→↓N

v + |↑1→↓N
v

)
(52)

for v ⇓ {x, y, z}. Now, we consider the probe state for
the three-dimensional magnetic field with the unnormalized
version as follows [67]:

|φ (ϱ)→ = |ghzN →x + e↔ıς1 |ghzN →y + e↔ıς2 |ghzN →z (53)

Then, the normalized probe state is given by

|ϑ (ϱ)→ = |φ (ϱ)→
|↔φ (ϱ) |φ (ϱ)→| . (54)
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Fig. 5. QFI Jε(|ω↔) for scalar magnetic-field sensing as a function of t seconds under quantum noise as in Figs. 2–4. The QFI for VQS, GHZ, and product
probe states is plotted under (a) bit-flip and dephasing noises and (b) amplitude-damping noise when N = 6. In addition, the QFI for the VQS probe state
is plotted under (c) bit-flip and dephasing noises and (d) amplitude-damping noise when N = 2, 3, 4, 5, and 6.

When N = 4n for a positive integer n, by setting ϱ = (φ1, φ2)
to ϱ = 0, the variance of the estimator is bounded as [67]

K∑

k=1

Var [ε̂k] ↗
3 + 6/sinc2 (⇐ϖ⇐)

4N (N + 2)
(55)

where sinc (x) = sin (x) /x and ⇐ϖ⇐ is not an integer multiple
of ⇀. For noisy cases, the purity of the probe state |ϑ (ϱ)→ is
decreased, rendering it to be mixed (which is described by
the density matrix ω (ϱ)), and tailored variationally using the
PQC designed by the GA. Let

ω (ϱ) =






|ϑ (ϱ)→↔ϑ (ϱ)| , for noiseless
2N∑

i=1

ai |ϑi (ϱ)→↔ϑi (ϱ)| , for noisy
(56)

where
2N

i=1 ai = 1. Then, the diagonal and off-diagonal
entries of the QFIM are approximated from (15) as

follows:

[Jε(ω)]kk ≃ 8

(
1↑

√
F (ω (ϱ) ,ω (ϱ; ςek))

ς2

)
(57)

[Jε(ω)]ij ≃ 4

(
1↑

√
F (ω (ϱ) ,ω (ϱ; ςei + ςej))

ς2

)

↑
[Jε(ω)]ii + [Jε(ω)]jj

2
(58)

and [Jε(ω)]ij = [Jε(ω)]ji due to the symmetric property of
the QFIM, where ek is the row vector of zeros with 1 in the
kth position. It has been known that when the noise is aligned
with the magnetic field, the probe state in the form of (54)
cannot surpass the SQL for a constant decay rate [68].

Numerical Examples: Figs. 6–8 show the QCRBs for
vector magnetic-field sensing with the VQS, GHZ, and product
probe states when N = 2, 3, 4, 5, and 6 under the bit-flip,
dephasing, and amplitude-damping noises as in Figs. 2–4. For
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Fig. 6. QCRBs for vector magnetic-field sensing with VQS, GHZ, and
product probe states as a function of N under bit-flip noise as in Fig. 2(c).

Fig. 7. QCRBs for vector magnetic-field sensing with VQS, GHZ, and
product probe states as a function of N under dephasing noise as in Fig. 3(c).

this multiparameter sensing, we set q = 20, r = 3, and
s = 5 for the GA to optimize the PQC structure for VQS.
We denote (54) by the GHZ state and generate the product
state as

|ϑ (ϱ)→ =


|ϑ (ϱ)→
|↔ϑ (ϱ) |ϑ (ϱ)→|

↓N

(59)

where

|ϑ (ϱ)→ = |ghz1→x + e↔ıς1 |ghz1→y + e↔ıς2 |ghz1→z . (60)

We also optimize the parameters ϱ of these GHZ and product
states for comparison. Similarly, the VQS probe states show
improved precision bounds for all three types of noise, and all
the probe states are more robust against amplitude-damping
noise. The bit-flip and dephasing noises degrade the QCRB in
a comparable way and the GHZ state is more robust than the
product state in these types of noise. In contrast, the product
probe state is more robust than the GHZ state in the amplitude-
damping noise.

Fig. 8. QCRBs for vector magnetic-field sensing with VQS, GHZ, and
product probe states as a function of N under amplitude-damping noise as in
Fig. 4(c).

B. QAS Broadcast
To anonymously share the sensing information obtained by

VQS among all the sensors in the QAS network, we employ
the QAB protocol that ensures anonymity and untraceability
in the broadcast process even when the global quantum state
is completely known to other sensors.
1) QAB Protocol: The QAB protocol allows any network

sensor to anonymously broadcast its sensing information with-
out revealing its identity. To modulate (encode) the information
b ⇓ 2 = {0, 1} on its qubit, the broadcasting sensor flips the
x-basis state by applying ε

b
x. Specifically, the QAB protocol

takes a series of steps as follows (see Fig. 9).
Broadcast Preparation: The QAS broadcast protocol

starts by preparing an M -qubit GHZ-type state in the x-basis
that is shared among all sensor nodes. The M -qubit (z-basis)
GHZ state is generated from the state |0→↓M as

|ghzM →z = GM · · ·G2G1 |0→↓M . (61)

After the z-basis GHZ state is shared among all M sensors,
each sensor applies the Hadamard operator H to its qubit to
prepare the x-basis GHZ state as follows:

|ghzM →x = H
↓M |ghzM →z

=
1↓
2

(
|+→↓M + |↑→↓M

)

=
1↓

2M+1

∑

x↘ M
2

(
|x→+ (↑1)sum2(x) |x→

)

=
1↓

2M↔1

∑

x↘ M
2 (0)

|x→ (62)

where M
2 (b) represents the set of M -tuple binary sequences

(or vectors) with sum2 (x) = b ⇓ 2 and

sum2 (x) =
M∑

j=1

xj mod 2 (63)

denotes the modulo 2 addition of all the elements in the binary
sequence (or vector) x = (x1, x2, . . . , xM ) ⇓ M

2 .
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Fig. 9. QAB protocol for QAS broadcast.

Broadcast Modulation: Let the ith sensor want to broad-
cast its sensing information b ⇓ 2 to all the network sensors,
where i ⇓ {1, 2, . . . ,M}. Then, the ith sensor modulates the
broadcast bit b on its qubit by performing the conditional
bit-flip Pauli ε

b
x. This broadcast modulation transforms the

x-basis GHZ state to the QAS broadcast state

|qas→ = X
b
i,M |ghzM →x =

1↓
2M↔1

∑

x↘ M
2 (b)

|x→ . (64)

Note that the modulated state |qas→ is in the even superposition
of all |x→ = |x1x2 · · ·xM → with the modulo 2 sum equal to
the broadcast information b. Since this broadcast-modulated
state does not depend on the sensor index i and completely
hides the broadcasting sensor’s identity, the protocol ensures
anonymity and untraceability in the QAS network.

Broadcast Detection: All theM network sensors measure
their respective qubits in the computational basis and obtain
binary measurement outcomes µ1, µ2, . . . , µM . This M -tuple
binary outcome sequence µ = (µ1, µ2, . . . , µM ) ⇓ M

2

appears randomly with an equal probability of 1/2M↔1 due to
the x-basis change from the Hadamard operations. However,
the modulo sum of all these measurement outcomes is equal
to the broadcast sensing information b, i.e., sum2 (µ) = b—by
the symmetry of the state |qas→ due to the bit-flip modulation.
Now, all network sensors announce their measurement out-
comes by classical communication. Finally, all M↑1 recipient
sensors recover the sensing information with probability 1 as

b̂ = sum2 (µ) (65)

without revealing the identity of the broadcasting sensor.
2) Noisy Broadcast: We analyze the QAB error probability

in noisy QSNs, where each qubit of the M -partite GHZ
state |ghzM →z possessed by quantum sensors is subject to the
local quantum noise. Again, using (41)–(47), we consider the
well-known anisotropic quantum noise described by the CPTP
map in the Kraus operator-sum representation as follows:

N (ω) = E0ωE
†
0 +E1ωE

†
1 (66)

where Kraus operators E0 =
√
1↑ p/2I and E1 =

√
p/2εx

for bit-flip noise N = NX ; E0 =
√
1↑ p/2I and E1 =

√
p/2εz for dephasing noise N = NZ ; E0 = |0→↔0| +↓
1↑ p |1→↔1| and E1 = ↓

p |0→↔1| for amplitude-damping
noise; and p ⇓ [0, 1] denotes a noise parameter such that
the qubit is bit-flipped, phase-flipped with probability p/2,
or amplitude-damped (i.e., decaying from state |1→ to |0→)
with probability p while left untouched (no error) with the
complementary probability. Note that the noise parameter p in
Kraus operators is related to the decay rate for the ith qubit
↽i in the Lindblad master equation as follows:

p =


1↑ e↔2φit, bit-flip, dephasing
1↑ e↔φit, amplitude-damping.

(67)

The broadcast BEP for the QAB protocol under quantum noise
N that acts on each qubit is given by

Pb (N ) =
∑

i↘ 2

Pr
[
b̂ ↖= b

∣∣b = i,ω (N )
]
Pr [b = i] (68)

=






0, bit-flip
1
2
↑ 1

2
(1↑ p)M , dephasing

1
2
↑ 1

2
(1↑ p)M/2 , amplitude-damping

(69)

where all derivations are relegated to the Appendix and

ω (N ) = N↓M (|ghzM →z↔ghzM |)

=
1
2

∑

i,j↘ 2

N (|i→↔j|)↓M (70)

is the noisy z-basis GHZ state prepared for the QAS broadcast.
Note that the error-free resilience of the QAB protocol under
bit-flip noise is due to the fact that this noise leaves the qubit’s
phase unchanged, only bit-flipping its state. Projecting |i→↔j|
in x-basis is equal to projecting the bit-flipped version of |i→↔j|
in x-basis, i.e., ↔±|εx|i→↔j|εx|±→ = ↔±|i→↔j|±→, since |±→ are
the eigenvectors of εx corresponding to ±1 eigenvalues.
In the low-noise regime, the QAB error probability Pb (N )

behaves as

Pb (N ) = pS0 + o (p) (p ↙ 0) (71)
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Fig. 10. Broadcast BEP Pb (N ) for the QAB protocol as a function of the noise parameter p when M = 10 (right) and as a function of the number M of
sensing nodes when p = 10→4 (left) under bit-flip noise NX and dephasing noise NZ . For simulations, we use the NetSquid designed for quantum network
simulations.

Fig. 11. Broadcast BEP Pb (NA) for the QAB protocol as a function of
the noise parameter p under amplitude-damping noise NA when M = 10.

where

S0 = lim
p→0

Pb (N )
p

=


M/2, dephasing
M/4, amplitude-damping.

(72)

This asymptotic BEP behavior reveals that the low-noise slope
of Pb (N ) as a function of p in a log-log plot is equal to one,
while the quantity 1/S0 represents the low-noise offset in the
BEP asymptote as p ↙ 0—that is, Pb (N ) scales linearly
with the dephasing or damping probability p and the network
size M in the low-noise regime (see Figs. 10 and 11). The
coefficient of 1/2 in each error probability reflects the dimen-
sionality of the quantum system used in the QAB protocol.
Since the protocol utilizes a qubit, a two-level system, the
coefficient is 1/2. The difference between the two cases arises
from the Kraus operators modeling each noisy channel. For
the amplitude-damping channel, the Kraus operator E1 =↓
p |0→ ↔1| results in the terms (1↑ p)M/2 in the derivation

of Pb (N ). In contrast, for the dephasing channel, the Kraus
operator E1 =

√
p/2εz contributes to the terms (1↑ p)M .

Since the exponent dominates in the low probability regime,
this leads to a factor of two difference in the asymptotic
behavior between dephasing and amplitude-damping channels.

VI. CONCLUSION

Emerging applications in wireless networks demand
ultra-precise and ultra-secure ISAC solutions. Quantum advan-
tages improve classical precision scaling and provide uncon-
ditional security. However, near-term quantum devices face
practical challenges, such as inherent quantum noise that
hinders their achievable potential. In this paper, we have
developed genetic VQS to optimize sensing configurations
variationally and evolutionarily in noisy environments. The
employed GA approach finds the fittest PQC structure that
effectively combats quantum noise, such as bit-flip, dephas-
ing, and amplitude-damping noises. The PQC parameters are
adjusted to create a high-quality variational sensing probe
state that maximizes the QFI in resilience to quantum noise
for both single-parameter and multiparameter sensing. More-
over, we integrate the QAB protocol into VQS networks to
anonymously share sensing information among all network
parties, ensuring anonymity and untraceability of sensing data.
This QAS broadcast has error-free resilience against the bit-
flip noise, while its asymptotic BEP linearly scales with the
network size and the dephasing or damping probability under
dephasing and amplitude-damping noises in the low-noise
regime. This work serves to put forth the NISQ ISAC frame-
work specifically in a variational and anonymous manner.

APPENDIX
BROADCAST ERROR PROBABILITY

Due to symmetry, the broadcast BEP Pb (N ) in (68) for
equiprobable a priori broadcast information, i.e., Pr [b = 0] =
Pr [b = 1] = 1/2, can be written as

Pb (N ) = Pr
[
b̂ = 1

∣∣b = 0,ω (N )
]
. (73)
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Hence, only the case b = 0 is considered in deriving the
BEP, for which the QAB modulation and demodulation are
equivalent to measuring M qubits of the noisy state ω (N )
locally in x-basis and calculating the modulo sum of outcomes
µ ⇓ M

2 , i.e., sum2 (µ). If the qubit collapses to |+→ or |↑→,
the x-basis measurement outcome is 0 or 1.

A. Bit-Flip Noise
The x-basis projection and bit-flip noise map NX of |i→↔j|

for i, j ⇓ 2 are given by

↔±|i→↔j|±→ = (↑1)i≃j 1/2 (74)
NX (|i→↔j|) = (1↑ p/2) |i→↔j|+ p/2 |1↑ i→↔1↑ j| . (75)

Using (70), (74), and (75), the measurement outcome proba-
bility of µ ⇓ M

2 (0) for the bit-flip noisy GHZ state is

Pr
[
µ ⇓ M

2 (0)
∣∣ω (NX)

]
=

1
2M↔1

. (76)

Hence, with 2M↔1 possible sequences, the broadcast detecting
probability under bit-flip noise NX is found to be

Pr
[
sum2 (µ) = 0

∣∣b = 0,ω (NX)
]
= 1, (77)

leading to the zero BEP in the first case of (69).

B. Dephasing Noise
Using (70), (74), and the dephasing noise maps NZ of

diagonal |i→↔i| and non-diagonal |i→↔1↑ i| states

NZ (|i→↔i|) = |i→↔i| (78)
NZ (|i→↔1↑ i|) = (1↑ p) |i→↔1↑ i| (79)

for i ⇓ 2, we have

Pr
[
µ ⇓ M

2 (0)
∣∣ω (NZ)

]
=

1 + (1↑ p)M

2M
. (80)

Again, with 2M↔1 possible sequences, the broadcast detecting
probability under dephasing noise NZ is as follows:

Pr
[
sum2 (µ) = 0

∣∣b = 0,ω (NZ)
]
=

1 + (1↑ p)M

2
(81)

leading to the broadcast BEP in the second case of (69).

C. Amplitude-Damping Noise
Similarly, since the amplitude-damping noise maps NA of

diagonal |i→↔i| and non-diagonal |i→↔1↑ i| states for i ⇓ 2 are
given by

NA (|0→↔0|) = |0→↔0| (82)
NA (|1→↔1|) = p |0→↔0|+ (1↑ p) |1→↔1| (83)

NA (|i→↔1↑ i|) =
√

1↑ p |i→↔1↑ i| , (84)

the broadcast detecting probability under amplitude-damping
noise NA is obtained as

Pr
[
sum2 (µ) = 0

∣∣b = 0,ω (NA)
]
=

1 + (1↑ p)M/2

2
(85)

leading to the QAB BEP in the third case of (69).
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