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Abstract 

The objective of this paper is to develop, verify, and experimentally validate a mesh-free 

spectral graph theory-based approach for rapid prediction of thermal history in metal parts 

made using the wire arc additive manufacturing (WAAM) process. Accurate and rapid 

prediction of the thermal history is a critical prerequisite for functional quality assurance of 

WAAM parts. In the spectral graph method, the WAAM part is represented as a set of discrete 

nodes encompassed by a network graph. The thermal history is obtained by solving the heat 

equation on the network graph. The spectral graph theory approach thus bypasses the 

cumbersome computational burden associated with mesh generation in the finite element 

method. To validate the spectral graph theory approach, experimental temperature data is 

acquired for multi-layer mild steel WAAM parts processed under six different combinations 

of shape and inter-layer dwell time conditions. Further, each experiment was replicated 

resulting in a total of 12 parts. The accuracy of the thermal trends predicted by the spectral 

graph theory approach was quantified in terms of the symmetric mean absolute percent error 

(SMAPE) and root mean squared error (RMSE, °C). The thermal history trends were predicted 

with SMAPE < 5% and RMSE < 11 °C relative to the experimental temperature measurements. 

The computation time to obtain the thermal history of each 21-layer part was approximately 

3.5 to 4 hours. The spectral graph theory predictions were further verified with a commercial 

finite element software package (Simufact-Welding). For a similar level of SMAPE and RMSE 

as the spectral graph theory approach, the FE-based Simufact predictions required over 7.5 

hours. The computational advantage of the spectral graph theory approach is particularly 

valuable for devising physics-based process parameter optimization and feedforward control 

strategies to mitigate flaw formation in WAAM parts.   

Keywords: Wire and arc directed energy deposition, computational thermal modeling, 
spectral graph theory, thermal history.  
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1. Introduction 

1.1 Background, Objective and Rationale 

In the wire arc additive manufacturing (WAAM) process, material feedstock in the form 

of wire is fused layer-by-layer using an electric arc to create 3D freeform geometry metal parts. 

The geometrical freedom of the WAAM process is enabled by the relative motion between the 

substrate and the welding torch, which can be achieved either by a multi-axis machine tool or 

a robotic arm [1]. The process belongs to the wire and arc directed energy deposition (WA-

DED) family of additive manufacturing (AM) processes and is based on gas metal arc welding 

[2].  

A schematic of the WAAM process is shown in Figure 1, where the energy from the 

electric arc melts the wire feedstock and the arc is surrounded by a shielding gas, typically 

argon or a mixture of argon and carbon dioxide, which prevents oxidation and contamination 

of the meltpool, as well as protects and stabilizes the arc. Popular materials for WAAM include 

non-ferrous metals, such as aluminum and titanium, as well as ferrous alloys, such as stainless 

steel and mild steel (this work). 

 
Figure 1: Schematic of the wire arc additive manufacturing (WAAM) process. A welding head deposits 
material via the use of a consumable electrode which is melted with an electric arc struck between the 
part and electrode. 
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The primary advantage of WAAM, in comparison to powder-based AM processes such as 

powder-based DED (P-DED) and laser powder bed fusion (LPBF), is its cost-effectiveness, 

high deposition rates, large material utilization, and scalability to large volume manufacturing 

[3]. Holshouser et al. [4] discuss the scalability of WAAM by introducing the field of big area 

additive manufacturing (BAAM), which features an essentially unlimited build chamber 

supported by the fast deposition speeds in WAAM. While commercial P-DED systems 

typically deposit material at a rate near 0.5 kg per hour, the high deposition rates in WAAM 

deliver over 5 kg per hour [5].  

The objective of this paper is to develop, verify, and experimentally validate a spectral 

graph theory-based approach for rapid prediction of the spatiotemporal temperature 

distribution (thermal history) in WAAM parts during the printing process. This is an important 

area of research, because, despite its demonstrated capabilities, WAAM parts suffer from flaws 

such as distortion in shape and poor surface finish due to regional retention of heat 

(overheating) and uneven cooling [6]. The high deposition rates of WAAM are accompanied 

by high energy input. As demonstrated in a study by Jin et al. [7] the energy input during 

WAAM processing of stainless steel 316 is 5-10 times greater than that of laser-based additive 

manufacturing processes.  

As build height increases, heat dissipation through conduction to the previously deposited 

material slows, leading to heat accumulation [8]. Furthermore, the cyclical heating and cooling 

of the part, on account of the layer-by-layer nature of the process, leads to inconsistencies in 

the microstructure and consequently undermines the functional properties of the part [9]. 

Heating and cooling rates are governed by the part thermal history [10].  The thermal history 

is a function of the part shape, material properties, and process parameters, such as the welding 

energy (voltage and current), path translated by the welding torch to deposit material (tool 

path), deposition velocity, wire feed rate, and interlayer dwell time, among others.  
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Hence, in the context of WAAM, as shown in Figure 2, an accurate and rapid thermal 

model is the key to physics-based process optimization, feed-forward control, and predicting 

the impact of many possible combinations of processing parameters on microstructure evolved 

and mechanical properties [11]. To address these needs, this work advances a computational 

approach to predict the thermal history in WAAM parts based on the theory of heat diffusion 

on graphs (spectral graph theory). Using the spectral graph approach, practitioners can rapidly 

predict the thermal history for a WAAM component as a function of key process variables, 

such as welding power, tool path, and interlayer dwell time. Based on the insights obtained 

from these thermal simulations, the processing conditions can be optimized to avoid flaw 

formation, such as overheating before printing the part – a form of feedforward control. As 

shown in recent publications with other AM processes, the cooling rate derived from the 

thermal history simulations can be further leveraged to estimate microstructure aspects, e.g., 

grain size and meltpool depth, and mechanical properties [12, 13]. 

 

Figure 2: Fast and accurate modeling of thermal history is central to quality assurance in WAAM.  
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1.2 Literature Review – Prior Work and Novelty 

1.2.1 Finite Element-based and Other Approaches for Thermal Modeling in AM  

Thermal history simulation of AM processes is typically performed using both 

commercially available and proprietary finite element (FE) software [14]. A major drawback 

of using FE-based methods is the long simulation time, often requiring many hours, if not days, 

to converge, which becomes progressively worse with part size [15].  

An inherent obstacle in thermal simulation of AM processes, including WAAM, is the 

increase of mass as material is incrementally added. In other words, the computational domain 

in FE-based simulation of the AM processes evolves continually, which requires repeated re-

meshing – a computationally cumbersome activity [16]. Consequently, meshing solutions, such 

as the quiet-element method (element birth method) and the inactive-element method have 

been introduced to overcome the computational burden associated with meshing in AM [17].  

In the literature, many unique whole-part thermal modeling approaches have been used to 

improve computation time without significant loss of accuracy for thermal history simulation 

of LPBF and DED processes. Herewith we summarize representative papers from the literature. 

In the context of the LPBF process, Peng et al. [18] reported fast thermal simulations of 

builds using thermal circuit elements (TCE) which are thermal masses connected by thermal 

resistors. Compared to a conventional FE simulation of a realistic part using 16000 nodes, 40 

thermal circuit elements give temperatures two orders of magnitude faster with errors less than 

15%. Likewise, Tangestani et al. [19] sped up FE simulations for temperature by integrating 

the 3D gaussian heating function over time and applying it along the line of laser motion.  In a 

2 mm × 1 mm × 0.5 mm LPBF geometry, this approach provided temperature simulation 330 

times faster than traditional FE with errors less than 15%. 
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Dugast et al. [20] carried out fast thermal simulations of the LPBF process by porting code 

to a graphics processing unit (GPU). When applied to the build of a 25 mm cube, the 

temperature simulation was 300 times faster with error less than 1% compared with a 

commercial FE simulation. Mozaffar et al. [21] implemented a GPU-based strategy for FE 

simulations of metal additive manufacturing processes and reported convergence exceeding 

100× faster than an optimized single core CPU.  

For the DED process, a common theme in the literature is that computational improvement 

involved changing the way heat is added to the model. Stockman et al. [22] describe a coarse-

mesh finite-difference model used to simulate temperatures in a DED process with simplified 

heat input of a specified melt temperature for the added material.  Simulation of a rectangular 

wall consisting of 31 layers of two side-by-side passes with final size about 76 mm high, 127 

mm long, and 7 mm wide was carried out with 77,000 nodes, which ran in 12 minutes on a 

single CPU laptop. No comparison of processing time was made with conventional FE 

methods, however temperature values tracked well with experimental thermocouple data from 

a DED build.  

Ding et al. [23] provided faster temperature simulations for the WAAM process by 

replacing Gaussian heating by well-distributed volumetric heating in each added mass element.  

In an FE simulation (Ansys) of a block-shaped part with 10 layers, each of size 150 mm × 30 

mm with 5 zig-zag hatches per layer, the well-distributed heating model was 17 times faster 

with errors within 6%. Temperature results were also compared with experimental data. 

Nijhuis et al. [24] provided faster simulated temperatures in the WAAM process by 

holding newly deposited mass elements at an elevated temperature for a dwell time 𝑡𝑡𝑑𝑑, after 

which the newly added mass is allowed to cool by diffusion.  In simulating a thin wall 1 mm 

wide, 10-layers tall, and 12 mm long, the method was 4.3 times faster, with comparable 
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precision, than a conventional FE simulation with a volumetric moving heat source. Yang et 

al. [25] employed a semi-analytical model for the WAAM process by superposing point-source 

infinite-space solutions with a complementary correction temperature field, provided by a 

coarse-grid FE calculation, to enforce thermal boundary conditions in the finite body. When 

applied to a thin wall geometry 2 mm wide × 4 layers tall × 500 mm long, the method provided 

temperature values 2 times faster than a conventional FE simulation with errors less than 10%.  

Kovšca et al. [26] developed a boundary detection method which was used in conjunction 

with the inactive element FE approach to assign local boundary heat loss parameters 

simultaneously within the element activation routine. This technique was used for modeling of 

thermal history in a 10-layer cylindrical WAAM thin-wall measuring 15 mm tall, 52 mm in 

diameter, and 4.2 mm in wall thickness. Though the computation time is not reported, the 

simulated temperatures trend with the experimental data, with increasing agreement toward the 

end of each interlayer dwell period. 

Several cases from the literature are reported in Table 1 to demonstrate the computation 

times associated with FE-based thermal simulations for WAAM. The representative cases were 

chosen such that the volume of material deposited was similar to that of the parts studied in 

this work ( ~ 12.7 to 13×104 mm3).  Specifically, Ding et al. [27] simulated a four-layer thin-

wall which had a single weld pass per layer. Graf et al. [28] simulated a 46-layer cylindrical 

tube which consists of single weld tracks per layer. Ahmad et al. [29] simulated a five-layer 

wall consisting of three weld tracks per layer. These simulations utilized the element birth 

technique and typically used a coarse mesh to simulate the substrate. The approximate 

simulated volumes reported in Table 1 account for the printed geometry as well as the substrate.  

  



8 
 

Table 1: Computational times reported by various researchers using finite element models for thermal 
history prediction in WAAM. 

Authors Component simulated 
Approximate  

volume simulated 
[mm3] 

System 
specifications 

Approximate 
computation 

time 

Ding et al. [27] 4-layer 
rectangular thin-wall 38×104 Grid computing 

with 4 processors 51 hrs 24 min 

Graf et al. [28] 46-layer cylindrical 
thin-wall tube 7.8×104 12 core processors 82 hrs 

Ahmad et al. [29] 
5-layer, 3-pass 

rectangular wall 18×104 Not Available 35 hrs 

1.2.2 Spectral Graph Theory-based Thermal Modeling of Additive Manufacturing 

To overcome the challenges with FE-based thermal modeling in AM, Yavari et al. [30] 

developed a mesh-free spectral graph theory-based thermal model for applications in LPBF. In 

the spectral graph method, a 3D geometry is represented by a cloud of discrete nodes and the 

heat equation is solved over these nodes. Their work was verified against FE models, where 

the verification process encompassed custom code implemented in ABAQUS, as well as 

commercial software (Netfabb). Yavari et al. [31] further provided validation using in-process 

infrared thermal camera-derived surface temperatures, which were obtained for a range of 

simple prismatic shapes as well as complex practical objects, such as a 125 mm × 25 mm 

impeller. They report that spectral graph theory thermal simulations for LPBF parts converged 

3 to 5 times faster than FE models with the same level of prediction error with respect to 

experimentally observed temperature measurements. 

Riensche et al. [32]  previously applied a spectral graph theory approach to thin-wall P-

DED parts which converged substantially faster than FE. Though the prior work involved P-

DED, the treatment of heat input from the welding source as well as boundary heat loss were 

similar to the approach developed for LPBF. For example, the heat input was modeled as an 

instantaneous temperature rise with subsequent heat conduction occurring throughout the part. 

Also, the boundaries were assumed to be insulated, with heat loss occurring as a temperature 
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amendment to the boundary nodes outside of the spectral graph method. These assumptions 

align with the LPBF process where the layer-wise heating is considerably faster, and the 

powder bed serves to insulate the part during processing. However, the foregoing assumptions 

are not applicable to the WAAM process. As shown in Figure 3, heat transfer in WAAM is 

comprised of conduction within the part, heat loss to the surroundings due to radiation, free 

convection due to the thermal interaction between the part and the surroundings, and forced 

convection due to continuous, localized shielding-gas flow.  

 
Figure 3: Thermal phenomena in WAAM: (1) Heat input from the welding source; (2) 
Radiation to the surrounding gas; (3) Forced convection due to the flow of shielding gas; (4) 
Conduction within the part; (5) Free convection with the surrounding gas; and (6) Conduction 
between the part and substrate. 

In recent work, Cole et al. [33] extended the theoretical foundations of the spectral graph 

theory approach through discrete Green’s function analysis and compared the results for 

benchmark heat transfer problems (1D and 3D cases) with respect to analytical, finite 

difference, and finite element methods. These theoretical studies affirmed the computational 

advantages of the spectral graph theory approach and provides volumetric heating and 

boundary heat loss as an integral part of the spectral graph method. 

In the present work, the advances of Cole et al. [33] are applied toward modeling of the 

thermal history of parts produced using the WAAM process. Although the conceptual 
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underpinnings of this work are motivated from the authors’ prior work in the context of P-

DED, the physics-based enhancements presented in this paper permit a more careful 

consideration of the thermal phenomenon unique to the WAAM process. The enhancements to 

the spectral graph approach described in this paper are best characterized by a physics-based 

representation of the local welding heat source using volumetric internal heat generation, and 

consideration of boundary heat loss occurring within the spectral graph method. While the 

consideration of boundary heat loss eliminates a second computational step by embedding 

boundary details within the Laplacian matrix, volumetric internal heat generation incorporates 

processing parameters into the mathematical formulation of the heat equation.  

The remainder of this paper is organized as follows. In Section 2, the details of the 

experiments are summarized, and the obtained thermal data is presented. Section 3 explains 

the development of the spectral graph method for modeling thermal history in WAAM. Section 

4 verifies and validates the spectral graph method by comparison between model derived 

thermal history predictions and commercial FE simulations, and thermal data obtained from 

experiments, respectively. Finally, Section 5 concludes the work and provides an outlook for 

future research.  
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2. Experiments 

Six controlled experiments were conducted in this work, each with one replicate to account 

for measurement variability. The experiments used one of two different part geometries along 

with various interlayer dwell times – that is the time which elapses between the end of 

deposition for one layer and the start of deposition of the subsequent layer. The rationale for 

these experiments is as follows. As mentioned in Section 1, in WAAM the thermal history is a 

function of process parameters, material characteristics, and part shape. Thus, in accordance 

with the goal of this work, the experiments are designed to ascertain the ability of the model to 

capture various thermal histories resulting from change in the part geometry, as well as an 

important processing parameter (interlayer dwell time). 

2.1 Experimental Setup 

The WAAM setup consists of a 3-axis CNC machine tool (Bharat Fritz Werner, model 

Agni BMV 45 TC20). The vertical (z) axis of the machine is coupled to a cold metal transfer 

(CMT) welding torch (Fronius Transpuls Synergic) as embodied in Figure 4(a) and (b).  

 
Figure 4: Experimental setup for the deposition of thin-walls, (a) schematic of experimental setup, (b) 
actual setup during weld deposition of a trapezoid thin-wall. 
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A mild steel (EN8) substrate measuring 120 mm × 48 mm × 20 mm is used in this work. 

The feedstock is mild steel wire (ER70S-6, C 0.06 - 0.15 wt. %). The substrate was fixed to a 

C-shaped wooden block (for thermal isolation), as shown in Figure 5(c). The substrate and 

wooden block were subsequently clamped to the bed of the machine tool. Five equidistant blind 

holes were drilled 25 mm deep into the substrate at a distance of 15 mm from the bottom 

surface. Temperature data are acquired by installing five sheathed, ungrounded, K-type (Cr/Al) 

thermocouples (5 mm diameter × 200 mm long) in the substrate within these blind holes. A 

thermal compound was introduced in the blind holes to ensure (thermal) coupling of the 

thermocouple probes to the substrate. A National Instruments data acquisition system (NI-

9212) was used for continuous logging of temperature data at a sampling rate of 2 Hz.  

 
Figure 5: Substrate and thermocouple locations given in [mm], (a) Front view of the substrate, (b) Top 
view of the substrate, (c) Substrate with the wooden block. 

While a higher sampling rate would be valuable for capturing rapid temperature 

fluctuations and predicting instantaneous temperature closer to the deposited layer, however, 

the focus of this work is in predicting part-scale temperature deviations which occur at a much 

slower rate, the sampling rate of 2 Hz would be adequate. Indeed, 5 thermocouples have been 

placed in the substrate, which implies we acquire thermal data every 1.3 mm of deposition.  As 

the first layer is deposited, each thermocouple is centered 5 mm in depth farther from the 
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deposition zone, and successive layers are deposited at larger and larger distances from the 

thermocouples.  Thermal diffusion through 5 mm or more of metal would attenuate the sharp 

temperature peaks near the deposition zone, such rounded peaks are observed in the 

thermocouple data discussed later in the context of Figure 9 – Figure 11.  

While attempts have been made to use infrared (IR) thermal imaging to capture 

temperature distribution in the part, the measurements reported by IR thermal cameras are 

relative trends and not absolute temperature measurements [34]. This is because the energy 

radiated by a surface, which is converted to a temperature reading by an IR thermal camera, is 

dependent on the emissivity of the material. The material emissivity is not a constant value but 

depends on the surface roughness and temperature of the body, among other factors. 

Furthermore, the angle of inclination between the thermal camera and the surface also has an 

effect. Hence, calibration of an IR thermal camera to provide absolute temperature readings is 

a particularly challenging proposition in WAAM. Hence, to eschew these pitfalls, we used 

contact thermocouples embedded within the substrate. Lastly, as the focus this work is on 

modeling part-scale thermal history, measurements of meltpool temperatures using a 

pyrometer were not conducted. In our future work, we will endeavor to correlate the part-scale 

temperature with the microstructure evolved.  

Researchers have also welded thermocouples to the part to obtain near-instantaneous 

layer-level temperature [26]. While in this work thermocouples have not been welded to the 

part to avoid inconsistencies in the inter-layer dwell time, we have verified the thermal history 

predictions at both the part- and the layer-levels with a commercial finite element package 

(Simufact Additive).    
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2.2 Processing Conditions and Build Plan 

Two rectangular and four trapezoidal shaped experimental thin-wall parts were 

manufactured, each with a specified interlayer dwell time, for a total of six experiments. While 

six experiments were studied, each experiment was replicated once to consider variation 

between builds, which resulted in a total of 12 thin-walls being manufactured. The rectangular 

and trapezoidal part geometries are shown in Figure 6. Regardless of the interlayer dwell time, 

a total of 21 deposition layers were required to manufacture both the rectangular and 

trapezoidal thin-walls, where a single hatch (weld track/bead) was deposited per layer in an 

alternating to-and-fro hatch pattern, as shown in Figure 4(a) and Figure 6(b). The length of 

each layer in the rectangular walls was 100 mm. For the trapezoidal walls, the first layer was 

of length 100 mm and each layer thereafter decreased in total length by 2mm (1 mm reduction 

from each end), resulting in a layer length of 60 mm for the final (21st) layer. All experimental 

parts measure 31.5 mm in height and 4.7 mm in width. Each hatch is 4.7 mm in width and 1.5 

mm in height.  The arc voltage (14.8 VDC) and current (110 A) are maintained constant for all 

experiments along with other parameters shown in Table 2.  

 
Figure 6: Experimental component geometries without substrate, shown with dimensions [mm], (a) 
rectangle part, (b) trapezoid part. The arrows overlayed on the trapezoid part show the tool path, where 
the layers are deposited in a to-and-fro fashion.  

These processing parameters were optimized in prior work by Panchagnula and 

Simhambhatla so as to avoid flaw formation and provide an acceptable quality build [35].  The 

elapsed time between deposition of subsequent layers, known as the interlayer dwell time (𝑡𝑡𝑑𝑑) 
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was varied between experiments. The interlayer dwell time is an important factor because it 

influences the initial thermal field present prior to deposition. To explain further, the initial 

thermal field prior to deposition influences the cooling and solidification rates, which in turn 

governs the microstructure morphology and thermal-induced residual stress [36]. For example, 

an elevated initial thermal field prior to deposition acts similarly to pre-heating the previously 

deposited and solidified layers, which impacts the depth of re-melting in the previous layers, 

and directly affects microstructure evolved [37]. In our future work, we will endeavor to study 

the effect of welding power, velocity, and toolpath from the perspective of feedforward process 

control.  We note that, since the difference between the rectangular and trapezoidal part 

geometries lies in the length of each layer, the interlayer dwell time is chosen to vary as a 

function of the time required to deposit either the first layer or the previously deposited layer 

of each geometry and is described below. 

Considering the rectangle geometry shown in Figure 6(a), having uniform hatch lengths 

𝑙𝑙 = 100 mm and a weld torch velocity 𝑣𝑣 = 11.67 mm · s−1, the time to deposit the first layer, 

as well as all subsequent layers, is 𝑡𝑡1 ≈ 8.57 seconds. Since the layer-wise length remains 

constant for the rectangle geometry, the calculated interlayer dwell time using either the first-

layer or the previous-layer approach results in the same interlayer dwell time. Accordingly, the 

two rectangular thin-wall parts, termed Rect43 and Rect86, were built with the following 

interlayer dwell times (𝑡𝑡𝑑𝑑):  

• Rect43, 𝑡𝑡𝑑𝑑 = 5 × 𝑡𝑡1 ≈ 43 seconds, i.e., 5 times the deposition time for the first layer 𝑡𝑡1. 

• Rect86, 𝑡𝑡𝑑𝑑 = 10 × 𝑡𝑡1 ≈ 86 seconds, i.e., 10 times the deposition time for the first layer 𝑡𝑡1.  

Likewise, the four trapezoidal thin-wall parts, termed Trap43, Trap86, Trap5×, Trap10×, 

were built with the following interlayer dwell times (𝑡𝑡𝑑𝑑):  

• Trap43, 𝑡𝑡𝑑𝑑 = 5 × 𝑡𝑡1 ≈ 43  seconds, i.e., 5 times the deposition time for the first layer 𝑡𝑡1. 



16 
 

• Trap86, 𝑡𝑡𝑑𝑑 = 10 × 𝑡𝑡1 ≈ 86 seconds, i.e., 10 times the deposition time for the first layer 𝑡𝑡1. 

• Trap5×, 𝑡𝑡𝑑𝑑 = 5 × 𝑡𝑡𝑖𝑖−1 , where 𝑡𝑡𝑖𝑖−1 is the deposition time for the previous layer, i.e., 5 times 

the deposition time required for the previous layer. 

• Trap10×, 𝑡𝑡𝑑𝑑 = 10 × 𝑡𝑡𝑖𝑖−1 , where 𝑡𝑡𝑖𝑖−1 is the deposition time for the previous layer, i.e., 10 

times the deposition time required for the previous layer. 

While Rect43, Rect86, Trap43, and Trap86 are built with a constant interlayer dwell time 

of either 43 or 86 seconds, Trap5× and Trap10× are built with a dynamic interlayer dwell 

time that progressively decreases due to the layer-by-layer reduction of layer length, reducing 

the time required to deposit each subsequent layer. The layer-wise interlayer dwell times for 

all experiments are depicted in Figure 7. These dwell times were selected based on extensive 

trials not reported in this work. 

 
Figure 7: Interlayer dwell time vs. layer number and build height. Cases Trap5× and Trap10× have 
decreasing interlayer dwell times due to the progressive reduction in layer length. 

Table 2: Processing parameters that are held constant throughout all experiments.  

Current (I) 110 A 
Voltage (V) 14.8 VDC 
Wire diameter (𝑑𝑑) 0.8 mm 
Wire feed rate (𝑤𝑤𝑓𝑓) 9.8 m·min-1 (163.3 mm·sec-1) 
Torch speed (𝑣𝑣) 0.7 m·min-1 (11.67 mm·sec-1) 
Shielding gas 82 % Ar + 18% CO2 
Gas flow rate 7.5 L·min-1  
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2.3 Temperature Data Acquisition 

The data obtained from the thermocouples is reported in the form of temperature vs. time 

plots. The thermocouples are labeled TC1 through TC5, contingent on their location with 

respect to the substrate, as shown in Figure 8.  The thermocouples installed in the front of the 

substrate are labelled as TC1, TC3, and TC5; the thermocouples installed in the back of the 

substrate are labelled TC2 and TC4. Upon examination of the data, TC5 provided incoherent 

temperature trends, hence it is not used in this work.  

 
Figure 8: Names of thermocouples and their location within the substrate.  Dimensions shown are [mm].  

Figure 9(a) and (b) show the temperature trends recorded by thermocouples TC1, TC2, 

TC3, and TC4 for one replication of the Rect43 and Rect86 cases, respectively. Consider Figure 

9(a), which shows thermocouple data for the Rect43 rectangular thin-wall with 43 second 

interlayer dwell time. The total build duration is roughly 1100 seconds (~ 18.5 minutes).  The 

data has 21 periodic peaks, corresponding to the 21 passes (layers) of the torch.  Early in the 

build, each pass of the torch causes a steep rise in temperature followed by rapid temperature 

decay. Later, as the part grows in height and the build plane moves away from the 

thermocouples, each pass of the welding torch produces a smaller temperature rise in the 

substrate, hence each peak is less pronounced. Referring to Figure 9, we note that although the 

temperature peaks may appear to occur at the same time in the plots, they are offset slightly 

due to their physical position in the substrate. For example, for the rectangular cases, the time 

to deposit each layer is 8.57 s which means that all the thermocouples are subjected to a heated 
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environment during that time. Hence, the individual thermocouple responses will be slightly 

offset from each other, but they will appear in groups with similar behavior since each group 

of peaks corresponds to a single layer being deposited.    

In Figure 9 there is some variation in the magnitude of the temperature peaks among the 

different thermocouple locations. These temperature magnitude differences may be explained 

as an effect of the heat flow from the center of the substrate towards the cooler ends of the 

substrate where no part is being built and where no heat is being added. The measurements 

from TC 3 are highest as it is located at the centerline of the substrate. Slightly lower 

temperature peaks are observed for TC 2 and TC 4, which are at located 17.5 mm from the 

centerline. The lowest temperature peaks are observed from TC 1 which is located 35 mm from 

the centerline.  

The following is evidence that the fixed data rate of 2 Hz is adequate for capturing the 

shape of the temperature peaks at the thermocouple locations. In comparing Figure 9 (a) and 

(b), we note that the duration of the Rect86 experiment was two times longer than the Rect43 

experiment.  Although rise time of the temperature peaks early in the build in Figure 9 (b) may 

appear to be steeper than those in Figure 9 (a), they are of equal steepness when the rise time 

is accounted. Further, the temperature peaks depicted in Figure 9 (a) and Figure 9 (b) have 

comparable heights, even though the two experiments are of different duration (Figure 9 (b)) 

is two times longer and contains twice as many data points compared to Figure 9(a)).   

The temperature trends in Figure 9 can be further explained by heat flow in and heat flow 

out. For the rectangular thin-wall, each successive layer is of the same dimension. Hence, the 

energy per deposited layer remains constant throughout the build. However, as the build grows 

in height, the increased surface area of the part accelerates heat loss due to radiation and 

convection (forced and free convection – more surface area is exposed to the shielding gas). A 

similar trend is observed in Figure 9(b) for the Rect86 thin-wall part with 86 second interlayer 
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dwell time between layer deposition. The build duration for the Rect86 thin-wall part is 2000 

seconds (~ 33.5 minutes).   

Shown in Figure 10(a) and (b) are the temperature trends for the trapezoid-shaped thin-

wall parts with constant interlayer dwell times of 43 seconds (Trap43) and 86 seconds 

(Trap86), respectively. The total build duration is 1050 seconds (~ 17.5 minutes) and 1950 

seconds (~ 32.5 minutes) for cases Trap43 and Trap86, respectively. These trapezoidal thin-

walls depict a lower temperature trend in comparison to their rectangular counterparts, because 

successively deposited layers in the trapezoid shape are smaller, resulting in successively less 

material deposition and heat input.  

Figure 11(a) and (b) show the temperature trends for the trapezoid-shaped thin-wall parts 

Trap5× and Trap10×, built with varying interlayer dwell time, where the interlayer dwell times 

are shown in Figure 7. The total build duration is 870 seconds (~ 14.5 minutes) and 1590 

seconds (~ 26.5 minutes) for cases Trap5× and Trap10×, respectively. 

Among the rectangle-shape cases, the maximum temperature experienced by any 

thermocouple is near 275 °C for case Rect43, and 225 °C for case Rect86. Amongst the cases 

Trap43 and Trap86, i.e., for the trapezoid walls with constant dwell time, the temperature 

curves flatten out toward the end of the build.  For the longer dwell times, some temperature 

curves begin to fall after reaching a maximum value.  Similar trends are observed for cases 

Trap5× and Trap10×.   These observations may be explained by the lower heat input for the 

trapezoidal geometries compared to the rectangular geometries, and by the additional time for 

cooling when the dwell time is longer. 

Since each thin-wall was built twice, the variation between experiments can be quantified 

in terms of the root mean square (RMS) deviation. The RMS deviation for a majority of the 
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cases is within 15 °C, with a maximum of 17 °C, and a minimum of 3 °C. The RMS deviation 

between experiments for each thin-wall is reported in Appendix A  

 
Figure 9: Recorded temperature trends by four thermocouples (TC1, 2, 3, 4) for: (a) Rect43 rectangular 
thin-wall with a constant 43 second interlayer dwell time (𝑡𝑡𝑑𝑑 = 43 s), and (b) Rect86 rectangular thin-
wall with a constant 86 second interlayer dwell time (𝑡𝑡𝑑𝑑 = 86 s). 

 
Figure 10: Temperature trends recorded by four thermocouples (TC1, 2, 3, 4) for: (a) Trap43 trapezoidal 
thin-wall with a constant 43 second interlayer dwell time (𝑡𝑡𝑑𝑑 = 43 s), and (b) Trap86 trapezoidal thin-
wall with a constant 86 second interlayer dwell time (𝑡𝑡𝑑𝑑 = 86 s). 

 
Figure 11: Temperature trends recorded by four thermocouples (TC1, 2, 3, 4) for: (a) Trap5× 
trapezoidal thin-wall with a non-constant interlayer dwell time equal to 5 times the deposition time of 
the previous layer (𝑡𝑡𝑑𝑑 = 5 × 𝑡𝑡𝑖𝑖−1 ), and (b) Trap10× trapezoidal thin-wall with a non-constant 
interlayer dwell time equal to 10 times the deposition time of the previous layer (𝑡𝑡𝑑𝑑 = 10 × 𝑡𝑡𝑖𝑖−1 ). 
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3. The Spectral Graph Method  

3.1 Mathematical Foundations  

Detailed works by Yavari et al. [30, 31] and Riensche et al. [38] discuss the graph theory 

solution with applications for LPBF, where heat from the fast-moving laser is modeled as an 

initial temperature condition in the heat equation for each layer. Due to the slow-moving heat 

source in WAAM, heat provided by the welding torch is instead represented by a volumetric 

heat source term. The heat equation to be solved, along with boundary and initial conditions, 

is given as: 

 1
𝛼𝛼
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= ∇2𝑇𝑇 +
1
𝑘𝑘
𝑔𝑔(𝑟𝑟) 

𝑘𝑘
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= ℎ𝑒𝑒𝑒𝑒𝑒𝑒(𝑇𝑇∞ − 𝑇𝑇) 

𝑇𝑇(𝑟𝑟, 𝑡𝑡 = 0) = 𝑇𝑇0(𝑟𝑟) 

 (1) 

 
(boundary condition) (2) 

 
(initial condition) (3) 

where 𝛼𝛼 [m2 · s−1] is the thermal diffusivity of the material, ∇2 is the continuous Laplacian 

operator, 𝑘𝑘 [W · m−1 · K−1] is the thermal conductivity of the material, 𝑔𝑔(𝑟𝑟) [W · m−3] is the 

heat source term which is a function of position, 𝑛𝑛 represents the outward normal vector used 

for type 3 (convection) boundaries, ℎ𝑒𝑒𝑒𝑒𝑒𝑒 [W · m−2 · K−1] is an effective heat loss coefficient, 

and 𝑇𝑇∞ [K] is the ambient temperature. An underlying assumption in the graph theory method 

is that Eqn. (1) is linear, requiring thermal properties (e.g., thermal diffusivity and conductivity) 

to be held constant. Recent work by Cole et al. [33] discusses the spectral graph method for 

solving the linear heat equation with a heat source term. 

To address the actual temperature-dependent thermal properties present in the WAAM 

process, material properties, such as thermal diffusivity, are averaged over the range of 

expected temperatures.  Since the graph theory approach is concerned with predicting 

temperatures over large ranges of dimensionless times and over the whole body, the effect of 
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non-uniform material properties is expected to be relatively smaller at the thermocouple 

locations. Nevertheless, we recognize the reasonable tradeoff in predictive precision vs. 

computation time resulting from maintaining fixed material properties.  

 In the graph theory method, the continuous Laplacian operator, ∇2, which contains 

geometrical considerations for the part to be printed, is replaced with the discrete Laplacian 

matrix, L, and the continuous temperature is replaced by a discrete vector of temperatures at 

the node points in the domain. The Laplacian matrix (𝑁𝑁 × 𝑁𝑁) is constructed from two matrices: 

the adjacency matrix (𝐴𝐴𝑁𝑁×𝑁𝑁), and the diagonal degree matrix (𝐷𝐷𝑁𝑁×𝑁𝑁).   

The adjacency matrix, which is sparse, has entries 𝑎𝑎𝑖𝑖𝑖𝑖 called edge weights of the graph, 

i.e., 𝐴𝐴 = �𝑎𝑎𝑖𝑖𝑖𝑖� given by, 

 
𝑎𝑎𝑖𝑖𝑖𝑖 = �

𝑓𝑓
𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎2 𝑒𝑒

�||𝑐𝑐𝑖𝑖−𝑐𝑐𝑗𝑗||2−𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎2 �
𝜎𝜎2  ;   ||𝑐𝑐𝑖𝑖 − 𝑐𝑐𝑗𝑗|| ≤ 𝜀𝜀

0                ;   ||𝑐𝑐𝑖𝑖 − 𝑐𝑐𝑗𝑗|| > 𝜀𝜀
 

𝜀𝜀 = √2 𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎 

 (4) 

where 𝜀𝜀 is the neighbor radius, ||𝑐𝑐𝑖𝑖 − 𝑐𝑐𝑗𝑗|| is the Euclidean distance between nodes 𝑖𝑖 and 𝑗𝑗, and 

𝑓𝑓 is a calibration factor – a function of the node density. The factor (𝑓𝑓) is found from a 

calibration procedure which is performed once for a given node density, then used for all 

simulations at that node density. The present rendition of the spectral graph method utilizes an 

edge weight formulation which relies on each node representing a uniform volume subset of 

the simulation domain, on average. In turn, the edge weights are symmetric, where the 

relationship between nodes is not directional (𝑎𝑎𝑖𝑖𝑖𝑖 = 𝑎𝑎𝑗𝑗𝑗𝑗).  

In Eqn. (4), the neighbor radius (𝜀𝜀) is used to determine the number of neighbor nodes 

that connect to a particular node. Consider a node at the center of a sphere with radius 𝜀𝜀; this 

node is connected to all nodes residing within the volume of this sphere. The edge weight of 
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each connection is given by the Euclidean distance term in Eqn. (4), whereas no connections 

are made to nodes falling outside the sphere (edge weight 𝑎𝑎𝑖𝑖𝑖𝑖 = 0).  

The neighbor radius (𝜀𝜀) is a function of the average distance between adjacent nodes, 𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎, 

which is computed as  𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎 = �𝑣𝑣𝑣𝑣𝑣𝑣
𝑁𝑁
�
1/3

, where 𝑣𝑣𝑣𝑣𝑣𝑣 is the volume of the simulated part and 

substrate (simulated domain), and N is the number of nodes in the domain. Once the adjacency 

matrix (𝐴𝐴) is formed, the diagonal degree matrix (𝐷𝐷) entries are easily calculated as the row-

wise sum of all adjacency matrix entries, given by 

 
𝑑𝑑𝑖𝑖 = �𝑎𝑎𝑖𝑖𝑖𝑖  

𝑁𝑁

𝑗𝑗=1

 

𝐷𝐷 = �
𝑑𝑑1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑑𝑑𝑁𝑁

� 

 

 (5) 

From the adjacency matrix 𝐴𝐴 and diagonal degree matrix 𝐷𝐷, the Laplacian matrix is 

defined as 𝐿𝐿 = (𝐷𝐷 − 𝐴𝐴). Next, eigenvalues and eigenvectors of the Laplacian matrix are 

obtained by solving the following equation using standard methods: 

𝐿𝐿𝐿𝐿 = 𝛷𝛷𝛷𝛷 (6) 

Here 𝛷𝛷 and 𝜆𝜆 are matrices for the eigenvectors and eigenvalues of the Laplacian matrix, 

respectively. A consequence of the symmetric edge weight formulation (un-directed graph) is 

a symmetric Laplacian matrix, which results in real (non-complex) eigenvalues. Substituting 

Eqn. (7) into Eqn. (1) gives an equation for temperature in terms of the material properties, the 

network graph and its connectedness, and the welding heat source, which gives the linear 

differential equation: 

 ∴ 𝐿𝐿 = 𝛷𝛷𝛷𝛷𝛷𝛷−1 (7) 



24 
 

 1
𝛼𝛼
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= Φ𝜆𝜆Φ−1𝑇𝑇 +
1
𝑘𝑘
𝑔𝑔 (8) 

In the above, 𝑇𝑇 is a discrete vector of temperatures at the nodes and 𝑔𝑔 is the discrete vector of 

heat source strength at the nodes. Note that Eqn. (8) is discrete in space and a first order 

differential equation in time, whose solution has the form of exponential functions in time. 

The nodal temperature distribution at an observation time, 𝜏𝜏, is calculated as the sum 

of two terms: 𝑇𝑇𝑖𝑖𝑖𝑖 caused by the initial temperature condition of the geometry, and 𝑇𝑇𝑔𝑔 caused 

by volumetric internal heat generation (welding heat source) in the geometry [33]. That is, the 

temperature 𝑇𝑇 is given as: 

𝑇𝑇 = 𝑇𝑇𝑖𝑖𝑖𝑖 + 𝑇𝑇𝑔𝑔 (9) 

𝑇𝑇𝑖𝑖𝑖𝑖 = 𝛷𝛷𝑒𝑒−𝜆𝜆𝜆𝜆𝛷𝛷−1𝑇𝑇0  

𝑇𝑇𝑔𝑔 = �
𝛷𝛷𝜆𝜆−1�𝐼𝐼 − 𝑒𝑒−𝜆𝜆𝜆𝜆�𝛷𝛷−1𝑔𝑔                   during deposition
𝛷𝛷𝜆𝜆−1�𝑒𝑒−𝜆𝜆(𝜏𝜏−𝑡𝑡) − 𝑒𝑒−𝜆𝜆𝜆𝜆�𝛷𝛷−1𝑔𝑔      during dwell          

  

Here, 𝜏𝜏 is the observation time at which the temperature is computed; 𝑡𝑡 is the total time the 

block is heated; 𝑔𝑔 is a local heating term; 𝐼𝐼 is the identity matrix; and 𝑇𝑇0 is the initial nodal 

temperature distribution. Details on the source term 𝑔𝑔 are given in Section 3.3. 
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3.2 WAAM Process Simulation using the Spectral Graph Method 

The thermal modeling of the WAAM process using the spectral graph method 

encompasses four steps, as illustrated in Figure 12. 

 
Figure 12: Steps taken to model the thermal history of the rectangle wall using the graph theory method. 

 

Step 1: Discretization of the geometry with tool path consideration.  

The first step of the spectral graph method concerns discretization of the geometry. 

Nodes are randomly generated to fill the part geometry, and substrate, such that an average 

nodal density is achieved throughout the simulation domain. The nodes represent discrete 

physical locations within the part boundaries where temperature responses will be computed. 

Each node is connected to nearby nodes through the mathematical relationship described in 

Eqn. (4) in Section 3.1.  
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Next, the part geometry is discretized into layers, hatches (weld tracks), and blocks as 

shown in Figure 13, to account for the locus of the welding torch (tool path) during the 

deposition process. The layers and hatches are discretized by the as-measured physical 

deposition layer height and hatch width (1.5 mm and 4.7 mm in this work, respectively). The 

spectral graph approach is also capable of directly using the input .STL file to determine the 

hatch width and layer height. A second alternative is to measure these from previous 

experimental parts manufactured under similar processing parameters.  

Since this work is focused on part-scale thermal modeling, we used the as-produced part 

geometry measured to measure the layer height and the hatch spacing. Whilst multiple hatches 

may be deposited on a single layer, in this study, each thin-wall is deposited with a single hatch. 

Each hatch is further discretized into blocks of size 10 mm × 4.7 mm × 1.5 mm for the rectangle 

geometry; the width and height of each block are identical to the corresponding layer 

dimensions. Since each consecutive layer length reduces for the trapezoid geometry, the block 

lengths reduce evenly in size for each succeeding layer, distributing the reduction in layer 

length uniformly across all blocks on the layer.  

The length of the block is an adjustable parameter in the model. An increase in block 

size reduces the computation time at the cost of prediction accuracy. This is because increasing 

the length of the block broadens the volumetric heating that represents the heat source.   

 
Figure 13: Geometry discretization for WAAM simulation of a single hatch rectangle wall. 
  



27 
 

Step 2: Establishing the connection between nodes (constructing a network graph) 
After nodes have been placed in the body, a network graph is constructed over the 

nodes, and the corresponding Laplacian matrix is constructed by connecting nearby neighbors 

for each node and assigning a strength to each connection. The build deposition is simulated 

block-by-block, so a distinct Laplacian matrix is constructed as each block is added. Eqns. (4)-

(7) describe the mathematical process for constructing the Laplacian matrix. 

Step 3: Simulating deposition of material 
Material deposition is simulated block-by-block, sequentially imitating the velocity and 

locus of the welding torch. After each block and its corresponding nodes are added, a heating 

cycle is initiated, and the thermal response is computed per Eqn. (9). A heating cycle consists 

of the following computational procedural sub-steps:  

(a) material, represented by a block with nodes, is added to the model and the Laplacian matrix 

is constructed per Eqns. (4)-(7); 

(b) nodes in the heat source region are heated per Eqns. (10)-(12) in Section 3.3; and  

(c) the resulting temperature-in-time response for all nodes in the simulation domain is 

calculated per Eqn. (9).  

Step 4: Repeat steps 2,3 for all blocks in the build 
The temperature at the end of each heating cycle is the initial temperature for the next 

cycle, except for the nodes residing in the block that is to be deposited next, where the initial 

temperature is set to 1700 K, which is near to the liquidus temperature of mild steel [39]. The 

process is repeated until all blocks have been added for each hatch and all hatches have been 

added for each layer, followed by the appropriate dwell time after each hatch and/or layer, 

followed by the addition of all subsequent layers.  

When the final block for a given layer is deposited, the corresponding computation cycle 

consists of a heating period followed by a dwell period which is defined by the interlayer dwell 
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time, 𝑡𝑡𝑑𝑑. During the dwell period, the heat source term does not contribute to the temperature-

in-time calculation at observation time (𝜏𝜏) in Eqn. (9).  

3.3 Heat Input – Energy Supplied by the Welding Torch 

Simulation of thermal history in WAAM requires consideration of a localized, slow-

moving heat source. To model heat input, Goldak et al. [40] developed a 3D double-ellipsoid 

heat density model for welding heat sources. The model is an extension of the heat source 

equation originally proposed by Rosenthal [41]. This double-ellipsoid model has proven to be 

useful for modeling various welding heat sources [42]. For example, Gery et al. [43] used the 

Goldak double-ellipsoid model to simulate heat input during butt welds in plate. Though the 

Goldak model is often used directly, minor application-specific modifications have been 

implemented in the literature [44]. Flint et al. [45] proposed and experimentally validated a 

double-ellipsoid based conical heat source model which was used to simulate a deep groove 

arc weld joint. Montevecchi et al. [46] proposed a model which segregates the heat input by 

assuming that half the energy supplied by the welding source is consumed by melting the 

feedstock wire, which is otherwise not considered. 

Heat input during the WAAM process comes from a welding arc established between 

the feedstock (wire) and the previously deposited build and substrate. When simulating the 

deposition of a block, the total energy input per unit volume, 𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚 [W · mm−3], is given by: 

 𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚 =
heat input

volume deposited
=

𝑄𝑄
𝑣𝑣𝑣𝑣𝑣𝑣

=
𝜂𝜂𝜂𝜂𝜂𝜂

�𝑤𝑤𝑓𝑓 × 𝜋𝜋𝑑𝑑2
4 � × 𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑣𝑣

 (10) 

where the heat input by the welding process, 𝑄𝑄 [W], is a function of the process efficiency, 

𝜂𝜂, the weld voltage, 𝑉𝑉, and the welding current, 𝐼𝐼. Further, 𝑑𝑑 is the diameter of the wire 

feedstock, 𝑤𝑤𝑓𝑓 is the wire feed rate, 𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is the length of the simulation block, and 𝑣𝑣 is the 

travel speed of the welding torch. Thus, the total energy input at the meltpool is estimated as a 
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function of the process parameters reported in Table 2.  The denominator in Eqn. (10) is the 

volumetric flow rate of the feedstock (wire) multiplied by the time required to deposit one 

block. The time to deposit one block is the block length, 𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, divided by the travel speed of 

the welding torch, 𝑣𝑣.  

Following the work of Goldak et al., (1984), the heat density 𝑞𝑞 has an ellipsoidal 

distribution given by: 

 
𝑞𝑞(𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑖𝑖 , 𝑧𝑧𝑖𝑖) =

6√3
𝜋𝜋√𝜋𝜋

𝑄𝑄 ×
1
𝑟𝑟𝑥𝑥
𝑒𝑒
−3(𝑥𝑥𝑖𝑖−𝑥𝑥0)2 

𝑟𝑟𝑥𝑥2 ×
1
𝑟𝑟𝑦𝑦
𝑒𝑒
−3(𝑦𝑦𝑖𝑖−𝑦𝑦0)2

𝑟𝑟𝑦𝑦2 ×
1
𝑟𝑟𝑧𝑧
𝑒𝑒
−3(𝑧𝑧𝑖𝑖−𝑧𝑧0)2

𝑟𝑟𝑧𝑧
   (11) 

where the maximum heat density, 𝑞𝑞(0), occurs at the center of the ellipsoid, (𝑥𝑥0,𝑦𝑦0, 𝑧𝑧0), and 

the parameters 𝑟𝑟𝑥𝑥, 𝑟𝑟𝑦𝑦, 𝑟𝑟𝑧𝑧, are the cartesian ellipsoidal radii which provide the size of the power 

density distribution.  In the current work, an added step is required to construct the volumetric 

internal heating vector, 𝑔𝑔, which specifies the energy input at discrete nodes in a heated region. 

First, nodes residing within the heated region, which is defined by the surface of the ellipsoid, 

shown in Figure 14, are assigned a volumetric power density using the distribution function 

given in Eqn. (11), where 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑧𝑧𝑖𝑖 , are the cartesian coordinates for node 𝑖𝑖. Next, a scaling 

factor is found by taking the ratio of the maximum possible power density, 𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚, and the sum 

of the power density from the heated nodes. The scaled volumetric internal heating value for 

each heated node, 𝑔𝑔𝑖𝑖, is given by: 

 𝑔𝑔𝑖𝑖 =  �
𝑞𝑞𝑚𝑚𝑚𝑚𝑥𝑥

∑𝑞𝑞𝑖𝑖
� × 𝑞𝑞𝑖𝑖 (12) 

where the sum is over the heated nodes. 

The size of the ellipsoid is independent of the size of the simulation block; however, the 

ellipsoid is centered on the simulation block for each heating cycle. This approach provides 

heat input at the center of the deposited block, simulating the slow-moving heat source used 
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during WAAM processing. The heat source modeling parameters used for the thermal 

simulation are given in Table 3. 

Thus, the spectral graph theory model inherently accounts for meltpool temperature and 

distribution via the Goldak approximation. Moreover, in cold metal transfer welding, which is 

used in this work, deleterious effects such as superheating of the meltpool are atypical and were 

not observed during deposition. 

 
Figure 14: Ellipsoidal power density distribution centered on a simulation block. Nodes within 
and surrounding the block are heated, simulating a localized heat source provided by the 
welding arc. 
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Table 3: Simulation parameters for rectangle and trapezoid thin-wall cases. 

Variable Value 

Material 
properties 

Density, 𝜌𝜌 [kg·m-3] 7700 

Specific heat, 𝐶𝐶𝑝𝑝 [J·kg-1·K-1] 801.9 

Thermal conductivity, 𝑘𝑘 [W·m-1·K-1] 34.2 

Internal 
heat 

generation 

Torch speed, 𝑣𝑣 [mm·s-1] 11.67 

Weld voltage, 𝑉𝑉 14.8 

Weld current, 𝐼𝐼 [Amperes] 110 

Weld efficiency, 𝜂𝜂 [%] 90 

Heated region radii, 𝑟𝑟𝑥𝑥, 𝑟𝑟𝑦𝑦, 𝑟𝑟𝑧𝑧 [mm] 5, 2.35, 1.5 

Initial temperature of nodes in deposition block [K] 1700 

Working 
variables 

Ambient temperature, 𝑇𝑇∞ [K] 300 

Dimensions of simulation block [mm] 10 × 4.7 × 1.5 

 

3.4 Boundary Heat Loss 

As heat diffusion occurs within the part, heat loss to the surrounding is experienced due 

to radiation and convection, as previously shown in Figure 3, Section 1.2.2. To simulate 

boundary heat loss, four regions were chosen, each of which represent different levels of 

effective heat loss from the part. The use of four regions was chosen to reflect the heat loss 

mechanisms present while restricting the number of parameters to be determined during 

calibration of the model. 

For the current work, the top-most three layers are subjected to radiation heat loss as 

well as forced convection provided by the continuous flow of shielding gas from the welding 

torch. Referring to Figure 15, heat loss coefficient ℎ1 describes the top-most three layer region. 

The remaining layers in the wall are described by heat loss coefficient ℎ2, which is smaller in 
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magnitude than ℎ1, for the reduced effect of radiation as well as a reduced forced convection 

due to the lower velocity of shielding gas.  

The top surface of the substrate is assigned heat loss coefficient ℎ3, which is smaller 

yet, accounting for natural convection along with a small contribution of forced convection 

from the flow of shielding gas.  Lastly, the bottom and sides of the substrate are assigned heat 

loss coefficient ℎ4, which represents natural convection only. The boundary heat loss 

coefficient regions, which encompass the effects of radiation and free and forced convection, 

are shown in Figure 15. Values for heat transfer coefficients are found from calibration of the 

model, which is discussed in Section 4.1.  

 
Figure 15: Heat loss regions used for simulation, shown at various stages of the build with: (a) 3 layers 
deposited, (b) 11 layers deposited, (c) 21 layers deposited. The top-most 3 layers at any time in the 
simulation are assigned heat loss coefficient ℎ1. All remaining previously deposited layers are assigned 
heat loss coefficient ℎ2. The top surface and side and bottom surfaces of the substrate are assigned heat 
loss coefficients ℎ3 and ℎ4, respectively.  
 

To include the effects of these heat loss coefficients in the graph theory method, the edge 

weights in the Laplacian matrix corresponding to boundary nodes must be adjusted. If a node 

resides near the boundary, a boundary heat loss term, 𝐸𝐸𝑗𝑗, is added to the diagonal entry of the 

Laplacian matrix.   The boundary heat loss term is found through an energy balance for a node 

at the boundary, and is given as: 
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𝐸𝐸𝑗𝑗 =

𝐴𝐴𝑗𝑗
𝑉𝑉𝑗𝑗
�

𝐵𝐵𝐵𝐵

1 + 𝐵𝐵𝐵𝐵 ⋅
𝑒𝑒𝑗𝑗
ℓ
� (13) 

where 𝐴𝐴𝑗𝑗 is the surface area for heat transfer, calculated as the total surface area of the part and 

substrate divided by the total number of boundary nodes; 𝑉𝑉𝑗𝑗 is the nodal volume, calculated as 

the total volume of the part and substrate divided by the total number of nodes in the simulation; 

𝐵𝐵𝐵𝐵 = ℎ𝑖𝑖ℓ/𝑘𝑘 is the Biot number, 𝑖𝑖 = 1,2,3,4; here ℓ is the characteristic length; and, 𝑒𝑒𝑗𝑗/ℓ is the 

(normalized) orthogonal distance from the node 𝑗𝑗 to the boundary. The value of ℓ  in Eqn. (13) 

is a direct consequence of the sum of two thermal resistors appearing in the denominator of the 

energy balance for a boundary node. A full discussion of boundary heat loss for the spectral 

graph method, as well as the derivation of Eqn. (13), is given by Cole et al. [33]. 

4. Results  

Before using the developed spectral graph method, model calibration through parameter 

estimation was conducted. Experimental data from the Trap43 build, whose collected 

thermocouple data is shown in Figure 10, was used for calibration. The spectral graph method 

is then verified by comparison with an FE analysis for the Rect43 experimental case.  

The FE analysis was carried out using a combination of Abaqus for meshing and Simufact 

Welding v7.1 for the thermal simulation. After the model calibration was complete, all 

remaining experimental cases were simulated using the spectral graph method and the 

predictions are compared with experimental data without further calibration. The model 

prediction error is quantified in terms of two metrics, namely, the symmetric mean absolute 

percentage error (SMAPE), and the root mean squared error (RMSE). 
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4.1 Model Calibration 

Model parameters requiring calibration are the gain factor 𝑓𝑓 and the effective heat loss 

coefficients, ℎ𝑖𝑖 , 𝑖𝑖 = 1,2,3,4. The gain factor is calibrated for a node density, irrespective of the 

simulation geometry.  The gain factor 𝑓𝑓, used in Eqn. (4), is tuned by simulating a benchmark 

heat transfer problem for a simple cuboid-shaped geometry, discussed in detail by Cole et al. 

[33]. The benchmark heat transfer problem is solved using an exact Green’s function-based 

solution, which is then compared with the spectral graph solution for different values of the 

gain factor. An iterative Gauss-Newton algorithm is used to minimize the sum of squared error 

between the exact and spectral graph solutions.  

The effective heat loss coefficients, ℎ𝑖𝑖, are calibrated through a grid search using the 

experimental data from the Trap43 experiment (a) with respect to data from thermocouple TC3. 

The Trap43 case was chosen because it is relatively more complex shape than the rectangle 

geometry. As mentioned in Section 3.1, the effective heat loss coefficients account for all heat 

loss mechanisms, including heat loss due to radiation and both free and forced convection. 

Once calibrated, these parameters were applied to the simulation of the five remaining cases 

with two experiments for each case (Rect43, Rect86, Trap86, Trap5×, Trap10×), and Trap43 

experiment (b). Further, for each case data from 4 thermocouple positions were acquired. In 

other words, a total of 48 independent temperature trends are available (6 shapes × 2 

replications × 4 thermocouple locations).  Out of these 48 available temperature trends only 

one trend, i.e., Trap43 experiment (a) from thermocouple TC3 was used for calibration. The 

calibrated values for a node density of 0.12 nodes·mm-3 are given in Table 4. Lastly, our 

previous works in laser powder bed fusion additive manufacturing reported in Yavari et al. [30, 

31] and Riensche et al. [38] show that once calibrated these heat transfer parameters can be 

used for other geometries as long as the material and gas flow conditions are similar.   
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In calibrating both the gain factor and the heat loss coefficients, the weld efficiency, 

discussed in Section 3.3, is held constant. Though parameter estimation is effective for 

determining quantities that are particularly challenging to measure experimentally, such as heat 

loss coefficients, it can be stated that the calibrated values shown are not necessarily unique in 

their ability to support predictions of the experimentally observed temperature trends. That is, 

the weld efficiency and choice of representative heat loss regions are contributing factors in 

the calibration of heat loss parameters.  

Table 4: Calibrated graph theory model parameters used for simulating all rectangle and trapezoid thin-
wall cases. Node density, Gain factor 𝑓𝑓, and effective heat loss coefficients ℎ𝑖𝑖 , 𝑖𝑖 = 1,2,3,4. 

Node Density [nodes·mm-3] 0.12 
Gain Factor 𝑓𝑓 [unitless] 0.77 

Heat Loss Region and Coefficient 
[W·m-2·K-1] 

ℎ1 200 
ℎ2 100 
ℎ3 40 
ℎ4 2 

 The thermocouples used were K-type, installed in a metal sheath, with an air gap 

between the thermocouple bead and the sheath. These are ungrounded thermocouples, which 

are known to have a lengthy time-constant, effectively dampening rapid temperature variations 

in the recorded thermocouple response [47]. Hence, an 11.25 s response time was used for 

filtering the simulated thermal history, which corresponds to five times the time-constant for a 

5 mm diameter ungrounded K-type thermocouple. See Appendix C for details on the filtering 

procedure. 

4.2 Model Verification – Comparison with FE-based Simufact Welding Software 

The following results demonstrate that the trend and magnitude of the thermal history 

predicted by the spectral graph theory approach matches closely with those obtained by a 

commercial FE-based package (Simufact Welding v7.1). The predicted thermal history trends 

are accurate at not only for the part-level, but also match at layer-level. Further, the spectral 

graph theory approach converges twice as fast as the commercial FE package. 
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4.2.1 Verification of Part-level Thermal History 

Verification is carried out by comparison between the predicted part-level thermal 

histories obtained from the spectral graph method and from Simufact Welding v7.1, a 

commercially available FE software, for the Rect43 experimental case. The calibrated heat loss 

coefficients used for the spectral graph method, described in Section 4.1, Table 4, are used as 

inputs to the FE software as well as the process parameters, shown in Table 3.  

The meshing of the substrate and each weld bead was done in Abaqus, another 

commercially available software. The number of elements were selected such that the level of 

prediction error using Simufact was similar to the spectral graph theory prediction.  The 

simulation mesh is assembled in Simufact manually, with each weld bead requiring user-

assigned boundary conditions and heat source parameters. Each weld bead (layer) is comprised 

of 1,536 elements and 2,709 nodes. The substrate is comprised of 115,200 elements and 

124,509 nodes. All elements were of type C3D8R, which are general purpose linear brick 

elements and feature reduced integration (one integration point). The total mesh, inclusive of 

the substrate and all 21 layers, contains 147,456 elements and 181,398 nodes.  

 The FE-based Simufact model converged in ~7.5 hours compared to under 4 hours for the 

spectral graph theory model. To quantify the agreement between the experimental 

thermocouple data, Simufact, and the spectral graph predictions, the symmetric mean absolute 

percent error (SMAPE) and root mean squared error (RMSE, °C) metrics are used. The 

reference case for calculating the SMAPE and RMSE values is the first experimental replicate 

(Experiment (a)) for Rect43 and Rect86.  Consistent with the spectral graph method, the 

Simufact FE analysis predicts thermal history at the thermocouple location without 

consideration of the thermocouple time delay present. Hence, the 11.25 s response time used 

for filtering the spectral graph results was also applied to the Simufact simulation. This allows 

for a comparison between the experimentally obtained thermocouple data and the predictions 
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from both the spectral graph method and the Simufact Welding FE analysis. The method used 

for filtering the thermal trends is detailed in Appendix C.   

Figure 16(a) and (b) shows the thermal histories obtained from the experiment as well as 

from the spectral graph and Simufact simulations for thermocouple location 3 (TC3) for the 

Rect43 and Rect86 cases, respectively. The Simufact predicted thermal trends agree well with 

both the experimental data and the spectral graph predictions for both cases. In the Rect86 case, 

Figure 16(b), the Simufact FE analysis predicts a buildup of heat until the midpoint of the build, 

after which the heat loss causes the thermocouple response to have a downward trend. 

In contrast, the spectral graph method prediction agrees well through the entirety of the 

Rect86 build. Observe that the difference in shape of the layer-wise thermal response between 

the cases is well captured by both the Simufact and spectral graph simulations, where the 

temperature elevations are more pronounced in the Rect86 case as compared to the Rect43 case. 

To quantify the agreement between the experimentally collected data and the Simufact 

prediction at the TC3 location for the Rect43 case, the SMAPE and RMSE values are calculated 

to be 1.8% and 7.6 °C, respectively. In comparison, the SMAPE and RMSE values describing 

the agreement between the Rect43 experimental data and the spectral graph prediction are 3.3% 

and 13.2°C, respectively.  For the agreement between the Rect86 experimental data and the 

Simufact prediction, the SMAPE and RMSE values for the TC3 location are calculated to be 

3.5% and 13.8 °C, respectively. In comparison, the SMAPE and RMSE values describing the 

agreement between the Rect86 experimental data and the spectral graph prediction are 1.7% 

and 5.6 °C, respectively.  

Figure 17 shows the 3D temperature distribution as predicted by the Simufact FE analysis 

and the spectral graph method for the Rect43 and Rect86 cases, immediately after deposition 

is completed for the 5th, 10th, 15th, and 20th layers. Comparing the temperature distributions 
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qualitatively, local variation is seen in the spectral graph results where the thermal field is less 

smooth than that produced by the Simufact FE analysis. 

 
Figure 16: Verification of the spectral graph method (SGM) by comparison with predictions obtained 
from a commercial finite element analysis software (Simufact Welding v7.1) at thermocouple location 
3 (TC3) for (a) the Rect43 rectangular thin-wall case with a constant 43 second interlayer dwell time 
(𝑡𝑡𝑑𝑑 = 43 s), and (b) the Rect86 rectangular thin-wall case with a constant 86 second interlayer dwell 
time (𝑡𝑡𝑑𝑑 = 86 s). 
 

The foregoing result demonstrates that the part-scale thermal distributions agree well 

between the Simufact and spectral graph method predictions. In the spectral graph method, the 

temperatures are calculated at discrete nodes which are randomly placed throughout the part. 

The stochasticity of the node locations contributes to the local temperature variation since the 

internodal heat conduction is dictated by the strength of the connection between nearby nodes, 

which is determined by the proximity of the nodes.  

As demonstrated in Figure 16 and detailed in Table 5, the part scale temperature 

distribution predicted by Simufact Welding and by the spectral graph method are in agreement, 

and the thermal gradients are captured from the deposition layer through to the substrate. The 

calculated SMAPE and RMSE values for all of the thermocouple locations for both the Rect43 

and Rect86 cases are tabulated in Table 7. 
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Figure 17: Simulated 3D temperature distributions obtained from an FE analysis (Simufact Welding 
v7.1) and from the spectral graph method showing the temperatures predicted at the instant the torch 
completes deposition of the 5th, 10th, 15th, and 20th layers for case Rect43 with 43 s interlayer dwell time. 

Table 5: Symmetric mean absolute percentage error (SMAPE) and root mean square error (RMSE), 
calculated by comparison between Simufact Welding simulation results and experimental data as well 
as between the spectral graph method simulation results and experimental data for all thermocouple 
locations in experiments Rect43 and Rect86.  

Case Rect43 Rect86 
Modelling Method Simufact Welding Spectral Graph Simufact Welding Spectral Graph 

SMAPE [%] 

TC1 5.58 2.11 8.28 5.31 
TC2 4.70 2.51 5.67 3.69 
TC3 1.82 3.27 3.51 1.67 
TC4 2.66 2.84 3.81 2.44 

RMSE [°C] 

TC1 22.13 7.82 29.45 19.08 
TC2 18.43 10.84 21.13 14.28 
TC3 3.30 13.19 13.75 5.64 
TC4 10.52 10.67 14.81 8.67 

 

4.2.2 Verification of Layer-level Thermal History 

Continuing with the analysis, we compared the spectral graph and Simufact FE thermal 

history predictions for certain layers. Further, this analysis addresses the experimental 

drawback in not having thermocouples welded to the part. Specifically, tracked in Figure 18 

and Figure 19, respectively, are the thermal histories of layer 7 and layer 13 for select rectangle 

and trapezoid cases. The solid red and dashed blue lines are thermal predictions obtained from 
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the spectral graph and Simufact software, respectively. The thermal history is reported at the 

midpoint along the layer. The RMSE and SMAPE of the spectral graph predictions relative to 

the Simufact FE predictions are reported in table 6. The SMAPE was within 8% for all tested 

cases (~2% best case scenario).  

We note that these temperatures predicted are substantially larger than the part-level 

temperatures recorded by the thermocouples embedded in the substrate. For example, reported 

in Figure 18(a) is the thermal history for layer 7 of Rect43. The first peak therein is the 

temperature at the bottom of layer 7 when the welding torch is depositing layer 9 overhead. 

The temperature corresponding to the first peak exceeds 750 °C, which is larger than 0.5 × Tm 

(melting point of the material). Subsequent peaks correspond to layers 10, 11, 12, and so on, 

when the torch is directly overhead the sampling region at the midpoint of layer 7. As expected, 

the magnitude of temperature and oscillations at layer 7 decay progressively with deposition 

of further layers. The spectral graph- and Simufact-derived temporal thermal trends match in 

terms of both the shape and magnitude.  

 

Table 6: Symmetric mean absolute percentage error (SMAPE) and root mean square error (RMSE), 
calculated by comparing thermal predictions obtained from the spectral graph method and Simufact 
Welding. The thermal predictions are compared for layers 7 and 13 of Rect43, Rect86, Trap43, and 
Trap86 cases. 

Rectangle Cases SMAPE [%] RMSE [°C] Trapezoid Cases SMAPE [%] RMSE [°C] 
Rect43 - Layer 7 2.90 38.24 Trap43 - Layer 7 2.12 24.16 
Rect43 - Layer 13 6.33 82.37 Trap43 - Layer 13 3.59 26.20 
Rect86 - Layer 7 3.58 36.04 Trap86 - Layer 7 3.46 25.12 
Rect86 - Layer 13 7.65 76.93 Trap86 - Layer 13 4.32 22.54 
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Figure 18: Simulated thermal history at selected layers obtained from an FE analysis (Simufact Welding 
v7.1, dashed blue line) and from the spectral graph method (solid red line) for the rectangular cases. (a) 
Rect43 - Layer 7, (b) Rect43 - Layer 13, (c) Rect86 - Layer 7, and (d) Rect86 - Layer 13. Note the close 
match in the trend and magnitude of the thermal predictions.  

 
Figure 19: Simulated thermal history at selected layers obtained from an FE analysis (Simufact Welding 
v7.1, dashed blue line) and from the spectral graph method (solid red line) for the trapezoid cases. (a) 
Trap43 – Layer 7, (b) Trap43 - Layer 13, (c) Trap86 - Layer 7, and (d) Trap86 - Layer 13. Note the 
close match in the trend and magnitude of the thermal predictions.  
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4.3 Model Validation 

To validate the spectral graph method for thermal history modeling in WAAM, the 

spectral graph simulated and experimentally observed temperature trends at the thermocouple 

locations are compared. For brevity, only the comparison corresponding to thermocouple 

location 3 (TC3) is discussed in this section. A similar discussion for thermocouple locations 

1, 2, and 4 is given in Appendix B. Simulated 3D temperature distributions after the completion 

of deposition at various layers is also provided to qualitatively demonstrate the part-scale 

thermal gradients captured by the model. 

For all cases, a node density of 0.12 nodes·mm-3 was used, amounting to 15,408 and 

15,129 nodes for the rectangle and trapezoid geometries, respectively. A desktop AMD Ryzen 

3970X CPU, clocked at 3.7 GHz, with 128 GB RAM was used for all numerical simulations. 

Since the available experimental data was collected using thermocouples located within the 

substrate, temperatures near to the meltpool were not captured and analyzed.  

In the literature, authors often utilize thermal history data collected from the substrate to 

validate thermal models, with the motivation that heat source models affect both the near and 

far-field thermal responses, yielding accurate models validated using far-field thermal data 

[48]. For example, Hackenhaar et al. [49] studied the effect of air jet impingement during the 

processing of WAAM parts. They utilized three thermocouples at the substrate to validate their 

FE model by comparing their predicted thermal history with that of the experiment. Zhou et al. 

[50] studied the effect scan strategies had on temperature history in P-DED parts. They used a 

single thermocouple on the top and bottom surfaces of their substrate to collect experimental 

thermal data, which was then compared with their predicted thermal history at the same 

locations to validate their FE model. Chen et al. [48] studied part scale residual stress in the 

LPBF process. They used three thermocouples mounted to the bottom of the substrate to collect 

thermal history data which was then used to validate their FE model by comparison with their 



43 
 

predicted thermal history at the same locations. Yang et al. [51] studied the thermomechanical 

behavior of Ti-6Al-4V parts produced using the laser engineered net shaping (LENS) DED 

process. Their study used two thermocouples, one on the top surface and the other on the 

bottom surface of the substrate to collect thermal history data. The experimentally observed 

thermal history was then compared with their FE predicted thermal history for validation.  

We note that the thermal data collected in this study is used for validation of the spectral 

graph method. The temperature trends predicted by the spectral graph theory approach is 

compared with the experimental data at the thermocouple locations. The SMAPE and RMSE 

metrics are used to quantify the agreement between the experimental measurements and model 

predictions. The reference case for calculating the SMAPE and RMSE values is the first 

experimental replicate (experiment (a)) for each of the six cases. 

4.3.1 Rectangle Thin-wall Experiments 

In Figure 20(a) and (b), the spectral graph simulated thermal trends are juxtaposed with 

the experimentally observed temperature trends at thermocouple location 3 (TC3) for cases 

Rect43 and Rect86, respectively. Note, the thermal data for both experimental replicates are 

plotted.  For the Rect43 case, the overall thermal trend agrees well with the experimental data, 

with only a slight difference in magnitude for each layer. The SMAPE and RMSE for the 

Rect43 case are calculated to be 3.3% and 13.2°C, respectively.  

For the Rect86 case, the agreement between the prediction and the experimental data is 

very good, with the spectral graph prediction having similar layer-wise magnitudes in the 

beginning half of the build and the overall trend falling within that of the experimental 

replicates for the latter half of the build. The SMAPE and RMSE for the Rect86 case are 

calculated to be 1.7% and 5.6°C, respectively. The simulation time is less than 4.1 hours for 

each case.  
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Figure 20: Thermal history comparison between experimental data and the graph theory thermal 
simulation at thermocouple location 3 (TC3) for: (a) Rect43 rectangular thin-wall with a constant 43 
second interlayer dwell time (𝑡𝑡𝑑𝑑 = 43 s), and (b) Rect86 rectangular thin-wall with a constant 86 second 
interlayer dwell time (𝑡𝑡𝑑𝑑 = 86 s). The simulation time was less than 4.1 hours for each case.  

A qualitative view of the spectral graph simulated 3D temperature distribution 40 s after 

the completion of deposition on the 5th, 10th, 15th, and 20th layers is shown in Figure 21 for both 

Rect43 and Rect86 cases. At the time instant shown, the interlayer dwell time is nearly complete 

for the Rect43 case. In contrast, there are 46 s of interlayer dwell time remaining for the Rect86 

case, allowing for significant cooling before the next layer is deposited.  

Considering that, at the time instant shown, the same amount of time has elapsed since 

the conclusion of deposition for the respective layer, the difference between the temperature 

distributions is the direct effect of the difference in interlayer dwell times. The difference is 

increasingly noticeable as the progression of the build furthers, where the 5th layer thermal 

distributions differ minimally compared to the 20th layer thermal distributions.  
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Figure 21: Simulated temperature distribution 40 s after deposition of the 5th, 10th, 15th, and 20th layers 
for cases Rect43 and Rect86 with 43 s and 86 s interlayer dwell times, respectively. Note the heat build-
up in case Rect43 compared to case Rect86. 

4.3.2 Trapezoid Thin-wall Experiments 

In Figure 22(a) and (b), the spectral graph simulated thermal trends are plotted with the 

experimentally observed temperature trends at thermocouple location 3 (TC3) for cases Trap43 

and Trap86, respectively. We note that model heat-loss parameters were calibrated from the 

Trap43 data set from thermocouple TC3 of experiment (a). In Figure 22(a) these parameters 

were directly used for validation with Trap43 data set from experiment (b).  The Trap43 data 

from experiment (a) is shown for completeness.  For the Trap43 experiment (b), the observed 

data agrees well with the trends predicted by the spectral graph method, with the calculated 

SMAPE and RMSE being 2.5% and 10.3°C, respectively.  

For the Trap86 case, the layer-wise heating, as seen by the magnitude of the peaks, 

matches well with the experimental data for the beginning of the build with a reduction in 

magnitude toward the late part of the build. Considering the model, the impact of the increased 

interlayer dwell time is apparent, where the simulated temperature at the thermocouple 

locations undershoots the experimental observations. Regardless, the overall simulated thermal 

trend for the Trap86 case agrees well with the experimental data, with the SMAPE and RMSE 

values calculated as 3.4% and 10.9°C, respectively. The simulation time is less than 3.5 hours 

for both the Trap43 and Trap86 cases. 
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Figure 22: Thermal history comparison between experimental data and the graph theory thermal 
simulation at thermocouple location 3 (TC3) for: (a) Trap43b trapezoidal thin-wall with a constant 43 
second interlayer dwell time (𝑡𝑡𝑑𝑑 = 43 s), and (b) Trap86a and b trapezoidal thin-wall with a constant 
86 second interlayer dwell time (𝑡𝑡𝑑𝑑 = 86 s). Note that the model is calibrated with Trap43 data from 
Experiment (a). The simulation time was less than 3.5 hours for each case.  

Figure 23 provides a qualitative view of the spectral graph simulated 3D temperature 

distribution after 40 s of interlayer dwell time has elapsed after deposition of the 5th, 10th, 15th, 

and 20th layers. The increased interlayer dwell time in case Trap86 mitigates heat build-up 

when compared to case Trap43, as evidenced by the elevated temperatures in both the substrate 

and wall of the Trap43 case.  The heat build-up in the Trap43 case is focused near the middle 

of the wall as opposed to one of the edges, as seen in the rectangle simulations. Since each 

layer is progressively shortened in the trapezoid cases, the thermal mass at the beginning and 

end of the previous layers, which does not experience subsequent deposition, serves to dampen 

the temperature rise at the far left and right, leaving the heat to accumulate near the midpoint 

of the thin-wall. 

In Figure 24(a) and (b), the thermal trends predicted by the spectral graph method are 

plotted along with the experimental observations for thermocouple location 3 (TC3) for cases 

Trap5× and Trap10×, respectively. The data collected during both experimental replicates for 

each case are included in the plots. For the Trap5× case, the simulated thermal history agrees 

well with the experimental data, with the end of cycle temperatures (peaks) matching within a 

few °C throughout the entirety of the build. The end of build temperature is also predicted well, 
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as seen by the closeness in the final temperatures plotted.  For the Trap5× case, the SMAPE 

and RMSE are calculated to be 1.5% and 6.2°C, respectively. For the Trap10× case, the 

temperature agreement matches well with SMAPE and RMSE calculated to be 3.2% and 

12.1°C. Recall, the SMAPE and RMSE metrics are calculated and reported based on the first 

experimental replicate (experiment(a)).  

 
Figure 23: Simulated temperature distribution 40 s after deposition of the 5th, 10th, 15th, and 20th layers 
for cases Trap43 and Trap86 with 43 s and 86 s interlayer dwell times, respectively. Note the heat build-
up in case Trap43 compared to case Trap86. 

There is close agreement between measurement and model predictions with the second 

experimental replicate (experiment (b)) for the Trap10× case. Of note is the slight 

disagreement between the peak locations on the plots in Figure 24. This difference is attributed 

to the experimental conditions where managing the dynamic interlayer dwell time and the wall-

clock time presents difficulty during the experiment. The takeaway here is the overall 

agreement between the simulated thermal trends and the experimental data for both trapezoid 

cases having dynamic interlayer dwell times, where the overall temperature rise in the substrate 

caused by the WAAM process is predicted by the model. For both Trap5× and Trap10×, the 

simulation time is less than 3.5 hours for each case. 
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Figure 24: Thermal history comparison between experimental data and the spectral graph simulation at 
thermocouple location 3 (TC3) for: (a) Trap5× trapezoidal thin-wall with a non-constant interlayer 
dwell time equal to 5× the time taken to deposit the previous layer (𝑡𝑡𝑑𝑑 = 5 × 𝑡𝑡𝑖𝑖−1) and, (b) Trap10× 
trapezoidal thin-wall with a non-constant interlayer dwell time equal to 10× the time taken to deposit 
the previous layer (𝑡𝑡𝑑𝑑 = 10 × 𝑡𝑡𝑖𝑖−1). 

Figure 25 provides a qualitative view of the spectral graph simulated 3D temperature 

distribution during the interlayer dwell time after the 5th, 10th, 15th, and 20th layers have been 

deposited for both Trap5× and Trap10× cases. The time instant shown, for both cases, 

corresponds to the end of the interlayer dwell time for the Trap5× case. In other words, the 

amount of elapsed interlayer dwell time after deposition of the respective layers shown is 

identical for both cases. The Trap10× case still has nearly half of its interlayer dwell time to 

complete, yielding a lower overall temperature distribution prior to deposition of the 

subsequent layer.  

A consequence of the longer dwell period for the Trap10× case is a lower initial layer-

wise temperature distribution which results in mitigation of heat build-up. Since the interlayer 

dwell time is dynamic in the Trap5× and Trap10× cases, the heat build-up is more significant 

when compared with the Trap43 and Trap86 cases, where the interlayer dwell time was 

constant. Further, while the interlayer dwell time remained constant in the Trap43 and Trap86 

cases, the deposition time decreased layer by layer due to the geometry of the part causing a 

reduction in layer-wise heat input, resulting in only moderate heat build-up. Again, due to the 
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thermal mass of the subsequent layers and the reduction in deposition at the beginning and end 

of the layers, the heat build-up is concentrated near the midpoint of the thin-walls. 

 
Figure 25: Simulated temperature distribution at the end of the interlayer dwell time after 5, 10, 15, and 
20 layers have been deposited for cases Trap5× and Trap10× with interlayer dwell times corresponding 
to 5× and 10× the time taken to deposit the previous layer, respectively. Note the heat build-up in case 
Trap5× compared to case Trap10×. 

4.4 Discussion 

The two rectangle cases contained 15,408 nodes and the simulations converged in under 

4.1 hours each. The four trapezoid cases contained 15,129 nodes and the simulation converged 

in under 3.5 hours each. The simulation time for the FE analysis with Simufact-Additive was 

7.5 hours, which does not include the time to mesh and manually assemble the mesh in the 

Simufact software. The computation time, SMAPE, and RMSE for all six cases with respect 

to data from thermocouples TC1-TC4 are reported in Table 7. These results are calculated 

using the first experimental replicate, Experiment (a), as the reference for each case. The 

thermal history trends for thermocouples TC1, TC2, and TC4 are compared with the spectral 

graph predictions in Appendix B, where Figures 26, 27, 28, 29, 30, and 31 correspond to cases 

Rect43, Rect86, Trap43, Trap86, Trap5×, and Trap10×, respectively. For all cases, the 

predicted and experimentally observed temperature trends are in good agreement. The RMSE 

is less than 19 °C, with the SMAPE in the range of 1 – 5%.  

The prediction errors are attributed to both the complex convective and radiative heat loss 

phenomena in the WAAM process as well as the modeling assumptions, such as temperature-

independent material properties.  Nevertheless, for a similar level of error, the spectral graph 
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method accurately predicted the experimental thermal trends at the thermocouple locations 

almost twice as fast as the commercial FE package.  

Lastly, the simulation time of the spectral graph method is constrained by the number of 

nodes. The spectral graph method, the computational cost scales as 𝑂𝑂(𝑁𝑁3), where 𝑁𝑁 is the 

number of simulation nodes. In the current embodiment of the spectral graph method, since the 

node density is uniform, roughly 90% of the simulation nodes reside in the substrate, where 

thermal gradients are small for much of the build.  A substantial improvement in both 

computation time and accuracy would accrue by lowering the node density where the thermal 

gradient is small, such as in the substrate.  

Work is in progress to implement variable node density in the spectral graph method. 

Further, from the perspective of practical applications, in forthcoming work we are applying 

the spectral graph theory approach to predict the thermal history of a large part measuring 250 

mm tall, with variations in welding energy, tool path, velocity, and interlayer dwell time. We 

will further correlate the influence of the predicted thermal history with microstructure 

observed in the finished part. 

Table 7: Symmetric mean absolute percentage error (SMAPE) and root mean square error (RMSE), 
calculated by comparison between simulation results and experimental data, for all thermocouples and 
all experimental rectangle and trapezoid cases. 

Case Rect43 Rect86 Trap43 Trap86 Trap5× Trap10× 
Total nodes  15,408 15,129 
Computational hardware AMD Ryzen 3970X CPU, @3.70 GHz with 128 GB RAM. 
Simulation run time [~hrs] 4.08 4.04 3.41 3.38 3.40 3.41 

SMAPE 
[%] 

Thermocouple  
TC1 2.11 5.31 1.06 2.08 3.65 2.00 

TC2 2.51 3.69 1.59 2.29 3.23 2.15 
TC3 3.27 1.67 2.59 3.42 1.54 3.16 
TC4 2.84 2.44 3.35 4.09 2.21 3.74 

RMSE 
[°C] 

TC1 7.82 19.08 3.91 6.73 13.18 6.49 
TC2 10.84 14.28 6.56 7.79 11.59 7.64 
TC3 13.19 5.64 10.32 10.91 6.19 12.14 
TC4 10.67 8.67 12.57 12.90 7.69 12.62 
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5. Conclusions  

A current challenge in modeling the thermal history of large WAAM parts is the 

computational cost.  In this work we developed, verified, and experimentally validated a mesh-

free spectral graph theory method for rapid prediction of thermal history in WAAM parts. 

Specific outcomes are as follows. 

• The approach was experimentally validated by processing multi-layer parts. Two 

different part shapes were processed under varying interlayer dwell time 

conditions, resulting in six unique experimental combinations. Each experiment 

was replicated once. Each part was 31.5 mm tall and consisted of 21 layers.  During 

processing, the experimental thermal histories of each experimental case was 

recorded using five thermocouples embedded within the substrate.  

• The error between the observed thermal history and those predicted using the 

spectral graph theory approach was quantified in terms of two statistical metrics, 

the symmetric mean absolute percent error (SMAPE) and root mean squared error 

(RMSE, °C).  The spectral graph method predicted the temperature trends in 

approximately 4 hours, with SMAPE less-than 5% and most RMSE in the range of 

4-11°C.  

• The thermal history predictions from the spectral graph method were verified with 

a commercial FE-based thermal modeling package – Simufact Additive. The 

prediction results were compared for both part-level and layer-level thermal trends. 

For a level of prediction error similar to the graph theory approach, the commercial 

FE-based package required 7.5 hours. 

The gain in computational efficiency without significantly sacrificing prediction accuracy 

afforded by the spectral graph method provides WAAM practitioners a physics-guided 
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alternative to the current expensive and cumbersome build-and-test empirical process 

parameter and toolpath optimization. For example, using the spectral graph method, the 

thermal history for a component can be rapidly simulated as a function of key process variables, 

such as welding power, tool path, and interlayer dwell time. Based on the insights obtained 

from these thermal simulations, the processing conditions can be optimized to avoid flaw 

formation, such as overheating.  The thermal gradients and cooling rate predictions from the 

graph theory model could also potentially be used for estimating microstructure evolution.  
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Appendix A 

This appendix contains tabulated root mean square (RMS) deviation values for the 

replicate experiments conducted within the study. Since each experiment yields a primary and 

a replicate thin-wall, the variation between the collected thermal data is quantified in terms of 

RMS. The RMS for most of the cases is within 15 °C, with a maximum deviation of 17 °C, 

and a minimum of 3 °C. The variation observed between replicate experiments is attributed to 

environmental conditions and fleeting inconsistencies in the manufacture of the substrates, 

placement of thermocouples, kinematic errors from the machinery, and start-stop location of 

each thin-wall. 

The RMS deviation is calculated as: 

 
𝑅𝑅𝑅𝑅𝑅𝑅 = ��

(𝑇𝑇𝑎𝑎,𝑡𝑡𝑖𝑖 − 𝑇𝑇𝑏𝑏,𝑡𝑡𝑖𝑖)
𝑛𝑛

2𝑛𝑛

𝑖𝑖

  (14) 

where 𝑛𝑛 is the number of recorded time steps and 𝑇𝑇𝑎𝑎,𝑇𝑇𝑏𝑏 are the recorded thermocouple 

temperatures at time 𝑡𝑡𝑖𝑖 for the replicate experiments ‘a’ and ‘b’, respectively. In Table 8, TC1 

represents thermocouple 1, and so on.  

Table 8: Variation between replicate experiments ‘a’ and ‘b’ for each geometry and interlayer dwell 
time case. 

Thin-wall Root Mean Square (RMS) Deviation [°C] 
TC1 TC2 TC3 TC4 

   Rect43 14.52 13.26 10.42 12.67 
   Rect86 17.00 10.11 9.91 10.24 
   Trap43 2.86 3.29 3.80 5.27 
   Trap86 13.20 12.10 11.73 12.46 
   Trap5× 12.60 11.75 9.91 12.58 
   Trap10× 12.83 16.12 11.16 11.01 
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Appendix B 

This appendix contains data from thermocouples TC1, TC2, and TC4 plotted alongside 

the spectral graph simulations corresponding to those thermocouple locations in the substrate.  

The behaviors exhibited here are similar to those of thermocouple 3 (TC3), which have been 

discussed in Section 4 of the paper. For the rectangular cases, the Rect43 and Rect86 simulation 

results are graphically compared with the experimental thermocouple data in Figure 26 and 

Figure 27, respectively. For the trapezoidal cases, the Trap43 and Trap86 simulation results are 

graphically compared with the thermocouple data in Figure 28 and Figure 29, respectively. 

Finally, the simulation results for the Trap5× and Trap10× cases are compared with the 

thermocouple data in Figure 30 and Figure 31, respectively. The calculated SMAPE and RMSE 

values are reported in Table 7 for all cases. 

 
Figure 26: Thermal history comparison between experimental data and the spectral graph thermal 
simulation at thermocouple locations TC1, TC2, and TC 4 for the rectangular thin-wall case Rect43 
with a constant 43 second interlayer dwell time (𝑡𝑡𝑑𝑑 = 43 s).  

 

 
Figure 27: Thermal history comparison between experimental data and the spectral graph thermal 
simulation at thermocouple locations TC1, TC2, and TC4 for the rectangular thin-wall case Rect86 with 
a constant 86 second interlayer dwell time (𝑡𝑡𝑑𝑑 = 86 s). 
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Figure 28: Thermal history comparison between experimental data and the spectral graph thermal 
simulation at thermocouple locations TC1, TC2, and TC4 for the trapezoidal thin-wall case Trap43 with 
a constant 43 second interlayer dwell time (𝑡𝑡𝑑𝑑 = 43 s). 

 

 
Figure 29: Thermal history comparison between experimental data and the spectral graph thermal 
simulation at thermocouple locations TC1, TC2, and TC4 for the trapezoidal thin-wall case Trap86 with 
a constant 86 second interlayer dwell time (𝑡𝑡𝑑𝑑 = 86 s).  

 

 
Figure 30: Thermal history comparison between experimental data and the spectral graph thermal 
simulation at thermocouple locations TC1, TC2, and TC4 for the trapezoidal thin-wall case Trap5× 
with a non-constant interlayer dwell time equal to 5× the time taken to deposit the previous layer (𝑡𝑡𝑑𝑑 =
5 × 𝑡𝑡𝑖𝑖−1). 
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Figure 31: Thermal history comparison between experimental data and the spectral graph thermal 
simulation at thermocouple locations TC1, TC2, and TC4 for the trapezoidal thin-wall case Trap10× 
with a non-constant interlayer dwell time equal to 10× the time taken to deposit the previous layer (𝑡𝑡𝑑𝑑 =
10 × 𝑡𝑡𝑖𝑖−1).   
 

A general observation is that the simulated temperature trends increasingly agree with the 

experimental data as each build progresses from start to finish. In the early stages of the build, 

the simulated trends peak slightly higher than the experimental data suggests, however, this is 

expected in a physical sense from the delays introduced by thermocouple time constants, which 

are described by Oliveira et al. [47] in their work. Late in the build, the same rapid temperature 

rise is not expected as the heat source is further from the thermocouple location. As deposition 

continues and the build plane moves further from the thermocouples, the time delay 

contribution from the thermocouple time constant decreases.  
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Appendix C 

This appendix discusses filtering of the simulated temperature history results prior to 

comparison with the experimentally collected temperature data. This filtering compensates for 

the slow response time associated with the thermocouples used in the study. Both the spectral 

graph method and the finite element method (Simufact-Welding) simulate temperature history 

at physical locations within the part without delay. Hence, prior to comparing the simulated 

temperature responses to those captured by the experimental thermocouples, filtering of the 

simulated data is required to impose the effect of the estimated response time of the 

thermocouples on the simulated temperatures. 

The 5 mm diameter, substrate-embedded thermocouples used in this study were K-type, 

installed in a metal sheath with an air gap between the thermocouple bead and the sheath. These 

are ungrounded thermocouples, which are known to have a time-constant which dampens rapid 

variations in the recorded thermocouple response. For a 5 mm diameter ungrounded K-type 

thermocouple, the time-constant is estimated to be 2.25 s, however, the time-constant is defined 

as the time taken for the sensor to reach 63.2% of the bulk temperature reading. On the other 

hand, the thermocouple response time, 𝜏𝜏∗, is defined as the time taken for the sensor to reach 

99.3% of the bulk temperature reading, which occurs after five time-constants. In other words, 

the response time 𝜏𝜏∗ is the time required for the thermocouple to be considered in thermal 

equilibrium with the substrate and, in this study, is calculated to be 𝜏𝜏∗ = 5 × 2.25 s = 11.25 s. 

 The dampening effect of the response time is proportional to the rate and intensity of any 

given temperature rise where fast, sharp increases in temperature are dampened more than 

slow, moderate temperature increases. In a study by Oliveira et al. [47] the dampening effect 

of ungrounded, embedded thermocouples was studied for fast thermal transient situations 

which are similar to weld deposition during the beginning layers of the build. In their study, 
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temperatures recorded by the ungrounded (slow) thermocouples were substantially dampened 

when compared with exposed (fast) thermocouples.  

The relationship between the simulated temperatures and the filtered temperatures is given 

by:  

 
𝑇𝑇𝑓𝑓𝑘𝑘 − 𝑇𝑇𝑆𝑆𝑆𝑆𝑘𝑘 = 𝜏𝜏∗

𝑑𝑑𝑇𝑇𝑓𝑓𝑘𝑘

𝑑𝑑𝑡𝑡𝑘𝑘
 (15) 

Here, 𝑇𝑇𝑆𝑆𝑆𝑆𝑘𝑘  and 𝑇𝑇𝑓𝑓𝑘𝑘 are the simulated spectral graph (𝑆𝑆𝑆𝑆) and filtered (𝑓𝑓) temperatures, 

respectively, at time instant 𝑘𝑘. Solving Equation (15), the filtered temperature at time instant 

𝑘𝑘, is given by:  

 
𝑇𝑇𝑓𝑓𝑘𝑘 = 𝑇𝑇𝑆𝑆𝑆𝑆𝑘𝑘 + �𝑇𝑇𝑓𝑓𝑘𝑘−1 − 𝑇𝑇𝑆𝑆𝑆𝑆𝑘𝑘 �𝑒𝑒

−Δ𝑡𝑡
𝜏𝜏∗  (16) 

Here, Δ𝑡𝑡 is the elapsed time between time instant 𝑘𝑘 − 1 and time instant 𝑘𝑘. The filtered 

simulation temperature 𝑇𝑇𝑓𝑓 accounts for the response time of the experimental thermocouples, 

which supports the comparison between simulated and experimentally collected temperature 

histories.  

Hence, prior to comparing the spectral graph simulated temperature histories with the 

experimental thermocouple data, the simulated data was filtered per Eqn. (15)-(16) with 

response time 𝜏𝜏∗ = 11.25 s.  

 

 

 

 

 


