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A B S T R A C T

This article presents a state-of-the-art review of the emerging 昀椀eld of physics-informed machine learning (PIML)
models in additive manufacturing for process-structure-property modeling. Additive manufacturing processes
hold immense potential for fabricating intricate and complex geometries across diverse applications and material
classes. From a quality assurance standpoint, appropriate modeling of process-structure-property relationships of
additive manufacturing processes using either physics-based or machine learning (ML)-based approaches has
been a topic of intensive research. As an example, ML of data acquired from in-situ sensors is related to 昀氀aw
formation, e.g., porosity, cracking, or deformation. In recent years, the computational burden of pure physics-
based models, the large data set requirement, and their black-box nature, i.e., the lack of interpretability of
ML models, have prompted researchers to turn to PIML models. In PIML models, physical insights of the additive
manufacturing process gained from various means are integrated with ML models, resulting in a more robust and
interpretable framework for both process and microstructure evolution. A key delineator is the source of physical
knowledge to be fused into PIML models, which can be obtained either from governing physical equations, data-
centric feature extraction without implementing any physical equations, or a hybrid of the two foregoing. Within
this review, we stratify PIML models based on the method used for the fusion of physical knowledge to ML
models, into three categories, namely: (i) physics-based feature engineering, (ii) physics-based architecture
shaping of ML models, and (iii) physics-based modi昀椀cation of the loss function of the ML models. For each of
these categories, we further delineate the source of physical knowledge, ML models, integration approach, and
data-set requirement, among others. A comparative analysis of the reviewed studies is presented and critically
discussed, while the potential research gaps, along with future research directions on developing PIML models
for different AM technologies are outlined.

1. Introduction

1.1. Motivation and rationale

Additive manufacturing (AM) allows for the direct transformation of
digital designs into physical objects through layer-by-layer deposition,
joining, or solidi昀椀cation of materials without the need for molds, tools,
or extensive manual labor [1]. In comparison with conventional
manufacturing techniques, AM offers numerous advantages, including
the ability to manufacture intricate, complex, and customized geome-
tries at a signi昀椀cantly reduced cost, minimizing production time-to-
market, and realization of novel material compositions and designs

with tailored functionalities [2]. Additionally, AM has demonstrated
signi昀椀cant potential in reducing the carbon footprint and enhancing
process ef昀椀ciency by reducing scrap rates and material waste and
eliminating the need for assemblies, resulting in a simpli昀椀ed
manufacturing process [3–5].

Given its numerous evolving capabilities, AM has transformed from a
mere prototyping technique into a highly promising technology solution
across various industries and sectors, including aerospace [6], energy
[7], and healthcare [8]. With this growing industrial adoption and in-
terest, AM product certi昀椀cation and quali昀椀cation through characterizing
the process-structure-property (PSP) relationships has been a signi昀椀cant
focus of research [9–11]. Process-structure-property modeling involves
understanding and predicting the relationships between AM process
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parameters and signatures, the microstructure of the printed material,
and the resulting micro to macro-level properties (e.g., mechanical
performance, dimensional accuracy), e.g., as shown in Fig. 1 for PBF
process, towards process optimization, tuning, and control for achieving
customized properties. Due to the complex underlying multi-scale and
multi-physics phenomena in AM, establishing the PSP relationships is a
challenging task and thus, both experimental and theoretical approaches
have been considered by researchers.

Experimental techniques are frequently used to study various pa-
rameters related to the AM process, microstructural defects [12], me-
chanical properties [13], dimensional accuracy [13] and geometric
features [14] of printed parts. The experimental techniques cover a wide
range of ex-situ and in-situ methods, such as electron microscopy [15],
X-ray computed tomography [16], infrared thermography [17] and ul-
trasound [18]. Despite the potential advantages of experimental ap-
proaches for validation purposes and providing valuable insights, they
often require extensive setup preparation, are time-consuming and
costly, and may be hard to generalize since the results may not re昀氀ect
the entire parameter space of the AM process. On the other hand,
analytical and numerical models based on process physics may be
adopted for multi-scale modeling and simulation of various complex
phenomena in AM processes such as analytical modeling of fusion zone
dimensions [19] and scanning strategy impact on temperature 昀椀eld in
PBF [20], multiphysics modeling to discover PSP-relationships in fusion-
based metal AM [21], grain growth in electron beam AM [22], powder
gas interaction in LPBF [23], melt pool signatures in PBF [24], degree of
cure in stereolithography AM [25], clad characteristics in DED [26], and
microstructure evolution [27]. Comprehensive reviews of numerical
modeling approaches within the 昀椀eld of AM have been done in [28–30].

Although physics-based models play an important role in revealing
the underlying mechanisms of AM processes, they often pose a signi昀椀-
cant drawback due to their time-consuming nature, complexity, and
their high computational costs [31–40]. As a result, they offer limited
practicality for on-the-昀氀y decision-making [41]. Additionally, these
models might fail to fully capture the process variations and un-
certainties, due to various approximations and unknown parameter as-
sumptions, leading to limited scalability and generalizability. To address
these challenges, data-driven and machine learning (ML) models have
become extremely popular in the AM community for PSP modeling,
defect detection, and quality control [42–45]. Through seamless inte-
gration of various digital systems and sensors with the AM setup, ML
models can readily access the necessary data of various modalities [46]
and have shown signi昀椀cant promise in revealing hidden patterns and
relationships, when provided with appropriate data [47]. Additionally,

ML models can be leveraged to enhance existing physical models. For
example, Haghighi and Li [48] applied ML techniques to improve the
accuracy of a physical bonding model used in material extrusion (MEX).
In their approach, they 昀椀rst used an MLmodel to map experimental data
to deformations. Then, based on these ML-predicted deformations, they
developed a geometric model that re昀椀ned the original physical bonding
model, resulting in improved predictions.

Despite their signi昀椀cant potential, ML-based approaches for PSP
modeling generally rely on massive high-quality datasets to generate
reliable, accurate, and high-昀椀delity results. Additionally, measuring
certain critical aspects of AM processes can be highly challenging, if not
impossible. For example, in the powder bed fusion (PBF) process, key
parameters such as melt pool velocity, temperature gradients, melt pool
depth, and the sub-surface solidi昀椀cation front are particularly dif昀椀cult
to measure [49]. This becomes a signi昀椀cant challenge in the context of
AM, given the costly nature of data acquisition and processing due to the
process's slow print speed and the limited data resulting from mass
customization. Furthermore, ML models lack the ability to provide
physical insights and explanations for their predictions due to their
black-box nature, which may be critical to AM practitioners and re-
searchers, hindering its potential industrial upscaling. Consequently,
this lack of interpretability will adversely affect the model's trustwor-
thiness in critical AM applications [50].

The evolving AM paradigm requires PSP models to possess several
key attributes [51]. These include rapidity, generalizability, scalability,
and transferability across diverse AM processes, machines, geometries,
and materials, all while maintaining accuracy under various processing
conditions. To help tackle these challenging requirements, a promising
solution has emerged in the form of physics-informed machine learning
(PIML) models, which fuse physical knowledge with ML techniques.
PIML models, often referred to as gray-box models, present a promising
solution by combining the advantages of white-box physics-based
models with those of black-box ML models. They help reduce the
computational intensity seen in traditional physics-based models and
alleviate the data demands and interpretability issues often faced by
black-box ML models [52,53]. Though not fully interpretable, PIML
models provide a more transparent alternative to black-boxmethods due
to the fusion of physical knowledge into the model [54–56].

Researchers have explored various approaches to fuse physical
knowledge with ML models, as shown in Fig. 2, including fusion during
input data preparation, ML model design and selection, as well as ML
model training, evaluation and tuning, each offering unique promises
and challenges. Additionally, valuable physical or domain-knowledge
insights can be extracted from diverse sources, such as governing

Abbreviations

AM Additive manufacturing
ANN Arti昀椀cial neural networks
CNN Convolutional neural networks
DACM Dimensional analysis conceptual modeling
DED Directed energy deposition
DT Decision trees
ETR Extra trees regressor
FEM Finite element method
GAN Generative adversarial networks
GB Gradient boosting
GNN Graph neural network
GPR Gaussian process regression
KNN K-nearest neighbors
LINREG Linear regression
LOGREG Logistic regression
LSTM Long short-term memory

MEX Material Extrusion
ML Machine learning
PBF Powder bed fusion
PCA Principal component analysis
PDE Partial differential equations
PIDL Physics-informed deep learning
PIML Physics-informed machine learning
PINN Physics-informed neural network
PSP Process-structure-property
RGNN Recurrent graph neural network
RF Random forest
RMSE Root mean square error
RNN Recurrent neural networks
SHAP Shapley additive explanation
SVM Support vector machine
SVR Support vector regression
VAE Variational autoencoders
VPP Vat photopolymerization
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physical equations, data-centric approaches, or a hybrid combination of
the two. To pave the way for future research on PIML for PSP modeling
in AM, comprehending the current state-of-the-art research becomes
imperative. Current review papers tend to emphasize metal AM pro-
cesses, often overlooking other AM technologies [57–61]. Additionally,
with the recent wave of PIML studies, many crucial aspects of these
models have not been thoroughly examined in earlier reviews. This
study aims to bridge that gap by providing an extensive review of the
most up-to-date PIML approaches for PSP modeling in AM. It will offer
new perspectives on the sources of physical knowledge as a key delin-
eator among PIML models, explore the latest physics fusion techniques,
and critically assess the capabilities, limitations, and practical

applications of different PIML models, while identifying research gaps
and future directions for advancement.

1.2. Approach

We employ the following two primary criteria (among other factors)
to classify the diverse PIML approaches in the AM literature for PSP
modeling:

(1) Source of physical knowledge: This criterion addresses the origin
of the physical knowledge used in the models, elucidating its

Fig. 1. Process-structure-property relationships.
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origins and whether it arises from empirical data, analytical
equations, or physical simulations.

(2) Fusion method: This criterion addresses how physical knowledge
is effectively integrated into ML models, elucidating the mecha-
nisms employed to combine the insights from physics with the
predictive capabilities of ML algorithms.

As depicted in Fig. 3, physical knowledge essential for PIML models
can be derived from different sources and integrated into various com-
ponents of the machine learning models. These sources of physical
knowledge encompass three main categories:

(i) Governing physical equations, i.e. explicit mathematical repre-
sentations of the underlying physics in terms of partial differen-
tial equations (PDEs), physical laws, empirical relationships,
among others, which can be either directly fused into ML archi-
tecture or loss function and solved while training the network, or
they can be integrated through the solutions obtained from
analytical approaches or numerical simulations as PIML inputs,

(ii) Data-centric methods, such as statistical techniques and image
analysis methods, which extract relevant and important physical
parameters or information as well as explainable terms directly
from the data without relying on explicit physical equations, and

(iii) Hybrid methods that combine both sources of physical knowl-
edge above, leveraging the strengths of both physics-based
equations and data-driven methods to achieve a more robust
and accurate characterization of the underlying physical
processes.

Additionally, per Fig. 3 we consider three main approaches for the
fusion of physical knowledge into ML models:

(i) Physics-based feature engineering, which deals with leveraging
physical knowledge to form the ML model input, i.e., fusion
during input data preparation for any ML model,

(ii) Physics-based architecture shaping, which deals with leveraging
physical knowledge to ML model design and parameter formu-
lation, including but not limited to the design of layers, nodes,
tree connections, weights, biases, activation, learning rates,
similarity metrics, and kernel functions, i.e., fusion during model
design and selection for any ML model,

(iii) Physics-based loss function modi昀椀cation, which deals with
leveraging physical knowledge during ML model training and
testing by directly incorporating them into the ML model loss
function (not limited to only neural networks), i.e., fusion during
model training, evaluation and tuning for any ML model.

In this comprehensive and critical review, we initially focus on the
second criterion to classify the existing PIML literature into three main
groups based on the fusion method of the physical knowledge into the
ML model, namely (1) Physics-based feature engineering, (2) Physics-
based architecture shaping, and (3) Physics-based loss function modi-
昀椀cation. Subsequently, within each category, we delve into various
intricate aspects, including the source of physical knowledge, the spe-
ci昀椀cs of ML model and physics integration, leading to the formation of
distinct subclasses. Finally, to present a concise overview, the studies
associated with each of the aforementioned classes (1)-(3) are
thoughtfully summarized in a structured table, facilitating a clear un-
derstanding of the diverse approaches and 昀椀ndings in this 昀椀eld.

1.3. Paper selection criteria

A thorough online literature search was performed across Google
Scholar and Web of Science. This search utilized a selection of speci昀椀c
keywords and phrases, including: (physics-informed or physics-based or
physics-aware or physics-driven or physics-guided or scienti昀椀c or

Fig. 2. Overview of the PIML concept.
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mechanistic or model-based or knowledge-based AND machine learning
or deep learning or neural network or arti昀椀cial intelligence AND addi-
tive manufacturing or material extrusion or fused 昀椀lament fabrication or
powder bed fusion or directed energy deposition or binder jetting or
material jetting or sheet lamination or vat photopolymerization or
stereolithography). All these keywords were thus utilized to identify
relevant research papers in the current study. However, to maintain
simplicity and coherence, this study employs the term PIML, which
encompasses all such approaches that fuse physics into a wide variety of
machine learning models, spanning from classical ML to deep neural
networks. Moreover, this review speci昀椀cally focuses on process-
structure-property modeling in AM and any of its sub-chains, namely
process-structure modeling, process-property modeling, or structure-
property modeling. Therefore, any PIML studies in the 昀椀eld of AM
beyond this scope, e.g., solely associated with material or particle dis-
tribution design as well as topology optimization, are excluded from this
review.

In Section 2, an overview of various AM technologies and ML models
is provided. Section 3 classi昀椀es the PIML studies for PSP modeling in
AM, into various subgroups based on the proposed approach earlier by
leveraging factors such as the fusion method and source of physical
knowledge among others, and provides a detailed description of the
existing literature. Next, in Section 4, a comprehensive analysis of all
reviewed PIML studies is outlined, and research gaps, as well as poten-
tial future research directions are highlighted. Finally, concluding re-
marks are summarized in Section 5.

2. Overview of additive manufacturing technologies and
machine learning models

This section provides a brief overview of various AM technologies
and ML models that are often used in the context of PSP modeling,
serving as a valuable point of reference throughout this review and
providing essential insights for the reader.

2.1. Additive manufacturing technologies

Additive manufacturing technologies work on the principle of add-
ing material generally in a layer-by-layer fashion. There are seven main
categories of AM de昀椀ned by ISO/ASTM 52900 standard [62]: binder
jetting, directed energy deposition (DED), material extrusion, material
jetting, powder bed fusion, sheet lamination and vat photo-
polymerization (VPP). Table 1 provides an overview of these AM tech-
nologies and their working principle. Additional details on these
processes, their capabilities, material compatibility, and their advan-
tages/disadvantages may be found in [1].

2.2. Machine learning models

The ML methods used for PSP modeling in AM can be categorized
into classical ML and deep learning models, as shown in Table 2 [75].
Classical ML models are comprised of a variety of ML methods, from
regression-based parametric models and support vector machines (SVM)
to non-parametric methods (e.g., Gaussian process regression (GPR), K-
nearest neighbors (KNN)) and tree-based models. In addition to the

Fig. 3. Overview of methods used for capturing process, structure, and property relationships in AM.
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various classical ML models, deep learning models, which are ML
models based on neural networks, are also frequently explored in PSP
modeling [76]. Among the different types of deep learning models are
arti昀椀cial neural networks (ANN), convolutional neural networks (CNN),
graph neural networks (GNN), and recurrent neural networks (RNN).
For brevity, an overview of the most common and foundational tech-
niques in ML, which are also used in PIML modeling of AM processes are
summarized in Table 2 [75].

A wide variety of unique neural networks with distinct characteris-
tics and variations, such as self-organizing maps [77] and spiking neural
networks [78] have been studied in recent years. Furthermore, different
ML models are combined in sophisticated ways to create more advanced

deep learning architectures such as generative adversarial networks
(GAN) [79], variational autoencoders (VAEs), attention mechanisms,
and deep belief networks, among others. For instance, two ANNs can be
integrated or combined together to form VAE (i.e., encoder-decoder
architecture), where the encoder is the 昀椀rst ANN that encodes inputs
into a 昀椀xed-length internal representation and the decoder is the second
ANN that uses this representation to make predictions. Encoder-decoder
methodologies have frequently been explored in the context of PSP
modeling in AM, such as for anomaly detection [80] and heat map
prediction [81].

All ML approaches discussed above generally follow a similar pro-
cedure; 昀椀rst, data is derived from either experimental observations or

Table 1
Overview of AM processes.
AM process Working principle Illustration

Binder Jetting A binder liquid is used to join powdered material. The parts are heated to cure the binder and then de-powdered and sintered to
get the desired level of properties [34].

Directed Energy
Deposition

Focused thermal energy (e.g., laser, electron beam, electric arc, plasma arc) is used to melt and fuse material (either in the from
of powder [63] or wire [64]) that are simultaneously deposited [65].

Material Extrusion
Molten material (e.g., in fused deposition modeling [66] and fused 昀椀lament fabrication [67]), or viscous paste or ink-based
solutions (e.g., in electrohydrodynamic jet printing [68], or continuous direct ink-writing) is extruded and selectively deposited
as a continuous stream through a nozzle [69]

Material Jetting Controlled drops of inks are ejected from the printhead nozzles onto a substrate and get dispensed and coalesced [70].

Powder Bed Fusion
An energy source (e.g., laser, electron beam) is used to bind through melting (e.g., in electron beam melting and selective laser
melting) or sintering (e.g., in selective heat sintering, selective laser sintering, and direct metal laser sintering) of powder
particles within a bed of powder [71,72]

Sheet Lamination Metallic sheets are used as feedstock and fused together through a laser or ultrasonic energy source [73].

Vat Photopolymerization A liquid photopolymer resin within a vat is selectively cured or solidi昀椀ed using a light source, such as a UV laser (e.g.,
stereolithography) or a digital light projector [74].
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simulations and then goes through a data preparation/feature engi-
neering step before being fed into the ML model architecture. The loss
function serves as the evaluator of the model's performance, guiding the
model's optimization until the threshold of a prede昀椀ned and desired
criterion is obtained. Physics-informed machine learning follows a
similar trend to machine learning models; however, additional knowl-
edge from physics is fused to the different stages of the machine learning
model, from input data preparation and feature engineering to model
architecture design and loss function modi昀椀cation. Therefore, the key
distinction among various PIML approaches lies in the timing/stage of
physics integration. i.e., the ML stage, in which physical knowledge is
fused. Additionally, one may consider the source of physical knowledge
as a secondary criterion to categorizing various PIML models, as

considered in this work.

3. PIML methods

In this section, a comprehensive review of various PIML models
developed for PSP modeling in different AM technologies is presented,
and both the source of physics and integration/fusion method, among
other factors such as the focused AM technology and adopted ML model,
are critically discussed. As shown in Fig. 4, the primary criterion for
classi昀椀cation in the current review is the fusion method/stage, forming
three distinct classes of (1) Physics-based feature engineering, (2)
Physics-based architecture shaping, and (3) Physics-based loss function
modi昀椀cation.

3.1. Physics-based feature engineering in PIML models

Feature engineering refers to the process of selecting, manipulating,
and converting raw data or features into formats that correspond more
closely with the intended outcome for ML models. If executed properly,
feature engineering can enhance the worth of the available data,
enhance ML model effectiveness, decrease data complexity, and elimi-
nate unnecessary and irrelevant features. Conversely, incorporating
poor-quality features may necessitate constructing more intricate
models to achieve comparable performance levels.

Physics-based feature engineering involves the strategic construction
and selection of input features that not only encapsulate the raw data's
characteristics but also integrate domain-speci昀椀c knowledge derived
from underlying physical principles. This approach seeks to enhance the
model's performance, robustness, and interpretability by enriching the
feature set with information rooted in physics. For example, one may
consider incorporating physical variables as features or consider
retaining the most informative physical components during the dimen-
sionality reduction steps. Additionally, physics-based transformations to
raw data may enable capturing underlying physical behaviors and
extracting time-related features can encapsulate temporal patterns that
align with the system's physics. Finally, data augmentation can be
considered using the underlying process physics to increase the size of
raw data or reveal interaction terms between different physical variables

Table 2
Overview of ML models.
Method Main remarks
Classical ML models

Gaussian process regression
A non-parametric ML approach that models the relationship between input variables and output values as a probability distribution over functions.
Instead of assuming a 昀椀xed function form, GPR uses a prior distribution based on observed data and updates it to a posterior distribution as new
data is incorporated, allowing for 昀氀exible and accurate predictions while providing uncertainty estimates.

K-nearest neighbors A non-parametric method for regression or classi昀椀cation tasks which relies on the similarity of the new data point to its k-nearest neighbors in the
training dataset for prediction.

Regression-based parametric
models

Parametric ML models that make explicit assumptions about the functional form of the relationship between the input and output, e.g., linear
relationship in linear regression and non-linear relationships via higher-degree polynomial terms in polynomial regression. The most common
models are linear regression (LINREG) for regression tasks and logistic regression (LOGREG) for classi昀椀cation tasks.

Support vector machines Models that transform the data into higher dimensions using kernel functions and then identify a hyperplane where the data can be linearly
separated. If they are used for regression applications, they are called support vector regression (SVR).

Tree-based models Graphical representation of decision rules in tree-like structures, where each node corresponds to a decision or feature, and each branch represents
a possible outcome or decision. Some popular tree-based models are decision trees (DT), gradient boosting (GB), and random forest (RF).

Deep learning models

Arti昀椀cial neural networks
The basic form of neural networks which consists of inputs, outputs, and one or more hidden layers of fully connected neurons [82]. Deep neural
networks and multilayer perceptron neural networks are also considered as ANNs with more than one layer. For simplicity, all the above names
have been considered ANN in this review.

Convolutional neural networks
A type of neural network used for image and video processing [83]. An important part of CNN is the convolutional layer, which applies a set of
kernels or 昀椀lters to the input image to extract features. Another important part is the pooling layer, which downsamples the feature maps to reduce
spatial dimensions and computational cost. The 昀椀nal layer in CNN generally takes the 昀氀attened feature maps as inputs and makes predictions.

Graph neural networks Deep learning architectures that capture the relationships in unstructured graphs by message passing between neighboring nodes [84].

Recurrent neural networks
Neural network models that can process sequential data and temporal problems. They can handle inputs of variable lengths and keep a memory of
past inputs to in昀氀uence the output of the current time step. Some popular RNN variants are long short-term memory (LSTM), vanilla RNN, gated
recurrent unit, and bidirectional RNN.

Fig. 4. Categorization of the reviewed PIML methods in terms of phys-
ics fusion.
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that may in昀氀uence the system.
As shown in Fig. 5, we summarize the various techniques used for

physics-based feature engineering into three subclasses based on the
source of the physical knowledge, namely (i) physics-based feature en-
gineering based on governing physical equations, (ii) physics-based
feature engineering based on data-centric methods such as feature
extraction/selection using statistical methods, image data analysis and
multi-stage machine learning models and (iii) a combination of
equation-based and data-centric feature engineering approaches.
Table 3 reports a summary of the literature employing physics-based
feature engineering for constructing PIML models towards PSP
modeling in AM. Additional details on these studies are further discussed
in the following subsections.

3.1.1. Physics-based feature engineering based on governing physical
equations

This category explores the application of already established gov-
erning physical equations and explicit theoretical/physical models
during the feature engineering step and can be further classi昀椀ed into
three sub-groups depending on the adopted approach, i.e., (i) dimension
augmentation using numerical approaches, (ii) dimension augmentation
using analytical approaches, and (iii) data augmentation based on pro-
cess physics. Dimension augmentation involves incorporating additional
physics-based features as inputs in PIML models. In contrast, data

augmentation focuses on expanding the dataset's size by generating
more data points without altering the original types of input features
used.

(i) Dimension augmentation using numerical approaches

Numerical approaches, focused on solving/simulating real-world
phenomena by approximating solutions through computation, may be
used to generate/augment new important physical variables or features
based on the underlying process physics as ML model inputs to build
PIML models.

Du et al. [85] proposed that the physics behind the defect formation
in the PBF process can be revealed by six mechanistic variables. These
variables, namely volumetric energy density, Marangoni number, so-
lidi昀椀cation time of the pool, surface tension force, Richardson number,
and molten pool aspect ratio (pool length/depth), were computed by a
mechanistic model and used as inputs of PIML model to predict the
occurrence of balling defect (Fig. 6). A balling susceptibility index was
derived from the experimental ball formation data and their corre-
sponding mechanistic variables using a genetic algorithm. The index is
validated and tested using a 166 set of available data from the literature,
with a minimum classi昀椀cation error threshold. The introduced index
predicted balling defects with 90 % accuracy. Additionally, the re-
searchers utilized ML indices such as information gain, information gain
ratio, and Gini index to determine the hierarchical importance of the
mechanistic variables in the formation of defects. It was discovered that
the Marangoni number and solidi昀椀cation time had the greatest in昀氀uence
on balling, with the former being the most signi昀椀cant and the latter
coming in second place. Guo et al. [92] integrated a high-昀椀delity pow-
der-scale mechanistic model of the PBF process with PINN. Mechanistic
variables (dimensionless peak temperature, Richardson number, ratio of
recoil pressure and surface tension, solidi昀椀cation time, and Fourier
number) were related to the printing quality using a quality prediction
index. Eventually, the hierarchy importance of the mechanistic variables
was determined.

Mondal et al. [86] studied the impact of solidi昀椀cation stress, cooling
rates, the ratio of the vulnerable and relaxation times, and the ratio of
the temperature gradient to the solidi昀椀cation growth rate on the physics
of cracking in a PIML framework for the PBF process. The physics-based
variables were calculated using a mechanistic modeling approach and
fed into a PIML model to predict crack formation, which may be more
prone to occur in certain alloy systems. It was reported that the solidi-
昀椀cation stress has the greatest in昀氀uence while the cooling rate has the
least in昀氀uence. The performance of the SVR, DT, LINREG, and LOGREG
models was investigated, and accuracy levels were 90.2 %, 85.3 %, 84.3
%, and 70%, respectively. To develop a PIMLmethod for microstructure
evolution, Riensche et al. [93] developed a PIML model to predict two
microstructure characteristics, i.e., meltpool depth and primary den-
dritic arm spacing in PBF. A rapid part-scale thermal model was utilized
to estimate the sub-surface end-of-cycle temperature and cooling rate.
Then, based on the physics-based thermal history quanti昀椀ers obtained
from the thermal model, an SVM model was trained. Root mean square
error (RMSE) for the meltpool depth and primary dendritic arm spacing
was obtained as 12 μm and 70 nm, respectively.

Using thermo-昀氀uid 昀氀ow simulations, Kats et al. [87] created a PIML
model that can recognize the connection between the characteristics of
the local thermal features and the grain structure. To generate the
required data for training the neural network, the thermal data and
grain structure characteristics were calculated using the 昀椀nite volume
method and cellular automaton method, respectively. The deposited
material domain was split into a set of cuboids. The thermal gradient and
cooling rate at 8 positions inside the cuboids are used as inputs, while
the local average grain size or average aspect ratio of the grains within
the cuboid are considered as outputs. For a dataset comprised of both
single-layer and multi-layer builds of DED Inconel 718, the coef昀椀cient of
determination was more than 0.95. It was concluded that the proposed

Fig. 5. Categorization of the reviewed PIML methods based on physics-based
feature engineering.
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approach could serve as a complementary technique to the 3D cellular
automaton method to predict the grain structure in real time for large
scale AM processing. In [103], simulating the DED process led to an
assessment of the meltpool's shape, which was then utilized as data for a
machine learning model to forecast the type of defects.

(ii) Dimension augmentation using analytical approaches

Analytical approaches, focused on deriving mathematical relation-
ships between physical variables based on established mathematical
principles, and semi-empirical relationships may be used to generate/

Table 3
Summary of studies on physics-informed feature engineering based on a. governing physical equations, b. data-centric extraction, c. both physical equations and data-
centric extraction.
Ref Year AM

process
ML method Integrated physical knowledge Dataset size Target

a. Source of physical knowledge based on governing physical equations
[85] 2021 PBF LINREG Mechanistic variables calculated using a heat transfer and 昀氀uid

昀氀ow model
166 Balling defects

[86] 2022 PBF DT, LINREG,
LOGREG, SVR

Heat transfer and 昀氀uid 昀氀ow model 102 Crack formation

[87] 2021 DED ANN Physical relationship of the grain structure and thermal conditions 1242 Grain structure characteristics
[88] 2021 PBF LINREG, GPR, SVR Physical equations for energy density distribution and pressure

distribution
549 Pore diameter, pore spacing

[89] 2022 PBF CNN Semi-analytical heat transfer model with scan pattern information – Melt pool depth and volumetric
fraction of grains

[90] 2023 DED ANN, SVR Fatigue crack growth life by the Paris' law – Fatigue life
[91] 2023 PBF ANN Equations of mass, momentum, and energy 103 Process parameters, width, and

depth of meltpool
[92] 2023 PBF DT Fluid 昀氀ow conservation equations – Build quality
[93] 2024 PBF LINREG, LOGREG,

SVM
Graph theory thermal modeling 1250 Meltpool depth and primary

dendritic arm spacing

b. Source of physical knowledge based on data-centric extraction
[94] 2022 PBF LOGREG, KNN, SVM Meltpool and ejecta features 22,400 images Porosity type and severity

classi昀椀cation
[95] 2018 PBF SVR-PCA Meltpool, plume, and spatter features 3318 Process quality level represented

by track width level
[96] 2021 DED CNN Wavelet transform for CNN, Feature extraction using RF 12 experiments Ultimate tensile strength, yield

strength, and elongation
[97] 2020 PBF ANN Physics-based and statistics-based knowledge from sensor data 1009 Quality

assurance
[98] 2021 PBF ANN, DT, GPR,

LINREG, RF, SVM
Physics-based analytical model and FEM simulations 5 simulations Meltpool size

[99] 2022 MEX ANN, RNN Derive empirical models from domain knowledge 1273, 3000 Optimal print parameters
[100] 2022 PBF ANN, SVM, RF Meltpool peak temperature, Marangoni 昀氀ow as physics-based

inputs, and dimensionality augmentation of process parameters
110 Surface roughness, Relative

density
[101] 2024 DED GAN, RNN Heat source as the forward diffusion process of diffusion models

and autoencoders for feature extraction
– Product properties

[102] 2024 PBF LSTM Process parameters, sequential information such as layer number,
and section order and statistical features of emission

– Section-wise thermal
characteristics

[103] 2024 DED ANN, KNN, LINREG,
RF, SVM

Meltpool dimensions and temperatures from the simulation 99 Meltpool morphology

[104] 2024 PBF GAN Process parameters as domain knowledge for a generative model 2160 Sequential thermal history
images

[105] 2023 DED GAN-CNN Using shape and temperature distribution of the melt pool and a
control chart to perform data augmentation

– Porosity

[106] 2023 DED ANN Partial derivatives as physics-based parameters related to the
tensile strength, SHAP

135 Ultimate tensile stress,
Yield stress

[107] 2023 PBF ANN, RF, SVR Stochastic parallel particle kinetic simulator, SHAP 960 Chord length distributions
[108] 2024 PBF RF, GPR, KNN, ETR SHAP analysis of atomic features – Melt pool depth

c. Source of physical knowledge based on both governing physical equations and data-centric extraction
[109] 2020 DED CNN FEM simulation 1557 images Pore occurrence, Pore size
[110] 2021 DED GB FEM for capturing the meltpool's temperature shape pro昀椀le,

Functional PCA
1564 Porosity prediction

[111] 2022 MEX GPR Five ODEs comprised of continuity, momentum, charge, electric
昀椀eld, energy, and constitutive equations

12 videos Jet process dynamics

[112] 2023 MEX SVR Conservation and constitutive laws 100 Road width
[113] 2023 PBF ANN, DT, KNN,

LOGREG, RF, SVM
Signatures of the meltpool
extracted from in-situ optical meltpool images

12 scan tracks Keyhole pore prediction

[114] 2022 PBF SVM, RF Continuous damage mechanics based feature engineering 89 Fatigue life
[115] 2024 DED CNN Thermal image during deposition with analytical equation (Goldak

heat 昀氀ux)
– Thermal history

Surface deformations
[116] 2024 PBF DARN Using kullback-leibler divergence method for combining thermal-

昀氀uid simulation data with experimental data
50,000 data
points

Normalized energy den-
sity, heat source depth, and heat
source radius
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augment new important physical variables or features based on the
underlying process physics as ML model input to build PIML models.

Following a theoretical approach, Liu et al. [88] proposed a PIML
method for predicting pore generation in the PBF process. First, the
machine setting parameters are used to theoretically calculate machine-
independent physical effects such as energy density and radiation
pressure of the laser. Then, these physics-based effects were used as
model inputs to predict porosity level based on the pore maximum
diameter. Linear regression, GPR, and SVRmodels with linear, Gaussian,
radial basis function, and polynomial kernels were considered as ma-
chine learning models, and it was reported that the SVR with radial basis
function outperforms the other models with a 13 % average error.
Moreover, a conventional model that is dependent on the machine set-
tings is compared to the PIML model. Results indicated that the machine
independent PIML model has only 3 % accuracy deviation from the
conventional model and has the potential to be used in various ma-
chines. Finally, a series of physics-porosity maps are provided to visu-
alize and discuss the relationship between extracted physical effects and
porosity. A semi-analytical model is used to generate temperature values
for randomly produced scan patterns, which serve as inputs to a CNN for
predicting the volumetric fraction of grains and the maximum melt pool
depth [89]. Based on these two predicted outputs, a greedy algorithm
then determines the optimal location for the next laser spot movement.

In practical applications, it can be dif昀椀cult to identify governing
physical equations that link the desired parameters, and experimental
昀椀tting may be necessary to derive some of the model coef昀椀cients. As a
solution, semi-empirical models can be employed to incorporate the
physics while leveraging realistic experimental data to gain relevant
insights. For example, fatigue crack growth life of AM materials can be
approximated using the Paris' law by having the stress intensity tensor
and some empirical material properties. Therefore, to bene昀椀t from the
advantages of PIML models, Wang et al. [90] aimed at predicting the
fatigue life by combining the Paris' law with ANN and SVR machine
learning models. While pure physics-based models struggle due to
insuf昀椀cient explanatory power for the scatter of fatigue life, and pure
machine learning models face issues of over昀椀tting with limited data, the
proposed PIML model demonstrated high accuracy (up to 98 % R2) and
mitigated the limitations of both pure approaches.

(iii) Data augmentation based on process physics

Data augmentation refers to increasing the size of the dataset by
creating new or synthetic data points. The domain-speci昀椀c physical
principles may be leveraged to generate/augment new additional
training data. Consequently, the diversity and quality of the training
dataset may be enhanced, leading to improved model performance and
generalizability.

Zhao et al. [91] developed a PIML model to obtain both forward and
inverse predictions of the PBF process's process parameters and molten
pool characteristics. In addition to the experimental data, a mechanistic
model based on OpenFOAM software was used to augment the dataset
size and train the ANN model. Moreover, the mechanistic model also
exposes the fundamental causes of different prediction accuracies in the
ANN model, by demonstrating the spatial and temporal 昀氀uctuations of
the print tracks and molten pools. It was shown that the highest pre-
diction accuracy of the model using both experimental and mechanistic
data was 97.3 %, while it was 68.3 % when only experimental data was
used. This highlights the importance of data availability, where mech-
anistic models act as data augmentation tools.

3.1.2. Physics-based feature engineering based on data-centric methods
As opposed to studies that use governing physical equations to

perform feature engineering, physical knowledge can also be obtained
using data-centric techniques. This brings in some opportunities for
integrating domain expertise in PIML models. In general, the process of
feature engineering consists of three main stages: 1) feature extraction,
2) dimension augmentation, and 3) feature selection. While including
more input features can generally improve prediction accuracy, too
many features may negatively impact the performance due to the curse
of dimensionality. Conversely, getting rid of insigni昀椀cant features can
enhance the non-linear correlation between input features and output
data, as well as speed up the learning process of the model. Thus, feature
extraction, dimension augmentation, and then selecting the appropriate
feature descriptor are all important factors in feature engineering of ML
models. By aligning these steps with the underlying system behavior and
process domain knowledge, one may identify the appropriate dimension
and features that encapsulate the essential behaviors and interactions of

Fig. 6. Feature engineering based on governing physical Eqs. [85].
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the AM system under study. These steps can be modi昀椀ed independently
or in combination to boost accuracy. As a result, this targeted approach
can aid in feature engineering, resulting in a more compact yet infor-
mative feature space.

(i) Feature extraction using image analysis

Image data has proven to be a valuable source for real-time analysis
and control in AM. For instance, as shown in Fig. 7., image data has the
potential to reveal physics-based process signatures that can be used to
predict structure-related and property-related factors in the 昀椀eld of AM.
Smoqi et al. [94] developed a PIML model to predict porosity in PBF
using meltpool signatures. First, physics-based parameters such as
length and temperature distribution of meltpool as well as mean ejecta
spread, and temperature were extracted from an in-situ dual-wavelength
imaging pyrometer (Fig. 7 a). These parameters were used as inputs for
the implementation of LOGREG, KNN, and SVM machine learning
models to predict the type of porosity (lack-of-fusion, conduction, key-
holing) and severity. The results of the PIML models were compared
with a pure ML CNN model that had similar outputs and datasets
(22,400 meltpool images) but used images as input. It was reported that
the KNN PIML model with accuracy exceeding 95 % (F1-score), out-
performs the other PIML and CNNmodels. Zhang et al. [95] developed a
machine vision monitoring technique that uses high-speed imaging to
extract information about the meltpool, plume, and spatter during the
PBF process. As shown in Fig. 7 b, they extracted features of these
components based on their signal generation mechanisms, such as the
meltpool histogram features, keyhole area, plume area and intensity,
plume orientation, and spatter characteristics.

Mu et al. [101] developed an online simulation model using a
diffusion model to predict distortion 昀椀elds. They used a vector quantized
variational autoencoder and generative adversarial network for feature
extraction from distortionmaps and a recurrent neural network for time-
scale result fusion. The model uses 2D convolutional layers for feature

extraction and has an encoder-decoder structure for accurate recon-
struction. Pretrained with of昀氀ine 昀椀nite element methods (FEM), it pre-
dicts distortion using laser-scanned point clouds during deposition,
surpassing FEM by 143 % and ANN methods by 151 %. In [113],
meltpool monitoring images were compressed into a compact feature
vector with an encoder and reconstructed with a decoder. The goal was
to break down the input meltpool images into understandable repre-
sentations, providing a suitable feature space for ML models to distin-
guish between Non-keyhole and Keyhole pores in PBF.

Wavelet transform often helps with extracting hidden physical in-
sights from image data and better revealing spatial and temporal in-
formation. For example, Xie et al. [96] developed a mechanistic data-
driven framework to predict mechanical properties and identify domi-
nant mechanistic features in a DED process. In their proposed frame-
work (Fig. 7 c), the thermal histories from 135 selected regions of
interest for 12 additively manufactured thin walls were converted to
wavelet scalograms and used as inputs of the CNN model to predict the
ultimate tensile strength, yield strength, and elongation. The model is
trained using the data obtained from the miniature tensile specimens at
the regions of interest. Then, the trained model was utilized for the
prediction of mechanical properties throughout the printed walls, hav-
ing IR thermographic data without any need for additional tensile
specimens. It was observed that the proposed approach reaches an R2
score of 0.7 using only a small amount of noisy experimental data, while
traditional methods have an R2 score of 0.2-0.6.

Faegh and Haghighi [104] proposed a conditional generative
adversarial network to generate the PBF temporal thermal data with
process domain knowledge fused into the image generation procedure.
Laser power, scan speed, laser spot size and time step were utilized to
generate images. It was indicated that the model was able to generate
synthetic sequential thermal images close to the experimental data at
various combinations of process parameters. Chen and Guo [105]
developed a deep learning framework by incorporating physical con-
straints to predict porosity in laser metal deposition processes. Their

Fig. 7. Feature engineering based on image data using a. shape feature extraction [94], b. meltpool histogram features [95], c. wavelet transform [96].
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approach utilizes a deep convolutional generative adversarial network
for generating data, which is further re昀椀ned by a Kullback-Leibler
divergence-based model that captures the melt pool's shape and tem-
perature distribution. To ensure the generated data aligns with physical
properties, a control chart is employed. A convolutional neural network
is then used to predict porosity labels. Their model demonstrated su-
perior predictive performance compared to traditional deep learning
benchmarks.

(ii) Feature extraction using multi-stage machine learning

Machine learning models as promising data-centric techniques can
be used in multiple stages to extract and utilize physically important
intermediate/transient features that are dif昀椀cult to obtain via governing
physical equations. Gaikwad et al. [97] extracted physics-based features
of meltpool from a pyrometer and high-speed video signatures in the
PBF process via a sequential decision analysis neural network (Fig. 8).
First, the statistical probability distribution features extracted from the
pyrometer are used in the 昀椀rst echelon ANN to predict the laser power
and velocity. Then, meltpool features derived from the high-speed video
camera were utilized to predict the mean width and standard deviation
in the second echelon ANN and single-track continuity in third echelon
ANNs. It was concluded that the proposed model outperforms the pure
data-driven models both in terms of accuracy and computational time.

Ren et al. [98] developed a PIML model to predict the meltpool size
in a PBF process using a two-level ML approach. First, process param-
eters and the laser position were used as the inputs of the lower-level ML
model to predict a pre-scan initial temperature. The predicted temper-
ature was considered as a physics-based parameter that depends on the
thermal history of the meltpool. It was then employed as input for the
upper-level ML model to estimate the size of the meltpool. The ML
models used at the upper level were comprised of GPR, ANN, regression-
based, and tree-based models. The results showed that the PIML model's
prediction accuracy was signi昀椀cantly better than that of the ML model,
lacking a physics-based initial temperature input.

By using transfer learning, multi-stage machine learning models can
lead to more generalized and well-performing PIML models even with a
limited dataset [112]. In this approach, target data from the source
process model increased in steps to iteratively identify the smallest
amount of experimental data needed for transfer learning. The goal was

to get a 昀椀nal error on unseen experimental data that is less than or equal
to the error from directly using the experimental data. The reduction in
experimental costs was around 60 %, and computation time was at least
10 times lower with their proposed Smart ML. Wenzel et al. [99]
developed a PIML method that optimizes reliability by suggesting
optimal print parameters in the MEX process. First, an RNN was used to
conduct knowledge transfer by generating the behavioral vector using
input/output observations obtained from a particular 3D printer. Then,
an ANN was utilized to generate an estimation of the target values
considering various sets of inputs and the obtained behavioral vectors
for a speci昀椀c printer. If the conditions change, the behavior of the 3D
printer changes as well, and the behavioral vector can be updated by the
RNN accordingly. Moreover, an ANN encoder-decoder is used to de昀椀ne
the behavioral vectors for various known systems. The encoder-decoder
is trained using predictions from a Latin hypercube sampling design of
experiment method. This real-time knowledge transfer eliminates the
need for retraining and enhances the reliability of 3D printing by
enabling real-time response to changing conditions. The method pro-
posed in this study achieves a lower RMSE in predicting unknown ex-
periments with limited measurements compared to statistical
approaches, thanks to the application of transfer learning from domain
knowledge.

(iii) Dimension augmentation by incorporating feature interaction terms

For an ML model to provide accurate and reliable predictions, the
input features must be of high quality, representative of the problem
domain, and properly preprocessed. A promising way to do this is to
increase the number of features by incorporating feature interaction
terms that can be considered as a high-dimensional set of parameters
built on nonlinear combinations of the main features.

As an example, Wang et al. [100] predicted the quality of CoCrFe-
NiMn high-entropy alloys built via PBF. The inputs of the model are
comprised of physics-informed features such as peak temperature of the
molten pool (Tmax) and Marangoni 昀氀ow (Ma) as well as process pa-
rameters such as laser power (P), scan speed (v), hatch space (h), and
layer thickness (t), as shown in Fig. 9a. Also, a dimension augmentation
procedure was used to expand the process parameters (laser power,
hatching space, scanning speed, and layer thickness) into an optimal
high-dimensional set of process parameters as shown in Fig. 9b. The
original 4-dimensional features are combined through nonlinear com-
binations in the forms of x, x1/2, x2, x3, and log (1 + x) to provide a 206-
dimensional feature space. These high-dimensional features were used
as inputs of the ML model, and their signi昀椀cance is determined using the
RF algorithm, with the resulting mean squared errors being recorded.
Ultimately, 40 optimal features with minimum mean square error were
used as the 昀椀nal model inputs. The introduced model was utilized to
predict the top layer surface roughness (Ra) and relative density (ρ). The
dataset was used to train ANN, SVM, and RF machine learning models,
and it was concluded that the SVM has better generalization capability
and prediction accuracy. Moreover, the utilization of both dimension-
ally augmented features and physics-based input led to better results
compared to the pure ML model trained with original process
parameters.

(iv) Dimension augmentation by deriving feature statistics

Inclusion of several features as inputs, especially in the cases where
parameters are in the form of time-varying signals, increases the number
of variables and might result in over昀椀tting. A promising way to tackle
this is to incorporate statistical measures of the existing features. Based
on the physics of the problem, the statistical measures might be
considered as potential physical indicators of the problem. For instance,
maximum temperatures in metal AM are a determinant of the subsurface
porosity [117], and statistical measures such as skewness and kurtosis
can be used to represent time-varying signals and the time spent atFig. 8. Feature engineering based on multi-stage machine learning [97].
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extreme values.
Following this approach, Cooper et al. [106] proposed a PIML model

to predict the ultimate tensile stress and yield stress in DED-fabricated
parts. In addition to the temperature values, they utilized the 昀椀rst and
second partial derivatives of temperature during DED as they can
represent grain size and local material density, respectively. As these
features were time-varying signals, statistical measures like maximum,
mean, variance, skewness, and kurtosis of them were used as model
inputs. Moreover, Lei et al. [102] combined process parameters such as
laser power, laser speed, energy density, scanning phase, and sequential
information such as layer number and section order with the statistical
features of each layer. It was shown that the inclusion of physics-based
features improves the model's explainability and performance.

(v) Feature selection by leveraging features signi昀椀cance on the output

As mentioned previously, feature extraction and dimension
augmentation are usually followed by a feature selection method to
reach the desired performance criteria of the PIML model. Various
feature selection methods are adopted by researchers based on the
datasets, the problem, and the algorithm being used. As the extracted
features might have some redundant information, principal component
analysis (PCA) can be used as a feature selection scheme to identify the
most important features. For example, Zhang et al. [95] utilized the
SVM-PCA classi昀椀cation method to assess the quality level, i.e., track
width, using different combinations of features in the PIML modeling of
the PBF process.

In another study, Xie et al. [96] aimed to identify dominant mech-
anistic features in a PIML model of the DED process by de昀椀ning a
parameter based on the occurrence of temperature data within discrete
ranges of thermal histories. The relationship between this parameter and
tensile strength is studied using an RF algorithm to detect the most
important temperature ranges. The identi昀椀ed important ranges are
related to physics-based properties such as material phase transition
temperatures and measured dendritic arm spacing. The proposed model
was compared with ten MLmodels, which are a combination of different
dimension reduction techniques (Discrete binning, PCA) and regression
methods (ANN, KNN, Tree-based models, etc.). It was concluded that the
proposed model with wavelet transform as its feature engineering
method and CNN as the ML part outperforms the other investigated

models.
Historically, bidirectional stepwise regression methods have been

employed to select features in predictive models, with the constraint
that only one feature is included or excluded at a time. Stepwise tech-
niques tend to be less ef昀椀cient and may overlook the overall best com-
bination of features. To address this concern, one approach is to utilize
Shapley additive explanation (SHAP) based feature engineering. For
instance, SHAP values were calculated using the metric of cumulative
relative variance in [106] to measure the impact of each input feature on
PIML modeling of tensile property of DED parts. Then, using an additive
utility function, an optimal subset of the features that minimize the loss
function was identi昀椀ed. It was concluded that the proposed model has
six orders of magnitude fewer parameters than previous models in the
literature, while achieving similar or higher predictive accuracy.
Moreover, utilizing SHAP values to evaluate the contribution of metal
AM process parameters on the microstructure evolution has shown
promise in forming more explainable arti昀椀cial intelligence-based
models [107]. Furthermore, melt pool depth was calculated using
SHAP analysis of atomic features in [108].

3.1.3. Physics-based feature engineering based on both governing physical
equations and data-centric methods

(i) Dimension Augmentation

Feature engineering for PIML models using data obtained from
mechanistic models and process data (e.g. images, sensor data, etc.)
separately has been discussed so far. A potential approach in feature
engineering of PIML models is to combine image data with data ob-
tained from mechanistic models to leverage hybrid sources of physical
knowledge. Guo et al. [109] developed physics-driven deep learning
models for predicting the pore occurrence and its size in a DED process
as depicted in Fig. 10. First, a pure CNN model, called PyroNet is
developed to map pyrometer data to porosity by learning hidden pat-
terns and structures in thermal images of meltpool. Next, a physics-
based model, named PyroNet+, is developed which has the number of
layers as an additional input compared to PyroNet. To incorporate more
physical features, another physics-driven model named PyroNet++ is
developed in which the length, width, depth, and temperature of melt-
pool gathered from FEM simulations are considered as additional inputs

Fig. 9. Feature engineering by dimension augmentation [100].
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compared to PyroNet+. It was shown that the physics-driven
PyroNet++ model outperforms the PyroNet and PyroNet+ models in
predicting the pore occurrence. Moreover, the severity of porosity is
predicted using the three developed models. Mean absolute percentage
errors of 8.99 %, 8.91 %, and 6.91 % are reported for PyroNet,
PyroNet+, and PyroNet++, respectively.

Wang et al. [114], employed data-centric techniques to enhance
prediction accuracy and generalizability by removing highly correlated
and normalizing features in LPBF process. Moreover, additional features
from a continuous damage mechanics model was utilized. It was re-
ported that the proposed PIMLmethod outperforms the black-box model
that uses raw features from experimental conditions, mechanical prop-
erties, porosity analysis, and surface morphology.

To capture the variety of shapes that meltpool boundaries can take in
a DED process, Gawade et al. [110] used Functional PCA as a feature
engineering technique, while FEM simulation was used to analyze the
thermal gradients and cooling rates of the meltpools. Functional PCA, in
contrast to PCA, resolves functional data into component representa-
tions that accurately analyze the variability of the structure of melt-
pools. By doing this, they were able to reduce the amount of required
computational cost. Their proposed approach, which uses a Gradient
Boosting method, performed well on both the training and testing
datasets for Ti-6Al-4 V thin-wall structures. Zamiela et al. [115] inte-
grated infrared thermal data obtained during Wire Arc DED with the
Goldak double-ellipsoidal heat 昀氀uxmodel to simulate the process energy
input. Next, they developed a physics-based input to represent the in-
ternal thermal history. Finally, a CNN was employed to map the rela-
tionship between the three-dimensional thermal gradients and the
resulting surface deformations.

(ii) Data Augmentation

A promising way to develop PIML models is to combine real-time
extracted data with multiple physical models. To do so, Oikonomou
et al. [111] proposed a PIML model that combines jet features extracted
in real-time by a machine vision plus a machine learning module and the
same features obtained from a physics-based modeling module. They
developed a physics-informed learning framework for electro-
hydrodynamic polymer jet printing with two GPR models and two
physical models. The jet radius pro昀椀le and the jet lag distance were
extracted from machine vision as well as physical models to represent
the printing process dynamics. In the machine vision module, image

analysis, along with the 昀椀rst GPR model (high-昀椀delity), outputs these
features. The jet multi-physics model and geometrical model are the two
physical models to extract the same features. Later, the data from both
these modules are combined and used as inputs for the second GPR
(multi-昀椀delity) model. To explain more, multi-昀椀delity was used to
approximate the relation of jet radius and lag distance with nozzle tip to
collector distance and collector to jet speed, respectively. The proposed
framework has a variety of distinctive capabilities that include real-time
extraction of features through computer vision and the use of physics-
based capabilities, which aim to minimize the experimental cost while
maintaining accuracy and robustness. Similarly, PIML models can be
developed by utilizing statistical techniques when combining data from
physical models and experiments. For example, Li et al. [116] built the
PIML model training dataset 昀椀rst by creating a probabilistic model from
experimental data and later combining it with thermal-昀氀uid simulation
data of melt pool depth and width by using kullback-leibler divergence
method.

3.2. Physics-based architecture shaping for PIML models

In addition to feature engineering methods discussed in the previous
section, physical knowledge can be fused into the architecture of the ML
models themselves. In this section, different approaches for the archi-
tecture shaping of PIML models in the 昀椀eld of AM are discussed based on
the methodology used for shaping the architecture. It is worth noting
that any change in the machine learning model, i.e., the way the links or
nodes are connected, or weights, biases, and activation/kernel functions
are de昀椀ned, based on physics, is considered as an architecture shaping
the PIML model in the current review paper. As shown in Fig. 11, the
methodologies used for physics-based architecture shaping in PIML
modeling of AM processes can be categorized into deep unfolding
methodology, graph-based approaches, and RNN-based networks. An
overview of the physics-based architecture shaping models for PSP
modeling in AM processes, as well as the sources of physical knowledge
and integration details, are discussed in this section, and a summary is
reported in Table 4.

3.2.1. Architecture shaping using deep unfolding methodology
Deep unfolding, also referred to as model-based deep learning or

algorithm unrolling, represents one of the emerging AI-driven ap-
proaches suitable for situations where data is limited, but an existing
iterative model is present, offering potential advantages to the training

Fig. 10. Feature engineering based on both governing physical equations and data-centric techniques [109].
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of ML models [126,127]. Inspired by the deep unfolding concept,
Ghungrad et al. [118–120] introduced a method for physics-informed
architecture shaping of ANNs towards AM process signature modeling.
The proposed architecture-driven physics-informed deep learning
structure, uses a deep unfolding approach to predict thermal history in
the PBF process (Fig. 12 a). The model is based on iterative thermal
model equations, and each iteration of the transient thermal model
corresponds to a layer in the neural network structure, as shown in
Fig. 12 b. In each layer, both the temperature data from the previous
iteration and the inputs are processed to calculate the temperature in the
current iteration. Unlike traditional neural networks, the weights and
biases in architecture-driven PIDL are linked to the equations of the
transient thermal model and play the role of coupling physical knowl-
edge into the model architecture. Unfolding the transient thermal
equation iterations into the layers of neural networks and de昀椀ning the

weights and biases based on governing physics makes APIDL more
interpretable compared to a black-box ANN, where connections are
established solely through data. The models are trained and tested using
a limited experimental dataset with the TensorFlow library in Python.
The architecture-driven PIDL model was compared with other algo-
rithms such as ANN, extra trees regressor (ETR), LSTM, and SVR. It was
shown that for limited data scenarios, the proposed APIDL structure
outperforms the other models with a testing mean absolute percentage
error of 2.8 % and an R2 value of 0.936. This highlights the importance
of physics fusion in ML models that reduce the data requirements.

3.2.2. Architecture shaping using graph-based approaches
Graph-based approaches are gaining attention in recent years as they

enhance the interpretability and generalizability of ML models. These
approaches utilize graph structures to represent and analyze data. The
architectures of graph-based approaches vary, but they all encompass
common elements, i.e., entities (elements with attributes), relations
between entities, and a rule that maps entities and relations to other
entities and relations [128]. Based on the application domain and spe-
ci昀椀c functionality, various graph-based approaches, such as knowledge
graphs, causal graphs, and GNN, have been developed.

" Causal graphs and knowledge graphs

Causal graphs are graphs that have cause-and-effect relationships to
understand the causal mechanisms [129]. As causal mechanisms are
much easier to explain and interpret, integrating them with ML models
would enhance the interpretability. Nagarajan et al. [121] developed a
knowledge-based topology design for ANN by integrating the pure ANN
model with dimensional analysis conceptual modeling (DACM). The
knowledge that has been encoded is expressed through causal graphs, as
shown in Fig. 13. These graphs, which are created using DACM, are
utilized to de昀椀ne the structure of ANNs, where variables can be seen as
neurons, and the graph resembles an ANN. There are two kinds of
weights in this model: the 昀椀rst type is already obtained based on prior
knowledge (physical equations) and requires no further training, while
the second type has unknown weights that must be calculated through
training with data. Therefore, experimental/simulation training data is
only necessary for the zones where prior knowledge is lacking or

Fig. 11. Categorization of the reviewed PIML methods based on physics-based
architecture shaping.

Table 4
Summary of studies on physics-informed architectures based on a. governing physical equations, b. data-centric extraction, c. both physical equations and data-centric
extraction.
Ref Year AM

process
ML
method

Integrated physical knowledge Dataset size Target

a. Source of physical knowledge based on governing physical equations
[118] 2021 PBF ANN Transient thermal model 300 Temperature
[119] 2022 PBF ANN Transient thermal model 500 Temperature
[120] 2023 PBF ANN Transient thermal model 1000 Temperature
[121] 2019 MEX ANN DACM framework and CFD simulations 100 Wall thickness, height, and mass of a part
[122] 2022 MEX RNN Physics-based weights and activation functions 252 Height evolution
[123] 2022 PBF GNN Simulating microstructure evolution using the phase-昀椀eld

method
– Temperature 昀椀eld, liquid/solid phase

fraction, and grain orientation
variables

b. Source of physical knowledge based on data-centric extraction
[124] 2020 MEX LSTM Weight calculation using the sequence of thermal states,

material properties, and machine settings
144 experiments Part tensile strength prediction

c. Source of physical knowledge based on both governing physical equations and data-centric extraction
[53] 2022 PBF ANN Knowledge graphs 4700, 118,928

images
Capture dynamic characteristics of PSP
relationships

[125] 2021 DED GNN,
RGNN

Nodal and element features 55 geometries Thermal histories
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dif昀椀cult to acquire. A case study was done to model wall thickness, part
height, and total part mass in an MEX component using four ANNs
following a causal graph. It was shown that the knowledge-based ANN
model, which required fewer training weights due to the use of physical
knowledge, exhibited more robust generalization than a pure ANN
model.

In addition to the simple cause-and-effect relations (i.e., causal
graphs), knowledge graphs containing pre-existing information about
physics with ML models [130] can be used to create more comprehen-
sive relationships. To convert unstructured AM data obtained from
measurement and monitoring into structured descriptive data with
relevant PSP features, Ko et al. [53] proposed a knowledge graph inte-
grated PIML framework. This framework was utilized to create predic-
tive PIML models and establish relationships between data. The
framework consists of three tiers, including knowledge of predictive PSP
models and physics, PSP features of interest, and raw AM data. The
feature extraction process was guided by the physical insights derived

from the knowledge graphs in the knowledge tier. Then, PSP features
were extracted from raw data, fused, and ultimately utilized as inputs for
predictive PSP machine learning models. A continuous learning scheme
is utilized to iteratively update the PSP models via ML models and then
deploy these models to monitor and control real-time decisions. An
advantage of this scheme is that it supports the continuous addition of
data in the AM database and the modi昀椀cation of predictive ML models
and PSP knowledge.

" Graph networks

Graph networks are models designed to work with data represented
in graph structures to learn and make predictions. Xue et al. [123]
considered the dynamic microstructure evolution in AM as an ML task
similar to the message-passing procedure of a graph network. They
formulated the discretization of a phase 昀椀eld method, a physics-based
computational method for simulating interfacial morphology, as an

Fig. 12. Architecture shaping of PIML model using deep unfolding, a. overview, b. train procedure [120].

M. Faegh et al. Journal of Manufacturing Processes 133 (2025) 524–555 

539 



ML problem on a graph. In contrast to the loss function de昀椀nition in ML,
they minimized a physics-based free energy formula, as shown in
Fig. 14. Results showed that the proposed approach can detect effective
physical features and is at least 50 times faster than direct numerical
simulations.

The GNN is a subset of graph networks where the rules are neural
network functions [128]. To bene昀椀t from the capabilities of GNN,
Mozaffar et al. [125] proposed two GNN architectures to capture the
spatiotemporal dependencies of thermal responses in AM processes.
They suggested that these dependencies, which are typically modeled

Fig. 13. PIML model architecture shaping using causal graphs [121].

Fig. 14. Physics-informed graph network for a single-layer, single-track PBF process [123].
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using physics-based simulations like FEM, can be alternatively modeled
using GNNs. Their hypothesis is based on the similarities between the
assembly operations of 昀椀nite element matrices and message-passing
formulations in GNNs. As shown in Fig. 15, the 昀椀rst GNN architecture
predicts a single-time step update in each training instance, while the
second GNN architecture, called Recurrent Graph Neural Network
(RGNN), generates time-series thermal responses over multiple time
steps. The models were trained and tested on 55 industrial-grade ge-
ometries, varying in size, layers, shapes, and geometric features and
meshed using ABAQUS to 8-node hexahedron elements. The database
was created using graph representations where each node of the mesh
was de昀椀ned as a node in the graph, and edges were de昀椀ned based on the
connectivity matrix indicating common elements. Linking the similar-
ities between the assembly operations of 昀椀nite element matrices and
message-passing formulations in GNNs makes GNNs more interpretable.
The results showed that both GNN and RGNN models had good agree-
ment with the ground truth, with RGNN outperforming GNN in
capturing long interactions. However, RGNN required 昀椀ve times more
epochs compared to GNN. Overall, it was concluded that the GNN ar-
chitectures provide a practical substitute for conventional computa-
tional approaches.

3.2.3. Architecture shaping using RNN networks
Employing recurrent neural networks (RNNs) can aid in uncovering

the relationship between the fundamental mechanisms in the AM pro-
cess and the resulting quality of the fabricated component. To bene昀椀t
from this capability of RNNs, Zhang et al. [124] added an attention
mechanism to an LSTM network for predictive modeling of MEX parts
quality. They created an encoder-decoder structure to connect the
thermal states of each layer to the properties of the printed object. The
encoder consisted of a two-layer LSTM network, with each print layer
represented by one LSTM cell, as illustrated in Fig. 16. The decoder

predicted the tensile strength of the part based on a weighted sum of all
the thermal states from the last LSTM layer in the encoder. These
weights represented the in昀氀uence of each layer on the part property, but
they were traditionally kept constant after network training, which
could be problematic for modeling dynamic relationships. To address
this issue, the authors introduced an attention mechanism that deter-
mined the weights using the sequence of thermal states, material
properties, and machine settings, such as extruder temperature, printing
speed, and layer height. The addition of the attention mechanism
reduced prediction errors in tensile strength by 30 % compared to a
standard LSTM.

In another application, Inyang-Udoh and Mishra [122] developed a
PIML model for the height evolution of parts printed in droplet-based

Fig. 15. Network block diagrams and training details for a. GNN, b. RGNN models [125].

Fig. 16. Attention-based encoder-decoder for part property prediction [124].
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AM. The model is a convolutional RNN, and its architecture considers
mass conservation during the height evolution. They incorporated
physics into the architecture by adjusting the weights as well as acti-
vation functions. It was concluded that the developed model has 1.7
times smaller test RMSE when trained with only two orders of magni-
tude less data compared to a black-box ANN model.

3.3. Physics-based loss function modi昀椀cations for PIML models

Integration of physics in ML modeling of AM processes by feature
engineering and architecture shaping was discussed in previous sec-
tions. In addition to these two fusion approaches, fusion of physical
knowledge during theMLmodel training, evaluation, and tuningmay be
considered as a third class of PIML models. Speci昀椀cally, as the data feeds
into the ML model, it passes through a loss function to calculate the
errors and update the model parameters to reach the desired accuracy.
Consequently, incorporating physical knowledge into the loss function
has been frequently studied in the literature. A review of physics-based
loss function modi昀椀cation approaches to building PIML models for PSP
modeling in AM processes is discussed in this section. Similar to the
physics-based feature engineering and architecture shaping, the source
of physical knowledge fused in loss function can be based on both
governing physical equations and/or extracted from data using data-
centric techniques. As shown in Fig. 17, the studies in this section are
categorized into two main groups: (1) those that perform loss function
modi昀椀cation through encoding residuals of physical differential equa-
tions in the loss function and (2) those that perform loss function
modi昀椀cation through incorporating physics-based parameters in the loss
function. In each category, the details on the source of physical
knowledge and integration details in the loss function are discussed in
detail, and a summary is reported in Table 5.

3.3.1. Encoding residuals of physical differential equations in the loss
function

Recently, the integration of physical differential equations into
neural networks' loss function to create PIML models, often called
PINNs, has been frequently studied. For example, the governing 昀氀uid-
昀氀ow equations in the AM process can be coupled with neural net-
works to form a PIML model. The fundamental concept behind this
category of PIML involves utilizing a neural network to estimate the
solution to PDEs or ordinary differential equations. This neural network
is trained through the minimization of a loss function that is determined
by the difference between the residuals of the PDEs and corresponding
boundary and initial conditions. The automatic differentiation capa-
bility of ML packages (in PyTorch and Tensor昀氀ow, for example) is a
powerful tool to calculate the required gradients in governing PDEs and

their initial/boundary conditions [152].
Governing physical equations for different AM technologies can be

solved using the modi昀椀ed loss functions technique. Liao et al. [132]
developed a PIML model for the DED process to predict the full-昀椀eld
thermal history and unknown material/process parameters using
partially observed temperature data as input. As shown in Fig. 18, they
de昀椀ned a loss function that combines the residuals of the PDEs, the
boundary conditions, and the initial conditions, along with an additional
data-based loss term that uses experimental or simulated temperature
data as the ground truth. The PIML model was able to predict both
simulated and experimental temperatures with RMSE of 14.07 K and
47.28 K, respectively. It was reported that the inclusion of an auxiliary
data term in the loss function led to the same level of accuracy in only
one-third of the epochs required without this additional term. They also
found that a pre-trained model required less than one-昀椀fth of the
number of epochs compared to a randomly initialized model to reach the
same level of accuracy. By using this approach, the PIML model pre-
dicted the laser absorptivity, heat capacity, and thermal conductivity
with errors of less than 5 % compared to corresponding simulated
values. Using a similar methodology to fuse governing equations into the
loss function, the study of gas 昀氀ow meltpool in PBF, as well as temper-
ature distribution during the cooling phase in the VPP process are re-
ported in [133,135], respectively. It was concluded that the PIML
models require only a limited dataset [133,134] and are more suitable
for industrial applications [135].

In physics-based loss function modi昀椀cation of PIML models, various
terms related to governing PDEs, and data terms are integrated into the
loss function. Fusion of different terms in loss functions is usually done
by using a weighted sum approach. Li et al. [136] predicted the 3D
temperature 昀椀eld during the deposition and cooling stages of the DED
process using a PIML model. The weights of loss terms were considered
as one for PDE and initial condition residuals and 10 for boundary
condition residuals. The predicted temperature 昀椀elds from this approach
were in good agreement with FEM results, with a maximum relative
error of about 2 % for the entire process, and an absolute error of less
than 10 K at the end of the cooling stage.

As fusion of physical terms in loss functions by weighted summation
might have an impact on the learning process, Zhu et al. [139] proposed
a hard-type approach for Dirichlet boundary conditions based on a
Heaviside function and combined it with PDE loss term. This hard-type
approach can not only precisely satisfy the Dirichlet boundary condition
but also speed up the learning process, compared with the conventional
soft approach that uses additional constraints in the loss function to
enforce the boundary condition. The investigations demonstrated that
the PIML approach can accurately predict temperature and meltpool
dynamics during metal AM processes, without requiring large amounts
of data.

In addition to adjusting the summation methodology of different
terms in the loss function, it is also important to tune the hyper-
parameters of the model to reach the desired accuracy. Usually, trial and
error methods are used for 昀椀nding the best set of hyperparameters.
However, more advanced tools, such as grid search methods, can also be
implemented to obtain the best set of hyperparameters and eventually
better trained models. Xie et al. [140] utilized a grid search method to
昀椀nd the optimal combination of hyperparameters for a PIML model
developed to predict the 3D temperature distribution in both single-
layer and multi-layer DED processes. The PIML model was trained
with a loss function that combined data, heat conduction PDE, initial,
and boundary conditions, and it was reported that the model had an
error rate of 2.61 %. In contrast, models that included only data or PDE
terms in their loss function had higher error rates of 7.52 % and 82.6 %,
respectively. They compared the performance of the PIML model with
pure ML models such as ANN, LSTM, and XGBoost, and found that the
PIML model had additional extrapolation ability and accurately pre-
dicted temperatures with a mean relative error of 4.83 %. It is worth
mentioning that the training time for the PIML model was longer than

Fig. 17. Categorization of the reviewed PIML methods based on physics-based
loss function.
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that of the pure ML models. However, given the high cost of data
collection in DED, PIML achieved comparable accuracy with only 20 %
of the data required for training the deep neural networks.

The basis of the above-mentioned studies in using PDE-related terms
in the loss function of ANN in PIML models is to use a set of collocation
points. Hosseini et al. [141,142] proposed physics-inspired non-homo-
geneous methods for selecting collocation points to improve the ef昀椀-
ciency and accuracy of the model. They developed an ANN-based PIML
model for predicting the temperature and meltpool dimension in a
single-track PBF process using space coordinates, time, laser power,
laser scanning speed, thermal conductivity, and speci昀椀c heat capacity as
inputs. Unlike traditional grid-based approaches, their ANN-based PIML
is grid-free and aims to minimize the residuals of the heat transfer PDE
and its initial and boundary conditions for selected collocation points.
Results showed that PINNs were 5 to 6 orders of magnitudes faster than
the FEM method, with a storage size of just a few megabytes for the
entire range of process-material parameters, while FEM simulations
could require several gigabytes for each scenario.

Data generation can also be done by using voxels in the domain and
calculating physical parameters for each of them. A CNN-based PIML
that utilizes the transient 3D heat equation to simulate temperature
changes in a solid object over time is reported in [143,144]. A voxel
representation for PBF 昀椀nite difference method is studied by considering
the temperature and heat generation values at each voxel at a given time
as inputs, and the estimated temperatures of the voxels at the next time
step as outputs. The loss function integrated temperature values in the
voxels, taking into account the corresponding conduction, convection,

and heat generation effects. To maximize the ef昀椀ciency of generating
training data while minimizing the potential for researcher-selected
bias, a stochastic method was used. The researchers used the Wilcoxon
signed-rank test to determine that, in general, the PIML outperforms the
label-trained ANN when trained on the same data and constraints. A
CNN-based PINN for porosity prediction in LMD process has been
developed in [147], by using various combination of physical variables
such as maximum melt pool temperature, melt pool length and width in
loss function. Furthermore, reality-augmented data can enhance the
performance of PINNs, as proposed by Zhu et al. [153]. The augmented
data was obtained from a limited number of experiments and an accu-
rate 3D heat transfer model that includes turbulence. The results showed
that this approach achieved higher ef昀椀ciency compared to simulations.

In addition to the previously discussed hyperparameters and
convergence methods, the variables within the physical models play a
crucial role in achieving high accuracy. The accuracy of PINNs depends
on the parameters in the governing physical equations, such as
temperature-dependent thermal properties and speci昀椀c heat, which are
often dif昀椀cult to measure experimentally. However, PINNs can identify
these thermophysical properties using an inverse approach. Sharma
et al. [149] introduced a forward-inverse PINN for the LPBF process. In
the forward problem, a neural network uses temperature data from
collocation points to predict velocity and pressure at those points. For
the inverse problem, the neural network estimates the Peclet and Rey-
nolds numbers using temperature and velocity data. It was found that
the PINN model can infer unknown parameters like the Reynolds and
Peclet numbers when provided with suf昀椀cient velocity and temperature

Table 5
Summary of studies on physics-informed loss functions based on a. governing physical equations, b. physical equations and data-centric extraction.
Ref Year AM

process
Integrated physical knowledge Dataset size Target

a. Source of physical knowledge based on governing physical equations
[132] 2023 DED Data term and transient heat conduction PDE with corresponding initial and

boundary conditions
100,000 labelled
data points

Temperature prediction and
parameter identi昀椀cation

[133] 2023 PBF Data term, PDE residual, and boundary condition 昀椀tting 10,000 data points Temperature and velocity 昀椀eld
[134] 2023 DED Data term and transient heat conduction PDE with corresponding initial and

boundary conditions
Temperature and meltpool
dimensions

[135] 2021 VPP Values and partial derivatives of temperatures 200,000 data points Predicting thermal behavior
[136] 2023 DED Transient heat conduction PDE with corresponding initial and boundary

conditions
10,000,000
temperature outputs

3D temperature 昀椀eld

[137] 2024 PBF Transient heat conduction PDE with corresponding initial and boundary
conditions

Temperature and meltpool size

[138] 2024 PBF Transient heat conduction PDE with corresponding boundary conditions Temperature
[139] 2021 PBF Residuals of conservation equations of energy, mass, and momentum 788,651 points Temperature and meltpool

dynamics
[140] 2022 DED Data term and transient heat conduction PDE with corresponding initial and

boundary conditions
7000 3D temperature 昀椀eld

[141] 2022 PBF Transient heat conduction PDE with corresponding initial and boundary
conditions

524,288 points Temperature pro昀椀les and meltpool
dimensions

[142] 2023 PBF Transient heat conduction PDE with corresponding initial and boundary
conditions

524,288 Temperature and meltpool
dimensions

[143] 2021 PBF Transient thermal model with corresponding conduction, convection, and heat
generation

5000 Temperature history throughout a
solid object

[144] 2023 PBF Conduction and convection 昀椀nite difference equations 5000 Temperature
[145] 2020 MEX Displacement-based equations 39 experiments Bond quality and porosity
[146] 2024 PBF Physical law related to the fatigue life Fatigue life
[147] 2022 DED Various combination of physical variables such as maximum melt pool

temperature, melt pool length and width in loss function
– Porosity

[148] 2024 PBF Data term and transient heat conduction PDE with corresponding boundary
conditions

– Temperature

[149] 2024 PBF Data term, energy and Navier-stokes PDEs with corresponding initial and
boundary conditions

50-13,500 points Temperature, velocity, pressure

b. Source of physical knowledge based on both governing physical equations and data-centric extraction
[150] 2023 PBF The Murakami formulation indicates the relation between the fatigue limit and

the characteristic defect size
561 Effect of process parameters on the

fatigue response
[151] 2022 PBF Semi-empirical modeling approach to fatigue life based on linear elastic fracture

mechanics
12 samples Fatigue 昀椀nite life
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training data.
Eventually, most of the discussed studies are focused on developing

PINN for single-track prints. In practice, it is fundamental to extend the
solutions from single-track scenarios to various manufacturing condi-
tions, multi-track prints, and part-level results. Li et al. [136] developed
a transfer learning part that allowed for faster predictions without
sacri昀椀cing accuracy when dealing with different manufacturing sce-
narios. The computational time required for this approach was
approximately one-third that of FEM. An extension of PINN for multi-
track PBF prints indicated temperature discrepancies of less than 7 %
and meltpool size differences of under 1 % when compared to FEM
simulations [137]. By using the transfer learning of a pre-trained PINN
for a PBF print layer, Uhrich et al. [138] tuned the weights for the next
layers with a considerably lower time. It was shown that the PINNmodel
can be used to study thermal stresses by evaluating the temperature
gradients predicted by the PINN model.

3.3.2. Using physics-based parameters in the loss function
Another way of fusion of data in loss function is by incorporating

domain knowledge and physics-based parameters rather than using PDE
residuals. This helps to constrain the loss function or penalize the
network while training and eventually guarantees the physical sound-
ness of the PIML model. To do so, an ANN-based PIML framework is
employed by Salvati et al. [151] to predict 昀椀nite fatigue life in materials
containing defects. They developed a linear elastic fracture mechanics
semi-empirical model to represent the physics of the problem and fused
it within the loss function of the PIML model. From the semi-empirical
model, the two-sided con昀椀dence intervals are fused as constraints
with the regular neural network's loss function. They employed limited
experimental data from the literature to create and validate the model's
accuracy for the AlSi10Mg alloy produced by the PBF method. Incor-
porating a physical model as an additional constraint in the loss function
represents a signi昀椀cant step towards developing more interpretable
models, as opposed to traditional models that are based solely on
available data. As shown in Fig. 19, a combination of physical loss and
data loss is utilized in the proposed PIML model. The PIML model
demonstrated an 83 % improvement in R2 compared to the traditional
ML model that relied solely on data loss without any physical
constraints.

Kapusuzoglu and Mahadevan [145] developed an ANN-based PIML
model that can predict the overall dimensionless neck diameter and
porosity of MEX parts. Three techniques were presented for merging
physical knowledge into a PIML. The 昀椀rst method involves integrating
physical constraints into the loss function of the PIML. The second

approach uses physics model outputs as supplementary inputs to the
PIML model. The third technique involves pretraining a PIML model
with physics model input-output data and then 昀椀ne-tuning it with
experimental data. The loss function includes physical violations related
to the overall dimensionless neck diameter and porosity, as well as the
physical relationship betweenmechanical properties and neck diameter.
Eight different combinations of the above-mentioned three techniques
were explored using printer extrusion temperature, speed, layer height,
昀椀lament width, length, number of layers, and number of 昀椀laments per
layer as model inputs. It was demonstrated that incorporating physics
knowledge not only enhances prediction accuracy and produces physi-
cally meaningful results but also enables accurate model predictions
with smaller amounts of experimental data. However, if the physical
model is computationally expensive, the advantage of the pre-training
technique in using a larger input dataset gets restricted.

3.4. PIML models with more than one fusion mechanism

Integrating thermal simulations, sensor data fusion, and data-driven
approaches has been one of the promising research directions in recent
years [154,155]. While not frequently explored, it may be possible to
form PIML models where multiple fusion mechanisms discussed above
are integrated together. For example, Ciampaglia et al. [150] created a
PIML model based on both loss function modi昀椀cation and architecture
shaping approaches that predict how process parameters impact the
fatigue response of AlSi10Mg specimens made through AM. Two neural
networks were 昀椀rst used in parallel to predict the defect and to estimate
the microstructure. In the defect estimation neural network, the effect of
build orientation, hatch, speed, energy, power, layer thickness, beam
diameter, and plate temperature on the predicted defect size was stud-
ied. In Microstructure estimation, duration and temperature of the
thermal treatment were used to predict the microstructural strength
parameter. Next, the ratio of the defect and microstructure results were
combined in a loss function of the ANN-based PIML model to predict
fatigue strength. The models were trained using experimental data from
the literature. PIML performance was compared with a common feed-
forward neural network, and it was shown that the PIML model is in
agreement with the experimental data, with mean and maximum errors
of 4 % and 17 %, respectively. It was concluded that the proposed model
allows designers to directly assess fatigue strength from process pa-
rameters and heat treatment properties without the need for time-
consuming and expensive experimental fatigue tests. The proposed
approach also proved promising in optimizing part design for the best
fatigue performance.

Fig. 18. PIML framework based on ANN with PDE-related and data-based loss function [132].
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To provide a real-time PIML model, Sajadi et al. [156] developed a
PIML model for temperature prediction in metal additive manufacturing
by implementing physics-informed online learning. This model utilizes
physics-informed inputs and loss functions to dynamically update its
weights as new, unseen data becomes available. This continuous adap-
tation enables the model to re昀椀ne its predictions in real-time, show-
casing signi昀椀cant potential for enhancing the online control and
optimization of metal AM processes. Physical knowledge can also be
fused to the model inputs, architecture, and loss function, simulta-
neously. Wang et al. [146] developed a probabilistic PINN model for
uncertainty-aware fatigue-life prediction of PBF-fabricated parts. The
neurons and loss functions were constrained by physical laws and
physical models, respectively. Consequently, the reliability interval for
predicting fatigue life using a parameterized approach in probability
and statistics was assessed by generating the average prediction curve
and con昀椀dence limits for fatigue life.

4. Summary and scope for future work

In this section, 昀椀rst, the reviewed studies on PIML for PSP modeling
in AM are visually categorized and explored based on various factors,
including the considered AM technology, adopted ML model, integra-
tionmethodology of physics into different stages of MLmodels, source of
the physical knowledge, and targeted parameter/output in either of the
process, structure, property categories. The aim of these visual sum-
maries and discussions is to provide an overview of the focus of the
current literature, while simultaneously revealing potential discernible
gaps, e.g., scarcity of PIML studies targeting a particular AM process.
Next, additional discussions on the consideration of developing PIML
models, technical research gaps, and potential future research directions
and challenges are presented.

4.1. Summary of the reviewed PIML studies

This section highlights the summary of reviewed PIML models from
different perspectives based on AM technologies, ML models, sources of
physical knowledge, and PSP relationships.

4.1.1. Summary of PIML studies based on AM technologies
According to Fig. 20, the majority of the reviewed PIML studies focus

on metal-based AM technologies, including powder-bed fusion and
directed energy deposition processes. PIML modeling for polymer-based
AM techniques, which generally rely on different physical principles as
metal-based processes, such as material extrusion and vat photo-
polymerization processes, are also explored, but they are not studied as
much as metal-based AM methods. The emphasis on metal-based AM
processes 昀椀nds its rationale in the strategic signi昀椀cance that metal
components hold across industries, most prominently in sectors like
aerospace and automotive. Consequently, accurate prediction and con-
trol of the product quality using powerful and emerging techniques such
as PIML is crucial. On the other hand, this highlights a potential gap in
exploring PIML models and applications in other AM technologies, such
as binder jetting, material jetting, and sheet lamination, as well as

expanding studies on the less explored AM categories, including vat
photopolymerization.

Another observation from Fig. 20 is that while all three categories of
physics fusion techniques, namely feature engineering, architecture
shaping, and loss function modi昀椀cations, have been utilized to imple-
ment PIML models for different AM technologies, physics-based feature
engineering has been the most common approach among researchers.
This preference can likely be attributed to its inherent implementation
simplicity compared to other approaches. The architecture shaping
method is, however, the least explored approach as it generally requires
a deeper understanding of both the underlying physics, the intricacies of
the model architecture itself, and clear methodologies for integration.

4.1.2. Summary of PIML studies based on ML models
Fig. 21 illustrates the distribution of different ML models that have

been explored by researchers in the 昀椀eld of PIML for PSP modeling in
AM. As expected, ANNs are the most commonly used method and have
been examined in all three categories of feature engineering, architec-
ture shaping, and loss function modi昀椀cations. The analysis indicates that
physics-based feature engineering techniques are applied with a broad
range of MLmodels, including neural networks, tree-basedmodels, GPR,
KNN, SVM, and different linear ML models. However, the categories of
architecture shaping, and loss function modi昀椀cations were solely stud-
ied on neural networks and deep learning models. This points to a
research gap in incorporating physical knowledge into the architecture
and training processes of a broader range of ML models, rather than
limiting the focus exclusively to neural networks.

A heat map of the reviewed PIML studies based on the focused ML
models for different AM technologies is shown in Fig. 22. It can be seen
that ANN models are the most widely studied models in all AM pro-
cesses. While a variety of classical ML models were reported for the PBF
process, the other AM technologies, such as DED, MEX, and VPP mostly
considered deep learning as the ML component of their PIML models.
Although, the latest advanced ML models such as neural operators have
been implemented in AM 昀椀eld [157], there is a research gap in exploring
physics-informed versions of neural operators [158] and transformer-
based PINNs [159] within the scope of AM.

It is worth mentioning that irrespective of the chosen ML model, to
get the best accuracy, the hyperparameters of the model should be tuned
appropriately [160]. According to the reviewed articles, trial and error
method is widely used for tuning the hyperparameters. By trying
different combinations of hyperparameters [106], using cross-validation
[98], grid search method [140], and implementing sequential Bayesian
optimization [94], the best combination of the hyperparameters can be
chosen to get the desired accuracy.

4.1.3. Summary of PIML studies based on the target output in the PSP chain
Given the scope of the current study, i.e., PIML for process-structure-

property modeling in AM, the target of interest for all studies has been to
provide predictions on components related to either of the process (e.g.,
meltpool dynamic, thermal pro昀椀le), structure (e.g., microstructure and
pores), or property (e.g., tensile strength, dimensional accuracy) of
additively manufactured components. A summary of the studies based

Fig. 19. Using physical model in the loss function (Reproduced with modi昀椀cations from [151]).
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on the category of the targeted output is provided in Fig. 23. It can be
seen that while all three physics-fusion mechanisms have been consid-
ered in these studies, the prevalent fusion method utilized for all three
PSP categories is feature engineering, followed by modi昀椀cations to loss
functions and architecture shaping.

According to Fig. 23, the process class is the most extensively studied
category, accounting for over 50 % of the total studies. This prominence
can be attributed to the availability of numerous process-related vari-
ables, such as input process parameters [91,111] or process signatures
like thermal behavior [120,134,135,161], meltpool size [98,141],
meltpool dynamics [139], thickness [121]. These variables can be

measured/estimated experimentally or obtained by solving governing
equations. Feature engineering approaches primarily target process-
related parameters, while modi昀椀cations to architecture and loss func-
tions are typically employed when governing equations are accessible.
For structure predictions, researchers aimed at using PIML models to get
the porosity [94,110,145], pore size [88,109], grain structure [87,123],
balling defects [85], crack formation [86] in different AM processes.
Eventually, the property-related parameters like tensile strength
[96,106,124], yield stress [106], fatigue life [150,151] were obtained
using PIML models. Since the current modi昀椀cations to architecture
shaping and loss functions mainly rely on established governing

Fig. 20. The number of reviewed studies on developing PIML models for different AM technologies.

Fig. 21. Number of reviewed studies versus different ML methods used in PIML modeling of AM technologies.
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equations, most studies predicting structure-related and property-
related factors predominantly use physics-informed feature engineering.

In addition to PSP discovery, PIML frameworks can be utilized for
process optimization, design, and control in AM. For example, PINN can
predict thermal 昀椀elds in metal AM across different process parameters,
helping to determine optimal processing conditions. On the design side,
methods such as physics-informed geometric operators [162] can be
applied to enhance the ef昀椀ciency and accuracy of the AM design process.
Moreover, PIML methods offer the capability to integrate real-time
sensor data and dynamically update models for more accurate control
and adjustments [50,163].

4.1.4. Summary of PIML studies based on the source of physical knowledge
As previously discussed, sources of physical knowledge used to fuse

into PIML models can stem from different origins, including (i) gov-
erning physical equations, (ii) data-centric approaches without using
any physical equations, or (iii) both through a hybrid mechanism. As
depicted in Fig. 24, studies based on data-centric approaches to derive
physical knowledge mainly adopt a feature engineering mechanism to
fuse that physical knowledge with the ML model. On the other hand, the
majority of loss function-based fusion mechanisms rely on governing
physical equations as the source of physical knowledge. This highlights
that mechanistic and physical models play a bigger role in how ML
models learn, while physical knowledge derived through data-centric
approaches may be more valuable for identifying features that may
contribute to the output.

4.2. Challenges, research gaps, and directions for future research

This section highlights the current challenges, research gaps, and
potential future directions with respect to PIML for PSP modeling in AM.

4.2.1. Computational time for PIML models
In addition to the accuracy of PIML models, the computational needs

and time of PIML models should also be considered. In general, the
required time of a model depends on the adjustment of different pa-
rameters and should be considered along with the model accuracy in

cases where a trade-off exists between them. For example, in the case of
loss function modi昀椀cation, the PIML model was 5 to 6 orders of
magnitude faster than FEM simulations in [141], while it was two times
slower than FEM models in [139]. Therefore, it is bene昀椀cial to consider
different factors that might impact the computational times.

One factor that affects the computational time is the number of input
features. As seen in feature engineering approaches, an increment in the
number of features might increase the complexity of models and so
correspondingly increase the running time [100]. For example,
compared to CNN, using the SHAP-based PIML model reduces the
computational time from 5.8 s to only 1.2 μs [106]. On the other hand,

Fig. 22. Heat map representation of ML algorithms used in PIML modeling of different AM technologies.

Fig. 23. The number of reviewed studies versus PIML predictions related to
PSP parameters.
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augmented features can be used to build up more causal PSP relation-
ships. Therefore, it is necessary to use appropriate feature engineering
techniques to attain higher accuracies as well as lower computational
needs.

Another factor that affects the computational time is the chosen
machine learning model. It was reported that by using deep unfolding
technique in the architecture of a PIML model, higher accuracy can be
obtained compared to ANN, ETR, LSTM, and SVR models [120]. While
its training time is lower than that of ANN and LSTM, it takes more time
than ETR and SVR to train. This difference might be attributed to the fact
that unfolding the physics-based equation in the model architecture
helps to have a sparse network and faster training compared to the fully
connected ANN and LSTM [120].

Another factor affecting computational time is the programming tool
used to build the machine learning part of PIML models. In the reviewed
papers, machine learning models are mainly implemented in Tensor昀氀ow
[91,118–120,135,136,139,140,143] and Pytorch [125,132,141,145,151].
Due to the large and complex matrix calculations, the selection of appro-
priate coding libraries can signi昀椀cantly impact the training time of the
model as well as simplify the implementation. For instance, in cases that
deal with PDEs, utilizing the automatic differentiation capabilities of
speci昀椀c libraries in Python can facilitate the performance.

Finally, it is important to mention that computational time is also
dependent on the computational power, i.e., central processing unit
(CPU) and graphics processing unit (GPU). As most of the reviewed
papers didn't report the computational time and power, it is recom-
mended that details in terms of computational needs and time be pro-
vided in future studies to better evaluate the PIML models and their
applicability in various scenarios, such as real-time AM control. As
conventional physics-based models are usually time-consuming, PIML

models can be a leading approach in the real-time investigation of AM
processes. Inspiring from the research on in-situ monitoring of AM
processes using ML [43,45,164], further integration of real-time process
monitoring and defect detection with PIML models appears to be
bene昀椀cial.

4.2.2. Dataset size and data availability concerns in PIML models
Data availability is one of the main issues of machine learning

models, especially in the 昀椀eld of AM. Thanks to the knowledge coming
from physics, PIML models are reported to be less data-hungry
compared to pure machine learning models [99,118–120,133,151].
Table 3, Table 4 and Table 5 provide a summary of the type of input data
and different dataset sizes for different PIML models based on various
fusion mechanisms and sources of physical knowledge. For example, the
studies using images reported dataset sizes of 1500-118 k, and the
collocation points generated for loss function modi昀椀cations were in the
order of 100 k-10 M. In most of the reviewed papers, the sample sizes
(data points) typically ranged from around 26 to 3318, while the
number of experiments (from which data points were extracted) varied
between approximately 5 and 144. This highlights the importance of
developing a standardized outline for reporting the dataset size and its
details in future PIML studies in the 昀椀eld of AM. Moreover, as the AM
昀椀eld is getting mature, providing guidelines for building on open-access
database brings signi昀椀cant advantages to establish future PSP-related
frameworks [53].

The datasets in PIML studies were provided using various experi-
mental approaches and numerical simulation tools such as Abaqus
[136], Autodesk Netfabb [98], FEniCS [132], Matlab [100,135],
OpenFOAM [91], etc. As using simulation software and in-situ data
collections are complex, cost-prohibitive, and time-consuming,

Fig. 24. The number of reviewed studies versus the sources of physical knowledge fused into PIML models.
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generative AI techniques are becoming a promising solution to provide
the data for ML models. Generative adversarial networks [165], diffu-
sion models, and VAE [166] are among the most popular generative AI
models in various domains. These models can be further fused with
physical knowledge, e.g., physics-informed conditional GANs, to
generate additional data required for training PIML models [167].
Future studies on developing physics-informed generative models in AM
can pave the way for further development of PIML models.

4.2.3. Generalizability and transferability of PIML models
It is important to consider the potential generalizability of estab-

lished PIML models to various AM machines, different materials, and
complex print geometries. Transfer learning can be considered as a
suitable method to perform this generalization. For instance, by using
transfer learning to extend the modi昀椀ed loss PIML framework to various
manufacturing parameters, simulation time was reduced to only 1/3 of
the FEM simulation time [136]. In another study, knowledge transfer
was used on a PIML model to predict the performance for various con-
ditions and 3D printers [99]. More details on the implementation of
transfer learning in modeling AM processes can be found in a review
done by Tang et al. [168]. The transfer learning concept can be further
integrated into PIML models in future studies.

To formulate generalizable PIML models, researchers have been
working on extended physics-informed neural networks through
physics-based loss function modi昀椀cation [169]. The extended physics-
informed neural networks can solve forward as well as inverse PDE
problems, which will improve understanding of PSP relationships and
generalize ML models for more applications. The AM community can
thus leverage such advancements and explore these novel approaches to
establish generalizable PSP models as a future direction.

Moreover, reinforcement learning has emerged as a promising
approach to enhancing the generalizability of machine learning models.
By learning from interactions with environments and optimizing actions
based on reward signals, reinforcement learning models can develop
more robust representations that capture underlying patterns in the
data. Although reinforcement learning has been used to optimize
printing path control function [170] and minimize the defects [171] in
the 昀椀eld of AM, there is a research gap in PIML modeling of AM pro-
cesses using reinforcement learning. Therefore, physics-informed rein-
forcement learning can be brought into the 昀椀eld of AM in future studies,
as similar efforts are made in other domains, such as wireless navigation
[172] and connected automated vehicles [173].

Exploring the integration of federated learning, a machine learning
approach that enables multiple entities to collaboratively train a shared
model without having to share their raw data with each other, and
physics-informed learning can be an interesting topic of future research
and may hold several potentials for increasing the generalizability of
PIML models. [174]. For example, additive manufacturing processes
may be executed by different manufacturers or distributed across
various geographical locations. Each entity might have data speci昀椀c to
its environment and conditions. Federated learning could facilitate the
collaboration of these entities to jointly train a physics-informed model
that captures and updates the models based on physics. Additionally,
different computing models, such as edge computing [175], can also be
fused with PIML methods to increase the generalizability of models
[176].

4.2.4. Interpretability, explainability, and trustworthiness of PIML models
The interpretability, explainability, and trustworthiness of PIML

models represent critical considerations in ensuring the effectiveness
and reliability of their application for the AM community. The inter-
pretability and explainability factors refer to the model's capacity to
provide transparent and interpretable insights and rationale into its
decision-making processes. This transparency is extremely important for
the AM community because it helps human users trust and believe in the
model's results, speci昀椀cally given their critical application domains.

While these topics have been long an important area of research among
arti昀椀cial intelligence researchers, the emergence of PIML models has
opened up new directions of research for the community [177].

Although it may seem logical that adding physical knowledge to
machine learning models would automatically enhance their interpret-
ability and explainability, the situation is often more complex and re-
quires deeper analysis. In reality, the interpretability and explainability
of physics-informed machine learning (PIML) models depend on factors
such as the model architecture, how data is represented, and the
methods used to integrate physical knowledge. Therefore, not all PIML
models offer a similar level of explainability and interpretability [178].
For example, while leveraging physics during the ML model training
through loss function modi昀椀cation (e.g., in PINNs), can help capture
underlying physical behaviors, it still suffers from lack of interpretability
at the model architecture level. There has been some ongoing research
on enhancing the explainability of physics-informed models through, e.
g., using PCA to explain distributed representations [179] and per-
forming sensitivity analysis [180]. Enhancing the interpretability of
PIML models by methods such as Kolmogorov Arnold Networks [56],
and Sparse PINNs [55], etc. remains a highly active and prominent area
of ongoing research [54].

On the other hand, fusing the physical knowledge into the archi-
tecture of ML models may hold a higher promise in formulating more
explainable models. For instance, in a recent study that employed ar-
chitecture shaping through the deep unfolding approach to predict
thermal history in the PBF AM process [120], the neural network's
weights and biases were intricately linked with physical model param-
eters and coef昀椀cients. Consequently, after the model has been trained, it
becomes feasible to precisely extract these physical model coef昀椀cients,
often linked to material properties. This approach carries substantial
importance, as it allows for a more profound understanding of the
model's behavior and provides a clearer pathway for relating predictions
to the real-world factors they represent, thus enhancing model inter-
pretability and explainability.

There is a signi昀椀cant research gap when it comes to investigating and
improving the explainability of PIML models within the AM community.
As interpretability and explainability are subjective in nature, the gap
becomes even more pronounced, especially considering the critical role
that process-structure-property modeling plays in AM. Striking a bal-
ance between PIML model complexity, predictive accuracy, and inter-
pretability remains an ongoing challenge that necessitates careful design
and optimization. Within the context of PIML model trustworthiness, it
is also important to establish new criteria, standards, or metrics based on
process physics, available process data, and model characteristics that
guide human users in placing con昀椀dence in the model's predictions.

4.2.5. Fusion of physical knowledge and its challenges in PIML models
Although there are several approaches to integrating physical

knowledge with the ML models, each may offer several advantages
while suffering from limitations. These capabilities and challenges have
been summarized in Table 6 and may be used by researchers to identify
the appropriate fusion mechanism. It can be seen that in general, based
on the available data and source of physical knowledge, appropriate
physics fusion methodology can be selected. However, selecting the
fusion approach might require some considerations, such as access to
appropriate software, coding skills, and computational power, for
example.

4.2.6. Multi-modal PIML: integrating various fusion mechanisms
Multi-modal PIML models can be considered as PIML models in

which various sources of physical knowledge are fused into different
stages of the machine learning model. As different physical sources and
fusion mechanisms offer various capabilities in PIML models, multi-
modal PIML models are expected to perform better than existing PIML
models. For instance, architecture shaping fusion approaches can be
mixed with loss function fusion approaches, or feature engineering

M. Faegh et al. Journal of Manufacturing Processes 133 (2025) 524–555 

549 



methods can be combined with modi昀椀ed loss functions to form more
interpretable models with higher prediction accuracies. For example,
Kapusuzoglu and Mahadevan [145] developed a PIML model that in-
corporates physical knowledge into the loss function to predict bond
quality and porosity in fused 昀椀lament fabrication parts. Additionally,
the outputs from the physical model are used as extra inputs to the
network, creating a hybrid PIML model that leverages physics both as
input features and within the loss function. Their 昀椀ndings indicated that
this hybrid approach outperforms the strategy of solely embedding
physical knowledge in the loss function. Surprisingly, not many re-
searchers have looked into this idea of blending different fusion methods
together, especially in the 昀椀eld of AM and PSP modeling. Identifying
when and how to mix different fusion approaches to maximize their
synergies is an important and exciting direction of research, yet to be
explored.

4.2.7. Usefulness and suitability of PIML models
In general, it is without doubt that PIML models and the ongoing

research by the research community hold signi昀椀cant promise in
enhancing ML model predictions and accuracy by connecting them to
the physical laws. However, the decision on whether to use PIML models
or not could be subject to discussion in a case-by-case scenario and
would be of signi昀椀cance to AM practitioners.

There are several circumstances that using a pure ML model may
suf昀椀ce for a given application. For example, if there is an ample amount
of high-quality data available, exploring PIML models may not be
justi昀椀ed. Nonetheless, in the context of AM, this may pose signi昀椀cant
experimental cost and burdens. Additionally, even if the dataset is suf-
昀椀ciently large but does not adequately represent the entire domain,
PIML models may be more suitable as they are constrained with physical
knowledge compared to the pure ML models that only rely on training
data. Unlike pure ML models that rely solely on training data, PIML
models incorporate physical knowledge, making them better equipped
to handle diverse conditions and provide more reliable insights. On
another note, if the underlying physical model used to inform the PIML
framework is inherently 昀氀awed, the performance of the PIML model
may suffer compared to pureMLmodels. This is because the PIMLmodel
relies on embedding physical laws as prior knowledge, and when those

laws are inaccurate or incomplete, the PIML model may be constrained
by inaccurate assumptions. In such cases, leveraging inaccurate physics
can hinder the model's predictive capabilities, while purely data-driven
ML models could perform better by relying solely on patterns learned
directly from a large set of data.

Furthermore, the risk and quality acceptance threshold for various
AM applications and products may be different and needs to be carefully
considered when evaluating the suitability of pure ML models versus
PIMLmodels. Developing standardized benchmarks and metrics tailored
to PIML approaches would be highly bene昀椀cial, taking into account the
varying contributions of experimental methods, numerical simulations,
and machine learning models. This should include evaluating factors
such as data collection costs, computational requirements, and overall
process effectiveness from data acquisition to target prediction and,
perhaps real-time applications. Moreover, recently, there have been
some emerging efforts in the certi昀椀cation of deep learning models
(which perhaps can be extended to PIML approaches in the future),
particularly focusing on the training process to evaluate whether a
model has been properly trained using the available data. These efforts
aim to provide systematic, data-aware methods for assessing training
quality and ensuring the reliability of neural networks [181]. Therefore,
a comprehensive comparison framework would allow for a fair assess-
ment of different PIML methods and empower researchers to utilize
these approaches more effectively.

5. Conclusions

Physics-informed machine learning methods have distinct potential
to enhance interpretability, robustness, and computational tractability
towards the prediction of critical process-structure-property relation-
ships in AM. Incorporating the fundamental physics of AM processes into
ML models overcomes the drawbacks regarding the high computational
cost of physics-based simulations, as well as high data requirements and
lack of interpretability pitfalls of black-box ML models.

In this review, different physics-informed approaches towards PSP
modeling in AM using a wide variety of machine learning models and
physical knowledge sources are summarized. The reviewed PIML studies
are grouped into three main categories including feature engineering,

Table 6
Challenges and capabilities of various physics fusion methodologies for PIML modeling in AM.
Fusion approach Capabilities (Implementation and performance) Challenges/Limitations (Implementation and performance)
Physics-based feature
engineering

" Can be employed even when speci昀椀c physical models or equations are not
readily available, by ef昀椀ciently obtaining underlying physical insights
through data-centric feature engineering.

" Are generally more straightforward in implementation.
" Most insightful physical features can be identi昀椀ed and incorporated into
the model using various feature engineering methods.

" Pre-processing (e.g., through image analysis, machine learning, and
statistical analysis) might be required to obtain the desired physical
knowledge.

" As physical fusion is done only for the model inputs, the black box nature
of the ML part still exists, limiting the interpretability of this technique.

Physics-based
architecture
shaping

" Parameters in the model architecture (e.g., weights) can be guided directly
by physical knowledge, resulting in time-ef昀椀cient and data-ef昀椀cient
training. Thus, they may be bene昀椀cial for data-scarce scenarios.

" Can generally create more explainable models. For example, the weights
attached to physical parameters in the deep unfolding architecture shaping
methods can give more accurate information about changes in the physical
parameters. Besides, physical equations can be considered as weights of
the causal graph network, leading to a faster training process.

" As the model architecture consists of physical equations, these models may
easily be transferred and generalized for certain problems but with
different processing parameters and materials.

" Certain models, such as knowledge graph have the capability to link the
entire PSP chain.

" The coding part of fusing the physical equations into the architecture of
machine learning models might not be straightforward. Therefore, more
advanced knowledge of using appropriate software/coding libraries for
integrating physics into ML architecture is necessary.

" The form of required physical equations to be compatible with a certain
architecture shaping approach may be subject to constraints [120].

Physics-based loss
function
modi昀椀cation

" Governing differential equations can be fused to the loss functions and
solved using the automatic differentiation capabilities of ML libraries.

" Semi-empirical and physical parameters can be integrated into the loss
function to constrain the solution domain based on physical knowledge.

" As they can be trained with no/limited data, they can be considered as
data-ef昀椀cient approaches compared to pure ML models.

" The solutions for a speci昀椀c case can be transferred and generalized for
different processing parameters and materials.

" The development of PIML models with modi昀椀ed loss functions may face
challenges in terms of computation time and required resources.

" In addition to collocation points generated for solving PDEs, additional
data terms are usually required for increasing the model accuracy and
reducing the training time.
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architecture shaping, and loss function modi昀椀cations. The following
highlights can be drawn from different viewpoints of the reviewed
studies:

" Physics-based feature engineering for PIML models: The feature en-
gineering category includes the generation of physics-informed
variables based on analytical models and numerical simulations,
the extraction of physical knowledge by various data-centric
methods such as statistical approaches, image analysis techniques,
and multi-stage ML models, as well as the combination of different
data sources, feature mapping, and feature selection techniques.

" Physics-based architecture shaping for PIML models: The architec-
ture shaping category includes innovative approaches to fuse phys-
ical knowledge into the architecture of ML models rather than using
pre-de昀椀ned off-the-shelf ML models. The development of physics-
informed causal graphs, graph networks, LSTM networks, and deep
unfolding methodology is among the latest PIML architecture
shaping research studies.

" Physics-based loss function modi昀椀cation for PIML models: Loss
function modi昀椀cation using physics knowledge is done by incorpo-
rating residuals of governing differential equations or by using
physics-based parameters in the loss function.

" Sources of physical knowledge in PIML models: The sources of
physical knowledge fused in different stages of PIML models can be
based on either governing physical equations such as analytical
models, governing PDEs and numerical simulations, or various data-
centric techniques including statistical methods, data augmentation
techniques, image analysis tools, and multi-stage ML models.
Moreover, a combination of both sources of physical knowledge in-
tegrated into various stages of PIMLmodels, i.e., feature engineering,
architecture shaping, and loss function modi昀椀cation, are pursued in
the literature.

" Multi-modal PIML models: In general, based on the type of available
data and physical knowledge, appropriate fusion methodology can
be chosen for PIML models. As a future research direction, various
sources of physical knowledge can be fused in different stages of the
PIML models to create multi-modal PIML models.

" Additive manufacturing technologies examined by PIML models:
Regarding the AMmethods, various PIMLmodels were developed for
PBF, DED, MEX, and VPP processes. Based on the existing body of
knowledge, PBF has gained signi昀椀cant attention in the AM commu-
nity, followed by DED and MEX processes. However, there is a
research gap in the development of PIML models for binder jetting,
material jetting, sheet lamination, and vat photopolymerization AM
methods.

" Machine learning models used in PIMLmodeling of AM technologies:
In terms of machine learning models, ANNs are the most used
method and were examined in all three categories of feature engi-
neering, architecture shaping, and loss function modi昀椀cations, as
well as in all AM processes. The review showed that physics-based
feature engineering techniques are developed based on various ML
models, including neural networks, tree-based models, GPR, KNN,
SVM, and different regression-based parametric models. However,
neural networks are the only approach used in reviewed architecture
shaping and loss function modi昀椀cation studies. While a variety of
classical ML models were reported for the PBF process, DED, MEX
and VPP methods were mostly studied with deep learning PIML
methods.

" Interpretability, explainability and generalizability in PIML models:
The level of interpretability and explainability in PIMLmodels can be
impacted by factors such as the type of data, source of physics, ML
model architecture, and the particular techniques used to integrate
physical insights. Consequently, there is variability in the extent of
explainability and interpretability among different PIML models and
further research is bene昀椀cial in obtaining more interpretable and
explainable PIML models. To further extend the PIML models, more

future research directions could be followed to generalize PIML
models into various AM machines, different materials, and complex
print geometries using different physics-based and machine learning
models. Generalizability of PIML models can be done through
different learning approaches such as transfer learning, reinforce-
ment learning, and federated learning.
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[129] Coatanéa E, Roca R, Mokhtarian H, Mokammel F, Ikkala K. A conceptual
modeling and simulation framework for system design. Comput Sci Eng 2016;18:
42–52.

[130] Ko H, Witherell P, Lu Y, Kim S, Rosen DW. Machine learning and knowledge
graph based design rule construction for additive manufacturing. Addit Manuf
2021:37. https://doi.org/10.1016/j.addma.2020.101620.

[132] Liao S, Xue T, Jeong J, Webster S, Ehmann K, Cao J. Hybrid thermal modeling of
additive manufacturing processes using physics-informed neural networks for
temperature prediction and parameter identi昀椀cation. Comput Mech 2023.
https://doi.org/10.1007/s00466-022-02257-9.

[133] Sharma R, Raissi M, Guo Y. Physics-informed deep learning of gas 昀氀ow-melt pool
multi-physical dynamics during powder bed fusion. CIRP Annals 2023. https://
doi.org/10.1016/j.cirp.2023.04.005.

[134] Jiang F, Xia M, Hu Y. Physics-informed machine learning for accurate prediction
of temperature and melt pool dimension in metal additive manufacturing. 3D
Print Addit Manuf 2023. https://doi.org/10.1089/3dp.2022.0363.

[135] Tod G, Ompusunggu AP, Struyf G, Pipeleers G, Grave K De, Hostens E. Physics-
Informed Neural Networks (PINNs) for Improving a Thermal Model in
Stereolithography Applications. In: Procedia CIRP. vol. 104. Elsevier B.V.; 2021.
p. 1559–64. https://doi.org/10.1016/j.procir.2021.11.263.

[136] Li S, Wang G, Di Y, Wang L, Wang H, Zhou Q. A physics-informed neural network
framework to predict 3D temperature 昀椀eld without labeled data in process of
laser metal deposition. Eng Appl Artif Intel 2023;120:105908. https://doi.org/
10.1016/j.engappai.2023.105908.

[137] Yeh HP, Bayat M, Arzani A, Hattel JH. Accelerated process parameter selection of
polymer-based selective laser sintering via hybrid physics-informed neural
network and 昀椀nite element surrogate modelling. App Math Model 2024;130:
693–712. https://doi.org/10.1016/j.apm.2024.03.030.
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