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ABSTRACT

The objective of this work is to detect process instabilities in
laser wire directed energy deposition additive manufacturing
process using real-time data from a high-speed imaging meltpool
sensor. The laser wire directed energy deposition process
combines the advantages of powder directed energy deposition
and other wire-based additive manufacturing processes, such as
wire arc additive manufacturing, as it provides both appreciable
resolution and high deposition rates. However, the process tends
to create sub-optimal quality parts with poor surface finish,
geometric distortion, and delamination in extreme cases. This
sub-optimal  quality  stems  from  poorly  understood
thermophysical phenomena and stochastic effects. Hence, flaw
formation often occurs despite considerable effort to optimize
the processing parameters. In order to overcome this limitation
of laser wire directed energy deposition, real-time and accurate
monitoring of the process quality state is the essential first step
for future closed-loop quality control of the process. In this work
we extracted low-level, physically intuitive, features from
acquired meltpool images. Physically intuitive features such as
meltpool shape, size, and brightness provide a fundamental
understanding of the processing regimes that are understandable
by human operators. These physically intuitive features were
used as inputs to simple machine learning models, such as k-
nearest neighbors, support vector machine, etc., trained to
classify the process state into one of four possible regimes. Using
simple machine learning models forgoes the need to use complex
black box modeling such as convolutional neural networks to
monitor the high speed meltpool images to determine process
stability. The classified regimes identified in this work were
stable, dripping, stubbing, and incomplete melting. Regimes
such as dripping, stubbing, and incomplete melting regimes fall
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under the realm of unstable processing conditions that are liable
to lead to flaw formation in the laser wire directed energy
deposition process. The foregoing three process regimes are the
primary source of sub-optimal quality parts due to the
degradation of the single-track quality that are the fundamental
building block of all manufactured samples. Through a series of
single-track experiments conducted over 128 processing
conditions, we show that the developed approach is capable of
accurately classifying the process state with a statistical fidelity
approaching 90% F-score. This level of statistical fidelity was
achieved using eight physically intuitive meltpool morphology
and intensity features extracted from 159,872 meltpool images
across all 128 process conditions. These eight physically
intuitive features were then used for the training and testing of a
support vector machine learning model. This prediction fidelity
achieved using physically intuitive features is at par with
computationally intense deep learning methods such as
convolutional neural networks.

Keywords: Additive Manufacturing, Laser Wire Directed
Energy Deposition, Machine Learning, High-Speed Imaging, In-
situ Monitoring
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1. INTRODUCTION
1.1 Goal and Motivation

This work aims to mitigate flaw formation in the laser wire
directed energy deposition (LW-DED) additive manufacturing
process, shown in FIGURE 1(a). In LW-DED, material in the
form of wire is melted using energy from a laser and deposited
layer-upon-layer. The relative movement of the wire and laser by
a moving stage enables the creation of complex, large volume,
near net shape parts.
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FIGURE 1: DEPICTION OF; (A) LASER WIRE DIRECTED
ENERGY DEPOSITION (DED) PROCESS, (B) LASER POWDER
DED, (C) ELCTRON WIRE DED, AND (D) WIRE ARC DED.

The LW-DED process is closely related to the wire arc
directed energy deposition (WA-DED), and laser powder
directed energy deposition (LP-DED). In the former, the wire is
melted using energy from an electric arc, and in the latter, the
material is sprayed from a nozzle in powder form. While WA-
DED deposits large volumes of material, it has poor geometric
integrity and surface finish. This leads to a substantial amount of
post-process machining. Aspects of the LP-DED, LW-DED, and
WA-DED, and electron beam DED (EB-DED) are juxtaposed in
TABLE 1. By contrast, LP-DED has higher geometric integrity
and surface finishes but has a substantially lower volumetric
deposition rate compared to that of the other DED processes.

In this context, LW-DED combines the precision of LP-
DED with the large volume deposition capability of WA-DED.
Consequently, the process is of growing interest in the aerospace
industry of manufacturing large components, such as rocket nose
cones in a rapid and cost-effective manner to near net-shape.

However, production-level scale of the LW-DED process is
currently hindered due to the tendency of the process instability,
despite extensive process optimization. This process instability
results in malformed parts with flaws and poor geometric
integrity. Select process drifts resulting in sub-optimal deposit

geometries are summarized in FIGURE 4. Such process drifts
are caused by poorly understood laser-material interactions,
complex thermal physics, and sensitivity to stochastic
disturbances. Accordingly, to ensure industrial viability of LW-
DED it is necessary to continually monitor the process using data
from in-process sensors so that process drifts can be detected and
corrected before they cascade to succeeding layers.

TABLE 1: COMPARISON OF THE VARIOUS TYPES OF DED.

LP-DED | LW-DED | EW-DED | WA-DED
Feedst?ck Powder Wire Wire Electrode
Material
Energy Laser Laser Electron Plasma
Source Beam Arc
Deposition
2.2 3.0 9.0 10.0
Rate [kg-hr?]
Resolution 0.2mm | 0.5mm 0.5 mm 1.0 mm

1.2 Objective and Approach

The objective of this work is to monitor the LW-DED
process in-situ with a meltpool (weldpool) imaging sensor to
detect process instabilities. The underlying hypothesis is that the
laser-material interactions, symptomatic of process drifts,
manifest in the meltpool behavior, specifically, the shape and
intensity of the meltpool. Consequently, tracking of meltpool
dynamics with simple machine learning models would enable
accurate detection of an incipient process drift.

In this work, we use data from an in-process high-speed
camera to acquire images of the meltpool and its surrounding
region. Subsequently, images of the meltpool are analyzed using
machine vision algorithms. These machine vision algorithms
provide quantitative features (process signatures) pertaining to
the meltpool dynamics, such as shape, intensity, eccentricity,
etc., are extracted. These process signatures are used as inputs to
a simple machine learning model trained to classify the process
state into one of four possible regimes: stable, dripping,
stubbing, and incomplete melting.

If the LW-DED process stays in one of the three unstable
processing conditions, various types of malformed parts will
form. Continuous deposition of the dripping regime will form
parts with poor surface finish that will affect the deposition of
future layers. Stubbing, if not corrected, will generate parts with
both poor surface finish and with the excessive feedstock wire
sticking out of the part. Finally, if incomplete melting continues
it will result in no part being formed. Hence, these processing
conditions are important to monitor and predict prior to
catastrophic part failure.

1.3 Prior Work & Novelty

In the literature, there is very little work performed on flaw
detection and process monitoring in LW-DED. Most current
works focus on better understanding the fundamental processes.
In work done by Abioye et al. [1], they did a comprehensive
parameter study changing scan speed and laser power to develop
a process map of stability, dripping, stubbing, and incomplete
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melting. Work done by Motta et al. [2], monitored the meltpool
with a high-speed camera during a parameter study to visualize
the change in the meltpool morphology at different processing
regimes. Similarly, To build upon these works, Gibson et al. [3]
and Chen et al. [4] use an integrated camera to control and
maintain a constant meltpool area or width (respectively) via a
closed loop controller to modulate the laser power. These works
found that by controlling the meltpool morphology, the
geometric integrity of the sample was increased.

One of the few works done on quality prediction in Laser
Wire — DED was performed by Jamnikar et al. [5]. In this work,
they predicted the resultant track penetration depth, height,
width, and height. However, this prediction was done using a
complex Convolutional Neural Network (CNN) and a high-
speed camera. While powerful, CNNs require the storage of
thousands of images that can be computationally expensive if the
data needs to be stored.

TABLE 2: LITERATURE REVIEW TABLE FOR LW-DED

Complexity Ref. Sensor Task
Process .
Understanding [1] None Process mapping

Correlation to Integrated Meltppol to
[2] Regime
Meltpool Camera L
Visualization
Control of 3, 4] Integrated | Maintain constant
Meltpool ! Camera Meltpool Width
Prediction of [5] High-Speed | Use CNN to Predict
Quality Camera Track Quality

In this work, we developed a computer vision algorithm that
can extract physics-based monitoring features from the meltpool
monitoring high-speed camera. From these monitoring features,
simple machine learning models were generated to predict the
track quality regime of stable, dripping, incomplete melting, and
stubbing. This methodology allows for the monitoring features
to be saved in a less computationally expensive way and still
monitor the track quality.

2. METHODS
2.1 Experimental Setup

A Hybrid Manufacturing Technologies (AMBIT FLEX)
wire-feed system was integrated into a Hardinge GX250-5ax
milling machine to perform LW-DED. The laser source was a
2kW 1070 nm IPG Photonics Yb-doped fiber laser. The laser
generated a 2 mm spot size and was protected with argon
shielding gas ejected at 20 L-min"'. Data was collected in-situ
with an Edgertronic SC2+ high-speed camera, mounted off-axis
at 45°, shown in FIGURE 2. Images were captured at 2,500 Hz
with a 1280x720 pixel resolution at a spatial resolution of 20 pm
per pixel.
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FIGURE 2: (A) APPARATUS SCHEMATIC: INCIDENT WIRE IS
MELTED BY THE LASER, AS IN-SITU IMAGE MONITORING IS
PERFORMED BY AN OFF-AXIS HIGH-SPEED CAMERA.

2.2 Design of Experiments

Stainless steel 316L wire from Lincoln Electric (1.1 mm
diameter) was used as feedstock for 128 printed 40 mm long
single-tracks. Each single-track was produced under distinct
process parameters in full factor design of experiment, visualized
in FIGURE 3, with three main variables: laser power (P, [W]),
scanning velocity (V, [mm-s™]), and linear mass density (lq,
[g'mm']). Linear mass density refers to the ratio of the temporal
material feeding rate and the laser scanning speed. This ensures
similar material deposition per unit length of printing. An
inordinately large 1y would lead to large accumulation of material
ahead of the meltpool, characteristic of stubbing.

Laser power varied between 600 W to 1800 W and scanning
speed varied between 250 mm'min™! to 1500 mm-min!. This
resulted in 64 distinct laser power and scan speed treatments. To
add another dimension to the experiment, two linear mass
densities were studied, one at 0.0086 g-mm' and one at 0.0129
g'mm!, shown in FIGURE 3. Both linear mass densities studied
had the same 64 treatment conditions resulting in 128 distinct
treatment conditions, one for each single-track studied.
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FIGURE 3: 128 DISTINCT PROCESSING PARAMETERS USED
IN THE EXPERIMENT.

Depicted in FIGURE 4 are the four process regimes

observed in this study. These quality regimes are stable FIGURE
4(a), stubbing FIGURE 4(b), dripping FIGURE 4(c), and
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incomplete melting FIGURE 4(d). Stubbing results from
insufficient energy to melt both the incident wire and substrate
leading to semi-solid wire protruding from the surface of the
meltpool. The dripping regime is caused by excess energy
delivery to the wire which melts the wire prior to meltpool
leading the melted material to ‘drip’ onto the substrate [2, 6].
Incomplete melting is characterized by either insufficient energy
or insufficient material delivery resulting in a deficiently small
meltpool that is unable to deposit a single-track.
(a) Condition 1: Stable regime
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FIGURE 4: DEPICTION OF THE THREE INSTABILITY
PROCESSING REGIMES, THEIR MELTPOOL MORPHOLOGIES,
AND THEIR EFFECT ON THE QUALITY OF THE TRACK. (B)
STUBBING REGIME: (C) DRIPPING REGIME (D) INCOMPLETE
MELTING REGIME.

2.3 Machine Learning

Computer vision and machine learning were applied to
analyze the captured meltpool images and detect which quality
regime is being generated. To perform this work the developed
approach first used simple computer vision to identify the
meltpool boundary. Second the developed approach extracted
physically intuitive features to monitor the process. Third and
final, simple machine learning models were developed to
perform the classification of quality regime.

Detection of the meltpool contour was performed by first
taking the raw high-speed image and applying a gaussian
blurring filter to remove noise and highlight key features of the
image (FIGURE 5(1-2)). Then binary thresholding was
performed on blurred image, (FIGURE 5(3)), to identify the
pixels associated with molten material. The final step, (FIGURE
5(4)), implemented a border tracing algorithm to identify the
contour of the meltpool generated in the process. All computer
vision algorithms were computationally implemented in Python
3.7 with the support of the OpenCV library.

(1) Raw High-Speed
Meltpool Image

(2) Perform Gaussian
Blurring to Image

“

(3) Binary Thresholding
of the Blurred Image

FIGURE 5: DEPICTION OF THE COMPUTER VISION

APPROACH OF IDENTIFYING THE CONTOUR OF THE
MELTPOOL FROM THE RAW HIGH-SPEED IMAGE.

(4) Boarder Tracing to
Find Meltpool Contour

A supervised classification approach was utilized to predict
the four process regimes (i.e., dripping, incomplete melting,
stubbing, and stable) based on the selected meltpool morphology
and intensity-based features depicted in FIGURE 6.

4 © 2024 by ASME



Track Quality
Drippin

Meltpool Image Feature Extraction
Meltpool Machine Learning
Morphology Models
LR, SVM, KNN,
ANN, CNN Stubbin

Meltpool

Intensity >

FIGURE 6: OVERVIEW OF PROCESS REGIME

CLASSIFICATION USED IN THIS WORK.

Five algorithms with varying complexity were trained to
detect the process regime. These models were: logistic
regression (LR), support vector machine (SVM), k-nearest
neighbors (KNN), artificial neural networks (ANN), and
compared them to complex convolutional neural networks
(CNN). These algorithms have been consistently used for
manufacturing quality classification tasks in literature [5, 7, 8].
Further, we have directly used the meltpool images within a
convolutional deep learning neural network (CNN).

All models used a 70/30 train-test split for training and
testing where 70% of the data was used to train the algorithms
(112, 410 images), while 30% of the data was used to test the
algorithms (47, 462 images). All the images that originated from
the same single-track were grouped together to avoid
confounding variables. To tune the hyperparameters of the
classification algorithms a 3-fold cross-validation approach was
applied within the training dataset (37, 470 images per fold).

3. RESULTS AND DISCUSSION
3.1 Effect of Conditions on the Processing Regime

The effect of processing conditions on the processing
regimes is depicted in FIGURE 7. In the low wire feed rate
conditions, the primary track qualities observed are stable and
dripping regimes. In the high feed rate conditions stubbing and
incomplete melting can be observed due to the increase in linear
mass density.

Under the low wire feed rate regime, as the laser power
increases and scan speed decreases, the resultant energy density
increases. As the energy density increases the wire begins
melting prior to reaching the laser focal point on the meltpool.
This results in a molten material that ‘drips’ globular material
onto the single-track and generates large line width variation.

Then as the scan speed increases, the process drifts towards
stable due to the decrease in the resultant energy density. This
decrease in energy density ensures that the wire is melting at the
focal point of the meltpool and depositing a healthy single-track.
However, as the scan speed keeps increasing, not enough of the
wire is melted fast enough, resulting in the stubbing of the wire
into the substrate. Finally, this process drifts forwards

incomplete melting under extreme increases in the scan speed
relative to the laser power and wire feed rates. Under these
conditions there is an extreme lack of energy density and the wire
is never properly melted to generate the meltpool.
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FIGURE 7: REGIME MAP FOR THE VARYING LASER POWERS
AND SCAN SPEEDS USED IN THIS WORK.

Each of the four track quality conditions results in a variance
in the meltpool penetration depth and single-track width. Under
the stable condition, single-tracks have small levels of remelting
into the substrate material as shown in FIGURE 8. As the process
stability shifts toward dripping, the resultant meltpool depth
increases due to the increased energy density penetrating deeper
into the meltpool. Additionally, under the dripping regime, the
meltpool width increases substantially where the dripping
material interacts with the deposited single-track. As the process
shifts towards stubbing, both the penetration depth and resultant
single-track width decrease substantially. This is due to the lack
of input energy density resulting in a condition very similar to
the balling regime in LPBF. Finally in the incomplete melting
regime, due to a complete breakdown of the meltpool there is no
single-track to observe in FIGURE 8.

Stable

Dripping

FIGURE 8: COMPARISON OF SINGLE-TRACK CROSS-
SECTIONS FOR STABLE, DRIPPING, STUBBING AND
INCOMPLETE MELTING REGIMES.
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3.2 Effect of Conditions on the Meltpool

The resulting meltpool image from each treatment condition
is visualized in FIGURE 9 where exemplar meltpool images
from the high-speed imaging camera are depicted. Clear visual
trends in the meltpool shape and brightness are seen as the
processing parameters change. These changes in the meltpool are
the source of the errors observed in the resultant single-tracks in
this work. For brevity, we restrict our discussion herein to the
meltpool morphology and intensity features.

For example, as the energy density increases, under both
wire feed rates, the meltpool becomes bigger and brighter as
more material is being melted. This large meltpool generates the
dripping regime discussed in the previous section. Then as the
energy decreases the meltpool continuously becomes smaller
and dimmer resulting in the stubbing and incomplete melting
regimes. Under the stable regime, highlighted in blue, the
meltpool appears to be ovular with a bright center and a dim tail.

Low wire feed rate 0.0086 (g-mm") 'High wire feed rate 0.0129 (g-:mm-")

Laser power (W)

[Wistable [Woripping [l Stubbing :Incomplete Melting

FIGURE 9: EXAMPLE MELTPOOL IMAGES FOR EACH
SINGLE-TRACK BUILT UNDER VARYING PARAMETERS.

These visual changes in the meltpool images can be
quantified and analyzed using the computer vision approach
depicted in FIGURE 5. After identifying the meltpool boundary
meltpool morphology and intensity features can be extracted to
monitor the process stability.

Three meltpool morphology features were found to be
necessary for process monitoring in this work. These three
features were meltpool area, aspect ratio, and irregularity.
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FIGURE 10: FEATURES' MEAN AND STANDARD DEVIATION
ARE PLOTTED FOR EVERY PROCESS REGIME IN (A) FOR THE
MELTPOOL AREA, (B) FOR THE MELTPOOL ASPECT RATIO.

The meltpool area (4,), serves as a distinguishing factor
both for the dripping and the incomplete melting regime.
Incomplete meltpools are distinguishable by their relatively
smaller meltpools. Dripping regime meltpools, on the other
hand, exhibit the larges areas and are impacted by the greatest
level of variability (FIGURE 10(a)).

The meltpool aspect ratio (ex), acts as a strong discriminator
between the group of dripping and incomplete melting regimes,
and the group of stable and stubbing. Both stubbing and stable
regimes produce elliptical meltpools which can be observed in
FIGURE 9. Dripping and incomplete melting generate circular
meltpools despite being on opposite end of the energy density
spectrum (FIGURE 10(b)).

Finally, the meltpool irregularity (o..), was found to be an
important factor in the detection of regime qualification.
Meltpool irregularity measures the deviation of the meltpool
from a perfect circle based on around a centroid. This results in
similar results as the aspect ratio of the meltpool. However,
irregularity of the meltpool depicts differences between the
stubbing and stable processing regime in which stubbing is found
to be more irregular in shape than the stable conditions.
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FIGURE 11: FEATURES MEAN AND STANDARD DEVIATION
ARE PLOTTED FOR EVERY PROCESS REGIME FOR (A)
AVERAGE & (B) STANDARD MELTPOOL BRIGHTNESS.

In addition to analyzing meltpool morphology features,
meltpool intensity-based features were also extracted in the form
of meltpool brightness (intensity), standard deviation of
brightness, and skewness of meltpool intensity. Meltpool
average brightness (u;), shows a clear deviation from the
dripping regime and the other three regimes (FIGURE 11 (a)).
This is because the dripping regime occurs under the highest
energy density and has the hottest meltpools resulting in the
brightest pixels. The large standard deviation is caused by some
meltpool images being the dripping regime which creates
extremely bright and large meltpools. The next brightest
meltpool regime is the stable regime as this occurs under the
second highest energy density parameter sets.

The standard deviation of each meltpools brightness (o;) is
another monitored feature. Upon investigation of this intensity
feature, in FIGURE 11 (b), the deviation of meltpool intensity
increases from the dripping, incomplete melting, stubbing, and
stable regimes. This indicates that a healthy stable meltpool must
have a large variation of temperatures inside of the meltpool.
Likewise, the skewness of meltpool intensity (¢°;) was found to
respond to the various regimes.
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3.3 Process Regime Classification

Using the eight features discussed in the previous section,
six supervised machine learning models of increasing
complexity were trained on the 47,000 meltpool images as
described in Sec. 2.3. The models used in this work were logistic
regression, KNN, SVM, MLP, and CNN. The resultant testing F-
scores for each model are visualized in TABLE 3 in which SVM
performed the four-way classification the best with an F-score of
90.46%.

The SVM testing classification confusion matrix is shown
in TABLE 4, which provides further insights of model
performance. The columns represent the model’s prediction and
the rows represent the actual (manual) classification of the
regime. Correct model predictions fall along the bolded diagonal
and any numbers off the main axis are false predictions. Upon
investigating the confusion matrix, it can be observed that there
was minimal to no confusion between incomplete melting and
the other three regimes. However, there are some
misclassifications between the dripping regime and both the
stable and stubbing regimes. This is to be expected as the
standard deviation on each feature extracted for the dripping
regime encompassed all the other regimes. Additionally, the only
confusion for incomplete melting occurred between incomplete
melting and the dripping regime. However, these
misclassifications were not large enough to lower the F-score to
90%. The primary confusion in the model is between the
stubbing and the stable regimes and is the primary reason for the
model not performing better. This is also expected, as for all
eight features extracted the stubbing and stable regimes either
had similar or overlapping distributions. Future works will
address this confusion by studying other morphological and
intensity-based features and their ability to separate these two
conditions. Additionally, various bandpass filters can be tested to
identify which wavelengths of light provide the highest
separation of intensity-based features.

TABLE 3: CLASSIFICATION PERFORMANCE FOR ALL
TESTED MACHINE LEARNING ALGORITHMS

Simple Data Fitting Actl\{e Black-Box
Learning
Model | _8SUC | NN | svm | mLP | oNN | veeis
Regression
F-Score 89.95 85.67 | 90.46 | 88.16 | 87.35 87.53

TABLE 4: THE CONFUSION MATRIX FOR PROCESS REGIME
CLASSIFICATION FROM THE SVM MODEL (F-SCORE > 90%).

Predicted Regime
Dripping | Incomplete | Stubbing | Stable
regime melting regime regime
g | Drieping 44513 15 314 648
£ regime
oo
& Incomplete 14 4982 0 0
o melting
S5 N
§ | Swbbing | g5 0 8153 | 1306
regime
Stable 321 0 1906 | 17757
regime

4. CONCLUSION

In this work, the process stability of the LW-DED process
was successfully monitored and classified using a high-speed
imaging camera with a fidelity of 90% F-score. The developed
approach was able to classify the single-track quality into one of
four regimes: stable, stubbing, incomplete melting, or dripping.
This work extracts simple physics-based morphological and
intensity features from the meltpool images. Doing so allows for
a physical interpretability of the model, which is vital for
implementation in industrial systems. High-speed imaging
cameras generate terabytes of data per manufactured part if
implemented in-situ. By extracting physics-based features, every
large 2D image can be replaced with a small 1D vector of the
eight features. Thus, enabling the deletion of the image while still
storing meltpool information to review at a later date. This is a
distinct advantage to data-based models, such as CNNs, in which
the raw images need to be stored if the data needs to be reviewed
post-build.

Future works will first test the model transferability between
machine-to-machine and material-to-material. This is an
important step to ensure model robustness and quality
predictions across various machine platforms. Then future works
will build upon this model and attempt to monitor the quality of
functional, complex 3D parts manufactured using LW-DED.
This is a prerequisite step for in-situ part qualification of the LW-
DED processes which is the long-term objective of this work.
Additionally, future works will aim to use high-speed imaging
data to predict the evolved microstructure found in manufactured
samples.
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