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ABSTRACT 
The objective of this work is to detect process instabilities in 
laser wire directed energy deposition additive manufacturing 
process using real-time data from a high-speed imaging meltpool 
sensor. The laser wire directed energy deposition process 
combines the advantages of powder directed energy deposition 
and other wire-based additive manufacturing processes, such as 
wire arc additive manufacturing, as it provides both appreciable 
resolution and high deposition rates. However, the process tends 
to create sub-optimal quality parts with poor surface finish, 
geometric distortion, and delamination in extreme cases. This 
sub-optimal quality stems from poorly understood 
thermophysical phenomena and stochastic effects. Hence, flaw 
formation often occurs despite considerable effort to optimize 
the processing parameters.  In order to overcome this limitation 
of laser wire directed energy deposition, real-time and accurate 
monitoring of the process quality state is the essential first step 
for future closed-loop quality control of the process. In this work 
we extracted low-level, physically intuitive, features from 
acquired meltpool images. Physically intuitive features such as 
meltpool shape, size, and brightness provide a fundamental 
understanding of the processing regimes that are understandable 
by human operators. These physically intuitive features were 
used as inputs to simple machine learning models, such as k-
nearest neighbors, support vector machine, etc., trained to 
classify the process state into one of four possible regimes. Using 
simple machine learning models forgoes the need to use complex 
black box modeling such as convolutional neural networks to 
monitor the high speed meltpool images to determine process 
stability. The classified regimes identified in this work were 
stable, dripping, stubbing, and incomplete melting. Regimes 
such as dripping, stubbing, and incomplete melting regimes fall 

under the realm of unstable processing conditions that are liable 
to lead to flaw formation in the laser wire directed energy 
deposition process. The foregoing three process regimes are the 
primary source of sub-optimal quality parts due to the 
degradation of the single-track quality that are the fundamental 
building block of all manufactured samples. Through a series of 
single-track experiments conducted over 128 processing 
conditions, we show that the developed approach is capable of 
accurately classifying the process state with a statistical fidelity 
approaching 90% F-score. This level of statistical fidelity was 
achieved using eight physically intuitive meltpool morphology 
and intensity features extracted from 159,872 meltpool images 
across all 128 process conditions. These eight physically 
intuitive features were then used for the training and testing of a 
support vector machine learning model. This prediction fidelity 
achieved using physically intuitive features is at par with 
computationally intense deep learning methods such as 
convolutional neural networks. 

Keywords: Additive Manufacturing, Laser Wire Directed 
Energy Deposition, Machine Learning, High-Speed Imaging, In-
situ Monitoring 
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1. INTRODUCTION 
1.1 Goal and Motivation 

This work aims to mitigate flaw formation in the laser wire 
directed energy deposition (LW-DED) additive manufacturing 
process, shown in FIGURE 1(a). In LW-DED, material in the 
form of wire is melted using energy from a laser and deposited 
layer-upon-layer. The relative movement of the wire and laser by 
a moving stage enables the creation of complex, large volume, 
near net shape parts.  

 
FIGURE 1: DEPICTION OF; (A) LASER WIRE DIRECTED 
ENERGY DEPOSITION (DED) PROCESS, (B) LASER POWDER 
DED, (C) ELCTRON WIRE DED, AND (D) WIRE ARC DED.  

The LW-DED process is closely related to the wire arc 
directed energy deposition (WA-DED), and laser powder 
directed energy deposition (LP-DED). In the former, the wire is 
melted using energy from an electric arc, and in the latter, the 
material is sprayed from a nozzle in powder form. While WA-
DED deposits large volumes of material, it has poor geometric 
integrity and surface finish. This leads to a substantial amount of 
post-process machining. Aspects of the LP-DED, LW-DED, and 
WA-DED, and electron beam DED (EB-DED) are juxtaposed in 
TABLE 1. By contrast, LP-DED has higher geometric integrity 
and surface finishes but has a substantially lower volumetric 
deposition rate compared to that of the other DED processes.  

In this context, LW-DED combines the precision of LP-
DED with the large volume deposition capability of WA-DED. 
Consequently, the process is of growing interest in the aerospace 
industry of manufacturing large components, such as rocket nose 
cones in a rapid and cost-effective manner to near net-shape.  

However, production-level scale of the LW-DED process is 
currently hindered due to the tendency of the process instability, 
despite extensive process optimization. This process instability 
results in malformed parts with flaws and poor geometric 
integrity. Select process drifts resulting in sub-optimal deposit 

geometries are summarized in FIGURE 4. Such process drifts 
are caused by poorly understood laser-material interactions, 
complex thermal physics, and sensitivity to stochastic 
disturbances. Accordingly, to ensure industrial viability of LW-
DED it is necessary to continually monitor the process using data 
from in-process sensors so that process drifts can be detected and 
corrected before they cascade to succeeding layers.  

TABLE 1: COMPARISON OF THE VARIOUS TYPES OF DED. 
 LP-DED LW-DED EW-DED WA-DED 

Feedstock 
Material Powder Wire Wire Electrode 

Energy 
Source Laser Laser Electron 

Beam 
Plasma 

Arc 
Deposition 

Rate [kg·hr-1] 2.2 3.0 9.0 10.0 

Resolution 0.2 mm 0.5 mm 0.5 mm 1.0 mm 
 
1.2 Objective and Approach 

The objective of this work is to monitor the LW-DED 
process in-situ with a meltpool (weldpool) imaging sensor to 
detect process instabilities.  The underlying hypothesis is that the 
laser-material interactions, symptomatic of process drifts, 
manifest in the meltpool behavior, specifically, the shape and 
intensity of the meltpool. Consequently, tracking of meltpool 
dynamics with simple machine learning models would enable 
accurate detection of an incipient process drift.  

In this work, we use data from an in-process high-speed 
camera to acquire images of the meltpool and its surrounding 
region. Subsequently, images of the meltpool are analyzed using 
machine vision algorithms. These machine vision algorithms 
provide quantitative features (process signatures) pertaining to 
the meltpool dynamics, such as shape, intensity, eccentricity, 
etc., are extracted. These process signatures are used as inputs to 
a simple machine learning model trained to classify the process 
state into one of four possible regimes: stable, dripping, 
stubbing, and incomplete melting.  

If the LW-DED process stays in one of the three unstable 
processing conditions, various types of malformed parts will 
form. Continuous deposition of the dripping regime will form 
parts with poor surface finish that will affect the deposition of 
future layers. Stubbing, if not corrected, will generate parts with 
both poor surface finish and with the excessive feedstock wire 
sticking out of the part. Finally, if incomplete melting continues 
it will result in no part being formed. Hence, these processing 
conditions are important to monitor and predict prior to 
catastrophic part failure.  
 
1.3 Prior Work & Novelty 

In the literature, there is very little work performed on flaw 
detection and process monitoring in LW-DED. Most current 
works focus on better understanding the fundamental processes. 
In work done by Abioye et al. [1], they did a comprehensive 
parameter study changing scan speed and laser power to develop 
a process map of stability, dripping, stubbing, and incomplete 
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melting. Work done by Motta et al. [2], monitored the meltpool 
with a high-speed camera during a parameter study to visualize 
the change in the meltpool morphology at different processing 
regimes. Similarly, To build upon these works, Gibson et al. [3] 
and Chen et al. [4] use an integrated camera to control and 
maintain a constant meltpool area or width (respectively) via a 
closed loop controller to modulate the laser power. These works 
found that by controlling the meltpool morphology, the 
geometric integrity of the sample was increased.  

One of the few works done on quality prediction in Laser 
Wire – DED was performed by Jamnikar et al. [5]. In this work, 
they predicted the resultant track penetration depth, height, 
width, and height. However, this prediction was done using a 
complex Convolutional Neural Network (CNN) and a high-
speed camera. While powerful, CNNs require the storage of 
thousands of images that can be computationally expensive if the 
data needs to be stored.  

TABLE 2: LITERATURE REVIEW TABLE FOR LW-DED 
Complexity Ref. Sensor Task 

Process 
Understanding [1] None Process mapping 

Correlation to 
Meltpool [2] Integrated 

Camera 

Meltpool to 
Regime 

Visualization 
Control of 
Meltpool [3, 4]  Integrated 

Camera 
Maintain constant 

Meltpool Width 
Prediction of 

Quality [5] High-Speed 
Camera 

Use CNN to Predict 
Track Quality 

 
In this work, we developed a computer vision algorithm that 

can extract physics-based monitoring features from the meltpool 
monitoring high-speed camera. From these monitoring features, 
simple machine learning models were generated to predict the 
track quality regime of stable, dripping, incomplete melting, and 
stubbing. This methodology allows for the monitoring features 
to be saved in a less computationally expensive way and still 
monitor the track quality. 
 
2. METHODS 
2.1 Experimental Setup 

A Hybrid Manufacturing Technologies (AMBIT FLEX) 
wire-feed system was integrated into a Hardinge GX250-5ax 
milling machine to perform LW-DED. The laser source was a 
2kW 1070 nm IPG Photonics Yb-doped fiber laser. The laser 
generated a 2 mm spot size and was protected with argon 
shielding gas ejected at 20 L·min-1. Data was collected in-situ 
with an Edgertronic SC2+ high-speed camera, mounted off-axis 
at 45º, shown in FIGURE 2. Images were captured at 2,500 Hz 
with a 1280×720 pixel resolution at a spatial resolution of 20 µm 
per pixel.  

 
FIGURE 2: (A) APPARATUS SCHEMATIC: INCIDENT WIRE IS 
MELTED BY THE LASER, AS IN-SITU IMAGE MONITORING IS 
PERFORMED BY AN OFF-AXIS HIGH-SPEED CAMERA. 

2.2 Design of Experiments 
Stainless steel 316L wire from Lincoln Electric (1.1 mm 

diameter) was used as feedstock for 128 printed 40 mm long 
single-tracks. Each single-track was produced under distinct 
process parameters in full factor design of experiment, visualized 
in FIGURE 3, with three main variables: laser power (P, [W]), 
scanning velocity (V, [mm·s-1]), and linear mass density (ld, 
[g·mm-1]). Linear mass density refers to the ratio of the temporal 
material feeding rate and the laser scanning speed. This ensures 
similar material deposition per unit length of printing. An 
inordinately large ld would lead to large accumulation of material 
ahead of the meltpool, characteristic of stubbing.  

Laser power varied between 600 W to 1800 W and scanning 
speed varied between 250 mm·min-1 to 1500 mm·min-1. This 
resulted in 64 distinct laser power and scan speed treatments. To 
add another dimension to the experiment, two linear mass 
densities were studied, one at 0.0086 g·mm-1 and one at 0.0129 
g·mm-1, shown in FIGURE 3. Both linear mass densities studied 
had the same 64 treatment conditions resulting in 128 distinct 
treatment conditions, one for each single-track studied.  

 
FIGURE 3: 128 DISTINCT PROCESSING PARAMETERS USED 
IN THE EXPERIMENT. 

Depicted in FIGURE 4 are the four process regimes 
observed in this study. These quality regimes are stable FIGURE 
4(a), stubbing FIGURE 4(b), dripping FIGURE 4(c), and 
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incomplete melting FIGURE 4(d). Stubbing results from 
insufficient energy to melt both the incident wire and substrate 
leading to semi-solid wire protruding from the surface of the 
meltpool. The dripping regime is caused by excess energy 
delivery to the wire which melts the wire prior to meltpool 
leading the melted material to ‘drip’ onto the substrate [2, 6]. 
Incomplete melting is characterized by either insufficient energy 
or insufficient material delivery resulting in a deficiently small 
meltpool that is unable to deposit a single-track.  

 
FIGURE 4: DEPICTION OF THE THREE INSTABILITY 
PROCESSING REGIMES, THEIR MELTPOOL MORPHOLOGIES, 
AND THEIR EFFECT ON THE QUALITY OF THE TRACK. (B) 
STUBBING REGIME: (C) DRIPPING REGIME (D) INCOMPLETE 
MELTING REGIME. 

2.3 Machine Learning 
Computer vision and machine learning were applied to 

analyze the captured meltpool images and detect which quality 
regime is being generated. To perform this work the developed 
approach first used simple computer vision to identify the 
meltpool boundary. Second the developed approach extracted 
physically intuitive features to monitor the process. Third and 
final, simple machine learning models were developed to 
perform the classification of quality regime. 

Detection of the meltpool contour was performed by first 
taking the raw high-speed image and applying a gaussian 
blurring filter to remove noise and highlight key features of the 
image (FIGURE 5(1-2)). Then binary thresholding was 
performed on blurred image, (FIGURE 5(3)), to identify the 
pixels associated with molten material. The final step, (FIGURE 
5(4)), implemented a border tracing algorithm to identify the 
contour of the meltpool generated in the process. All computer 
vision algorithms were computationally implemented in Python 
3.7 with the support of the OpenCV library. 

 
FIGURE 5: DEPICTION OF THE COMPUTER VISION 
APPROACH OF IDENTIFYING THE CONTOUR OF THE 
MELTPOOL FROM THE RAW HIGH-SPEED IMAGE.  

A supervised classification approach was utilized to predict 
the four process regimes (i.e., dripping, incomplete melting, 
stubbing, and stable) based on the selected meltpool morphology 
and intensity-based features depicted in FIGURE 6. 
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FIGURE 6: OVERVIEW OF PROCESS REGIME 
CLASSIFICATION USED IN THIS WORK. 

Five algorithms with varying complexity were trained to 
detect the process regime. These models were: logistic 
regression (LR), support vector machine (SVM), k-nearest 
neighbors (KNN), artificial neural networks (ANN), and 
compared them to complex convolutional neural networks 
(CNN). These algorithms have been consistently used for 
manufacturing quality classification tasks in literature [5, 7, 8]. 
Further, we have directly used the meltpool images within a 
convolutional deep learning neural network (CNN).  

All models used a 70/30 train-test split for training and 
testing where 70% of the data was used to train the algorithms 
(112, 410 images), while 30% of the data was used to test the 
algorithms (47, 462 images). All the images that originated from 
the same single-track were grouped together to avoid 
confounding variables. To tune the hyperparameters of the 
classification algorithms a 3-fold cross-validation approach was 
applied within the training dataset (37, 470 images per fold).  

3. RESULTS AND DISCUSSION 
3.1 Effect of Conditions on the Processing Regime 

The effect of processing conditions on the processing 
regimes is depicted in FIGURE 7. In the low wire feed rate 
conditions, the primary track qualities observed are stable and 
dripping regimes. In the high feed rate conditions stubbing and 
incomplete melting can be observed due to the increase in linear 
mass density.  

Under the low wire feed rate regime, as the laser power 
increases and scan speed decreases, the resultant energy density 
increases. As the energy density increases the wire begins 
melting prior to reaching the laser focal point on the meltpool.  
This results in a molten material that ‘drips’ globular material 
onto the single-track and generates large line width variation.  

Then as the scan speed increases, the process drifts towards 
stable due to the decrease in the resultant energy density. This 
decrease in energy density ensures that the wire is melting at the 
focal point of the meltpool and depositing a healthy single-track. 
However, as the scan speed keeps increasing, not enough of the 
wire is melted fast enough, resulting in the stubbing of the wire 
into the substrate. Finally, this process drifts forwards 

incomplete melting under extreme increases in the scan speed 
relative to the laser power and wire feed rates. Under these 
conditions there is an extreme lack of energy density and the wire 
is never properly melted to generate the meltpool. 

 

 
FIGURE 7: REGIME MAP FOR THE VARYING LASER POWERS 
AND SCAN SPEEDS USED IN THIS WORK. 

Each of the four track quality conditions results in a variance 
in the meltpool penetration depth and single-track width. Under 
the stable condition, single-tracks have small levels of remelting 
into the substrate material as shown in FIGURE 8. As the process 
stability shifts toward dripping, the resultant meltpool depth 
increases due to the increased energy density penetrating deeper 
into the meltpool. Additionally, under the dripping regime, the 
meltpool width increases substantially where the dripping 
material interacts with the deposited single-track. As the process 
shifts towards stubbing, both the penetration depth and resultant 
single-track width decrease substantially. This is due to the lack 
of input energy density resulting in a condition very similar to 
the balling regime in LPBF. Finally in the incomplete melting 
regime, due to a complete breakdown of the meltpool there is no 
single-track to observe in FIGURE 8. 

 
FIGURE 8: COMPARISON OF SINGLE-TRACK CROSS-
SECTIONS FOR STABLE, DRIPPING, STUBBING AND 
INCOMPLETE MELTING REGIMES. 
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3.2 Effect of Conditions on the Meltpool 
The resulting meltpool image from each treatment condition 

is visualized in FIGURE 9 where exemplar meltpool images 
from the high-speed imaging camera are depicted. Clear visual 
trends in the meltpool shape and brightness are seen as the 
processing parameters change. These changes in the meltpool are 
the source of the errors observed in the resultant single-tracks in 
this work. For brevity, we restrict our discussion herein to the 
meltpool morphology and intensity features.  

For example, as the energy density increases, under both 
wire feed rates, the meltpool becomes bigger and brighter as 
more material is being melted. This large meltpool generates the 
dripping regime discussed in the previous section. Then as the 
energy decreases the meltpool continuously becomes smaller 
and dimmer resulting in the stubbing and incomplete melting 
regimes. Under the stable regime, highlighted in blue, the 
meltpool appears to be ovular with a bright center and a dim tail.  

 
FIGURE 9: EXAMPLE MELTPOOL IMAGES FOR EACH 
SINGLE-TRACK BUILT UNDER VARYING PARAMETERS. 

These visual changes in the meltpool images can be 
quantified and analyzed using the computer vision approach 
depicted in FIGURE 5. After identifying the meltpool boundary 
meltpool morphology and intensity features can be extracted to 
monitor the process stability.  

Three meltpool morphology features were found to be 
necessary for process monitoring in this work. These three 
features were meltpool area, aspect ratio, and irregularity.  

 
FIGURE 10: FEATURES` MEAN AND STANDARD DEVIATION 
ARE PLOTTED FOR EVERY PROCESS REGIME IN (A) FOR THE 
MELTPOOL AREA, (B) FOR THE MELTPOOL ASPECT RATIO. 

The meltpool area (Am), serves as a distinguishing factor 
both for the dripping and the incomplete melting regime. 
Incomplete meltpools are distinguishable by their relatively 
smaller meltpools. Dripping regime meltpools, on the other 
hand, exhibit the larges areas and are impacted by the greatest 
level of variability (FIGURE 10(a)). 

The meltpool aspect ratio (εm), acts as a strong discriminator 
between the group of dripping and incomplete melting regimes, 
and the group of stable and stubbing. Both stubbing and stable 
regimes produce elliptical meltpools which can be observed in 
FIGURE 9. Dripping and incomplete melting generate circular 
meltpools despite being on opposite end of the energy density 
spectrum (FIGURE 10(b)). 

Finally, the meltpool irregularity (σm), was found to be an 
important factor in the detection of regime qualification. 
Meltpool irregularity measures the deviation of the meltpool 
from a perfect circle based on around a centroid. This results in 
similar results as the aspect ratio of the meltpool. However, 
irregularity of the meltpool depicts differences between the 
stubbing and stable processing regime in which stubbing is found 
to be more irregular in shape than the stable conditions.  

 
FIGURE 11: FEATURES MEAN AND STANDARD DEVIATION 
ARE PLOTTED FOR EVERY PROCESS REGIME FOR (A) 
AVERAGE & (B) STANDARD MELTPOOL BRIGHTNESS. 
 

In addition to analyzing meltpool morphology features, 
meltpool intensity-based features were also extracted in the form 
of meltpool brightness (intensity), standard deviation of 
brightness, and skewness of meltpool intensity. Meltpool 
average brightness (μI), shows a clear deviation from the 
dripping regime and the other three regimes (FIGURE 11 (a)). 
This is because the dripping regime occurs under the highest 
energy density and has the hottest meltpools resulting in the 
brightest pixels. The large standard deviation is caused by some 
meltpool images being the dripping regime which creates 
extremely bright and large meltpools. The next brightest 
meltpool regime is the stable regime as this occurs under the 
second highest energy density parameter sets.  

The standard deviation of each meltpools brightness (σI) is 
another monitored feature. Upon investigation of this intensity 
feature, in FIGURE 11 (b), the deviation of meltpool intensity 
increases from the dripping, incomplete melting, stubbing, and 
stable regimes. This indicates that a healthy stable meltpool must 
have a large variation of temperatures inside of the meltpool. 
Likewise, the skewness of meltpool intensity (σ3

I) was found to 
respond to the various regimes.  
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3.3 Process Regime Classification 
Using the eight features discussed in the previous section, 

six supervised machine learning models of increasing 
complexity were trained on the 47,000 meltpool images as 
described in Sec. 2.3. The models used in this work were logistic 
regression, KNN, SVM, MLP, and CNN. The resultant testing F-
scores for each model are visualized in TABLE 3 in which SVM 
performed the four-way classification the best with an F-score of 
90.46%.  

The SVM testing classification confusion matrix is shown 
in TABLE 4, which provides further insights of model 
performance. The columns represent the model’s prediction and 
the rows represent the actual (manual) classification of the 
regime. Correct model predictions fall along the bolded diagonal 
and any numbers off the main axis are false predictions. Upon 
investigating the confusion matrix, it can be observed that there 
was minimal to no confusion between incomplete melting and 
the other three regimes. However, there are some 
misclassifications between the dripping regime and both the 
stable and stubbing regimes. This is to be expected as the 
standard deviation on each feature extracted for the dripping 
regime encompassed all the other regimes. Additionally, the only 
confusion for incomplete melting occurred between incomplete 
melting and the dripping regime. However, these 
misclassifications were not large enough to lower the F-score to 
90%. The primary confusion in the model is between the 
stubbing and the stable regimes and is the primary reason for the 
model not performing better. This is also expected, as for all 
eight features extracted the stubbing and stable regimes either 
had similar or overlapping distributions. Future works will 
address this confusion by studying other morphological and 
intensity-based features and their ability to separate these two 
conditions. Additionally, various bandpass filters can be tested to 
identify which wavelengths of light provide the highest 
separation of intensity-based features.    

TABLE 3: CLASSIFICATION PERFORMANCE FOR ALL 
TESTED MACHINE LEARNING ALGORITHMS 

 Simple Data Fitting Active 
Learning Black-Box 

Model Logistic 
Regression KNN SVM MLP CNN VGG16 

F-Score  89.95 85.67 90.46 88.16 87.35 87.53 
 
TABLE 4: THE CONFUSION MATRIX FOR PROCESS REGIME 
CLASSIFICATION FROM THE SVM MODEL (F-SCORE > 90%). 

 Predicted Regime 

Ac
tu

al
 R

eg
im

e 

 Dripping 
regime 

Incomplete 
melting  

Stubbing 
regime 

Stable 
regime 

Dripping 
regime 11513 15 314 648 

Incomplete 
melting  14 4982 0 0 

Stubbing 
regime 533 0 8153 1306 

Stable 
regime 321 0 1906 17757 

4. CONCLUSION 
In this work, the process stability of the LW-DED process 

was successfully monitored and classified using a high-speed 
imaging camera with a fidelity of 90% F-score. The developed 
approach was able to classify the single-track quality into one of 
four regimes: stable, stubbing, incomplete melting, or dripping. 
This work extracts simple physics-based morphological and 
intensity features from the meltpool images. Doing so allows for 
a physical interpretability of the model, which is vital for 
implementation in industrial systems. High-speed imaging 
cameras generate terabytes of data per manufactured part if 
implemented in-situ. By extracting physics-based features, every 
large 2D image can be replaced with a small 1D vector of the 
eight features. Thus, enabling the deletion of the image while still 
storing meltpool information to review at a later date. This is a 
distinct advantage to data-based models, such as CNNs, in which 
the raw images need to be stored if the data needs to be reviewed 
post-build.  

Future works will first test the model transferability between 
machine-to-machine and material-to-material. This is an 
important step to ensure model robustness and quality 
predictions across various machine platforms. Then future works 
will build upon this model and attempt to monitor the quality of 
functional, complex 3D parts manufactured using LW-DED. 
This is a prerequisite step for in-situ part qualification of the LW-
DED processes which is the long-term objective of this work. 
Additionally, future works will aim to use high-speed imaging 
data to predict the evolved microstructure found in manufactured 
samples.  
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