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ABSTRACT 
The long-term goal of this work is to predict and control 

microstructure evolution in metal additive manufacturing 

processes. As a step towards this goal, the objective of this paper 

is the rapid prediction of the microstructure evolution in parts 

made using the laser powder bed fusion (LPBF) additive 

manufacturing process. To realize this objective, we developed 

and applied an approach which combines physics-based thermal 

modeling with data-driven machine learning to predict two 

important microstructure-related characteristics in Nickel Alloy 

718 LPBF-processed parts: meltpool depth and primary 

dendritic arm spacing (PDAS). Microstructure characteristics 

are critical determinants of functional physical properties, e.g., 

yield strength and fatigue life. Currently, the microstructure of 

laser powder bed fusion parts is optimized through a 

cumbersome and costly build-and-characterize empirical 

approach. This makes the development of rapid and accurate 

models for predicting microstructure evolution practically 

valuable: these models reduce process development time and 

enable fabrication of parts with consistent properties. 

Unfortunately, due to their computational complexity, existing 

physics-based models for predicting microstructure evolution 

are limited to only a few layers and are challenging to scale to 

practical parts. To overcome the drawbacks of current 

microstructure prediction techniques, this paper establishes a 

novel physics and data integrated modeling approach. The 

approach consists of two steps. First, a rapid, part-level 

computational thermal model was used to predict the 

temperature distribution and cooling rate in the entire part 

before it was printed. Second, the foregoing physics-based 

thermal history quantifiers were used as inputs to a simple 

machine learning model (support vector machine) trained to 

predict the meltpool depth and primary dendritic arm spacing 

based on empirical materials characterization data. As an 

example of its efficacy, when tested on a separate set of samples 

from a different build, the approach predicted the PDAS with 

root mean squared error ≈ 110 nm. The modeling approach was 

further able to predict meltpool depth with a root mean squared 

error of 0.012mm. This model performance was validated 

through the creation of 21 geometries created under 7 different 

process parameters. Optical and scanning electron microscopy 

was conducted resulting in more than 1200 primary dendritic 

arm spacing and meltpool depth measurements. Primary 

dendritic arm spacing predictions were also validated on parts 

of a unique geometry created in a separate work. The model was 

able to successfully transfer to this build without further 

training, indicating that this method is transferrable to other 

parts made with laser powder bed fusion and Nickel Alloy 718. 

This work thus presents an avenue for future physics-based 

optimization and control of microstructural evolution in laser 

powder bed fusion.    
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1. INTRODUCTION 
Laser powder bed fusion (LPBF) is an additive 

manufacturing process that enables creation of advanced 

geometries that are impossible to produce through traditional 

manufacturing methods. Furthermore, the process has been 

shown to significantly reduce part lead times, particularly where 

complexity drives up production cycle times [1, 2]. Despite these 

benefits, the process has not seen widespread adoption in 

industry. One key reason for the reticent adoption in industry is 

the tendency of the process tendency to generate heterogeneous 

microstructures, which in turn produces parts with inconsistent 

mechanical properties [3, 4]. 

The goal of this work is to predict microstructure evolution 

in parts created using the LPBF additive manufacturing process. 

To achieve this goal, we developed and applied an approach that 
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combines physics-based thermal modeling with data-driven 

machine learning. Rapid, accurate prediction of microstructure 

has the potential to reduce the cost of additive manufacturing as 

well as expand its applications by reducing qualification time of 

parts and enabling the creation of consistent functional 

properties such as yield strength, creep and fatigue life [5, 6]. 

Microstructure evolution in LPBF is controlled by a variety 

of parameters including laser power, laser velocity, and part 

shape. Current methods to qualify and obtain desired part 

properties use an empirical build-and-test approach with a 

specific material and geometry. Sample coupons are tested using 

non-destructive and destructive techniques to verify 

microstructure, but unfortunately these methods do not scale 

well to larger geometries. Furthermore, qualification must be 

completed on a per-geometry basis, as any change in the part 

may significantly affect the microstructure obtained. 

The objective of this work is to predict the microstructure 

obtained in LPBF by correlating model-derived temperature 

fields (otherwise known as thermal history) with specific 

microstructure characteristics. In this work, two microstructure 

properties are predicted:  meltpool depth and primary dendritic 

arm spacing (PDAS) as a function of sub-surface (100 μm from 

the top surface) thermal phenomena. This framework is 

summarized in FIGURE 1.  This process is unique as it requires 

no sensor data or computationally expensive thermomechanical 

and microstructure modeling techniques, making this method 

highly relevant for effective industrial application.  

 

 
FIGURE 1: A SUMMARY OF THE APPROACH OF THIS WORK 

FOR THE PREDICTION OF MELTPOOL DEPTH AND PRIMARY 

DENDRITIC ARM SPACING (PDAS). THERMAL MODEL-

DERIVED FEATURES ARE COMBINED WITH DATA-DRIVE 

MACHINE LEARNING IN ORDER TO PREDICT 

MICROSTRUCTURE FEATURES IN A RAPID, INDUSTRIALLY 

RELEVANT MANNER.  

 

2. MATERIALS AND METHODS 
2.1 Experimental Setup 

Parts were created for this experiment in partnership with 

Edison Welding Institute using their open architecture LPBF 

system.  A long-wave infrared camera (Micro-Epsilon TIM 640) 

is installed in the build chamber, placed with a view 80° to the 

horizontal. This was used to validate thermal history predictions 

in this work. The system layout and sensor arrangement can be 

seen in FIGURE 2. The camera recorded the thermal trends for 

the top surface of all parts created in the build. The camera was 

calibrated to measure the temperatures in the range of 25°C to 

250°C using a black-body technique used in our previous works 

[7, 8]. 

The geometries printed include 21 samples of a simple 

overhang, as well as four cubes used to calibrate the installed 

infrared camera. The material chosen for this work was Nickel 

Alloy 718 (Inconel 718) due to its importance in the defense and 

aerospace industries [9, 10]. The material was also selected 

based on our previous experience working with it, which 

provided understanding of the effects of process parameters on 

porosity and part deformation. These defects confound 

microstructure formation, so it is imperative to use parameters 

which do not induce these flaws [7, 8].  

 
FIGURE 2: SCHEMATIC OF THE OPEN ARCHITECTURE LPBF 

SYSTEM. AN INFRARED CAMERA WAS PLACED 80° FROM THE 

HORIZONTAL TO MEASURE SURFACE TEMPERATURE. 
 

The overhang sample was divided into three build heights. 

These parts are denoted as A-type, B-type, and C-type, with build 

heights of 10mm, 15mm, and 20mm respectively. The total build 

time was approximately six hours. Seven process parameter 
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combinations were tested. Parameter combinations were created 

by changing laser power and scan speed in steps of ±30% 

increments from the manufacturer-recommended settings of 

285W laser power and 960 mm·s-1 scan speed. The design of the 

build plate, as well as the details of all samples and parameter 

combinations tested in this work are shown in FIGURE 3. Other 

processing conditions, such as layer thickness and hatch spacing 

were maintained as constant. 

 
FIGURE 3: (LEFT) THE FINISHED BUILD WITH A SCHEMATIC 

OF THE THREE DIFFERENT OVERHANG PARTS CREATED IN 

THIS WORK. ALL DIMENSIONS ARE IN MM. (RIGHT) THE 

SELECTED PROCESS PARAMETERS USED IN THIS WORK 
2.2 Materials Characterization 

Each of the 21 samples was examined with a Nikon 

225XTH X-ray computed tomography (XCT) system with a 

voxel resolution of 16 µm. All samples tested showed negligible 

porosity with defect volume ratio (DVR) less than 0.01% for all 

samples tested. By avoiding porosity formation, unintended 

variation in microstructure is avoided which would confound the 

microstructure formation factors. 

After XCT was completed, the parts were cut in half along 

the XZ plane to quantify the meltpool penetration depth and 

primary dendritic arm spacing (PDAS). Meltpool depth 

measurements were conducted according to NASA MSFC-

SPEC-3717, which is visually shown in FIGURE 4 [11, 12]. 

Parts were cross-sectioned, polished and etched in order to 

expose the resulting meltpool penetrations. Meltpool depth was 

quantified by measuring the distance from the top surface of the 

part to the furthest point on the corresponding meltpool hatch 

(dp). The ratio of the measured depth to the nominal layer 

thickness (
𝑑𝑝

𝐿
) is also used as a metric. This metric is used as a 

guide of optimal meltpool penetration, as practitioners at Edison 

Welding Institute stated that  
𝑑𝑝

𝐿
 ratio greater than 2 is preferred. 

In this work, 1250 measurements were obtained across all 21 

samples. 

 

 
FIGURE 4: METHOD FOR MEASURING MELTPOOL DEPTH 

PER NASA MSFC-SPEC-3717 [12]. THE SPECIFICATION LIMITES 

MELTPOOL DEPTH MEASUREMENT TO THE TOP-MOST 

LAYER IN ORDER TO HAVE A DEFINED REFERENCE DATUM. 
Grain morphology has a prominent effect on mechanical 

properties such as creep, strength and microhardness [13, 14].  

The polished and etched samples were examined with scanning 

electron microscopy (SEM) at 6,500x magnification. Each part 

was sampled in the same regions, demarcated in FIGURE 5. 65 

locations were sampled for A-type samples, with 39 and 23 

samples taken for each B and C-type sample respectively. All 

available regions were measured for all samples, resulting in the 

reduction of measurements for the B and C-type samples. 

Locations were referenced from the top surface of the part. At 

each sample location, two images were taken and used to extract 

PDAS. In total, 1,364 SEM images were acquired across all 

samples.  

 

 
FIGURE 5: (a) LOCATIONS ON THE SAMPLES WHERE SEM 

IMAGES WERE TAKEN TO MEASURE PDAS. 1364 IMAGES 

WERE AQUIRED ACROSS ALL 21 SAMPLES. (b,c) SCHEMATIC 

OF METHOD USED TO MEASURE PDAS FROM SEM IMAGES. 

  
In order to acquire PDAS (λ1) measurements, two non-

overlapping 10 µm regions are drawn perpendicular to the grain 

growth. Each dendrite that passes through the bounding box is 

counted and the average dendritic arm spacing is calculated as 

10µm divided by the average number of dendrites in the box. 

This technique can be seen in FIGURE 5. This work focused on 

variation in microstructure across layers, so the resulting 

measurements were then averaged across the build direction, 

resulting in 135 λ1 measurements. 

 

2.3 Thermal Modeling Approach 
Part shape, material properties, machine conditions, and 

processing parameters all influence microstructure properties 

such as meltpool depth and PDAS [15]. These factors influence 

material cooling rates, which in turn drive the final 

microstructure evolution. To predict temperature distributions on 

the part-scale in LPBF, the heat diffusion equation must be 

solved, which is shown in Eq. (1) [16]. The heat diffusion 

equation provides the temperature T at location (x,y,z) at time 

instant t. 

𝜌𝑐𝑝
∂T(𝑥,𝑦,𝑧,𝑡) 

∂𝑡
− 𝑘 (

∂2

∂𝑥2
+

∂2

∂𝑦2
+

∂2

∂𝑧2
)

⏞          
𝐿𝑎𝑝𝑙𝑎𝑐𝑖𝑎𝑛 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟

T(𝑥, 𝑦, 𝑧, 𝑡)  = 𝑄     (1) 
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To use this equation, the second derivative, otherwise called 

the Laplacian Operator, must be solved. In traditional practice, 

this equation is solved with the finite element technique. This 

method, however, is computationally expensive due to the need 

to remesh the part due to changing geometry in LPBF [17]. This 

additional computational overhead limits practical application in 

industry due to it requiring less time to conduct empirical build-

and-test optimization compared with simulation techniques.  

This work overcomes the limitations of traditional finite 

element analysis by using a novel, mesh-free graph theory 

thermal modeling approach to predict part-level thermal history. 

The method has been shown in previous works to have accuracy 

comparable to FE simulation methods but solves the thermal 

history of LPBF geometries approximately 5 times faster [7, 8, 

18, 19]. The graph theory method replaces the continuous form 

of the Laplacian matrix with the discrete Laplacian matrix (L), 

resulting in the following semi-analytical solution shown in Eq 

2.  

T(𝑥, 𝑦, 𝑧, 𝑡) = ϕ𝑒
−

𝑘

𝜌𝑐𝑝
Λ𝑡
ϕ′ (

AeSl

𝜌𝑣𝑐𝑝

P

V
+ Tprev)     (2) 

In this form, the heat diffusion equation is solved as a 

function of the eigenvalues (Λ) and eigenvectors (ϕ) of the 

Laplacian Matrix (L), with discrete points chosen to represent 

the part geometry. Ae is the effective laser absorptivity, Sl length 

scanned per layer (a function of hatch spacing, [mm]), P [W] 

laser power, V [mm·s-1] laser velocity, v [mm3] volume of 

material melted in a layer (a product of scanned area and layer 

height), and Tprev [°C] is the temperature of the previous layer 

(from simulation). In this work, Ae = 0.60 based on experiments 

by Ye et al. at Lawrence Livermore National Laboratory [20].  

The method for deriving and implementing the graph theory 

thermal solution is detailed in our previous works [18]. The 

graph theory approach has been shown to have similar precision 

of FE methods while being 2.5 to 5 times faster than commercial 

finite element solutions [21]. This modeling approach can 

achieve faster simulation times due to its elimination of the 

meshing step commonly seen in finite element-based solutions. 

In this work, the models for A-type parts completed in 3 minutes, 

with B and C-type parts requiring 2.5 and 2 minutes respectively.  

 

2.4 Machine Learning Approach 
To predict microstructure properties, two parameters are 

extracted using the graph-theory thermal modeling approach 

which were used as inputs to simple machine learning models, 

these being cooling time and end-of-cycle temperature. End-of-

cycle temperature is extracted as per previous works and can be 

seen in FIGURE 6(a) [19]. A 1.5mm x 1.5mm area is selected in 

the base of sample parts, where all thermal history information 

is extracted. The end-of-cycle temperature quantifies the steady 

state temperature achieved before the subsequent laser strike. 

This identifies the overall heat accumulation present in the 

current part.  

The cooling time (tc), as shown in FIGURE 6(b), is the 

duration required for the temperature to decrease to 700 °C 

following the laser strike, approximately half the melting point 

of Nickel Alloy 718, which has a wide liquidous range from 1260 

– 1330 °C [9, 10]. These metrics were acquired 100 µm (2.5 

layers) from the topmost layer. Because meltpool penetrations 

have been observed to be more than one nominal layer thickness, 

cooling rate information must be extracted below the top layer, 

which determines the microstructure properties at this point.  

  

 
FIGURE 6: (a) THERMAL HISTORY EXTRACTED FROM THE 

GRAPH THEORY THERMAL MODEL OVER A 1.5X1.5MM AREA. 

END-OF-CYCLE TEMPERATURE IS EXTRACTED IMMEDEATLY 

BEFORE THE SUBSEQUENT LAYER. (b) THE COOLLING TIME 

IS THE DURATION FOR THE TEMPERATURE IN THE SAMPLE 

AREA TO REDUCE TO 700 °C, OR APPROXIMATLY HALF THE 

OF THE MELTING POINT IN NICKEL ALLOY 718. 

 

To predict microstructure evolution, elementary machine 

learning was used. The overall machine learning approach is 

summarized in FIGURE 7. The cooling time (tc) and end-of-

cycle temperature (Te) derived from the graph theory thermal 

simulations, along with the laser power to scan velocity ratio 

(P/V) serve as inputs to machine learning models. The ground 

truth microstructure, PDAS and meltpool depth, data for the 

model are obtained from the materials characterization data 

obtained in Sec. 2.2. 

The machine learning aspect of this work was subdivided 

into two tasks. Task 1 looks to predict meltpool penetration depth 

and Task 2 aims to predict the primary dendritic arm spacing of 

the parts. Each of the tasks are further subdivided into three 

subtasks which involve classification and regression prediction. 

Task 1A and Task 1B classify the meltpool depth into 

discrete two and three levels, respectively, while Task 1C 

involves predicting the meltpool depth with regression analysis. 

Tasks 1A and B employ logistic regression and Gaussian support 

vector machine (SVM) algorithms. Task 1C analysis uses linear 

regression and Gaussian SVM regression. While the prediction 

results could be significantly improved by using complex 

machine learning models, such as multi-layer artificial neural 

networks, the tradeoff would be in interpretability and increased 

uncertainty due to overfitting.  
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FIGURE 7: THE OVERVIEW OF MACHINE LEARING 

APPROACH. THE AIM IS TO PREDICT MELTPOOL DEPTH 

(TASK 1) AND PDAS (TASK 2) AS A FUNCTION OF COOLING 

TIME AND END-OF-CYCLE TEMPERATURE. 

 

For all tasks, the materials characterization data is split into 

70-30% testing-training subsets, and 10-fold cross validation 

procedure is implemented. For A and B tasks, the results are 

reported in terms of the F-score, which includes an estimate of 

both Type 1 and Type 2 errors [22-24] Classes for A and B tasks 

were derived from feedback from Edison Welding Institute to 

easily define microstructure performance. For C tasks, the results 

are quantified in terms of the root mean squared error (RMSE).   

Since the relatively smaller number of λ1 measurements may 

result in overfitting, a separate validation build was used for 

testing model transferability and uncertainty quantification. 

These λ1 measurements were subsequently used to validate the 

trained model; the model is not retrained with these new 

measurements. 

 

3. RESULTS AND DISCUSSION 
3.1 Meltpool Depth 

The resulting meltpool depths which were obtained using 

the procedure described in Sec. 2.2 are shown in FIGURE 8 as a 

function of increasing P/V ratio.  

At low energy conditions, the average meltpool depth 

ranged from 75 to 85 µm. At the nominal condition, the meltpool 

depth increased to ~110 µm. at equal P/V ratio, the depth varied 

drastically from 75 to 110 µm with no clear trend observed in the 

data. These differences in meltpool depth are consistent with 

observations of Keshavarzkermani et al. [25], which 

demonstrated that meltpool depth can vary independent of 

process parameter selection. Meltpool depth changed as a 

function P/V ratio and the layer thickness. Changing process 

parameters did not consistently predict the final meltpool depth.  

 

 
FIGURE 8: MELTPOOL DEPTH AS A FUNCTION OF THE P/V 

RATIO FROM ALL 21 SAMPLES. THE ERROR BARS ARE FOR 

±1σ DEVIATION.   

 

The results reported in FIGURE 8 imply that process 

parameters have a complex relationship with meltpool depth, 

which reflects the results of Keshavarzkermani et al. [25]; an 

increase in energy density does not clearly correlate to increased 

meltpool depth. Increasing P/V ratio can cause meltpool 

widening, impacting meltpool depth.  Moreover, the meltpool 

standard deviation within the same sample is as large as 20 µm—

such large variation results from stochasticity in the process 

which has been observed in literature [26, 27]. 

The results of applying machine learning to prediction of 

meltpool depth are reported in TABLE 1in terms of mean F-score 

and RMSE from 10-fold training with standard deviation in the 

parenthesis. For Task 1A and Task 1B the F-score for the 3-way 

case using the Gaussian SVM model is ~71%, which improved 

to 83% for the 2-way case. The corresponding logistic regression 

results are 56% and 67% for the 2-way and 3-way classification, 

respectively. The results from the logistic regression are inferior 

because it cannot capture nonlinear data trends observed in this 

case. 

 

TABLE 1: MACHINE LEARNING RESULTS FOR MELTPOOL 

DEPTH MODELS 

 
 

The prediction error was improved through the use of SVM 

regression, which resulted in a root mean square error of ~ 12 

µm, or 1/3 of a layer The error increases to 1/2 layer with the 

simple linear regression model. The prediction error is a result of 

stochastic process variation, which is caused by local variations 

in the meltpool commonly observed in literature with in-situ 

meltpool optical and pyrometry imaging [24].  
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3.2 Primary Dendritic Arm Spacing 
The resulting PDAS measurements as acquired per Sec. 2.2 

are shown in FIGURE 9. From these results, it is obvious from 

these results that PDAS increases with increasing energy density; 

λ1 increases from 0.67 µm for TC 2 (P/V = 0.20 J·m-1) to nearly 

1 µm for TC 5 (P/V = 0.42 J·m-1). This analysis indicates that 

process parameters are an insufficient predictor of primary 

dendritic arm spacing.  

Despite the P/V ratio being the same for TC 7, 4, and 1 

which resulted in the same effective energy density, there is a 

prominent difference in λ1. This relationship is expected to 

further break down with more complex geometry. This analysis 

further does not consider variation in λ1 due to changing part 

geometry and is unable to capture changing λ1 due to change in 

build height. Process modeling and prediction allows for 

prediction of all build heights, allowing variation in 

microstructure to be predicted.  

 
FIGURE 9: THE MEAN PRIMARY DENDRITIC ARM SPACING 

(PDAS) AS A FUNCTION OF THE PROCESSING PARAMETERS 

ARRANGED IN ORDER OF P/V RATIO. THE ERROR BARS ARE 

FOR ±1σ DEVIATION. PDAS TENDS TO INCREASE DUE TO 

HEAT BUILDUP, HOWEVER THERE IS SIGNIFICANT 

VARAITION IN PDAS, ESPECIALLY FOR TREATMENT 

CONDITIONS WHERE P/V RATIO IS IDENTICAL. 
 

FIGURE 10 shows the graph theory predicted end-of-cycle 

temperature and cooling time as a function of build height on the 

largest A-type samples. (λ1) measurements in their respective 

measurement locations on the A-type samples are shown in the 

same figure for four of the samples. The higher end-of-cycle 

temperature (Te) and cooling time (tc) are represented with red 

hue spectrum; a similar color coding is represented for λ1.  A 

prominent visual correlation can be seen in FIGURE 10 in that 

the regions within a part with larger Te and tc result in increased 

λ1. This result indicates that a larger cooling time (tc) and end-of-

cycle temperature (Te) are correlated with an increased λ1.  

The machine learning procedures described in Sec. 2.4 were 

applied to the foregoing data to predict λ1. The results from a 10-

fold training and testing procedure are reported in TABLE 2 

presents the performance for the predictive models for all PDAS 

prediction tasks. The F-score using the Gaussian SVM model is 

91% and 71%, respectively, for the 2-way and 3-way 

classification. The prediction error of λ1 using the Gaussian SVM 

regression is ~ 71 nm. Indeed, the linear regression analysis 

provides similar F-score and RMSE values due to the linear 

relationship between model features and resulting primary 

dendritic arm spacing. 

 

 
FIGURE 10: PICTORIAL REPRESENTATION OF END-OF-

CYCLE TEMPERATURE AND COOLING TIME DERIVED FROM 

THE GRAPH THEORY THERMAL MODEL AND MEASURED 

PDAS. AS COOLING TIME AND END-OF-CYCLE 

TEMPERATURE INCREASES, PDAS INCREASES. 
 

TABLE 2: MACHINE LEARNING RESULTS FOR PDAS 

PREDICTION FOR SVM AND LINEAR MODELS 

 
 

3.3 Model Transferability 
To alleviate possible overfitting concern resulting from the 

relatively small data set of PDAS measurements, the models 

were applied to a separate geometry from a different build plate 

after training on the data from this work. The experiments 

underlying these samples are detailed in our prior work, and 

briefly summarized in the following paragraphs [7].  
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As shown in FIGURE 11, Two inverted cone geometries 

were created with Nickel Alloy 718 and were made with two 

unique parameter conditions, termed fixed and controlled 

processing. The parts were created on two different build plates 

created in partnership with Edison Welding Institute on the same 

open architecture LPBF system used to create the parts in this 

work. Fixed processing was created with identical nominal 

process parameters and source powder as this work. Controlled 

processing conditions changed the laser power to mitigate heat 

buildup in the sample. The power changes were guided by the 

graph theory thermal model. The 25mm tall sample cone has an 

overhang angle of 40°. The laser power for the controlled 

processed geometry is reduced to 200 W from 285 W at layer 

325, and a 10 second dwell time is added after 13 mm of build 

height. Notably, the model in this work did was not tested with 

altered laser power and dwell time. 

 
FIGURE 11: (a) END-OF-CYCLE TEMPERATURE FOR FIXED 

PROCESSED INVERTED CONE. (b) END-OF-CYCLE 

TEMPERATURE FOR CONTROLLED PROCESSED INVERTED 

CONE. (c) THE RESULTING COOLING TIME FOR CONTROLLED 

PROCESSING IS MUCH SMALLER THAT THAT OF FIXED 

PROCESSING, WHICH INDICATES A SMALLER PDAS 

RESPONSE 

 

FIGURE 11(a) and (b) shows the predicted end-of-cycle 

temperature for the fixed and controlled processing conditions. 

The IR end-of-cycle temperature observations are overlaid on 

the graphs to show the model accuracy; the MAPE and RMSE 

for both cases are within 2% and 8 °C, respectively. The 

simulation was completed in approximately 4 minutes. FIGURE 

11(c) shows the predicted cooling time(tc) for these two samples. 

The increased dwell time and reduced laser power combined to 

reduce expected cooling time, which results in an expected λ1 

size.  

In this build, PDAS (λ1) measurements were obtained at 6 

locations along the build height for each cone part. SEM images 

are shown in FIGURE 12 along the build height for the fixed and 

controlled processed cones. The corresponding PDAS (λ1) 

measurements are also included. Owing to heat buildup and 

increased cooling time, the PDAS of the fixed processed cone is 

λ1 ≈ 700 nm. In the case of the controlled processed cone, the 

PDAS is significantly lower  (λ1 ≈ 500 nm) where the laser power 

change was initiated..  

 

 

 
FIGURE 12: PDAS MEASUREMENTS FROM THE INVERTED 

CONE CASE STUDY ALONG WITH REPRESENTATIVE IMAGES 

FROM FOUR SELECTED MEASUREMENT REGIONS 
Results from the application of the trained model from the 

parts of this work to the case study work are reported in TABLE 

3. Machine learning parameters were not changed, and no data 

from the cone parts discussed here was used to train the machine 

learning models used in testing.  

The 3-way and 2-way classification results with the 

Gaussian SVM are 83% and 93%, respectively, while the λ1 

prediction error (RMSE) is approximately 110 nm. These 

prediction results follow the PDAS prediction results from the 

previous parts. These results indicate the Task 2 models are 

capable of transferring to different parts and processing 

conditions for the Nickel Alloy 718 material system.  

 

TABLE 3: MACHINE LEARNING RESULTS FOR CONE-

SHAPED PARTS 

 
 
4. CONCLUSION 

We developed and applied a physics and data-integrated 

approach to predict two critical microstructure characteristics in 

Nickel Alloy 718 LPBF processed parts, namely the meltpool 

depth and primary dendritic arm spacing (PDAS, λ1). A rapid 

part-scale graph theory thermal model was used to estimate the 

sub-surface end-of-cycle temperature and cooling time (rate). 

These simulation-based thermal history features served as inputs 

to simple machine learning models trained on experimentally 

acquired data to predict the meltpool depth and PDAS. The 

approach was demonstrated on Nickel Alloy 718 parts of 

multiple shapes built under several processing parameter sets 

with prediction accuracy greater than 80%. In our future research 

we will expand this prediction approach to more microstructure 

features, such as grain orientation and microhardness, among 

others.  
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