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ABSTRACT

The long-term goal of this work is to predict and control
microstructure evolution in metal additive manufacturing
processes. As a step towards this goal, the objective of this paper
is the rapid prediction of the microstructure evolution in parts
made using the laser powder bed fusion (LPBF) additive
manufacturing process. 1o realize this objective, we developed
and applied an approach which combines physics-based thermal
modeling with data-driven machine learning to predict two
important microstructure-related characteristics in Nickel Alloy
718 LPBF-processed parts: meltpool depth and primary
dendritic arm spacing (PDAS). Microstructure characteristics
are critical determinants of functional physical properties, e.g.,
vield strength and fatigue life. Currently, the microstructure of
laser powder bed fusion parts is optimized through a
cumbersome and costly build-and-characterize empirical
approach. This makes the development of rapid and accurate
models for predicting microstructure evolution practically
valuable: these models reduce process development time and
enable fabrication of parts with consistent properties.
Unfortunately, due to their computational complexity, existing
physics-based models for predicting microstructure evolution
are limited to only a few layers and are challenging to scale to
practical parts. To overcome the drawbacks of current
microstructure prediction techniques, this paper establishes a
novel physics and data integrated modeling approach. The
approach consists of two steps. First, a rapid, part-level
computational thermal model was used to predict the
temperature distribution and cooling rate in the entire part
before it was printed. Second, the foregoing physics-based
thermal history quantifiers were used as inputs to a simple
machine learning model (support vector machine) trained to
predict the meltpool depth and primary dendritic arm spacing
based on empirical materials characterization data. As an
example of its efficacy, when tested on a separate set of samples
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from a different build, the approach predicted the PDAS with
root mean squared error = 110 nm. The modeling approach was
further able to predict meltpool depth with a root mean squared
error of 0.012mm. This model performance was validated
through the creation of 21 geometries created under 7 different
process parameters. Optical and scanning electron microscopy
was conducted resulting in more than 1200 primary dendritic
arm spacing and meltpool depth measurements. Primary
dendritic arm spacing predictions were also validated on parts
of a unique geometry created in a separate work. The model was
able to successfully transfer to this build without further
training, indicating that this method is transferrable to other
parts made with laser powder bed fusion and Nickel Alloy 718.
This work thus presents an avenue for future physics-based
optimization and control of microstructural evolution in laser
powder bed fusion.

Keywords: Microstructure Evolution, Meltpool Depth, Thermal
Modeling, Physics-based Machine Learning

1. INTRODUCTION

Laser powder bed fusion (LPBF) is an additive
manufacturing process that enables creation of advanced
geometries that are impossible to produce through traditional
manufacturing methods. Furthermore, the process has been
shown to significantly reduce part lead times, particularly where
complexity drives up production cycle times [1, 2]. Despite these
benefits, the process has not seen widespread adoption in
industry. One key reason for the reticent adoption in industry is
the tendency of the process tendency to generate heterogeneous
microstructures, which in turn produces parts with inconsistent
mechanical properties [3, 4].

The goal of this work is to predict microstructure evolution
in parts created using the LPBF additive manufacturing process.
To achieve this goal, we developed and applied an approach that

1 © 2024 by ASME



combines physics-based thermal modeling with data-driven
machine learning. Rapid, accurate prediction of microstructure
has the potential to reduce the cost of additive manufacturing as
well as expand its applications by reducing qualification time of
parts and enabling the creation of consistent functional
properties such as yield strength, creep and fatigue life [5, 6].

Microstructure evolution in LPBF is controlled by a variety
of parameters including laser power, laser velocity, and part
shape. Current methods to qualify and obtain desired part
properties use an empirical build-and-test approach with a
specific material and geometry. Sample coupons are tested using
non-destructive and destructive techniques to verify
microstructure, but unfortunately these methods do not scale
well to larger geometries. Furthermore, qualification must be
completed on a per-geometry basis, as any change in the part
may significantly affect the microstructure obtained.

The objective of this work is to predict the microstructure
obtained in LPBF by correlating model-derived temperature
fields (otherwise known as thermal history) with specific
microstructure characteristics. In this work, two microstructure
properties are predicted: meltpool depth and primary dendritic
arm spacing (PDAS) as a function of sub-surface (100 um from
the top surface) thermal phenomena. This framework is
summarized in FIGURE 1. This process is unique as it requires
no sensor data or computationally expensive thermomechanical
and microstructure modeling techniques, making this method
highly relevant for effective industrial application.
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FIGURE 1: A SUMMARY OF THE APPROACH OF THIS WORK
FOR THE PREDICTION OF MELTPOOL DEPTH AND PRIMARY
DENDRITIC ARM SPACING (PDAS). THERMAL MODEL-
DERIVED FEATURES ARE COMBINED WITH DATA-DRIVE
MACHINE  LEARNING IN ORDER TO PREDICT
MICROSTRUCTURE FEATURES IN A RAPID, INDUSTRIALLY
RELEVANT MANNER.

Metallurgical Analyses

2. MATERIALS AND METHODS
2.1 Experimental Setup

Parts were created for this experiment in partnership with
Edison Welding Institute using their open architecture LPBF
system. A long-wave infrared camera (Micro-Epsilon TIM 640)
is installed in the build chamber, placed with a view 80° to the
horizontal. This was used to validate thermal history predictions
in this work. The system layout and sensor arrangement can be
seen in FIGURE 2. The camera recorded the thermal trends for
the top surface of all parts created in the build. The camera was
calibrated to measure the temperatures in the range of 25°C to
250°C using a black-body technique used in our previous works
[7, 8].

The geometries printed include 21 samples of a simple
overhang, as well as four cubes used to calibrate the installed
infrared camera. The material chosen for this work was Nickel
Alloy 718 (Inconel 718) due to its importance in the defense and
aerospace industries [9, 10]. The material was also selected
based on our previous experience working with it, which
provided understanding of the effects of process parameters on
porosity and part deformation. These defects confound
microstructure formation, so it is imperative to use parameters
which do not induce these flaws [7, 8].

Longwave Infrared (LWIR)
thermal camera
(Microepsilon TIM 640)
80° from horizontal 1 Hz

Scanning Galvano-

Powder Storage

Recoater

Powder
Collector

Substrate
(150%150 mm)

FIGURE 2: SCHEMATIC OF THE OPEN ARCHITECTURE LPBF
SYSTEM. AN INFRARED CAMERA WAS PLACED 80° FROM THE
HORIZONTAL TO MEASURE SURFACE TEMPERATURE.

The overhang sample was divided into three build heights.
These parts are denoted as A-type, B-type, and C-type, with build
heights of 10mm, 15mm, and 20mm respectively. The total build
time was approximately six hours. Seven process parameter
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combinations were tested. Parameter combinations were created
by changing laser power and scan speed in steps of £30%
increments from the manufacturer-recommended settings of
285W laser power and 960 mm-s™! scan speed. The design of the
build plate, as well as the details of all samples and parameter
combinations tested in this work are shown in FIGURE 3. Other
processing conditions, such as layer thickness and hatch spacing
were maintained as constant.
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FIGURE 3: (LEFT) THE FINISHED BUILD WITH A SCHEMATIC
OF THE THREE DIFFERENT OVERHANG PARTS CREATED IN
THIS WORK. ALL DIMENSIONS ARE IN MM. (RIGHT) THE
SELECTED PROCESS PARAMETERS USED IN THIS WORK

2.2 Materials Characterization

Each of the 21 samples was examined with a Nikon
225XTH X-ray computed tomography (XCT) system with a
voxel resolution of 16 pm. All samples tested showed negligible
porosity with defect volume ratio (DVR) less than 0.01% for all
samples tested. By avoiding porosity formation, unintended
variation in microstructure is avoided which would confound the
microstructure formation factors.

After XCT was completed, the parts were cut in half along
the XZ plane to quantify the meltpool penetration depth and
primary dendritic arm spacing (PDAS). Meltpool depth
measurements were conducted according to NASA MSFC-
SPEC-3717, which is visually shown in FIGURE 4 [11, 12].
Parts were cross-sectioned, polished and etched in order to
expose the resulting meltpool penetrations. Meltpool depth was
quantified by measuring the distance from the top surface of the
part to the furthest point on the corresponding meltpool hatch
(dp). The ratio of the measured depth to the nominal layer

. dp\ . . . .
thickness (Tp) is also used as a metric. This metric is used as a
guide of optimal meltpool penetration, as practitioners at Edison

. . d . .
Welding Institute stated that Tp ratio greater than 2 is preferred.

In this work, 1250 measurements were obtained across all 21
samples.

Top Layer

dy,: Depth of Penetration o

B P (S
FIGURE 4: METHOD FOR MEASURING MELTPOOL DEPTH
PER NASA MSFC-SPEC-3717 [12]. THE SPECIFICATION LIMITES

MELTPOOL DEPTH MEASUREMENT TO THE TOP-MOST
LAYER IN ORDER TO HAVE A DEFINED REFERENCE DATUM.

Grain morphology has a prominent effect on mechanical
properties such as creep, strength and microhardness [13, 14].
The polished and etched samples were examined with scanning
electron microscopy (SEM) at 6,500x magnification. Each part
was sampled in the same regions, demarcated in FIGURE 5. 65
locations were sampled for A-type samples, with 39 and 23
samples taken for each B and C-type sample respectively. All
available regions were measured for all samples, resulting in the
reduction of measurements for the B and C-type samples.
Locations were referenced from the top surface of the part. At
each sample location, two images were taken and used to extract
PDAS. In total, 1,364 SEM images were acquired across all
samples.
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FIGURE 5: (a) LOCATIONS ON THE SAMPLES WHERE SEM
IMAGES WERE TAKEN TO MEASURE PDAS. 1364 IMAGES
WERE AQUIRED ACROSS ALL 21 SAMPLES. (b,c) SCHEMATIC
OF METHOD USED TO MEASURE PDAS FROM SEM IMAGES.

In order to acquire PDAS (A;) measurements, two non-
overlapping 10 um regions are drawn perpendicular to the grain
growth. Each dendrite that passes through the bounding box is
counted and the average dendritic arm spacing is calculated as
10um divided by the average number of dendrites in the box.
This technique can be seen in FIGURE 5. This work focused on
variation in microstructure across layers, so the resulting
measurements were then averaged across the build direction,
resulting in 135 A; measurements.

2.3 Thermal Modeling Approach

Part shape, material properties, machine conditions, and
processing parameters all influence microstructure properties
such as meltpool depth and PDAS [15]. These factors influence
material cooling rates, which in turn drive the final
microstructure evolution. To predict temperature distributions on
the part-scale in LPBF, the heat diffusion equation must be
solved, which is shown in Eq. (1) [16]. The heat diffusion
equation provides the temperature T at location (X,y,z) at time

instant t.
Laplacian operator

—_—
dT(x,y,z,t) ik a2 ik _
I va— —k(ﬁﬁ'ﬁﬁ'ﬁ)T(}C,y,Z,t) =Q (1)
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To use this equation, the second derivative, otherwise called
the Laplacian Operator, must be solved. In traditional practice,
this equation is solved with the finite element technique. This
method, however, is computationally expensive due to the need
to remesh the part due to changing geometry in LPBF [17]. This
additional computational overhead limits practical application in
industry due to it requiring less time to conduct empirical build-
and-test optimization compared with simulation techniques.

This work overcomes the limitations of traditional finite
element analysis by using a novel, mesh-free graph theory
thermal modeling approach to predict part-level thermal history.
The method has been shown in previous works to have accuracy
comparable to FE simulation methods but solves the thermal
history of LPBF geometries approximately 5 times faster [7, §,
18, 19]. The graph theory method replaces the continuous form
of the Laplacian matrix with the discrete Laplacian matrix (L),
resulting in the following semi-analytical solution shown in Eq
2.

—%At , (AeS] P
T(x,y,z,t) = pe *? (EV + Tprev) (2)

In this form, the heat diffusion equation is solved as a
function of the eigenvalues (A) and eigenvectors (¢p) of the
Laplacian Matrix (L), with discrete points chosen to represent
the part geometry. A. is the effective laser absorptivity, S; length
scanned per layer (a function of hatch spacing, [mm]), P [W]
laser power, V [mm-s!'] laser velocity, v [mm?®] volume of
material melted in a layer (a product of scanned area and layer
height), and Tprv [°C] is the temperature of the previous layer
(from simulation). In this work, Ae = 0.60 based on experiments
by Ye et al. at Lawrence Livermore National Laboratory [20].

The method for deriving and implementing the graph theory
thermal solution is detailed in our previous works [18]. The
graph theory approach has been shown to have similar precision
of FE methods while being 2.5 to 5 times faster than commercial
finite element solutions [21]. This modeling approach can
achieve faster simulation times due to its elimination of the
meshing step commonly seen in finite element-based solutions.
In this work, the models for A-type parts completed in 3 minutes,
with B and C-type parts requiring 2.5 and 2 minutes respectively.

2.4 Machine Learning Approach

To predict microstructure properties, two parameters are
extracted using the graph-theory thermal modeling approach
which were used as inputs to simple machine learning models,
these being cooling time and end-of-cycle temperature. End-of-
cycle temperature is extracted as per previous works and can be
seen in FIGURE 6(a) [19]. A 1.5mm x 1.5mm area is selected in
the base of sample parts, where all thermal history information
is extracted. The end-of-cycle temperature quantifies the steady
state temperature achieved before the subsequent laser strike.
This identifies the overall heat accumulation present in the
current part.

The cooling time (t.), as shown in FIGURE 6(b), is the
duration required for the temperature to decrease to 700 °C
following the laser strike, approximately half the melting point
of Nickel Alloy 718, which has a wide liquidous range from 1260

— 1330 °C [9, 10]. These metrics were acquired 100 pm (2.5
layers) from the topmost layer. Because meltpool penetrations
have been observed to be more than one nominal layer thickness,
cooling rate information must be extracted below the top layer,
which determines the microstructure properties at this point.
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FIGURE 6: (a) THERMAL HISTORY EXTRACTED FROM THE
GRAPH THEORY THERMAL MODEL OVER A 1.5X1.5MM AREA.
END-OF-CYCLE TEMPERATURE IS EXTRACTED IMMEDEATLY
BEFORE THE SUBSEQUENT LAYER. (b) THE COOLLING TIME
IS THE DURATION FOR THE TEMPERATURE IN THE SAMPLE
AREA TO REDUCE TO 700 °C, OR APPROXIMATLY HALF THE
OF THE MELTING POINT IN NICKEL ALLOY 718.

To predict microstructure evolution, elementary machine
learning was used. The overall machine learning approach is
summarized in FIGURE 7. The cooling time (t.) and end-of-
cycle temperature (T.) derived from the graph theory thermal
simulations, along with the laser power to scan velocity ratio
(P/V) serve as inputs to machine learning models. The ground
truth microstructure, PDAS and meltpool depth, data for the
model are obtained from the materials characterization data
obtained in Sec. 2.2.

The machine learning aspect of this work was subdivided
into two tasks. Task 1 looks to predict meltpool penetration depth
and Task 2 aims to predict the primary dendritic arm spacing of
the parts. Each of the tasks are further subdivided into three
subtasks which involve classification and regression prediction.

Task 1A and Task 1B classify the meltpool depth into
discrete two and three levels, respectively, while Task 1C
involves predicting the meltpool depth with regression analysis.
Tasks 1A and B employ logistic regression and Gaussian support
vector machine (SVM) algorithms. Task 1C analysis uses linear
regression and Gaussian SVM regression. While the prediction
results could be significantly improved by using complex
machine learning models, such as multi-layer artificial neural
networks, the tradeoff would be in interpretability and increased
uncertainty due to overfitting.
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Task 1: Meltpool Depth Prediction
(A) 3-way Classification
Models: Gaussian SVM, Logistic Regression
Nominal Penetration: d /L >2.625 Layer
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Task 2: Grain Size (PDAS. A;) Prediction
(A) 3-way Classification
Models: Gaussian SVM, Logistic Regression
Small Grains: A< 0.66 pm
Nominal Grains: 0.66 pms A, <0.8 pm
Large Grains : Ay> 0.8 pm

Grain Size (PDAS, A)

(B) 2-way Classification
Models: Gaussian SVM, Logistic Regression

over 10-fold cross validation Nominal Grains: Ay 5 0.8 pm
Large Grains: A,>0.8 pm
(C) Regression
Model: R , Linear F

FIGURE 7: THE OVERVIEW OF MACHINE LEARING
APPROACH. THE AIM IS TO PREDICT MELTPOOL DEPTH
(TASK 1) AND PDAS (TASK 2) AS A FUNCTION OF COOLING
TIME AND END-OF-CYCLE TEMPERATURE.

For all tasks, the materials characterization data is split into
70-30% testing-training subsets, and 10-fold cross validation
procedure is implemented. For A and B tasks, the results are
reported in terms of the F-score, which includes an estimate of
both Type 1 and Type 2 errors [22-24] Classes for A and B tasks
were derived from feedback from Edison Welding Institute to
easily define microstructure performance. For C tasks, the results
are quantified in terms of the root mean squared error (RMSE).

Since the relatively smaller number of A; measurements may
result in overfitting, a separate validation build was used for
testing model transferability and uncertainty quantification.
These A; measurements were subsequently used to validate the
trained model; the model is not retrained with these new
measurements.

3. RESULTS AND DISCUSSION
3.1 Meltpool Depth

The resulting meltpool depths which were obtained using
the procedure described in Sec. 2.2 are shown in FIGURE 8 as a
function of increasing P/V ratio.

At low energy conditions, the average meltpool depth
ranged from 75 to 85 pm. At the nominal condition, the meltpool
depth increased to ~110 um. at equal P/V ratio, the depth varied
drastically from 75 to 110 pm with no clear trend observed in the
data. These differences in meltpool depth are consistent with
observations of Keshavarzkermani et al [25], which
demonstrated that meltpool depth can vary independent of
process parameter selection. Meltpool depth changed as a
function P/V ratio and the layer thickness. Changing process
parameters did not consistently predict the final meltpool depth.
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FIGURE 8: MELTPOOL DEPTH AS A FUNCTION OF THE P/V
RATIO FROM ALL 21 SAMPLES. THE ERROR BARS ARE FOR
+1oc DEVIATION.

The results reported in FIGURE 8 imply that process
parameters have a complex relationship with meltpool depth,
which reflects the results of Keshavarzkermani et al. [25]; an
increase in energy density does not clearly correlate to increased
meltpool depth. Increasing P/V ratio can cause meltpool
widening, impacting meltpool depth. Moreover, the meltpool
standard deviation within the same sample is as large as 20 pm—
such large variation results from stochasticity in the process
which has been observed in literature [26, 27].

The results of applying machine learning to prediction of
meltpool depth are reported in TABLE lin terms of mean F-score
and RMSE from 10-fold training with standard deviation in the
parenthesis. For Task 1A and Task 1B the F-score for the 3-way
case using the Gaussian SVM model is ~71%, which improved
to 83% for the 2-way case. The corresponding logistic regression
results are 56% and 67% for the 2-way and 3-way classification,
respectively. The results from the logistic regression are inferior
because it cannot capture nonlinear data trends observed in this
case.

TABLE 1: MACHINE LEARNING RESULTS FOR MELTPOOL
DEPTH MODELS

Task 1A Logistic Regression: 56% (3%)
Task 1 3-way meltpool depth classification | Gaussian SVM: 71% (2%)

Classification

F-score (Std.dev) | Task 1B Logistic Regression: 67% (5%)
2-way meltpool depth classification Gaussian SVM: 83% (3%)

Task 2
Regression
(RMSE)

Linear Regression: dp = 0,021 mm (dy/L = 0.52)
Gaussian SVM Regression dp = 0.012 mm
(dp/L =0.3)

Task 1C
Meltpool depth prediction

The prediction error was improved through the use of SVM
regression, which resulted in a root mean square error of ~ 12
pm, or 1/3 of a layer The error increases to 1/2 layer with the
simple linear regression model. The prediction error is a result of
stochastic process variation, which is caused by local variations
in the meltpool commonly observed in literature with in-situ
meltpool optical and pyrometry imaging [24].
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3.2 Primary Dendritic Arm Spacing

The resulting PDAS measurements as acquired per Sec. 2.2
are shown in FIGURE 9. From these results, it is obvious from
these results that PDAS increases with increasing energy density;
M increases from 0.67 um for TC 2 (P/V = 0.20 J-m™!) to nearly
1 um for TC 5 (P/V = 0.42 J-m™). This analysis indicates that
process parameters are an insufficient predictor of primary
dendritic arm spacing.

Despite the P/V ratio being the same for TC 7, 4, and 1
which resulted in the same effective energy density, there is a
prominent difference in A, This relationship is expected to
further break down with more complex geometry. This analysis
further does not consider variation in A; due to changing part
geometry and is unable to capture changing A; due to change in
build height. Process modeling and prediction allows for
prediction of all build heights, allowing variation in
microstructure to be predicted.
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FIGURE 9: THE MEAN PRIMARY DENDRITIC ARM SPACING
(PDAS) AS A FUNCTION OF THE PROCESSING PARAMETERS
ARRANGED IN ORDER OF P/V RATIO. THE ERROR BARS ARE
FOR +1c DEVIATION. PDAS TENDS TO INCREASE DUE TO
HEAT BUILDUP, HOWEVER THERE IS SIGNIFICANT
VARAITION IN PDAS, ESPECIALLY FOR TREATMENT
CONDITIONS WHERE P/V RATIO IS IDENTICAL.

FIGURE 10 shows the graph theory predicted end-of-cycle
temperature and cooling time as a function of build height on the
largest A-type samples. (A1) measurements in their respective
measurement locations on the A-type samples are shown in the
same figure for four of the samples. The higher end-of-cycle
temperature (T.) and cooling time (t.) are represented with red
hue spectrum; a similar color coding is represented for A;. A
prominent visual correlation can be seen in FIGURE 10 in that
the regions within a part with larger Tc and t. result in increased
A1. This result indicates that a larger cooling time (t.) and end-of-
cycle temperature (T.) are correlated with an increased A;.

The machine learning procedures described in Sec. 2.4 were
applied to the foregoing data to predict A;. The results from a 10-
fold training and testing procedure are reported in TABLE 2
presents the performance for the predictive models for all PDAS

prediction tasks. The F-score using the Gaussian SVM model is
91% and 71%, respectively, for the 2-way and 3-way
classification. The prediction error of A, using the Gaussian SVM
regression is ~ 71 nm. Indeed, the linear regression analysis
provides similar F-score and RMSE values due to the linear
relationship between model features and resulting primary
dendritic arm spacing.

End of Cycle Primary Dendritic Arm

Cooling Time
Spacing (PDAS, A}

(t.) Temperature (T,)

TC?2
P =200 W,V =960 mm-s?,
PNV =0.20Jmm!

TC4
285 W,V =960 mm-s!,
PV =29 J-mm’

p=

TC3
P =370W,V =960 mm-s"
P/V=0.38 J-mm"

TCS
285 W,V =670 mm-s?!
PV =0.42J-mm*

P

FIGURE 10: PICTORIAL REPRESENTATION OF END-OF-
CYCLE TEMPERATURE AND COOLING TIME DERIVED FROM
THE GRAPH THEORY THERMAL MODEL AND MEASURED
PDAS. AS COOLING TIME AND END-OF-CYCLE
TEMPERATURE INCREASES, PDAS INCREASES.

TABLE 2: MACHINE LEARNING RESULTS FOR PDAS
PREDICTION FOR SVM AND LINEAR MODELS

Task 2A Logistic Regression: 70% (8%)
Classification 3-way PDAS (k1) classification Gaussian SVM: 71% (10%)
F-score (Std.dev) Task 2B

Logistic Regression: 88% (11%)
2-way PDAS (1) classification | Gaussian SVM: 91% (9%)

Regression Task 2C
(RMSE) PDAS (A1) prediction

Linear Regression: A1 = 63 nm
Gaussian SVM Regression 41 =71 nm

3.3 Model Transferability

To alleviate possible overfitting concern resulting from the
relatively small data set of PDAS measurements, the models
were applied to a separate geometry from a different build plate
after training on the data from this work. The experiments
underlying these samples are detailed in our prior work, and
briefly summarized in the following paragraphs [7].
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As shown in FIGURE 11, Two inverted cone geometries
were created with Nickel Alloy 718 and were made with two
unique parameter conditions, termed fixed and controlled
processing. The parts were created on two different build plates
created in partnership with Edison Welding Institute on the same
open architecture LPBF system used to create the parts in this
work. Fixed processing was created with identical nominal
process parameters and source powder as this work. Controlled
processing conditions changed the laser power to mitigate heat
buildup in the sample. The power changes were guided by the
graph theory thermal model. The 25mm tall sample cone has an
overhang angle of 40°. The laser power for the controlled
processed geometry is reduced to 200 W from 285 W at layer
325, and a 10 second dwell time is added after 13 mm of build
height. Notably, the model in this work did was not tested with

altered laser power and dwell time.
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FIGURE 11: (a) END-OF-CYCLE TEMPERATURE FOR FIXED
PROCESSED  INVERTED CONE. (b) END-OF-CYCLE
TEMPERATURE FOR CONTROLLED PROCESSED INVERTED
CONE. (c) THE RESULTING COOLING TIME FOR CONTROLLED
PROCESSING IS MUCH SMALLER THAT THAT OF FIXED
PROCESSING, WHICH INDICATES A SMALLER PDAS
RESPONSE

FIGURE 11(a) and (b) shows the predicted end-of-cycle
temperature for the fixed and controlled processing conditions.
The IR end-of-cycle temperature observations are overlaid on
the graphs to show the model accuracy; the MAPE and RMSE
for both cases are within 2% and 8 °C, respectively. The
simulation was completed in approximately 4 minutes. FIGURE
11(c) shows the predicted cooling time(tc) for these two samples.
The increased dwell time and reduced laser power combined to
reduce expected cooling time, which results in an expected A,
size.

In this build, PDAS (A;) measurements were obtained at 6
locations along the build height for each cone part. SEM images
are shown in FIGURE 12 along the build height for the fixed and
controlled processed cones. The corresponding PDAS (A1)
measurements are also included. Owing to heat buildup and
increased cooling time, the PDAS of the fixed processed cone is
A1 = 700 nm. In the case of the controlled processed cone, the
PDAS is significantly lower (A= 500 nm) where the laser power
change was initiated..

Fixed Processing ~ Controlled Processing
Controlled A,~0.48 £ 0.032 ym | A, =0 %
Fixed A;~0.71 £ 0 ym ™

®

0.47+0.032 pm "] 0.630.055 ym
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pP=200w 1 ~./051:0019ym
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0.67+0.063 pm | ,.(:)
S -
G} 0.92+0.118 ym
P=285W 0,5640.044 ym y

FIGURE 12: PDAS MEASUREMENTS FROM THE INVERTED
CONE CASE STUDY ALONG WITH REPRESENTATIVE IMAGES
FROM FOUR SELECTED MEASUREMENT REGIONS

Results from the application of the trained model from the
parts of this work to the case study work are reported in TABLE
3. Machine learning parameters were not changed, and no data
from the cone parts discussed here was used to train the machine
learning models used in testing.

The 3-way and 2-way classification results with the
Gaussian SVM are 83% and 93%, respectively, while the A,
prediction error (RMSE) is approximately 110 nm. These
prediction results follow the PDAS prediction results from the
previous parts. These results indicate the Task 2 models are
capable of transferring to different parts and processing
conditions for the Nickel Alloy 718 material system.

TABLE 3: MACHINE LEARNING RESULTS FOR CONE-
SHAPED PARTS

Classification | Task 2A Logistic Regression: 71% (9%)
[F-score 3-way PDAS (1) classification Gaussian SVM: 83% (8%)
(Std.dev) Task 2B Logistic Regression: 91% (8%)

2-way PDAS (1) classification Gaussian SVM 93% (9%)
[Regression Task 2C Linear Regression: A1 = 80 nm
(RMSE) PDAS (A1) prediction Gaussian SVM Regression A; =110 nm

4. CONCLUSION

We developed and applied a physics and data-integrated
approach to predict two critical microstructure characteristics in
Nickel Alloy 718 LPBF processed parts, namely the meltpool
depth and primary dendritic arm spacing (PDAS, A1). A rapid
part-scale graph theory thermal model was used to estimate the
sub-surface end-of-cycle temperature and cooling time (rate).
These simulation-based thermal history features served as inputs
to simple machine learning models trained on experimentally
acquired data to predict the meltpool depth and PDAS. The
approach was demonstrated on Nickel Alloy 718 parts of
multiple shapes built under several processing parameter sets
with prediction accuracy greater than 80%. In our future research
we will expand this prediction approach to more microstructure
features, such as grain orientation and microhardness, among
others.
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