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ABSTRACT 
 This work pertains to the laser powder bed fusion (LPBF) 
additive manufacturing process. The goal of this work is to 
mitigate the expense and time required for qualification of laser 
powder bed fusion processed parts. In pursuit of this goal, the 
objective of this work is to develop and apply a physics-based 
model predictive control strategy to modulate the thermal history 
before the part is built. The key idea is to determine a desired 
thermal history for a given part a priori to printing using a 
physics-based model. Subsequently, a model predictive control 
strategy is developed to attain the desired thermal history by 
changing the laser power layer-by-layer.  This is an important 
area of research because the spatiotemporal distribution of 
temperature within the part (also known as the thermal history) 
influences flaw formation, microstructure evolution, and 
surface/geometric integrity, all of which ultimately determine the 
mechanical properties of the part. Currently, laser powder bed 
fusion parts are qualified using a build-and-test approach 
wherein parameters are optimized by printing simple test 
coupons, followed by examining their properties via materials 
characterization and testing – a cumbersome and expensive 
process that often takes years. These parameters, once 
optimized, are maintained constant throughout the process for a 
part. However, thermal history is a function of over 50 
processing parameters including material properties and part 
design, consequently, the current approach of parameter 
optimization based on empirical testing of simple test coupons 
seldom transfers successfully to complex, practical parts. Rather 
than instinctive process parameter optimization, the model 
predictive control strategy presents a radically different 
approach to LPBF part qualification that is based on 
understanding and modulating the causal thermal physics of the 

process. The approach has three steps: (Step 1) Predict – given 
a part geometry, use a rapid, mesh-less physics-based simulation 
model to predict its thermal history, analyze the predicted 
thermal history trend, isolate potential red flag problems such as 
heat buildup, and set a desired thermal history that corrects 
deleterious trends. (Step 2) Parse – iteratively simulate the 
thermal history as a function of various laser power levels layer-
by-layer over a fixed time horizon. (Step 3) Select – the laser 
power that provides the closest match to the desired thermal 
history. Repeat Steps 2 and 3 until the part is completely built. 
We demonstrate through experiments with various geometries 
two advantages of this model predictive control strategy when 
applied to laser powder bed fusion: (i) prevent part failures due 
to overheating and distortion, while mitigating the need for 
anchoring supports; and (ii) improve surface integrity of hard to 
access internal surfaces.  
Keywords: Laser Powder Bed Fusion, Process Control, Thermal 
Modeling, Support Elimination 
 
1. INTRODUCTION 
 Laser powder bed fusion (LPBF, FIGURE 1) is an additive 
manufacturing (AM) process in which layers of metal powder 
are raked on a build plate, and selectively melted using a high 
power infrared laser [1].  The LPBF process has emerged as a 
favorable method to create novel and advanced geometry which 
is impossible to create with traditional manufacturing 
techniques. The technology is also attractive due to its ability to 
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reduce lead times and assembly part count, simplifying the 
manufacturing process [2-4].  

 

 
FIGURE 1: SCHEMATIC OF THE LASER POWDER BED 
FUSION PROCESS (LPBF). 
 
 Despite the promise of LPBF, and AM in general, 
technology adoption has been limited by the tendency of the 
processes to form flaws such as porosity, cracking, and 
inconsistent microstructure [5, 6]. These flaws in LPBF are 
primarily driven by the temperature distribution in the part 
caused by the local melting by the laser, as well as the global heat 
accumulation[7]. Currently, in LPBF parameters are selected 
empirically based on building simple calibration coupons. 
Unfortunately, such  empirical parameter optimization does not 
transfer to complex geometries as each part shape has a unique 
temperature distribution [8]. This leads to a cumbersome and 
expensive build-and-test qualification process for every new part 
design which is not practical for industry application. Moreover, 
such optimized part parameters remain fixed throughout the part 
irrespective of layer-wise changes in the cross-section.  
 The objective of this work is to create a framework in which 
the layer-by-layer thermal distribution, commonly known as 
thermal history, for each part geometry is optimized and 
controlled. This is a radical departure from the status quo of 
optimizing the processing parameters for a sample coupon and 
maintaining the settings fixed irrespective of the geometry. To 
accomplish this objective, we propose a three-step model 
predictive control approach as summarized in FIGURE 2. We 
note that these steps are completed autonomously with minimal 
human intervention.  
Step 1 Predict – given a part geometry and build layout, we first 
use a rapid, mesh-less physics-based simulation mode to predict 
its thermal history [9]. These predictions represent the 
uncontrolled thermal history. We note deleterious trends from the 
uncontrolled thermal history, and consequently, determine the 
target (Tideal) without such flaws. 
Step 2 Parse – We iteratively simulate the thermal history as a 
function of various laser power levels layer-by-layer over a fixed 
space horizon of 5 model layers (~25 actual layers, 0.5 mm 
height).  
Step 3 Select – The laser power that provides the closest match 
to the desired thermal history Tideal in terms of the mean absolute 

deviation is ascertained and selected. We note that, upper and 
lower limits are placed on the laser power. 
Steps 2 and 3 are repeated until the part is completely built. 
Taken together these steps solve the inverse problem, i.e., they 
determine the optimal laser power to obtain Tideal. 
 This model-based control approach can be used for various 
purposes including: process parameter optimization, avoiding 
build failures, mitigating support structures, and reducing flaw 
formation. For example, in FIGURE 2, we applied the approach 
to eliminate supports in a relatively complex arch-shaped part. 
Such parts are difficult, if not impossible, to build owing to heat 
accumulation in the overhang arch section. This heat buildup 
often causes thermal-induced distortion and build failures due to 
recoater contact. The support structure prevents distortion; 
however, they require considerable and precise post-process 
machining to remove, resulting in increased material waste. 
Adaptively changing parameters also minimizes energy waste, 
further reducing production costs.  

 
FIGURE 2: SUMMARY OF THE MODEL PREDICTIVE 
CONTROL FRAMEWORK. THE KEY IDEA IS TO USE RAPID, 
PART LEVEL SIMULATIONS IN A MODEL PREDICTIVE 
CONTROL FRAMEWORK TO MATCH AN IDEAL THERMAL 
HISTORY. 
 
2. MATERIALS AND METHODS 
2.1 Experimental Setup 
 In this work, 10 Stainless Steel 316L parts consisting of four 
unique geometries were created on an EOS M290 LPBF system 
at the Commonwealth Center for Advanced Manufacturing, 
Disputanta, VA. A picture of the setup is shown in FIGURE 3(a). 
The final build plate and geometry details are shown in FIGURE 
4. In this paper, we discuss results from the arch-shaped bridge 
and bell crank geometries. The parts varied in size and height 
from 25 mm (bridge) to 42 mm tall (bell crank). The bridge part 
required 1250 layers and the bell crank required 2100 layers at a 
layer thickness of 20 µm, and laser velocity of 1083 mm∙s-1. In 
all, the build required 12 hours to complete.  
 One of the two bridge parts was built with supports under 
fixed (nominal) parameters, and the other without supports with 
layer-by-layer laser power changes identified by the model-
predictive control strategy presented in this work, and discussed 
briefly in the context of FIGURE 2. Likewise, one of the bell 
crank parts was created with manufacturer-recommended 
nominal process parameters and the other was built using the 
model-predictive control strategy discussed in Sec. 2.2. Nominal 
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process parameters are recommended by the machine tool 
manufacturer (EOS) and are summarized in FIGURE 4. 
 Laser power was varied for the controlled processing 
parameters, with minimum and maximum laser power settings 
determined by cases studies in literature that showed significant 
lack-of-fusion porosity formation below 50 J/mm3

, and key hole 
and gas porosity formation above 100 J/mm3 [10]. Hence, the 
limits of the laser power adjustment were limited to values 
between 145 W to 225 W.  
 After creation, the parts were examined with X-Ray 
computed tomography (XCT) on a North Star Imaging system 
with a 15μm voxel resolution. No porosity was detected in any 
of the parts printed in this work. For the bell crank geometry, the 
surface roughness was also tested on the exterior of all parts. In 
our future work, these and other parts on the build plate will be 
cross sectioned and their microstructure will be characterized 
using optical and scanning electron microscopy. 

 
FIGURE 3: (a) MACHINE SETUP WITH INFRARED CAMERA 
(b) END-OF-CYCLE TEMPERATURE EXTRACTION 
METHODOLGY. REGIONS OF INTEREST ARE SELECTED FOR 
EACH PART BY TAKING THE LOWEST TEMPERATURE AT 
EACH LAYER (c), END-OF-CYCLE TEMPERATURE CAN BE 
EXTRACTED (d).  
 
 During the build, thermal trends were monitored with a long 
wave infrared (IR) camera. The data from the IR camera is 
necessary to validate the thermal model. The camera was 
calibrated with a method similar to our previous works to ensure 
accurate surface temperature measurements were taken [9]. End-
of-cycle temperature was extracted according to the method 
shown in FIGURE 3.  
End-of-cycle temperature describes how heat accumulates on the 
top surface of parts and has been shown in our previous works to 

correlate to flaws such as porosity, distortion, and geometric 
deviation [9, 11]. 

 
FIGURE 4: (a) BUILD PLATE WITH NOMINAL PROCESS 
PARAMETERS USED TO DEMONSTRATE THE MODEL 
PREDICTIVE CONTROL FRAMEWORK PROPOSED IN THIS 
WORK. (b) SUMMARY OF GEOMETRIES WITH DIMENSIONS 
CREATED IN THIS WORK.  
 
 The procedure to obtain the end-of-cycle temperature is as 
follows. A region of interest is selected for each part (FIGURE 
3b), and the temperature of this region is tracked for all of the 
time domain, across multiple layers. (FIGURE 3c). The 
temperature immediately before the subsequent laser strike for 
the next layer is extracted as the temperature for the current layer. 
This results in a thermal profile as a function of build height 
(FIGURE 3d).  
 
2.2 Model Predictive Control 
 To implement model predictive control in LPBF, a rapid 
thermal modeling approach is required, as multiple process 
parameters are tested at each layer.  In other words, a model that 
is accessible for solving the inverse problem is essential for the 
approach to succeed. Traditional thermal modeling approaches 
using finite element (FE) methods are too slow for this 
application due to the computationally expensive and memory 
intensive remeshing step. Commercial LPBF simulation 
software do not allow for such autonomous changes.  As such, 
this work uses the graph theory thermal modeling approach 
pioneered in the author’s previous works [9, 12]. Briefly 
summarized, the graph theory model solves the heat diffusion 
equation for each point (x,y,z) at every sampled point in time (t). 
This relationship is defined in Eqn. (1).  

𝜌𝜌𝑐𝑐𝑝𝑝
∂T(𝑥𝑥,𝑦𝑦,𝑧𝑧,𝑡𝑡) 

∂𝑡𝑡
− 𝑘𝑘 � ∂2

∂𝑥𝑥2
+ ∂2

∂𝑦𝑦2
+ ∂2

∂𝑧𝑧2
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𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

T(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡)  = 𝑄𝑄     (1) 
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 In Eqn. (1), 𝜌𝜌 is the material density [kg·m-3], 𝑐𝑐𝑝𝑝 is the 
specific heat [J·kg-1 ·K-1], and 𝑘𝑘 is the conductivity [J·s-1 ·m-1·K-

1], and Q is the rate of heat supplied per unit volume of material 
melted [J·s-1·m-3], called volumetric heat flux. Material 
properties are assumed to be fixed and are measured at 250°C. 
The term Q is a function of the processing parameters: laser 
power (P, [W]), laser velocity (V, [m·s-1]), hatch spacing (H, 
[m]), layer height (L, [m]), and time when the laser is active (t, 
[s]); Q = P

V∙H∙L∙𝑡𝑡
 . 

 The graph theory thermal model replaces the continuous 
Laplacian operator � ∂2

∂𝑥𝑥2
+ ∂2

∂𝑦𝑦2
+ ∂2

∂𝑧𝑧2
� in the previous equation 

with a space-representative discrete Laplacian matrix (L). By 
substituting the Laplacian, simplifying, and solving the 
differential equation, the following solution can be obtained.  

T(𝑥𝑥,𝑦𝑦, 𝑧𝑧, t) = ϕ𝑒𝑒
− 𝑘𝑘
𝜌𝜌𝑐𝑐𝑝𝑝

Λ𝑡𝑡
ϕ′ �AeSl

𝜌𝜌𝑣𝑣𝑣𝑣𝑝𝑝

P
V

+ Tprev�               (2) 

 Here, the thermal history T(𝑥𝑥,𝑦𝑦, 𝑧𝑧, t) is solved as a function 
of the eigenvalues (Λ), eigenvectors (ϕ), and time (t) of the 
Laplacian matrix (L). Ae is the effective laser absorptivity, Sl 
length scanned per layer (a function of hatch spacing, [mm]), P 
[W] laser power, V [mm·s-1] laser velocity, 𝑣𝑣 [mm3] volume of 
material melted in a layer (a product of scanned area and layer 
height), and Tprev [°C] is the temperature of the previous layer 
(from simulation). In this work, Ae = 0.60 based on experiments 
by Ye et al. at Lawrence Livermore National Laboratory [13]. In 
Eqn. (2), the part geometry and time are completely decoupled 
from the applied laser heating condition. This allows multiple 
process parameters to be tested without significant computation 
overhead, which is necessary for the implementation of a model 
predictive control scheme for LPBF. 

Model predictive control enables process modeling to 
control system properties. This technique is especially useful 
where the system is complex or the system lacks feedback 
mechanisms which would enable the use of feedback control 
systems [14]. In this work, a simple iterative control scheme was 
selected to control the thermal history. The control scheme used 
in this work was first summarized in FIGURE 2. Herewith we 
augment the summary with critical details. 

 In Step 1(Predict), an ideal thermal history Tideal for the 
entire part is identified. For this purpose, the thermal history is 
predicted for the part geometry under fixed processing 
conditions suggested by the manufacturer. These thermal 
simulations required less than 20 minutes to complete for each 
geometry. This so-called uncontrolled or original thermal history 
is denoted as Toriginal. Next, in Step 1, deleterious trends, such as 
heat buildup are identified by analyzing Toriginal. Lastly, these 
undesirable trends in Toriginal are negated (corrected) by 
proposing an ideal trend Tideal. The identification of an 
appropriated Tideal is the human-in-the-loop step.  

In Step 2 (Parse), considering layer N, the effect of several 
possible laser power settings are simulated with five layers of 
lookahead (N+5). In other words, the prediction horizon is 5 
layers. We note that the thermal simulation implements a meta-
layer approach where multiple layers are considered to be 

deposited at once. This simplification is inherent to most FE-
based commercial software. In this work 5 actual layers (100 
µm) correspond to 1 model layer. Hence, the lookahead 
corresponds to 0.5 mm of actual build height.  

Lookahead of the simulation time horizon is used to prevent 
oscillations around the optimal solution. Longer time horizons 
excessively burden computation time, reducing the benefit of the 
approach. The graph theory model, as in commercial approaches, 
defines a layer as 5 actual layers, i.e., 100 μm layers. Five levels 
of laser power were analyzed: θ1 = 146 W, θ2 =156 W, θ3 = 176 
W, θ4 = 195 W, and θ5 = 225 W.  

In Step 3 (Select), after the thermal history TP(θi), i = {1...5} 
from each of the five laser power levels are simulated, we select 
the optimal laser power θ* corresponding thermal history TP(θi) 
which results in the minimum mean absolute deviation (MAD) 
from the ideal thermal history Tideal. Steps 2 and 3 are repeated 
after every two simulated layers. Hence, this model predictive 
control approach overwrites three topmost thermal history meta 
layers with new parameters every iteration. The end result is a 
laser power plan determined at 100 µm steps for the entire part. 
Because the approach self-enforces laser power between 146W 
and 225W, it inherently avoids lack-of-fusion and keyhole 
porosity [10].  
 The model predictive control scheme was able to complete 
and identify the optimal laser power θ* for each layer in 
approximately three hours for each geometry which was created. 
In our previous work, we have observed defects at the interface 
of layers where large process parameter changes occur [15]. 
Therefore, to reduce the severity of the process parameter 
changes a 15-point moving average applied to the laser power 
plan generated by the controller. Because the optimal laser power 
settings θ* must be programmed into the LPBF machine by the 
operators manually, the parameter set was further simplified by 
averaging laser power recommendations every 4 mm of build 
height. Simulation studies showed minimal differences between 
the end-of-cycle temperature for the as-predicted and smoothed 
laser power estimates. 
 
3. RESULTS AND DISCUSSION 
3.1 Bridge 
 This result demonstrates the utility of the model predictive 
control approach for eliminating support structures in LPBF 
parts. The end-of-cycle temperature predicted by the model for 
the supported uncontrolled bridge and unsupported controlled 
bridge geometries are shown in FIGURE 5. The aim of the 
controller was to adjust the laser power layer-by-layer for the 
unsupported bridge such that its thermal history would match 
that of the supported bridge. In other words, the Tideal is the 
thermal history of the supported bridge shown in FIGURE 
5(left). Also, in FIGURE 5,  the model predictions are overlaid 
on observed end-of-cycle temperature acquired from the IR 
thermal camera.  
 The model predictions match the IR data with symmetric 
mean absolute error (SMAPE) less-than 10%. We note that the 
model parameters were calibrated against a different part from 
the build plate shown in  FIGURE 4 and not discussed in this 
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work for brevity. This affirms that the graph theory model 
accurately predicts the effect of part shape and process parameter 
changes applied to the part. The end-of-cycle temperature and 
laser power changes for the unsupported bridge parts is shown in 
FIGURE 5(right). These optimized conditions were obtained 
autonomously within 3 hours.  
 Shown in FIGURE 6 are the thermal histories for three parts. 
In FIGURE 6(left) is the thermal simulation for the unsupported 
and uncontrolled bridge. This part is not manufactured due to 
high chance of build failure from recoater crash. In FIGURE 6( 
middle) is the uncontrolled supported bridge, which is the Tideal. 
This was selected as the target temperature as it was 
hypothesized that the matching thermal history of the supported 
part would allow the unsupported geometry to succeed. In 
FIGURE 6(right) is the unsupported controlled bridge-shaped 
part built with the model predictive control strategy. The model 
predictive control strategy successfully eliminated the need for 
support by reducing the heat build-up in the overhang section.   

 
FIGURE 5: END-OF-CYCLE TEMPERATURE COMPARISIONS 
TO IR DATA FOR THE SUPPORTED UNCONTROLLED BRIDGE 
(a) AND (b) UNSUPPORTED CONTROLLED BRIDGE. THE 
LASER POWER MODULATED LAYER-BY-LAYER IS SHOWN. 
 

 
FIGURE 6: END-OF-CYCLE TEMPERATURE COMPARISIONS 
FOR THE UNSUPPORTED UNCONTROLLED BRIDGE, 
SUPPORTED UNCONTROLLED BRIDGE (TARGET THERMAL 
HISTORY), AND UNSUPPORTED CONTROLLED PARTS 
 FIGURE 7 shows an XCT slice in the X-Z plane for the 
supported uncontrolled, and unsupported controlled bridges. 
Given the extreme nature of this geometry, distortion was 
observed in both parts at ~22 mm of build height to an identical 

degree. This indicates that the model predictive control strategy 
used in this work does not degrade the part quality. 

 
FIGURE 7: XCT COMPARISION BETWEEN THE 
UNCONTROLLED SUPPORTED  (LEFT) AND CONTROLELED 
UNSUPPORTED BRIDGES (RIGHT). PROCESS CONTROL 
ALLOWED THE PART TO BE MADE WITHOUT SUPPORT 
MATERIAL WITH EQUIVILANT DISTORTION. 
 
3.2 Bell Crank  
 Three thermal histories for the bell crank geometry are 
reported in FIGURE 8. The thermal history (Toriginal) for the 
uncontrolled bell crank built at a fixed laser power of 195 W 
tends to accumulate heat as it grows due to the poor thermal 
conductivity of the metal powder.  A visual depiction of the 
thermal history for the uncontrolled bell crank is shown in 
FIGURE 9. In FIGURE 8, heat buildup beyond the 9 mm build 
height is observed in the case of the uncontrolled bell crank 
demarcated by the red line. A desirable or ideal thermal trend 
Tideal would be to avoid the heat buildup and maintain a constant 
end-of-cycle temperature throughout the part as noted with the 
black line in FIGURE 8.  
  In other words, the control target (Tideal) was to maintain a 
constant end-of-cycle temperature after 9 mm of build height. 
The thermal history obtained by applying the model predictive 
control strategy is demarcated with the blue line in in FIGURE 
8. The model predictive control approach successfully reduced 
the heat accumulation in the part as visually evident in FIGURE 
9 (right) by altering the laser power in a layer-wise manner. The 
achieved surface temperature does not match the Tideal because, 
the laser power is constrained between 145 W and 225 W. Use 
of model predictive control reduced the symmetric mean 
absolute percentage error (SMAPE) from Tideal from 10.6% to 
7.6%. This reduction in bulk temperature improved internal 
surface finish, as shown in FIGURE 10. 
 The laser power settings as a function of layer height 
recommended by the controller are noted in FIGURE 9 (right). 
The model predictive control approach converged to these laser 
power settings autonomously within 3 hours.  We note that while 
heat buildup was minimized by the model predictive control, it 
was not completely eliminated. This is because, the laser power 
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cannot be reduced beyond 145 W so as to avoid porosity, which 
would be deleterious to part properties.  

 
FIGURE 8: END-OF-CYCLE TEMPERATURE FOR THE 
STANDARD AND CONTROLLED CASES, AND THE TARGET 
TREND (Tideal). PROCESS CONTROL WAS ABLE TO LIMIT HEAT 
ACCUMULATION IN THE PART. 

From examining the internal surface of the bell crank 
with XCT, it was observed that the heat buildup in the 
uncontrolled bell crank resulted in a rougher surface on the 
internal bore. Three measurements were acquired with an optical 
profilometer of the measurable external surfaces of the bell crank 
confirmed the foregoing – the surface roughness for the external 
surface of the uncontrolled bell crank resulted in Sa ~ 14 µm, 
compared to Sa~ 12 µm for the controlled case. A small 
improvement in the surface roughness, as small as 2 µm has been 
shown to considerably improve the fatigue life [16]. 

 
FIGURE 9: END-OF-CYCLE TEMPERATURE DISTRIBUTION 
FOR THE UNCONTROLLED (LEFT) AND CONTROLLED 
(RIGHT) BELL CRANK PARTS. NOTE THE HEAT BUILD-UP IN 
THE UNCONTROLLED BELL CRANK.  

  
FIGURE 10: XCT AND SURFACE ROUGHNESS COMPARISON 
BETWEEN UNCONTROLLED (LEFT) AND CONTROLLED 
(RIGHT) BELL CRANK PARTS. MODEL PREDICTIVE CONTRO 
REDUCED SURFACE ROUGNESS OF INTERNAL AND 
EXTERNAL SURFACE WITHOUT AN INCREASE IN POROSITY. 

 

4. CONCLUSION 
 We developed and implemented a model predictive control 
approach to reduce thermal-induced flaws in LPBF parts. In this 
approach laser power is automatically changed layer-by-layer 
based on information from a physics-based model to match an 
ideal thermal history. This work showed two scenarios where this 
approach could be useful in industry. First, the approach can 
reduce, if not eliminate, the need for support structures. It can 
thus mitigate the considerable expense associated with post-
process removal of supports.  The second scenario demonstrates 
that the approach can improve the surface finish of external and 
internal, hard to process features. In our future research, we will 
expand the model predictive control approach to obtain a desired 
microstructure.  
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