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ABSTRACT

This work pertains to the laser powder bed fusion (LPBF)
additive manufacturing process. The goal of this work is to
mitigate the expense and time required for qualification of laser
powder bed fusion processed parts. In pursuit of this goal, the
objective of this work is to develop and apply a physics-based
model predictive control strategy to modulate the thermal history
before the part is built. The key idea is to determine a desired
thermal history for a given part a priori to printing using a
physics-based model. Subsequently, a model predictive control
strategy is developed to attain the desired thermal history by
changing the laser power layer-by-layer. This is an important
area of research because the spatiotemporal distribution of
temperature within the part (also known as the thermal history)
influences flaw formation, microstructure evolution, and
surface/geometric integrity, all of which ultimately determine the
mechanical properties of the part. Currently, laser powder bed
fusion parts are qualified using a build-and-test approach
wherein parameters are optimized by printing simple test
coupons, followed by examining their properties via materials
characterization and testing — a cumbersome and expensive
process that often takes years. These parameters, once
optimized, are maintained constant throughout the process for a
part. However, thermal history is a function of over 50
processing parameters including material properties and part
design, consequently, the current approach of parameter
optimization based on empirical testing of simple test coupons
seldom transfers successfully to complex, practical parts. Rather
than instinctive process parameter optimization, the model
predictive control strategy presents a radically different
approach to LPBF part qualification that is based on
understanding and modulating the causal thermal physics of the
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process. The approach has three steps: (Step 1) Predict — given
a part geometry, use a rapid, mesh-less physics-based simulation
model to predict its thermal history, analyze the predicted
thermal history trend, isolate potential red flag problems such as
heat buildup, and set a desired thermal history that corrects
deleterious trends. (Step 2) Parse — iteratively simulate the
thermal history as a function of various laser power levels layer-
by-layer over a fixed time horizon. (Step 3) Select — the laser
power that provides the closest match to the desired thermal
history. Repeat Steps 2 and 3 until the part is completely built.
We demonstrate through experiments with various geometries
two advantages of this model predictive control strategy when
applied to laser powder bed fusion: (i) prevent part failures due
to overheating and distortion, while mitigating the need for
anchoring supports; and (ii) improve surface integrity of hard to
access internal surfaces.

Keywords: Laser Powder Bed Fusion, Process Control, Thermal
Modeling, Support Elimination

1. INTRODUCTION

Laser powder bed fusion (LPBF, FIGURE 1) is an additive
manufacturing (AM) process in which layers of metal powder
are raked on a build plate, and selectively melted using a high
power infrared laser [1]. The LPBF process has emerged as a
favorable method to create novel and advanced geometry which
is impossible to create with traditional manufacturing
techniques. The technology is also attractive due to its ability to
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reduce lead times and assembly part count, simplifying the
manufacturing process [2-4].
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FIGURE 1: SCHEMATIC OF THE LASER POWDER BED
FUSION PROCESS (LPBF).

Despite the promise of LPBF, and AM in general,
technology adoption has been limited by the tendency of the
processes to form flaws such as porosity, cracking, and
inconsistent microstructure [5, 6]. These flaws in LPBF are
primarily driven by the temperature distribution in the part
caused by the local melting by the laser, as well as the global heat
accumulation[7]. Currently, in LPBF parameters are selected
empirically based on building simple calibration coupons.
Unfortunately, such empirical parameter optimization does not
transfer to complex geometries as each part shape has a unique
temperature distribution [8]. This leads to a cumbersome and
expensive build-and-test qualification process for every new part
design which is not practical for industry application. Moreover,
such optimized part parameters remain fixed throughout the part
irrespective of layer-wise changes in the cross-section.

The objective of this work is to create a framework in which
the layer-by-layer thermal distribution, commonly known as
thermal history, for each part geometry is optimized and
controlled. This is a radical departure from the status quo of
optimizing the processing parameters for a sample coupon and
maintaining the settings fixed irrespective of the geometry. To
accomplish this objective, we propose a three-step model
predictive control approach as summarized in FIGURE 2. We
note that these steps are completed autonomously with minimal
human intervention.

Step 1 Predict — given a part geometry and build layout, we first
use a rapid, mesh-less physics-based simulation mode to predict
its thermal history [9]. These predictions represent the
uncontrolled thermal history. We note deleterious trends from the
uncontrolled thermal history, and consequently, determine the
target (Tidea) Without such flaws.

Step 2 Parse — We iteratively simulate the thermal history as a
function of various laser power levels layer-by-layer over a fixed
space horizon of 5 model layers (~25 actual layers, 0.5 mm
height).

Step 3 Select — The laser power that provides the closest match
to the desired thermal history Tigeal in terms of the mean absolute

deviation is ascertained and selected. We note that, upper and
lower limits are placed on the laser power.

Steps 2 and 3 are repeated until the part is completely built.
Taken together these steps solve the inverse problem, i.e., they
determine the optimal laser power to obtain Tigeal-

This model-based control approach can be used for various
purposes including: process parameter optimization, avoiding
build failures, mitigating support structures, and reducing flaw
formation. For example, in FIGURE 2, we applied the approach
to eliminate supports in a relatively complex arch-shaped part.
Such parts are difficult, if not impossible, to build owing to heat
accumulation in the overhang arch section. This heat buildup
often causes thermal-induced distortion and build failures due to
recoater contact. The support structure prevents distortion;
however, they require considerable and precise post-process
machining to remove, resulting in increased material waste.
Adaptively changing parameters also minimizes energy waste,
further reducing production costs.

Step 1: Predict

Uncontrolled  Target Thermal
Thermal History  History (T,

Step 2: Parse

Thermal History ~ Thermal
from High Laser  History from
Power Low Power

a4 .

Part Geometry, & k

Material Properties,
Inter-layer Time,

OEM Process Parameters

Repeat for all layers

Ideal Thermal Optimal Laser
Model Optimized Thermal History History at Layer N Power at Layer N

Result Step 3: Select

FIGURE 2: SUMMARY OF THE MODEL PREDICTIVE
CONTROL FRAMEWORK. THE KEY IDEA IS TO USE RAPID,
PART LEVEL SIMULATIONS IN A MODEL PREDICTIVE
CONTROL FRAMEWORK TO MATCH AN IDEAL THERMAL
HISTORY.

2. MATERIALS AND METHODS
2.1 Experimental Setup

In this work, 10 Stainless Steel 316L parts consisting of four
unique geometries were created on an EOS M290 LPBF system
at the Commonwealth Center for Advanced Manufacturing,
Disputanta, VA. A picture of the setup is shown in FIGURE 3(a).
The final build plate and geometry details are shown in FIGURE
4. In this paper, we discuss results from the arch-shaped bridge
and bell crank geometries. The parts varied in size and height
from 25 mm (bridge) to 42 mm tall (bell crank). The bridge part
required 1250 layers and the bell crank required 2100 layers at a
layer thickness of 20 pm, and laser velocity of 1083 mm-s™. In
all, the build required 12 hours to complete.

One of the two bridge parts was built with supports under
fixed (nominal) parameters, and the other without supports with
layer-by-layer laser power changes identified by the model-
predictive control strategy presented in this work, and discussed
briefly in the context of FIGURE 2. Likewise, one of the bell
crank parts was created with manufacturer-recommended
nominal process parameters and the other was built using the
model-predictive control strategy discussed in Sec. 2.2. Nominal
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process parameters are recommended by the machine tool
manufacturer (EOS) and are summarized in FIGURE 4.

Laser power was varied for the controlled processing
parameters, with minimum and maximum laser power settings
determined by cases studies in literature that showed significant
lack-of-fusion porosity formation below 50 J/mm? and key hole
and gas porosity formation above 100 J/mm? [10]. Hence, the
limits of the laser power adjustment were limited to values
between 145 W to 225 W.

After creation, the parts were examined with X-Ray
computed tomography (XCT) on a North Star Imaging system
with a 15um voxel resolution. No porosity was detected in any
of the parts printed in this work. For the bell crank geometry, the
surface roughness was also tested on the exterior of all parts. In
our future work, these and other parts on the build plate will be
cross sectioned and their microstructure will be characterized
using optical and scanning electron microscopy.
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FIGURE 3: (a) MACHINE SETUP WITH INFRARED CAMERA
(b)  END-OF-CYCLE  TEMPERATURE  EXTRACTION
METHODOLGY. REGIONS OF INTEREST ARE SELECTED FOR
EACH PART BY TAKING THE LOWEST TEMPERATURE AT
EACH LAYER (c), END-OF-CYCLE TEMPERATURE CAN BE
EXTRACTED (d).

During the build, thermal trends were monitored with a long
wave infrared (IR) camera. The data from the IR camera is
necessary to validate the thermal model. The camera was
calibrated with a method similar to our previous works to ensure
accurate surface temperature measurements were taken [9]. End-
of-cycle temperature was extracted according to the method
shown in FIGURE 3.

End-of-cycle temperature describes how heat accumulates on the
top surface of parts and has been shown in our previous works to

correlate to flaws such as porosity, distortion, and geometric
deviation [9, 11].
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FIGURE 4: (a) BUILD PLATE WITH NOMINAL PROCESS
PARAMETERS USED TO DEMONSTRATE THE MODEL
PREDICTIVE CONTROL FRAMEWORK PROPOSED IN THIS
WORK. (b) SUMMARY OF GEOMETRIES WITH DIMENSIONS
CREATED IN THIS WORK.

The procedure to obtain the end-of-cycle temperature is as
follows. A region of interest is selected for each part (FIGURE
3b), and the temperature of this region is tracked for all of the
time domain, across multiple layers. (FIGURE 3c). The
temperature immediately before the subsequent laser strike for
the next layer is extracted as the temperature for the current layer.
This results in a thermal profile as a function of build height
(FIGURE 3d).

2.2 Model Predictive Control

To implement model predictive control in LPBF, a rapid
thermal modeling approach is required, as multiple process
parameters are tested at each layer. In other words, a model that
is accessible for solving the inverse problem is essential for the
approach to succeed. Traditional thermal modeling approaches
using finite element (FE) methods are too slow for this
application due to the computationally expensive and memory
intensive remeshing step. Commercial LPBF simulation
software do not allow for such autonomous changes. As such,
this work uses the graph theory thermal modeling approach
pioneered in the author’s previous works [9, 12]. Briefly
summarized, the graph theory model solves the heat diffusion
equation for each point (x,y,z) at every sampled point in time ().
This relationship is defined in Eqn. (1).

Laplacian operator

a V.Z, ﬁz—
p% k(axz azz)T(x ren =¢ (1)
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In Eqn. (1), p is the material density [kg:m™], c, is the
specific heat [J-kg™! -K-!], and k is the conductivity [J-s"' ‘m™-K-
11, and Q is the rate of heat supplied per unit volume of material
melted [J-s'-m?], called volumetric heat flux. Material
properties are assumed to be fixed and are measured at 250°C.
The term Q is a function of the processing parameters: laser
power (P, [W]), laser velocity (V, [m's']), hatch spacing (H,
[m]), layer height (L, [m]), and time when the laser is active (¢,

P
[s:Q = .
The graph theory thermal model replaces the continuous

OZ
ay?
with a space-representative discrete Laplacian matrix (L). By
substituting the Laplacian, simplifying, and solving the
differential equation, the following solution can be obtained.
LY
T(x, Y, Z, t) = de rép q)' (:?;_CS;% + Tprev) (2)

Here, the thermal history T(x, y, z, t) is solved as a function
of the eigenvalues (A), eigenvectors (¢), and time (¢) of the
Laplacian matrix (L). A, is the effective laser absorptivity, S,
length scanned per layer (a function of hatch spacing, [mm]), P
[W] laser power, V [mm-s'] laser velocity, v [mm?] volume of
material melted in a layer (a product of scanned area and layer
height), and Tprey [°C] is the temperature of the previous layer
(from simulation). In this work, A. = 0.60 based on experiments
by Ye et al. at Lawrence Livermore National Laboratory [13]. In
Eqn. (2), the part geometry and time are completely decoupled
from the applied laser heating condition. This allows multiple
process parameters to be tested without significant computation
overhead, which is necessary for the implementation of a model
predictive control scheme for LPBF.

Model predictive control enables process modeling to
control system properties. This technique is especially useful
where the system is complex or the system lacks feedback
mechanisms which would enable the use of feedback control
systems [14]. In this work, a simple iterative control scheme was
selected to control the thermal history. The control scheme used
in this work was first summarized in FIGURE 2. Herewith we
augment the summary with critical details.

In Step 1(Predict), an ideal thermal history Tigea for the
entire part is identified. For this purpose, the thermal history is
predicted for the part geometry under fixed processing
conditions suggested by the manufacturer. These thermal
simulations required less than 20 minutes to complete for each
geometry. This so-called uncontrolled or original thermal history
is denoted as Toriginal. Next, in Step 1, deleterious trends, such as
heat buildup are identified by analyzing Torigina. Lastly, these
undesirable trends in Torgna are negated (corrected) by
proposing an ideal trend Tiga. The identification of an
appropriated Tigeal is the human-in-the-loop step.

In Step 2 (Parse), considering layer N, the effect of several
possible laser power settings are simulated with five layers of
lookahead (N+5). In other words, the prediction horizon is 5
layers. We note that the thermal simulation implements a meta-
layer approach where multiple layers are considered to be

. 92 92 . . .
Laplacian operator (ﬁ+ +ﬁ) in the previous equation

deposited at once. This simplification is inherent to most FE-
based commercial software. In this work 5 actual layers (100
pm) correspond to 1 model layer. Hence, the lookahead
corresponds to 0.5 mm of actual build height.

Lookahead of the simulation time horizon is used to prevent
oscillations around the optimal solution. Longer time horizons
excessively burden computation time, reducing the benefit of the
approach. The graph theory model, as in commercial approaches,
defines a layer as 5 actual layers, i.e., 100 um layers. Five levels
of laser power were analyzed: 6, = 146 W, 0, =156 W, ;=176
W, 94: 195 W, and 95 =225 W.

In Step 3 (Select), after the thermal history Tp(65), 1= {1...5}
from each of the five laser power levels are simulated, we select
the optimal laser power 8« corresponding thermal history Tp(6;)
which results in the minimum mean absolute deviation (MAD)
from the ideal thermal history Tigea. Steps 2 and 3 are repeated
after every two simulated layers. Hence, this model predictive
control approach overwrites three topmost thermal history meta
layers with new parameters every iteration. The end result is a
laser power plan determined at 100 pm steps for the entire part.
Because the approach self-enforces laser power between 146 W
and 225W, it inherently avoids lack-of-fusion and keyhole
porosity [10].

The model predictive control scheme was able to complete
and identify the optimal laser power 0« for each layer in
approximately three hours for each geometry which was created.
In our previous work, we have observed defects at the interface
of layers where large process parameter changes occur [15].
Therefore, to reduce the severity of the process parameter
changes a 15-point moving average applied to the laser power
plan generated by the controller. Because the optimal laser power
settings 0+ must be programmed into the LPBF machine by the
operators manually, the parameter set was further simplified by
averaging laser power recommendations every 4 mm of build
height. Simulation studies showed minimal differences between
the end-of-cycle temperature for the as-predicted and smoothed
laser power estimates.

3. RESULTS AND DISCUSSION
3.1 Bridge

This result demonstrates the utility of the model predictive
control approach for eliminating support structures in LPBF
parts. The end-of-cycle temperature predicted by the model for
the supported uncontrolled bridge and unsupported controlled
bridge geometries are shown in FIGURE 5. The aim of the
controller was to adjust the laser power layer-by-layer for the
unsupported bridge such that its thermal history would match
that of the supported bridge. In other words, the Tigea is the
thermal history of the supported bridge shown in FIGURE
5(left). Also, in FIGURE 5, the model predictions are overlaid
on observed end-of-cycle temperature acquired from the IR
thermal camera.

The model predictions match the IR data with symmetric
mean absolute error (SMAPE) less-than 10%. We note that the
model parameters were calibrated against a different part from
the build plate shown in FIGURE 4 and not discussed in this

4 © 2024 by ASME



work for brevity. This affirms that the graph theory model
accurately predicts the effect of part shape and process parameter
changes applied to the part. The end-of-cycle temperature and
laser power changes for the unsupported bridge parts is shown in
FIGURE 5(right). These optimized conditions were obtained
autonomously within 3 hours.

Shown in FIGURE 6 are the thermal histories for three parts.
In FIGURE 6(left) is the thermal simulation for the unsupported
and uncontrolled bridge. This part is not manufactured due to
high chance of build failure from recoater crash. In FIGURE 6(
middle) is the uncontrolled supported bridge, which is the Tidear.
This was selected as the target temperature as it was
hypothesized that the matching thermal history of the supported
part would allow the unsupported geometry to succeed. In
FIGURE 6(right) is the unsupported controlled bridge-shaped
part built with the model predictive control strategy. The model
predictive control strategy successfully eliminated the need for
support by reducing the heat build-up in the overhang section.
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FIGURE 5: END-OF-CYCLE TEMPERATURE COMPARISIONS
TO IR DATA FOR THE SUPPORTED UNCONTROLLED BRIDGE
(a) AND (b) UNSUPPORTED CONTROLLED BRIDGE. THE
LASER POWER MODULATED LAYER-BY-LAYER IS SHOWN.
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FIGURE 6: END-OF-CYCLE TEMPERATURE COMPARISIONS
FOR THE UNSUPPORTED UNCONTROLLED BRIDGE,
SUPPORTED UNCONTROLLED BRIDGE (TARGET THERMAL
HISTORY), AND UNSUPPORTED CONTROLLED PARTS
FIGURE 7 shows an XCT slice in the X-Z plane for the
supported uncontrolled, and unsupported controlled bridges.
Given the extreme nature of this geometry, distortion was
observed in both parts at ~22 mm of build height to an identical
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degree. This indicates that the model predictive control strategy
used in this work does not degrade the part quality.
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FIGURE 7: XCT COMPARISION BETWEEN THE
UNCONTROLLED SUPPORTED (LEFT) AND CONTROLELED
UNSUPPORTED BRIDGES (RIGHT). PROCESS CONTROL
ALLOWED THE PART TO BE MADE WITHOUT SUPPORT
MATERIAL WITH EQUIVILANT DISTORTION.

3.2 Bell Crank

Three thermal histories for the bell crank geometry are
reported in FIGURE 8. The thermal history (Torigina) for the
uncontrolled bell crank built at a fixed laser power of 195 W
tends to accumulate heat as it grows due to the poor thermal
conductivity of the metal powder. A visual depiction of the
thermal history for the uncontrolled bell crank is shown in
FIGURE 9. In FIGURE 8, heat buildup beyond the 9 mm build
height is observed in the case of the uncontrolled bell crank
demarcated by the red line. A desirable or ideal thermal trend
Tideat Would be to avoid the heat buildup and maintain a constant
end-of-cycle temperature throughout the part as noted with the
black line in FIGURE 8.

In other words, the control target (Tigea) Was to maintain a
constant end-of-cycle temperature after 9 mm of build height.
The thermal history obtained by applying the model predictive
control strategy is demarcated with the blue line in in FIGURE
8. The model predictive control approach successfully reduced
the heat accumulation in the part as visually evident in FIGURE
9 (right) by altering the laser power in a layer-wise manner. The
achieved surface temperature does not match the Tiqear because,
the laser power is constrained between 145 W and 225 W. Use
of model predictive control reduced the symmetric mean
absolute percentage error (SMAPE) from Tigear from 10.6% to
7.6%. This reduction in bulk temperature improved internal
surface finish, as shown in FIGURE 10.

The laser power settings as a function of layer height
recommended by the controller are noted in FIGURE 9 (right).
The model predictive control approach converged to these laser
power settings autonomously within 3 hours. We note that while
heat buildup was minimized by the model predictive control, it
was not completely eliminated. This is because, the laser power

5 © 2024 by ASME



cannot be reduced beyond 145 W so as to avoid porosity, which
would be deleterious to part properties.
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FIGURE 8: END-OF-CYCLE TEMPERATURE FOR THE
STANDARD AND CONTROLLED CASES, AND THE TARGET
TREND (Tideal). PROCESS CONTROL WAS ABLE TO LIMIT HEAT
ACCUMULATION IN THE PART.

From examining the internal surface of the bell crank
with XCT, it was observed that the heat buildup in the
uncontrolled bell crank resulted in a rougher surface on the
internal bore. Three measurements were acquired with an optical
profilometer of the measurable external surfaces of the bell crank
confirmed the foregoing — the surface roughness for the external
surface of the uncontrolled bell crank resulted in Sa ~ 14 um,
compared to Sa~ 12 um for the controlled case. A small
improvement in the surface roughness, as small as 2 um has been
shown to considerably improve the fatigue life [16].
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FIGURE 9: END-OF-CYCLE TEMPERATURE DISTRIBUTION
FOR THE UNCONTROLLED (LEFT) AND CONTROLLED
(RIGHT) BELL CRANK PARTS. NOTE THE HEAT BUILD-UP IN
THE UNCONTROLLED BELL CRANK.
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FIGURE 10: XCT AND SURFACE ROUGHNESS COMPARISON
BETWEEN UNCONTROLLED (LEFT) AND CONTROLLED
(RIGHT) BELL CRANK PARTS. MODEL PREDICTIVE CONTRO
REDUCED SURFACE ROUGNESS OF INTERNAL AND
EXTERNAL SURFACE WITHOUT AN INCREASE IN POROSITY.

4. CONCLUSION

We developed and implemented a model predictive control
approach to reduce thermal-induced flaws in LPBF parts. In this
approach laser power is automatically changed layer-by-layer
based on information from a physics-based model to match an
ideal thermal history. This work showed two scenarios where this
approach could be useful in industry. First, the approach can
reduce, if not eliminate, the need for support structures. It can
thus mitigate the considerable expense associated with post-
process removal of supports. The second scenario demonstrates
that the approach can improve the surface finish of external and
internal, hard to process features. In our future research, we will
expand the model predictive control approach to obtain a desired
microstructure.
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