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ABSTRACT 
This work concerns process monitoring in the laser powder bed 
fusion additive manufacturing process. In this work, we 
developed and applied a novel in-situ solution for process 
stability monitoring and flaw detection using acoustic emission 
sensing. Current process monitoring methods in laser powder 
bed fusion only focus on the top surface of the deposition 
process, using an array of sensors to capture data on a layer-by-
layer basis. Common sensors used for in-situ monitoring of the 
laser powder bed fusion process are optical, infrared, and high-
speed imaging cameras along with pyrometers and photodiodes. 
A critical flaw with traditional top surface monitoring 
methodologies is that they are unable to reliably monitor the 
subsurface phenomena that occur in the laser powder bed fusion 
process. These subsurface effects are caused by the meltpool 
penetrating multiple layers below the top surface, leading to the re-
solidification of the microstructure and potentially generating key-
hole porosity. By only monitoring the top surface of the laser 
powder bed fusion process, the meltpool depth aspects and 
effects are ignored. To overcome the limitations of current in-situ 
monitoring of subsurface effects, this work utilizes four passive 
acoustic emission sensors attached to the build plate. These 
acoustic emission sensors monitor the energy emissions 
generated from the surface-level laser material interactions. 
Moreover, the acoustic emission signals are capable of traveling 
through the previously deposited layers, through the build plate, 
and to the sensors. Therefore, the acoustic waveform generated 
by the laser can capture process phenomena ranging from the 
crystallographic level to the macro-scale layer level which are 
at the root of flaw formation inside the deposited part. Hence, 
acoustic emission monitoring has the ability to monitor the 
subsurface effects in the laser powder bed fusion process. To 

monitor and analyze this acoustic waveform, novel wavelet-
based decomposition is combined with heterogeneous sensor 
fusion to not only capture the acoustic waveform in time, but also 
in locational space on the build plate. Locational acoustic 
emission data enables the ability to determine the source of the 
generated acoustic waveform which is advantageous when the 
location of flaws is desired. This extracted spatially placed 
acoustic waveform data is able to detect the effect of processing 
parameters with a statistical fidelity of 99%. The proposed 
locational acoustic waveform monitoring method correlates to 
the resulting surface roughness of manufactured samples with a 
fidelity of 86%. Additionally, we show that acoustic waveform 
monitoring detects the onset of part failure, recoater crashes, 
and warpage prior a priori to the actual failure point.  
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1. INTRODUCTION 

In the laser powder bed fusion (LPBF) additive 
manufacturing (AM) process, metal powder is raked across a 
build plate and selectively smelted using a laser [1]. The LPBF 
process is emerging as a favored method for manufacturing high-
value, geometrically complex, and high-performance parts [2]. 
This process is particularly favored in industries such as 
automotive, aerospace, energy, and biomedical due to its ability 
to manufacture fine features, ability to enhance functionality, 
reduce lead times, minimize sub-components, minimize weight, 
and expand supply chains [3].  

However, these advantageous are typically overshadowed 
by the process tendency to generate flaws, such as porosity, 
distortion, and large part-to-part variation in safety crucial 
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application [4, 5]. To mitigate these shortcomings, the objective 
of this work is to detect the onset of flaw formation in LPBF parts 
using acoustic emission (AE) sensing. These AE sensors are 
passive sensors attached to the substrate and captures the 
acoustic waves generated from the laser sintering. The 
hypothesis of this work is that both flaws and processing 
parameters will have a fundamental effect on the acoustic 
waveform traveling through the sample.  

As visualized in FIGURE 1(a), the input energy from the 
laser generates acoustic waveforms that are transmitted to the AE 
sensors through the solid medium of the deposited material. If 
the input energy is increased or decreased there should be a 
corresponding change in the generated acoustic waveform. 
Likewise, when the generated acoustic waveform interacts with 
a void in the sample, for instance, either in the form of a crack or 
pore, the acoustic waveform will have to travel around and 
through the void which will change the fundamental waveform, 
visualized in FIGURE 1(b). Additionally, the acoustic waveform 
does not travel in a linear path to the sensor and can reverberate 
inside of the sample and through other geometries which will 
once again changing the acoustic waveform. Therefore, in this 
work it is imperative to distinguish the different types of acoustic 
waveforms and correlate them to specific flaws.  

 
FIGURE 1: A) SHOWCASES THE AE SIGNAL TRANSFERRING 
THROUGH A NOMINAL PART. B) SHOWCASES THE EFFECTS 
OF CRACKS AND PORES  

2. METHODOLOGY  
2.1 Experiments 

In this work, 20 simple overhang geometry that are 20 mm 
tall, 8 mm wide, and has a 45° overhang section, were 
manufactured using stainless steel 316L (SS-316L). These 
samples were manufactured at 5 different laser power ranging 
from -30% laser power (140 W) to +30% laser power (250 W), 
shown in FIGURE 3. In this work the nominal processing 
parameters were; laser power 195 W, scan speed 1083 mm·s-1, 
layer height 20 µm.  

To monitor the onset of flaw formation a multi-sensor suite 
was installed on the EOS M290 LPBF machine at the 
Commonwealth Center for Advanced Manufacturing (CCAM), 
Disputanta, VA [6]. The sensors used in this work were a FLIR 
long wavelength infrared (IR) camera and four AE piezoelectric 
sensors coupled to the build plate, visualized in FIGURE 2. The 
FLIR camera operated continuously at a collection rate of 33 Hz 
to measure top surface temperatures. The four AE sensors were 
spaced equidistance from each other (125 mm) in a square 

formation and collected data at 1 MHz. All sensors are controlled 
via a LabView program and every frame of data is accurately 
time stamped. 

 
FIGURE 2: VISUALIZATION OF LPBF PROCESS AND THE 
POSITION OF THE FLIR IR CAMERA AND ACOUSTIC 
EMISSION SENSORS. 

Each power setting had a full support and a reduced support 
geometry type. As seen in FIGURE 3, most of the full support 
overhang geometries, power setting 3 through 6, were cancelled 
early in the printing process. This was done because the support 
struts were failing and threatened to destroy the entirety of the 
build. Similarly, the reduced support material had a cancelation 
at the highest laser power of 250 W. The reason for the high 
failure rate of the strut material at the high laser powers is 
because the support struts were printed at the same laser power 
as the bulk section. Thus, overheating and warpage were 
prominent in the struts.  

 
 FIGURE 3: 5 LASER POWERS USED IN THIS WORK ALONG 
WITH THE 6 STUDIES OF GEOMETRY AND CONDITIONS. 
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Unsupported overhang geometries were only manufactured 
at 140, 195, and 250 W. This was done due to space restrictions 
on the build plate that was visible to all the sensors. The three 
extreme conditions were selected in this study to get a wholistic 
understanding of heat accumulation and their effects. 

All other parameter changes studied in this work were done 
using the reduced support geometry. Power conditions 2, 4, & 6 
were manufactured with the up skin and down skin parameters 
turned off to study the effects of these parameters, denoted with 
O in FIGURE 3. Then power conditions 2 and 4 were 
manufactured with the support struts being printed using stock 
EOS printing parameters at 195 W, denoted with S in FIGURE 
3. Finally, power condition 2 and 4 were manufactured using 
modified laser power for the strut material based on the 
percentage change in laser power of the bulk material.  

As visualized in FIGURE 3, many of the support structures 
that were designed were either cancelled by the operator early in 
the build or had failures. These failures usually came in the form 
of minor warpage on the support struts, leading to recoater 
interaction that bent the struts over. These recoater interactions 
generally occurred at merge points on the overhang when the 
struts would merge with the under skin of the overhang. 

3. PROCESS MONITORING 
3.1 Acoustic Emission Feature Extraction 

Prior to any data processing, a fundamental understanding 
of how the AE waveform is affected by the processing conditions 
of the LPBF process is needed. Depicted in FIGURE 4(a) is the 
raw acoustic signal for 1 ms when the laser is turned off. It can 
be observed that during the laser off condition the AE voltage 
response oscillates between 0-1 mV with a resolution of 1 mV. 
Found in FIGURE 4(b) is the voltage response for 1 ms when the 
laser power is set to its lowest input of 140 W. At this processing 
state, the voltage response increases consistently up to 2 mV and 
occasionally 3 mV. Finally, at the highest input power of 250 W, 
the voltage response from the AE sensor increases consistently 
up to 3 mV and occasionally up to 6 mV, shown in FIGURE 4(c). 

 
FIGURE 4: EXAMPLE OF THE RAW AE DATA COLLECTED 
WHEN THE LASER IS OFF, AT A LOW LASER POWER, AND AT 
A HIGH LASER POWER. 

In the most extreme conditions, a simple correlation can be 
seen in the raw AE data. However, small changes in the 
processing conditions, and flaw formation are still unobservable 
simply using the raw AE data. To overcome this limitation, this 
work will use wavelet multi-resolution decomposition and to 
analyze the data in the frequency domain. The wavelet 
decomposition method was chosen because of its ability to 
accommodate non-stationary and nonlinear data [7].  

To perform wavelet analysis, every 33 ms of data from the 
AE sensors was deconstructed using the biorthogonal 3.3 
deconstruction wavelet into its 8 base frequencies (octaves) and 
the adjusted signal. The biorthogonal 3.3 wavelet was chosen 
heuristically after evaluation of several other (deconstruction) 
wavelets and due to its success in our previous works in 
deconstructing acoustic signature [8]. With each 33 ms of data 
deconstructed into eight octaves, the relative energy of each 
octave was calculated using the following equation:  

𝐸𝐸𝑜𝑜,𝑖𝑖 = �
∑𝐷𝐷𝑜𝑜,𝑖𝑖,𝑠𝑠

2

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ(𝐷𝐷𝑜𝑜,𝑖𝑖)
                            (1) 

Where E is the energy of octave o for every 33 ms window 
i, and D is each data point in the deconstructed signal. This 
process of extracting the energy for every octave of 33 ms raw 
AE data was repeated for the entire duration of a layer being 
deposited.  

After heuristic analysis, the third octave, centered around 
333 kHz response, was determined to have the highest 
correlation with laser interactions. The visualization of this 
octave’s energy response throughout an entire layer is shown in 
FIGURE 5. First, there is a large frequency response at the start 
and end of every layer across all the octaves analyzed shown in 
red. These spikes correlate to when the recoater blade is raking a 
new layer of powder over the build plate.  

 
FIGURE 5: RESULTANT WAVELET INTENSITY TIME SERIES 
FOR AN EXAMPLE LAYER. EACH OF THE FUNDAMENTAL 
PHENOMENA CAN BE SEEN DURING THIS PROCESS ACROSS 
THE THREE EXAMPLE OCTAVES BEING DISPLAYED. 

In between these spikes exists variation in the energy 
response which correlates with the sintering of the parts on the 
build plate. Each part being sintered has its own response and 
variation which is the most prominent in the third octave 
centered at 333kHz. In addition, even the bed lowering can be 



 4 © 2024 by ASME 

observed in the signal which is most prominent in the lower 
frequency response of 125 kHz, demarcated in blue. Due to the 
third octave’s high correlation with the lasing process, compared 
to the other octaves, this octave’s energy response was used for 
the resultant analysis and flaw correlation.  
 
3.2 Correlating AE Features to Build Plate Position 

While the third octave energy response can be used as a 
monitoring statistic in time, it is not currently possible to 
correlate the 1D time series to flaw formations on the 
manufactured sample as it is not spatially localized. To overcome 
this limitation, a novel form of sensor fusion was implemented. 
The key idea is to use the time stamped spatial information 
contained in the IR images, to synchronize the AE data to 
specific locations on the part.  

In this work, the IR camera captured a frame of thermal data 
every 33 ms, the same temporal resolution as the AE energy 
extraction discussed in the previous section. Using the IR 
images, the position of the laser spot can be extracted every 33 
ms by tracking the pixel with maximum relative temperature. 
The corresponding AE response is then mapped to the build plate 
using the extracted location from the IR image. This process of 
giving each time step of the AE frequency energy an XY position 
on the build plate is repeated for the entire layer until a 
normalized heat map of AE frequency energy data is generated. 

These XY heatmaps of AE intensity can then be stacked and 
a composited XZ view of each sample can be observed in 
FIGURE 6. Here the effect of build height on the AE frequency 
energy can be observed for un-supported parts built under low 
(140 W), nominal (195 W), and high (250 W) laser power 
samples. As evident from FIGURE 6, as the input energy 
increases so does the resultant AE signal. A majority of increased 
AE intensity is concentrated on the overhang section, as shown 
in FIGURE 6. This is caused by a combination heat 
accumulation in the overhang region, which in turn causes 
meltpool instability. These laser-material interactions are 
detected by the AE sensors [9, 10]. The layers of missing data 
between layers 640-680 are due to leading to error with the 
acquisition system. 

 
FIGURE 6: THE AE DATA STACKED IN THE XZ DIRECTION 
AFTER LOCALIZATION. THE EFFECT OF LASER POWER ON 
THE AE SIGNATURES IS EVIDENT, AS ALSO THE INTENSITY 
OF THE SIGNATURE IN THE OVERHANG REGION. 
 
4. RESULTS 
4.1 Detection of Support Failure  

The following demonstrates the ability of the AE signal to 
detect build failures, such as breaking of supports due to thermal-
induced stresses. In FIGURE 7, the compiled AE-derived 
frequency energy data in XZ direction for sample 2F (fully 

supported part processed at laser power P=140 W), is plotted and 
compared to the physical part that was manufactured. In the AE 
image, clear linear patterns of high intensity are seen. These 
horizontal lines correlate with the merge points when a row of 
support struts merges with the overhang section. It is apparent 
that these merge points generate a high level of AE intensity. 
These high AE intensities are based on physical phenomena 
during the manufacturing of the samples. The AE intensity signal 
detects that there are disturbances prior to the struts being bent 
to the side. These bent struts are caused by a recoater crash 
during merge point 4. In addition, there are multiple examples of 
bent struts and recoater contact events. The recoater contact 
events occur when the recoater blade interacts with a support 
strut and displaces it a few hundred micrometers out of place. 
This minor displacement is not enough to generate a complete 
failure; however, it is enough to generate a physical error in the 
sample. The AE signal detects this error before it cascades into a 
major build failure, such as a recoater crash. 

After the catastrophic failure, when the struts were displaced 
by a recoater crash, there are little to no AE signal in the strut 
sections due to there being no physical connection between the 
part and open powder. Then high levels of AE intensity are found 
in the strut sections when globular material is seen on the 
manufactured sample. The locational AE frequency energy 
successfully detects anomalous processing conditions prior to 
the recoater interference without any complex processing.  

 
FIGURE 7: SHOWCASING THAT THE AE DATA DETECTED 
FAILURE IN THE STRUTS PRIOR TO THE RECOATER BLADE 
BENDING THE SAMPLES. 
 
4.2 Correlation of AE signature with Laser Power and 
Surface Roughness 

In addition to detecting anomalous processing leading to 
build failures, the average AE frequency energy for each laser 
power setting was compared and correlated to the surface 
roughness. First, the average acoustic frequency energy for the 
first 10 layers to perform this comparison. These first 10 layers 
were chosen as the baseline as they are the layers closest to the 
substrate and therefore the layers closest to the AE sensors, 
ensuring no compounding distance effects. Additionally, these 
layers occur prior to any flaw formation in the samples, therefore 
avoiding other compounding effects.  

Visualized in FIGURE 8(a), there is a clear linear correlation 
between the average AE frequency energy and the input laser 
power, with regression R2 ~ 99%. This implies that as the input 
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energy increases, the energy received by the AE sensor also 
increases.  

Continuing with the analysis, the surface under the overhang 
region with no support material was measured with a confocal 
microscope. Is was found that the surface finish is correlated to 
the  AE frequency energy feature. To explain further, the average 
AE intensity within 1 mm of the under skin was calculated and 
plotted against the average surface roughness, shown in FIGURE 
8(b). There is a clear linear correlation between the average 
surface roughness and the average AE frequency energy feature 
with a R2 ~ 87%. This relationship is significant because when 
the surface roughness of the under skin is compared directly to 
the laser power, the liner relationship drops to an R2 of 78% [11]. 
This implies that the AE signatures detect the stochastic events 
that occur in the LPBF process and are closely related to flaw 
formation.  

 
FIGURE 8: THERE IS A LINEAR CORRELATION BETWEEN 
THE AVERAGE AE INTENSITY AND (A)THE LASER POWER 
WITH AN R2 OF 99%, (B) SURFACE ROUGHNESS OF ~87%. 
 
5. CONCLUSION 

This work is one of the few in the literature to use AE 
sensing for process monitoring in LPBF [12]. It demonstrates a 
fundamental correlation between passive AE sensing and part 
quality in the LPBF process. By performing computationally 
tractable wavelet-based decomposition and frequency analysis, 
correlations to part failure and recoater interactions become 
apparent. Additionally, clear linear correlations between the 
acoustic frequency response and both input laser power and 
surface roughness were made with an R2 ~ 99% of 87%, 
respectively. Pertinently, the proposed methodology in this work 
is capable of detecting the onset of flaw formation prior to failure 
and prior to traditional top surface sensors.  

In our future works, more complex frequency analysis will 
be performed to better understand the sub-surface effects in the 
LPBF process. Additionally, higher fidelity IR cameras at a 
higher frame rate will be used to achieve a higher spatial 
resolution of the resultant locational acoustic intensity features. 
Finally, the developed acoustic monitoring approach will be used 
to correlate to the evolved microstructure in LPBF parts.  
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