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Abstract

Searching tandem mass spectrometry proteomics data against a database is a well-established
method for assigning peptide sequences to observed spectra but typically cannot identify pep-
tides harboring unexpected post-translational modifications (PTMs). Open modification search-
ing aims to address this problem by allowing a spectrum to match a peptide even if the spec-
trum’s precursor mass differs from the peptide mass. However, expanding the search space in
this way can lead to a loss in statistical power to detect peptides. We therefore developed a
method, called CONGA, that takes into account results from both types of searches—a tradi-
tional “narrow window” search and an open modification search—while carrying out rigorous
false discovery rate (FDR) control. The result is an algorithm that provides the best of both
worlds: the ability to detect unexpected PTMs without a concomitant loss of power to detect
unmodified peptides.
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1 Introduction

Tandem mass spectrometry provides an efficient way to study proteins in a high-throughput fashion
but is typically limited in its ability to detect post-translationally modified (PTM) peptides due to
the exponentially large search space associated with searching for PTMs. One proposed solution
to this problem is to employ “open modification” searching, in which each observed spectrum is
compared against peptides whose masses differ—often by hundreds of Daltons—from the observed
precursor mass associated with the spectrum1. Open modification searching has become increas-
ingly popular, with one report suggesting that this type of approach can achieve higher statistical
power to detect peptides than a traditional “narrow window” database search 2.

We recently showed that open searches on their own often produce fewer discoveries than narrow
searches applied to the same data3. Only when coupled with a machine learning post-processor
such as Percolator4 or PeptideProphet5 do open searches become typically better than narrow
window searches. At the same time we provide evidence that both Percolator and PeptideProphet
may fail to control the FDR3. Hence, that apparent improvement in power attributed to open
modification searching must be taken with a grain of salt.
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Motivated by these observations, we propose an alternative post-processor that allows us to
consistently deliver more discoveries compared to the traditional narrow search. The key idea is
to search the observed spectra twice, once using a wide (open) window and once using a narrow
window, and then combine the search results in a novel way that allows us to extract information
from both searches while rigorously and empirically controlling the FDR. The method, Combining
Open and Narrow searches with Group-wise Analysis (CONGA), draws on the same concept of
target-decoy competition (TDC) that is commonly used to control the FDR: each real (“target”)
peptide is paired with a randomly shuffled or reversed decoy peptide, and each spectrum is searched
against the concatenated target-decoy database. Assuming that a false match is equally likely to
involve a target or a decoy peptide, the optimal matches to the decoy peptides allow us to estimate
the number of false discoveries and hence control the FDR. In CONGA’s case this step essentially
involves a competition scheme that produces a filtered list of peptides, which are then grouped
according to the difference between the observed precursor mass and the peptide mass. This
grouping is then followed by our FDR analysis, which reports the target peptides exceeding each
group threshold while controlling the overall FDR.

We provide empirical evidence for CONGA’s strong performance. First, we verify CONGA’s
FDR control using an entrapment experiment. This experiment uses matches to an irrelevant set of
peptide sequences, called the entrapment sequences, to essentially calculate the number of incorrect
peptide matches in the reported list of peptide discoveries. We then show that CONGA achieves
better power to detect peptides than either a narrow or open modification search, and that its
power is comparable with that of Percolator. We also demonstrate that CONGA’s approach allows
us to detect and better utilize chimeric spectra, because CONGA’s group-wise analysis considers
multiple matching peptides for each spectrum while still controlling the overall FDR.

An open source Python implementation of CONGA can be found at https://github.com/

freejstone/CONGA.

2 Approach

Motivated in part by our doubts about FDR control in existing post-processors 3, we developed
CONGA. The algorithm takes as input two sets of search results—the top PSM for each spectrum
from a narrow search against a concatenated target-decoy database, and the top nt PSMs for each
spectrum from an open search against the same concatenated database. CONGA also requires the
target-decoy peptide pairs that make up the concatenated database. The algorithm then proceeds
through four main steps, which are summarized in Figure 1 and below, with further details provided
in Section 3 (The CONGA algorithm):

1. CONGA’s first step weeds out potentially problematic PSMs. These PSMs arise because
CONGA considers more than one PSM per spectrum, allowing the algorithm to properly han-
dle chimeric spectra generated by more than one peptide. The challenge is that some PSMs
might “hitchhike” and score highly if the theoretical spectrum of an incorrectly matched pep-
tide closely resembles that of the true, generating peptide. To filter out these PSMs, CONGA
first combines the list of narrow- and open-search PSMs. Then for each spectrum, it removes
sub-optimal PSMs with peptides that are similar to higher scoring peptides (Figure 1A).

2. CONGA’s second step introduces “dynamic-level competition,” which is designed to help
TDC overcome some inherent shortcomings of decoy construction. Specifically, TDC relies
on the assumption that a false discovery—in our case a peptide that won its competition but
is not in the sample—is equally likely to be a target or a decoy win. However, when variable
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modifications are specified the database will often contain several clusters of highly similar
peptides corresponding to variable modifications of the same unmodified (“stem”) form of a
single peptide. For example, consider a spectrum that was generated by P[10]EPTIDE but
because of random noise is optimally matched to PEP[10]TIDE. In this case, the canonically-
created decoys cannot offer real competition to such a mismatch. Indeed, typically, the
theoretical spectra of P[10]EPTIDE and any of its cluster-neighbors, including PEP[10]TIDE,
would share significantly more peaks than P[10]EPTIDE and its “closest” decoy would.

To address this problem, CONGA dynamically adjusts the level at which TDC takes place.
When no variable modifications are specified, the competition is done at the peptide level
by taking the best scoring peptide between each pair of target and decoy peptides as de-
scribed in6. When variable modifications are specified, the competition is done at the stem
level. Specifically, CONGA first defines the representative peptides for each stem form as the
highest scoring peptide with that stem form. It then competes each pair of target and decoy
representative peptides by taking the best scoring one of each pair.

3. CONGA’s third step is the essential one of dividing the list of stem peptides into groups.
This fairly involved process, detailed in Section 3 (Group construction), defines the groups
based on characteristics of the maximally-matched PSMs associated with the stem peptides
including: (a) whether the PSM appeared in the narrow search file (“narrow group”), (b)
the frequency of the difference between the precursor mass and the peptide mass (the delta
mass), and (c) for PSMs that originate from the open-search file, their rank among all the
PSMs of the corresponding spectrum. While the narrow group remains static, the remaining
peptides are adaptively split and merged into groups based on applications of the Kolmogorov-
Smirnov test to gauge the difference in the winning peptides score distributions between the
two currently considered groups.

4. Finally, this grouping is then followed by Group-walk, which works by constructing separate
thresholds for each group and subsequently reporting the target peptides above each group
threshold. This procedure guarantees theoretical control of the overall FDR while taking
advantage of the different characteristics of the groups7. In doing so, CONGA gets around
the problem of how to otherwise reward the more popular/reasonable mass modifications.
For example, intuitively we should prefer a narrow search PSM over an open search PSM
that has a mass modification that appears only once. Rather than trying to adjust the score
function, CONGA simply places each PSM in a separate group so their raw scores are never
competing against one another.

After reporting its FDR-controlled list of discoveries, CONGA employs two optional steps to
further assist the user. The first is complementary to CONGA’s dynamic level competition which is
designed with rigorous FDR control in mind. However, regardless of whether searching with variable
or static modifications, CONGA’s unique type of competition necessarily leads to some loss of
information. For example, particularly when searching without any specified variable modifications,
the user might still be interested to learn which unexpected mass modifications of a particular
peptide have support in the data. This information is not directly available from CONGA’s FDR-
controlled list of discovered peptides. Therefore, CONGA optionally augments this FDR-controlled
list by reporting sufficiently high scoring PSMs that are related to the peptides in this list.

In a second optional step, CONGA uses the pyAscore module8 to assist with the localization
of modifications in CONGA’s augmented list of PSMs.
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Figure 1: Schematics of CONGA. (A) For each experimental spectrum σ, some sub-optimal PSMs need to be weeded
out because they involve peptides whose theoretical spectra share a non trivial number of peaks with higher scoring matched
peptides. (B) The best scoring peptide among all PSMs that have the same unmodified stem form, along with their decoys, is
then selected. (C) Partitioning into groups: the (representative) peptides are first divided into a static “narrow group”, and a
second “open group” that initially contains all other peptides. We next adaptively split and merge sub-groups of the open group
starting with comparing the winning scores of a “candidate set”, consisting of all rank 1 peptides with the most commonly
occurring mass-difference (labeled as the first bin), with the winning scores of the remaining rank 1 peptides of the open group.
If the p-value of the Kolmogorov-Smirnov test is smaller than 0.01, a new group is created from the candidate set, else a new
group is created from all of the rank 1 peptides of the open group (see Group construction section for further details). (D)
Once the groups are defined, we employ the Group-walk algorithm which iteratively updates a vector of group-wise thresholds
until the estimated FDR from the combined peptides to the right of each threshold is less than α. The target peptides above
each group-threshold (indicated by the rectangles) are then reported.
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3 Methods

The CONGA algorithm

Filtering neighbors

CONGA’s first step focuses on removing neighbors: a peptide is considered a neighbor of another
peptide if the two corresponding theoretical spectra share a non-trivial proportion of peaks. Neigh-
bors pose a problem, particularly if, as in CONGA’s case, we consider more than the top match to
a spectrum σ: if a peptide offers a good match to σ then it is likely that so do all its neighbors.

Supplementary Algorithm S2 describes CONGA’s filtering process. Its input is the list of pep-
tides corresponding to the top peptide-spectrum matches (PSMs) associated with each spectrum.
Specifically, associated with each spectrum σ are kσ ≤ nt + 1 unique PSMs, of which ≤ nt are the
top PSMs from the open search, and ≤ 1 from the narrow search (we remove an open PSM if it
happens to coincide with the narrow PSM). Sorting those kσ peptides by decreasing PSM scores,
CONGA sequentially filters out peptides that share more than a fraction of τ peaks with a higher
ranking peptide (we used τ = 0.05, a choice we explain in the Discussion section). Following Lin
et al.9, we define t12, the similarity between two peptides π1 and π2, as the proportion of shared b-
and y-ions peaks:

t12 :=
2B12

B1 +B2
, (1)

where Bi is the number of charged b- and y-ions associated with πi between 200 m/z and 3000
m/z, and B12 is the number of such shared ions. If the presumed charge of πi is +1 or +2, then
Bi considers only singly charged b- and y-ions, and if the charge is +3 or more, then Bi considers
both singly and doubly charged ions.

Comet’s E-value10 and Tide’s Tailor score11 normalization of the XCorr score will generally
differ between the open and narrow searches. Therefore, to ensure a fair comparison when sorting
the combined list of kσ peptides we use the PSMs’ XCorr score. The PSMs that are not filtered
out are then reverted back to their original E-value or Tailor score.

Dynamic Competition

CONGA’s second step performs the competition that defines the target/decoy labels on which TDC
relies on. Note that this is the second competition, with the first one taking place at the PSM level
even before CONGA starts: each spectrum is searched for its best matches in the concatenated
target-decoy database. CONGA then filters the PSMs as described above, and the remaining PSMs
are used to assign a (peptide-level) score to each target and decoy peptide: the score of the maximal
PSM associated with that peptide (or the smallest possible score if no such PSM exists).

The second level of competition differs depending on whether the user specified variable modifi-
cations during the search. Importantly, each decoy peptide is constructed by reversing or randomly
shuffling the target peptide, and can thus be paired with the target peptide that generated it.
When no variable modifications are specified, the second target-decoy competition takes place at
the peptide level: each target peptide is compared with its corresponding decoy, and only the higher
scoring of the two is kept. On the other hand, when variable modifications are specified, CONGA
clusters together all peptides that share a common stem form (the unmodified peptide sequence).
Each cluster is represented by its maximally scoring peptide. In this case, the second target-decoy
competition takes place at the representative, rather than the peptide level: each target represen-
tative is compared with its corresponding decoy representative. Note that, as alluded to above,
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regardless of whether variable modifications are considered, CONGA optionally produces an auxil-
iary list of discoveries that includes all sufficiently high scoring PSMs with distinct unaccounted-for
mass modifications (details below).

After the second-level competition takes place, each winning peptide is assigned five values: its
winning score (Wi), the target/decoy label (Li = 1 if the winner is a target object), a narrow-
search indicator (Ni = 1 if the maximal PSM of the winner came from a narrow search), the mass
difference between the precursor mass and the peptide (δi), and finally the spectrum-specific rank
Ri of the winning peptide among the top PSMs reported for that spectrum in the original search
file. Because we only keep the top PSM per spectrum in the narrow search, Ri = 1 if Ni = 1, but
at any rate CONGA only further considers peptides/representatives for which Ri ≤ 2.

Group construction

CONGA’s third step involves aggregating peptides into groups. The motivation for this grouping
step is that such groups, when they reflect inherent properties of the data, can lead to a boost in
statistical power. For example, we expect the narrow peptides (Ni = 1) to be distinct from the
open ones; hence, those peptides form their own “narrow group”. The other groups, made up of
the open peptides (Ni = 0), are essentially defined based on the mass differences δi. As outlined
next, and detailed in Supplementary Algorithm S3, CONGA accomplishes this grouping in two
phases, in which it dynamically splits and merges the open peptides according to δi, in an attempt
to define distinct groups in terms of their winning scores distribution. Note that throughout this
section we refer only to “peptides,” with the understanding that we mean representatives when
using variable modifications.

With the narrow group defined, CONGA first partitions the open peptides with rank Ri = 1
into a set of disjoint bins according to their associated mass differences, δi. Specifically, each
bin is centered at kλ, an integer multiple of λ := 1.0005079/4, and it contains all peptides with
δi ∈ (kλ− λ/2, kλ+ λ/2]. We then rank the bins in terms of their occupancy rate from largest to
smallest, and we denote by bi the rank of the bin containing the ith considered peptide.

In practice, CONGA cannot make efficient use of a group which is too small; hence, it is better
to merge such a group with another one. CONGA’s minimal group size is set to 2K (80 by default),
where K is the window size used by Group-walk, as explained in the next section. By merging any
bin that is smaller than this threshold with the subsequently ranked bin, we can assume without
loss of generality that every bin, except possibly the lowest ranked one, clears the minimal group
size threshold.

Starting with the top ranked bin (i.e., the most common mass difference), CONGA sequentially
defines a candidate set C as the set of peptides populating the highest ranked bin that is yet to
be processed. Defining the current left-over set, L, as the set of peptides in all lower ranked bins,
CONGA applies the Kolmogorov-Smirnov (KS) test to gauge the similarity between the winning
scores of (i) C and L, and (ii) C and each group of open peptides previously defined in this sequential
process. For example, when considering the 3rd ranked bin this would typically generate 1+ 2 = 3
p-values, one for each application of the test.

If all the p-values are less than or equal to a pre-specified threshold β := 0.01, then the winning
scores in C are deemed distinct enough to merit defining C as a new group, and the process moves
on to the next candidate set. Otherwise, if the p-value of the test comparing C and L is ≤ β but
the p-values of the similarity tests between C and some of the previously defined groups are > β,
then C is deemed to be insufficiently distinct from any one of those groups. In that case, one of
those groups for which the KS p-value is > β is selected at random, C is merged with it, and the
process moves on to the next candidate set. Otherwise, the p-value of the similarity test between
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C and L is > β so C and L are joined into a new group, and this iterative phase of the group
construction ends.

If the process did not terminate before C coincides with the lowest ranked bin, then at that
point C is added to the most recently defined group. Note that in practice the winning PSM
scores often have ties, which implies that the Kolmogorov Smirnov p-values are only approximate.
However, this behavior is not overly concerning because we are only using the tests here as a
heuristic group-merging criterion rather than for hypothesis testing per se.

Finally, CONGA groups together all open peptides with rank Ri = 2 and a mass difference
δi that would place it in one of the top ranking bins that were processed in the previous phase
(excluding the terminating step). If this group is larger than the 2K threshold then it is defined as
the last group; otherwise, it is merged with the most recently constructed group (which is usually
the final candidate set C and the left-over set L).

Group-walk

After the groups are constructed, CONGA applies the Group-walk procedure 7, which is added
here for convenient reference as Supplementary Algorithm S4. Briefly, Group-walk first orders the
peptides (representatives) within each group g ∈ {1, . . . , ng} in increasing winning scores order, so
that with ng being the number of groups, W g

i the score of the ith peptide in group g, and mg the
number of peptides in group g, W g

1 ≤ · · · ≤ W g
mg (note that this ordering is reversed to the usual

way TDC is formulated).
CONGA then initializes a frontier vector k̃ =

(
k1, . . . , kng

)
:= (1, . . . , 1), which delineates the

“active set” of peptides that the front has not yet passed over: all peptides for which the (group
g) index i satisfies i ≥ kg (so W g

i ≥ W g
kg
). The peptides that are not in the active set cannot be

discovered (the front passed over them), but as explained below, they are still useful in determining
how to advance the front.

Group-walk advances the front one coordinate at a time, and following each such advance it
estimates the FDR among the target peptides in the active set as the number of decoys in this set
(plus 1) divided by the number of target peptides in this set. If this estimated FDR is ≤ α then
Group-walk stops and reports all target peptides in the active set. Otherwise, Group-walk selects
a group g for which it will advance the front by one peptide: kg := kg + 1.

Initially, the group that is advanced is selected sequentially: Group-walk rotates through the
groups. However, once the frontier reaches k̃ = (K, . . . ,K), whereK is the “peek-back” window size
(K = 40 by default), the decision of which group to advance is made based on the last K observed
peptides in each group. Specifically, Group-walk advances the group for which the number of decoy
wins among the last K peptides is maximized.

Auxiliary list of discoveries

CONGA optionally complements it list of FDR-controlled discoveries by producing an auxiliary list
of discoveries that includes all sufficiently high scoring PSMs with distinct unaccounted-for mass
modifications explained next (Supplementary Algorithm S6).

If no variable modifications are specified, then for each peptide in its FDR-controlled list,
CONGA reports any PSM involving the same peptide that (a) is sufficiently high scoring, i.e., it
is a top-ranked narrow, or a top-2 open PSM (Ri ≤ 2), and (b) is the highest scoring of all the
PSMs with the same peptide that fall into the same mass modification bin. The mass bins are
defined by a greedy clustering algorithm (Supplementary Algorithm S5) that takes into account
the specified isolation window. This clustering is necessary to avoid overwhelming the user with
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PSMs that share the same peptide and have very similar precursor masses. The augmented list is
further supported with a label for each PSM which indicates whether the PSM scored above its
CONGA-assigned group-specific threshold, giving the user additional confidence in those PSMs.

When variable modifications are specified, the process is slightly different. Specifically, for each
representative peptide in the FDR-controlled list, CONGA reports any PSM that (a) is sufficiently
high scoring as defined above, (b) its peptide shares the same stem as the representative’s, and
(c) is the highest scoring among all PSMs with the same variant of the stem form that fall into
the same mass modification bin. In this case the greedily-clustered bins are defined relative to the
unmodified (stem) form.

Localization with pyAscore

CONGA optionally uses the pyAscore module8 to assist in the localization of modifications in
CONGA’s augmented list of PSMs. Specifically, for each PSM with a delta mass δi outside the
specified “narrow search” window, pyAscore enumerates all possible localizations of δi and chooses
the highest scoring one. Furthermore, if the user provides a list of anticipated modifications, then
pyAscore will also attempt to localize any such modification that is sufficiently close to the observed
δi. Finally, CONGA will report for any such PSM the single highest scoring of all those localizations,
along with a label indicating whether or not that optimal localization scored higher than the null
modification (that is, when no localization is considered).

Searches

Entrapment run searches

Entrapment runs for CONGA were performed using data taken from the standard protein mix
database, ISB1812. We used the nine .ms2 spectrum files taken from Lin et al.6 which were origi-
nally sourced from the Mix 7 spectrum files downloaded from https://regis-web.systemsbiology.

net/PublicDatasets/18_Mix/Mix_7/ORBITRAP/ (this excluded the tenth, smallest spectrum file).
These .ms2 spectrum files were subsequently used for Tide. For compatibility with MSFragger,
we directly downloaded the same nine spectrum files in ThermoRaw format and converted them
to a single combined, as well as separate, .mzML files using MSConvert 3.0.22314 with the vendor
peak-picking filter using the default settings.

The in-sample database contained peptides from the original 18 proteins plus 30 additional
hitchhiker proteins believed to be present at lower levels, which we downloaded from https://

regis-web.systemsbiology.net/PublicDatasets/database. We used the castor plant proteome
as the entrapment database as in Lin et al.6. Tide-index was used to digest the in-sample and
entrapment database using trypsin, for Tide, and strict-tryspin (specified with trypsin/p), for
MSFragger. For each digest rule, four random subsets of the in-sample peptides of varying size,
plus the entrapment peptides, were used to create a combined target peptide database for which
20 randomly shuffled decoy indices were created, again using Tide-index. Param-medic 13 was used
to determine any variable modifications, though none were detected. Any entrapment peptide that
was identical (up to any leucine/isoleucine substitution) to an ISB18 peptide was removed from
the entrapment database. Table 1 lists the resulting number of in-sample and entrapment peptides
in each combined target peptide database, along with their in-sample-to-entrapment ratio.

Tide-search was used to search the nine .ms2 spectrum files against each of the combined target
and decoy databases prepared using trypsin with the following settings: for narrow searches we used
--auto-precursor-window warn --auto-mz-bin-width warn --use-tailor-calibration T -

-concat T, and for open searches we used --auto-mz-bin-width warn --precursor-window-
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Trypsin for Tide

In-sample proportion In-sample peptides Entrapment peptides In-sample:entrapment

100% 898 571298 1:636
75% 674 571298 1:848
50% 449 571298 1:1272
25% 225 571298 1:2539

Strict-trypsin for MSFragger

In-sample proportion In-sample peptides Entrapment peptides In-sample:entrapment

100% 919 584350 1:636
75% 690 584350 1:847
50% 460 584350 1:1270
25% 280 584350 1:2087

Table 1: The number of in-sample target peptides and entrapment-peptides for each combined target peptide
database used in the entrapment runs. The table reports the number of in-sample target peptides and entrapment target
peptides for each of the four combined target databases, for each digest rule. The first column reports the proportion of the
total in-sample target peptides used in the combined target database, the second is the number of these in-sample peptides used,
the third column is the number of entrapment peptides, and the last column is the ratio of in-sample peptides to entrapment
peptides.

type mass --precursor-window 100 --top-match 5 --concat T --use -tailor-calibration

T. MSFragger v3.3 was used to search the combined .mzML and the separate .mzML spectrum files
against each of the combined target and decoy databases prepared using strict-trypsin. Because we
used tide-index to prepare these databases, we need to use the following settings to ensure MSFrag-
ger has the same digestion parameters. For narrow searches we used allowed missed cleavage =

0, digest min length = 6, digest max length = 50, digest mass range = 200.0 7200.0, al-

lowed missed cleavage = 0 with all other options set to default, and for open searches we used
localize delta mass = 0, allowed missed cleavage = 0, digest min length = 6, digest -

max length = 50, digest mass range = 200.0 7200.0, allowed missed cleavage = 0, out-

put report topN = 5, with all other option set to default. No variable modifications were set, so
CONGA’s analysis was done at the peptide level. Note we used MSFragger v3.3 at the time, as the
subsequent version at the time (v3.4) did not allow for output report topN > 1 for DDA data.
We used Tide in Crux v4.1.decd99ff.

PRIDE-20 searches

We downloaded 20 high-resolution spectrum files from the Proteomics Identifications Database,
PRIDE14. Seven of these spectrum files were taken from Freestone et al. 7 and were originally
obtained by randomly selecting a spectrum file from randomly selected PRIDE projects (submit-
ted no earlier than 2018). The remaining 13 spectrum files were similarly obtained by randomly
selecting a single spectrum file from a randomly selected PRIDE project (submitted no earlier
than 2019). The sampling was constrained to generate a collection of 10 spectrum files that had
modifications and 10 spectrum files for which no modifications were detected, as determined in
both cases by Param-medic13. The protein FASTA database files were also downloaded from the
associated PRIDE projects or, in the case of human data, the UniProt database UP000005640 was
used (downloaded 9/11/2021). Table 2 reports the list of the 20 spectrum files and PRIDE projects
used.

For each of the PRIDE-20 data sets, we used Tide-index 20 times to create 20 different
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Project ID Spectrum file Var m/z width

PXD008920 QEP1 ZADAM deg1 2 1 170615.mzid QEP1 ZADAM -
deg1 2 1 170615.MGF

F 0.0124

PXD008996 A431 01uM DON 3 2.mgf F 0.0141
PXD010504 QX05437.mgf F 0.0145
PXD014277 Q06965 MS18-017 37 J9(55).mgf F 0.0164
PXD016724 190322-SI-0149-F5-01.mgf F 0.0177
PXD019354 Progenesis-Trophoplast-top5-140416.mgf F 0.0162
PXD024284 p2830 NaClvsHank mascot.mgf F 0.0085
PXD025130 Q26431 MS20-025 Virus-purif 1.mgf F 0.0157
PXD029319 MP 16072020 LvN S layer gps 5 DDA01.mgf F 0.0138
PXD030118 Q26756 MS20-013 C15.mgf F 0.0145
PXD002470 Mudpit LC-iTRAQ1.RAW (F004785).mzid Mudpit LC-

iTRAQ1.RAW (F004785).MGF
T 0.0217

PXD006856 export Mzidentml F134282.mgf T 0.0180
PXD010413 F373129.mgf T 0.0116
PXD012528 04222014 111 AF 160 22.mgf T 0.0138
PXD012611 Temp-3-Speclib-1.mzid Temp-3-Speclib-1.MGF T 0.0151
PXD013274 PDL-2-11.mzid PDL-2-11.MGF T 0.0135
PXD019186 QE1 Chrysi Exp1 Sample12b.raw.-1.mgf T 0.0161
PXD022257 Sitaset1F6.mgf T 0.0083
PXD023571 Experiment new run P6-GFP-PBANKA 1028300-Schizont-

8hrs from OT 200625 105 MS20-039 01.mzid Experiment -
new run P6-GFP PBANKA 1028300 Schizont 8hrs -
from OT 200625 105 MS20-039 01.MGF

T 0.3632

PXD026895 191004 MK ChRS19 100Z10C pink A.mzid 191004 MK -
ChRS19 100Z10C pink A.MGF

T 0.0159

Table 2: The PRIDE-20 data set The list of 20 spectrum files used in the PRIDE-20 data set and their associated project
IDs. The “Var” column indicates whether the data includes variable modifications. The “m/z width” column reports the
fragment m/z tolerances determined by Param-medic 15.
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target-decoy peptide databases using --auto-modifications T to call Param-medic and apply
the variable modifications. For narrow searches using Tide, we used the following options --auto-
precursor-window warn --auto-mz-bin-width warn --use-tailor-calibration T --concat

T and for open searches using Tide we used --auto-mz-bin-width warn --precursor-window-

type mass --precursor-window 100 --use-tailor-calibration T --concat T.
For searches using Comet, we used the built-in version within Crux. For narrow searches we used

the options --decoy search 1 --auto peptide mass tolerance warn --allowed missed cleav-

age 0 --auto fragment bin tol warn --auto modifications T --peptide mass units 2 and
for open searches we used --decoy search 1 --peptide mass tolerance 100 --allowed missed -

cleavage 0 --auto fragment bin tol warn --auto modifications T --peptide mass units 0.
Comet digests and produces decoy peptides by reversing each target sequence. Hence, only a single
target-decoy database was used for each of the PRIDE-20 data sets. PSMs matched to peptides
that were identified as both a target and decoy were deleted. In the case of E-values, lower scores
indicate a better PSM and so we take the negative of these scores when applying TDC or CONGA.

Lastly, for searches using MSFragger we converted each .mgf file into .mzmL files using MSCon-
vert with default settings. We constructed a decoy protein database by taking each target protein
and reversing the position of the amino acids that lie between K, R or the N - and C- termi-
nal, while keeping the position of K and R fixed. Importantly, the digestion of the target and
decoy proteins allow us to pair each resulting target peptide with a corresponding decoy pep-
tide. This is not achievable if we reverse the entire target protein sequence, which is the behavior
of many software tools. For narrow searches, we used the following options allowed missed -

cleavage = 0, use topN peaks = 100 and for open searches we used output report topN = 5,

allowed missed cleavage = 0, use topN peaks = 100. Variable modifications were set accord-
ing to those detected by Param-medic using Tide-index. All other options were set to the default
settings. Similar to Comet, PSMs matched to peptides that were identified as both a target and
decoy were deleted.

HEK293 searches

We downloaded the 24 HEK293 spectrum files from https://ftp.pride.ebi.ac.uk/pride/data/

archive/2015/06/PXD001468, which were converted to .mzML format using MSConvert with the
vendor peak-picking filter using the default settings. We used the UniProt database UP000005640
(downloaded 18/05/2022). For the results that compare CONGA to other methods, we followed
the exact same method for searching with Tide and Comet with the 20 PRIDE-20 spectrum files
as outlined in the previous section, PRIDE-20 searches. For MSFragger searches we prepared
a combined target-decoy protein database similarly described in section, PRIDE-20 searches, by
taking each target protein and reversing the position of the amino acids that lie between K, R
or the N - and C- terminal, while keeping the position of K and R fixed, again deleting pep-
tides that were identified as both a target and decoy. We ran narrow MSFragger searches for
each of the 24 spectrum files using the settings precursor mass lower = -100, precursor -

mass upper = 100, allowed missed cleavage = 1, use topN peaks = 100 and open searches
using the settings precursor mass lower = -500, precursor mass upper = 500, precursor -

mass units = 0, localize delta mass = 0, allowed missed cleavage = 1, output report -

topN = 5. No variable modifications were considered, and all other options were set to default.
These settings were used to follow as best we reasonably could the setup used by Kong et al. 2.

For some of the experiments in this paper we focused on a single randomly selected HEK293
dataset, b1924 293T proteinID 04A QE3 122212.mzML, which we refer to as “the representative
HEK293 dataset.”
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Chimera spectra analysis

We used Prosit to validate our co-peptide (i.e., pairs of peptides assigned to a single spectrum)
discoveries in the representative HEK293 dataset. For this analysis, we first converted the data
to mgf format with MSConvert for easy importing in R. We determined the list of co-peptide
discoveries using CONGA at the 1% FDR level, and we filtered this list for co-peptides that were
both less than 1 Da away from the precursor mass of the corresponding experimental spectrum.
This is because Prosit does not generally support peptides with mass modifications. In addition
to these co-peptides, we determined their precursor charge and set the collision energy for each
peptide to 35%, as described in Chick et al.1. The peptides, charges, and collision energy were
then submitted to Prosit. The resulting output returned the predicted fragment m/z locations, the
relative intensities and the normalized retention times (iRT).

We then looked to pair each Prosit predicted peak of each discovered co-peptide with a cor-
responding peak from the chimeric spectrum that was responsible for discovering the co-peptide.
Specifically, we searched the spectrum for experimental peaks within a 0.01 m/z fragment toler-
ance of the Prosit peak. If there was zero or one experimental peak within that window, then we
paired the Prosit peak with the experimental peak, or with a zero intensity peak if there was no
experimental peak within that window. If there was more than one experimental peak within the
window, then we removed the Prosit peak from further consideration because we could not uniquely
match it to an experimental one. Finally, we transformed the paired experimental intensities into
relative intensities, by dividing the experimental intensities by the maximal intensity of all paired
experimental peaks defined for the given co-peptide.

To benchmark our co-peptide discoveries, we determined the list of narrow discoveries using
TDC at the 1% FDR level, and similarly used Prosit along with the subsequent analysis as described
above for the co-peptide discoveries using CONGA.

Target-decoy competition

For the TDC procedure, we employ the double competition protocol, “PSM-and-peptide,” as origi-
nally described in Lin et al.6 and summarized for convenience below, and in pseudocode in Supple-
mentary Algorithm S1a. For the PSM-level competition, we determine the best peptide-spectrum
match to the target and decoy databases separately, and then record the best scoring match out
of the two. This is achieved implicitly by taking the top 1 PSM for each spectrum when searching
against the concatenated target-decoy database. For the subsequent peptide-level competition, we
define a score for each peptide as the maximal PSM score associated with that peptide. Then for
each target-decoy pair, we take the peptide with highest peptide score. The resulting peptides are
then ordered according to their peptide score from largest to smallest. Denoting the resulting scores
as W1 ≥ · · · ≥ Wn, we determine the largest index k that the estimated FDR is ≤ the threshold
α, and report all target peptides up to and including that k. More specifically, denoting Li = 1 as
a target peptide and Li = −1 as a decoy peptide, then all target peptides with rank i ≤ KTDC are
reported, where

KTDC = K (α) := max{k :
#{i ≤ k : Li = −1}+ 1

#{i ≤ k : Li = 1} ∨ 1
≤ α}, (2)

and x ∨ y := max{x, y}.
As described in Section 3 (Dynamic Competition), if variable modifications are specified, then

the second, peptide-level competition is replaced with the representative-level one (Supplementary
Algorithm S1b).
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Percolator settings

For each of the Tide searches where Percolator was subsequently used, we constructed .pin files by
either specifying --pin-output T during Tide-search or by using the make-pin utility command
in Crux. When creating .pin files from an open search we used the default number of top 5 PSMs
which allows for generating the feature deltLCn (the difference between the XCorr score of the top
1 PSM and the last ranked PSM). We then kept only the top 1 PSM for each spectrum to overcome
the problem of neighbors. For narrow searches, we directly used the top 1 PSM. Lastly, to each
PSM in the .pin file, we set the enzInt feature (the number of internal enzymatic sites) to zero
as explained in Danilova et al.16.

For each of the .pin files, we used the following options in the crux percolator command --only-

psms T, --tdc F. This reports only the PSMs and does not apply the TDC procedure within
Percolator since it does not use the double competition protocol, “PSM-and-peptide”. Instead, we
apply our TDC procedure as described in the previous section, to the resulting list of PSMs, using
the learned percolator score as the PSM score.

4 Results

CONGA successfully controls the FDR using target-decoy competition

TDC established itself as the canonical approach to FDR control in mass spectrometry analysis
even before the corresponding mathematical theory was developed independently 17,18. That theory
is based on the following two assumptions: (a) an incorrect peptide (one that is not present in the
sample) that won its target-decoy competition is equally likely to be a target or a decoy peptide,
and (b) this happens independently of everything else (the scores of all the peptides, including the
considered one, as well as all the target/decoy label of all other peptides).

CONGA relies on an extension of that theory, where the above independence is assumed to
hold given the scores as well as the group structure. More precisely, we assume that, conditioned
on all the winning (stem) peptide scores (step 2), on CONGA’s group partition (step 3), and on
all the target/decoy labels of the peptides that are truly in the sample, the peptides that won
their competitions and are not in the sample are independently equally likely to be a target or a
decoy win. Under these assumptions Group-walk, and hence CONGA, are guaranteed to control
the FDR7.

In practice these theoretical assumptions are naturally met with some approximation; thus,
it is important that we test CONGA’s ability to control the FDR using the same entrapment
setup in which Percolator and PeptideProphet apparently fail to do so 3. Specifically, we applied
CONGA to PSMs generated by Tide and MSFragger, searching the same concatenated databases
in both narrow and open mode. Reassuringly, the analysis of CONGA’s results in these entrapment
experiments (Figure 2) show that the maximal estimated FDR is always below or very close to the
corresponding FDR threshold, suggesting that CONGA successfully controls the FDR.

CONGA detects more peptides than narrow or open search

CONGA’s primary goal is to combine the results from narrow and open searches of the same data
to yield better statistical power than either of those two searches on its own. Accordingly, we
compared the number of peptides detected by CONGA with the number detected by TDC on
narrow and open search results. For this analysis, we applied Tide, Comet and MSFragger to
our “PRIDE-20” set (Section 3; PRIDE-20 searches): a set of 20 high-resolution spectrum files
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Figure 2: CONGA’s empirical FDR. The estimated FDR when applying CONGA to our entrapment setup using (A) Tide
and (B) MSFragger. The FDP is estimated at a range of FDR thresholds ([0.01, 0.1]), and its average over the 20 randomly
generated decoys is the empirical FDR. Each solid curve represents the FDR using a different target database constructed with
the specified proportion of the in-sample database. The estimated FDR is always below or just above the specified threshold
(solid black line), indicating that the FDR is apparently controlled.

randomly selected from the Proteomics Identifications Database, PRIDE 14. TDC was conducted
with dynamic-level competition similar to CONGA (Section 3; Target-decoy competition).

The experiments show a consistent improvement in power for CONGA over both narrow and
open searching, using all three search engines (Figure 3A–F). Specifically, the median ratio of the
number of peptides discovered by CONGA relative to either the narrow or open search is always
greater than 1. At 1% FDR, CONGA delivers a median increase over the narrow search of 9.23%
for Tide, 21.45% for Comet, 10.95% for MSFragger, and increases over the open search of 18.40%,
17.73%, and 20.37%, respectively. Even at the lower quartiles, CONGA maintains an increase of
at least 3% over TDC across all three search engines at both 1% and 5% FDR thresholds. The
exact ratios for each of the PRIDE-20 datasets is given in the Supplementary Table S1, and an
analogue plot of Figure 3 is given in the Supplement (see Figure S4), which shows the total number
of discoveries instead of the ratio of discoveries of CONGA to other methods.

Perhaps the key challenge associated with open searching is that the large number of candidate
peptides per spectrum leads to a loss of power relative to narrow searching. This occurs when a
correctly matched peptide in the narrow search gets out-competed by a candidate from the wide
window with a randomly high score. We therefore examined how many peptides discovered in the
narrow search are lost in the corresponding list of CONGA discoveries. Specifically, we calculated
the number of peptides discovered by Tide with a narrow search that were missing from those
reported by CONGA (Supplementary Figure S2(A)). At 1% FDR, the median and mean number
of discoveries lost were 85 and 112 peptides respectively. While not completely negligible, this loss
is clearly more than offset by CONGA’s gains from the open search. Indeed, the median and mean
number of discoveries at the 1% FDR made outside the narrow-window precursor tolerance was 519
and 772 peptides, respectively (Supplementary Figure S2(B)). Moreover, this loss is comparatively
far better than the loss when using open-TDC. We calculated the number of narrow-TDC discoveries
that are also discovered by CONGA minus the number of narrow-TDC discoveries that are also
discovered by open-TDC (Supplementary Figure S3(A)). The median and mean difference at the
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Figure 3: CONGA detects more peptides than narrow or open search. The quartiles and average, taken over the 20
PRIDE-20 datasets, of the mean ratio of CONGA-to-TDC discovered peptides. TDC was applied to (A) Tide search results
in narrow mode, (B) Tide search results in open mode, (C) Comet search results in narrow mode, (D) Comet search results in
open mode, (E) MSFragger search results in narrow mode and (F) MSFragger search results in open mode. Panels (G) and (H)
are similar, but compare CONGA with Percolator applied to the Tide narrow and open search results, respectively. For results
that used Tide the mean ratio is taken with respect to each dataset’s 20 decoys, while Comet’s and MSFragger’s searches used
a single reversed set of decoys.
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1% FDR were 331 and 556 peptides, respectively. CONGA is thus able to retain a large number
of peptide discoveries found using a narrow-search.

We then compared CONGA’s ability to detect modified peptides with open-TDC. In particular,
we considered the difference in the number of discoveries outside the narrow window precursor toler-
ance made by CONGA and open-TDC (Supplementary Figure S3(B)). CONGA retains a majority
of these discoveries at the 1% FDR level, with a median loss of 12 peptides overall and a mean
gain of 69 peptides. Similarly, we looked at the difference in the number of discoveries with delta-
masses that coincide with oxidation (Supplementary Figure S3(C)). At 1% FDR, CONGA only has
a median loss of 1 peptide discovery and a mean gain of 18 peptide discoveries. The large discrep-
ancies between the median and mean is driven by a handful of datasets (PXD019186, PXD026895,
PXD016724, PXD030118) that appear to have an enriched number of modified peptides.

A key remaining question is how CONGA compares to a post-processor such as Percolator.
Carrying out this comparison is challenging because, as pointed out in Freestone et al. 3, Percolator’s
FDR control seems to be liberally biased. Thus, it is particularly interesting that, overall, our
experiments suggest that CONGA marginally edges out Percolator when both are applied to the
PRIDE-20 datasets (Figure 3G–H). Specifically, both post-processors use Tide open and narrow
searches, where Percolator can only use one type of search at a time but is able to use significantly
more features than CONGA can. For both open and narrow search, the median ratio of CONGA-
to-Percolator discoveries is consistently greater than 1 across FDR thresholds from 1% to 5%. Note
that to ensure a fair comparison Percolator’s FDR analysis was also conducted with dynamic-level
competition (see Percolator settings section).

Lastly, we compared the number of discoveries in the 24 peptide fractions from the HEK293
dataset reported by CONGA with those reported by TDC and Percolator (Supplementary Fig-
ure S5). We observe similar results to that of the PRIDE-20 results. Notably, using the median
at the 1% FDR level, CONGA discovers 20.87% more discoveries than Percolator using a narrow-
search mode and 2.79% more discoveries than Percolator using an open-search mode.

CONGA accurately detects chimeric spectra

A chimeric spectrum is generated when the isolation following the MS1 scan fails to separate co-
eluting but distinct peptides. During the subsequent fragmentation step, ions are generated from
multiple parent peptides, and these ions are simultaneously recorded in the following MS2 scan.
Those chimeric spectra often pose a challenge for traditional “one-spectrum-one-peptide” tools that
do not account for them19.

CONGA’s design allows it to inherently process chimeras, identifying their multiple generating
peptides, while still rigorously controlling the FDR in the overall reported list of detected peptides.
To understand how this works, recall that CONGA considers multiple matches for each spectrum:
one from the narrow search and up to nt = 5 from the open search. The subsequent filtering process
(see Section 2) guarantees that all remaining PSMs are made of peptides that essentially account
for different peaks of the experimental spectrum. This requirement allows CONGA to distinguish
between a truly co-generating peptide and a neighbor or “hitchhiking” peptide, where the latter
offers a good match simply because its theoretical spectrum happens to share many peaks with the
generating peptide.

The multiple PSMs are then assigned to different groups, and CONGA’s group-wise FDR
control ensures that the overall FDR level is below the selected threshold. In particular, for non-
chimeric spectra the secondary matches that get through the filtering will typically be low-scoring
and therefore below the specific group threshold, whereas for some of the chimeric spectra mul-
tiple peptides can score high enough to be above the group threshold. We refer to peptides that

16



4

5

6

7

0.01 0.02 0.03 0.04 0.05
FDR threshold

Pe
rc

en
ta

ge
 o

f p
ep

tid
es

 d
is

co
ve

re
d 

by
 c

hi
m

er
a 

sp
ec

tra Quantile
0.25

0.5

mean

0.75

Figure 4: The percentage of peptides CONGA discovers through chimeric spectra. The quartiles and mean of the
percentage of peptides detected by CONGA for which the top-scoring PSM is from a presumed chimeric spectra, plotted as a
function of the FDR level. The quartiles and mean are taken over the 24 HEK293 spectrum files, and the percentages are taken
with respect to the number of peptides discovered at the same FDR level by CONGA.

CONGA identifies using a single spectrum as “co-peptides.” During group construction CONGA
only considers the narrow and the top 2 open PSMs (this is a user-defined parameter for which we
used the default of Ri = 2 throughout our analyses); thus, in principle, a chimeric spectrum that
is detected by CONGA can contribute to the identification of up to three peptides in three (more
generally Ri + 1) distinct groups, although in practice, using a 1% FDR threshold this seems to
be an extremely rare event. Note that a PSM that comes up in the open search can still have an
essentially 0 mass-modification, so CONGA can detect chimeric spectra regardless of whether each
of the generating co-peptides includes a PTM.

To better understand CONGA’s ability to detect chimeric spectra, we set out to quantify the
proportion of accepted peptides that are discovered via chimeric spectra. For this analysis, we
consider the 24 spectrum files of the HEK293 dataset1, and we focus on the MSFragger search
results. We observe that at a 1% FDR threshold a median of 4.96% of the total peptides discovered
by CONGA were identified thanks to chimeric spectra, and at 5% the median increases to 6.18%
(Figure 4).

Although CONGA provides theoretical guarantees related to FDR control, we wanted to further
validate the co-peptides in comparison to peptides detected using standard TDC applied to a
narrow window search. To this end, we used two types of predictions from the machine learning
tool Prosit21: predicted peak intensities and predicted retention times. We hypothesized that
the co-peptides should be indistinguishable from the peptides detected via TDC in terms of the
accuracy of the predicted retention time and relative peak intensities. We tested this hypothesis
on the representative HEK293 spectrum file (Section 3; HEK293 searches), collecting all of the
co-peptides from CONGA and the peptides from MSFragger at a 1% FDR threshold, and using
Prosit to predict peak intensities and retention times for both sets of peptides. Because Prosit
generally does not allow for peptides with mass modifications as inputs, we only considered co-
peptides where both have a mass that is no more than 1 Da away from that of the corresponding
spectrum’s precursor.

We find that the accuracies of the Prosit predictions, for both peak intensities and retention
times, are highly similar between the CONGA co-peptides and the MSFragger peptides (Figure 5).
For the peak intensity prediction, visually there is very little that distinguishes between the two
sets of discovered peptides (Figure 5A–B), and moreover, the overall correlation between the ex-
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Figure 5: Comparisons of Prosit-predicted and observed peak intensities and retention times. (A) Scatter plot
of experimental (x-axis) versus Prosit-predicted (y-axis) peak intensities from co-peptides discovered by CONGA at 1% FDR.
(B) Similar scatter plot as panel A, but for peptides discovered by MSFragger in a narrow-window search at 1% FDR. For
visualization, we only plot a randomly selected subset of the peak pairs, but the fitted line and correlation are computed over the
entire set of peaks. (C) Scatter plot of observed versus Prosit-predicted retention times for co-peptides discovered by CONGA
at 1% FDR. Note that technically we used Prosit’s normalized retention time indices (which can be negative), but for simplicity
we refer to them as predicted retention times20. (D) Similar plot as panel C, but for peptides discovered by MSFragger in a
narrow-window search at 1% FDR. Again, panel D only includes a randomly selected subset of points, but the LOESS-fitted
curve and the Spearman correlation are computed over the entire set of peptides in both C and D.
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perimental and theoretical spectra in the two groups is essentially the same. For the retention time
prediction, it is evident from Figure 5C–D that the relationship between the Prosit-predicted and
experimental retention time is non-linear. Accordingly, we fitted a LOESS model, and we also used
the Spearman correlation rather than the usual Pearson correlation. Again, we find the fit between
the predicted and actual retention times seems to be invariant to whether the peptide was one
identified by a presumed chimeric spectrum. The two corresponding Spearman correlation coeffi-
cients are also very close: 0.978 for the co-peptides and 0.972 for the TDC-discovered peptides. We
note that the experimental retention time typically does not coincide with the apex retention time
during peptide elution. Consequently, the Prosit predicted retention time may not agree exactly
with the experimental one. Regardless, our aim is to only compare the fits of the co-peptides from
CONGA and the narrow peptides from MSFragger.

Finally, in Supplementary Figures S6 and S7 we used PDV22 to manually annotate some of
those presumed chimeric spectra identified by CONGA.

CONGA uses pyAscore to help localize the mass modification

To illustrate CONGA’s use of pyAscore in localizing the modification we considered a representative
HEK293 dataset that we randomly selected from the 24 HEK293 spectrum files (Section 3; HEK293
searches), and randomly further chose three PSMs in CONGA’s augmented list that scored above
their group-threshold that coincide with acetylation, oxidation and phosphorylation (up to 0.05
Da). We then used PDV22 to visually compare the pyAscore localizations reported in CONGA’s
augmented list with the unmodified peptide from CONGA’s 1% FDR-controlled list (Supplementary
Figure S1).

5 Discussion

Open search is an increasingly popular approach to detect peptides that harbor unexpected post-
translational modifications. However, applying both open and narrow search to the same data,
followed by TDC, often yields fewer discovered peptides for the open search than the narrow
one. Only when applying a post-processor such as Percolator or PeptideProphet do we see a
fairly consistent improvement using an open search. On the other hand, we demonstrated recently
that both Percolator and PeptideProphet appear to underestimate the FDR in our entrapment
experiments3.

CONGA is designed as an alternative: it combines the results from the open and narrow searches
in an approach that is built on a recently developed extension of the canonical TDC. CONGA’s
control of the FDR draws on rigorous theoretical results; however, in practice, some of the neces-
sary theoretical assumptions are only approximately satisfied. For example, the target database
can often contain neighbors to some in-sample peptides, and such neighbors can compromise the as-
sumption that an incorrect peptide is equally likely to be a target or a decoy. With its PSM-filtering
as well as dynamic-level competition CONGA takes steps to mitigate the impact of neighbors.

Notably, in practice we see that CONGA apparently controls the FDR in the same entrapment
experiments in which Percolator and PeptideProphet seemed to have failed 3. Interestingly, in
spite of its tighter FDR control, CONGA’s power is comparable to, if not marginally better, than
Percolator (we did not compare CONGA’s power with PeptideProphet’s). This is particularly
surprising given that Percolator uses significantly more information than CONGA does, and at
the same time it suggests a promising avenue for future gains by incorporating into CONGA the
additional features that Percolator uses.
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When introducing Group-walk we showed that we can use the mass difference between the
precursor and the peptide to increase the power of the open search. However, the resulting open
analysis occasionally fell significantly behind the results of narrow-TDC (Supplementary Figure
S8). The current approach addressed that problem by co-opting the narrow search results into the
analysis, allowing for multiple PSMs per spectrum, and applying a significantly more sophisticated,
and automated, group construction procedure.

CONGA is a post-processor that provides rigorous FDR control by combining narrow and open
searches. On its own, it does not try to localize the difference between the theoretical and observed
mass of its reported discoveries. However, in principle, it can still be used to combine a narrow
search with a localization-aware open search. We tested this capability with the recently introduced
version of MSFragger, which matches the peaks of fragment ions containing up to one unknown
PTM in the experimental spectrum to fragment ions in the theoretical peptide 23. Notably, this
approach has the potential to significantly improve the open search analysis, and therefore it is fair
to ask whether it makes CONGA redundant. In Supplementary Figure S9 we demonstrate that
even this localization-aware open search procedure benefits from using CONGA’s post-processing
over TDC.

MetaMorpheus is another tool that attempts to localize modifications 24. Specifically, its en-
hanced G-PTM-D discovery component employs a two-search strategy, where the first utilizes a
“multi-notch” search that considers a list of pre-determined possible mass modifications (unlike
CONGA it cannot find unexpected mass modifications). It then uses a notch- or mass-specific
FDR control to determine which of the observed modifications to use to modify the database so
as to include all those possible modifications. Finally, it uses a second search, essentially an iso-
tope error-tolerant narrow search of the spectra against the modified database. CONGA is not
compatible with this two-stage procedure. Moreover, to the best of our understanding there is no
theoretical foundation that supports the FDR control of the overall procedure, and some inter-
mediate steps are particularly problematic. Specifically, we have previously showed that applying
FDR analysis on each group does not control the FDR when the groups are combined; indeed, that
was the motivation for our Group-walk procedure7. Similarly, relying on a reversed, or for that
matter any standardly generated decoy, cannot guarantee FDR control at the localization level.
This is because of the same neighbors problem that we discussed in Section 2 and is the reason
why CONGA employs dynamic-level competition.

CONGA requires as input a pairing between targets and decoys, which unfortunately is ill-
defined if the decoy peptides are generated by first reversing or shuffling the entire protein. For
this reason, CONGA only supports Tide, Comet and MSFragger, and the latter only if the target-
decoy database is prepared beforehand, as explained in the last paragraph of Section 3 (PRIDE-20
searches).

We finish with a couple of tangential comments. The first is regarding the threshold (τ := 0.05)
that we used for eliminating neighboring peptide matches in our initial filtering phase of CONGA.
This threshold is likely lower than necessary for removing neighboring peptide matches. This low
threshold incurs the cost of potentially throwing away some correctly matched co-peptides due to
chimeric spectra. In fact, similar peptide sequences are more likely to co-elute, and so any reasonable
amount of filtering will likely throw away such matches. However, setting it so low allows us to
throw away many incorrect PSMs, and we found that the low threshold overall delivered more
discoveries than the higher threshold of τ = 0.25 (data not shown). We note that detection of
highly similar co-peptides with proper FDR control is a challenging task for CONGA, as well as
for other post-processors, and is an interesting problem for future work.

As explained in Section 2, CONGA’s dynamic-level competition is motivated by theoretical
FDR-control considerations. CONGA’s analysis switches between peptide-level or the representative-
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level depending on whether variable modifications are considered. However, Supplementary Figure
S10A shows that in the 10 PRIDE-20 datasets whose analysis used variable modifications, there
was little difference between the representative-level and peptide-level analyses. Specifically, we
examined the power loss due to switching between the peptide and respresentative levels. Using
CONGA at the 1% FDR level, we see median losses of 0.134% (Tailor) and 0.208% (XCorr), while
at the 5% FDR the corresponding median percentage losses are 0.450% and 0.543%. Panel B of the
same figure shows that the effect is even milder when narrow TDC is used instead. This is reassuring
given that all results comparing CONGA to all other methods were done at the representative-level
when variable modifications were used.
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Algorithm S1a Algorithm for peptide-level competition when no variable
modifications are specified.

Algorithm S1b Algorithm for representative/stem-level competition when
variable modifications are specified.

Algorithm S2 Algorithm for filtering neighbor peptides.
Algorithm S3 Algorithm for group construction in CONGA.
Algorithm S4 Group-walk algorithm for FDR analysis.
Algorithm S5 Clustering algorithm used in reporting auxiliary list of PSMs

associated with discovered peptides.
Algorithm S6 Algorithm for reporting auxilary list of PSMs assocated with

discovered peptides.
Table S1 Ratio of discoveries between CONGA and other methods.
Figure S1 Annotation of pyAscore localizations.
Figure S2 Differences in the discoveries made by CONGA and narrow-

search TDC.
Figure S3 Differences in the discoveries made by CONGA and open-

search TDC.
Figure S4 A summary of the number of discoveries made by each post-

processor or search tool using the PRIDE-20 datasets.
Figure S5 A summary of the ratio of discoveries made by CONGA vs

other methods using the 24 HEK293 peptide fractions.
Figure S6 Peptide annotations for chimera spectra discovered via

CONGA using the representative HEK293 spectrum file.
Figure S7 Peptide annotations for chimera spectra discovered via

CONGA containing localized modifications using the rep-
resentative HEK293 spectrum file.

Figure S7 Peptide annotations for chimera spectra discovered via
CONGA containing localized modifications using the rep-
resentative HEK293 spectrum file.

Figure S8 Power loss associated to using the original groupwalk algo-
rithm.

Figure S9 CONGA vs TDC using MSFragger’s localization aware
scores.

Figure S10 Comparing CONGA and narrow-TDC discoveries using pep-
tide vs dynamic level analysis.

22



References

[1] J. M. Chick, D. Kolippakkam, D. P. Nusinow, B. Zhai, R. Rad, E. L. Huttlin, and S. P. Gygi.
A mass-tolerant database search identifies a large proportion of unassigned spectra in shotgun
proteomics as modified peptides. Nature Biotechnology, 33(7):743–749, 2015.

[2] A. T. Kong, F. V. Leprevost, D. M. Avtonomov, D. Mellacheruvu, and A. I. Nesvizhskii.
MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry-based
proteomics. Nature Methods, 14(5):513–520, 2017.

[3] J. Freestone, W. S. Noble, and U. Keich. Re-investigating the correctness of
decoy-based false discovery rate control in proteomics tandem mass spectrometry.
https://doi.org/10.1101/2023.06.21.546013, 2023.

[4] L. Käll, J. Canterbury, J. Weston, W. S. Noble, and M. J. MacCoss. A semi-supervised
machine learning technique for peptide identification from shotgun proteomics datasets. Nature
Methods, 4:923–25, 2007.

[5] A. Keller, A. I. Nesvizhskii, E. Kolker, and R. Aebersold. Empirical statistical model to esti-
mate the accuracy of peptide identification made by MS/MS and database search. Analytical
Chemistry, 74:5383–5392, 2002.

[6] A. Lin, T. Short, W. S. Noble, and U. Keich. Improving peptide-level mass spectrometry
analysis via double competition. Journal of Proteome Research, 21(10):2412–2420, 2022.

[7] J. Freestone, T. Short, W. S. Noble, and U. Keich. Group-walk: a rigorous approach to group-
wise false discovery rate analysis by target-decoy competition. Bioinformatics, 38(Supplement
2):ii82–ii88, 09 2022. ISSN 1367-4803. doi: 10.1093/bioinformatics/btac471. URL https:

//doi.org/10.1093/bioinformatics/btac471.

[8] S. A. Beausoleil, J. Villen, S. A. Gerber, J. Rush, and S. P. Gygi. A probability-based ap-
proach for high-throughput protein phosphorylation analysis and site localization. Nature
Biotechnology, 24(10):1285–1292, 2006.

[9] A. Lin, D. L. Plubell, U. Keich, and W. S. Noble. Accurately assigning peptides to spectra
when only a subset of peptides are relevant. Journal of Proteome Research, 20(8):4153–4164,
2021.

[10] J. K. Eng, T. A. Jahan, and M. R. Hoopmann. Comet: an open source tandem mass spec-
trometry sequence database search tool. Proteomics, 13(1):22–24, 2012.

[11] P. Sulimov and A. Kertész-Farkas. Tailor: A nonparametric and rapid score calibration method
for database search-based peptide identification in shotgun proteomics. Journal of Proteome
Research, 19(4):1481–1490, 2020.

[12] J. Klimek, J. S. Eddes, L. Hohmann, J. Jackson, A. Peterson, S. Letarte, P. R. Gafken, J. E.
Katz, P. Mallick, H. Lee, A. Schmidt, R. Ossola, J. K. Eng, R. Aebersold, and D. B. Martin.
The standard protein mix database: a diverse data set to assist in the production of improved
peptide and protein identification software tools. Journal of Proteome Research, 7(1):96–1003,
2008.

[13] D. H. May, K. Tamura, and W. S. Noble. Detecting modifications in proteomics experiments
with Param-Medic. Journal of Proteome Research, 18(4):1902–1906, 2019.

23



[14] L. Martens, H. Hermjakob, P. Jones, M. Adamsk, C. Taylor, D. States, K. Gevaert, J. Van-
dekerckhove, and R. Apweiler. PRIDE: The proteomics identifications database. Proteomics,
5(13):3537–3545, 2005.

[15] D. H. May, K. Tamura, and W. S. Noble. Param-Medic: A tool for improving MS/MS database
search yield by optimizing parameter settings. Journal of Proteome Research, 16(4):1817–1824,
2017.

[16] Y. Danilova, A. Voronkova, P. Sulimov, and A. Kertész-Farkas. Bias in false discovery rate
estimation in mass-spectrometry-based peptide identification. Journal of Proteome Research,
18(5):2354–2358, 2019.

[17] K. He, Y. Fu, W.-F. Zeng, L. Luo, H. Chi, C. Liu, L.-Y. Qing, R.-X. Sun, and S.-M. He. A
theoretical foundation of the target-decoy search strategy for false discovery rate control in
proteomics. arXiv, 2015. https://arxiv.org/abs/1501.00537.

[18] R. F. Barber and Emmanuel J. Candès. Controlling the false discovery rate via knockoffs. The
Annals of Statistics, 43(5):2055–2085, 2015.

[19] V. Dorfer, P. Pichler, T. Stranzl, J. Stadlmann, T. Taus, S. Winkler, and K. Mechtler.
MSAmanda, a universal identification algorithm optimized for high accuracy tandem mass
spectra. Journal of Proteome Research, 13(8):3679–3684, 2014.

[20] Claudia Escher, Lukas Reiter, Brendan MacLean, Reto Ossola, Franz Herzog, John Chilton,
Michael J MacCoss, and Oliver Rinner. Using iRT, a normalized retention time for more
targeted measurement of peptides. Proteomics, 12(8):1111–1121, 2012.

[21] S. Gessulat, T. Schmidt, D. P. Zolg, P. Samaras, K. Schnatbaum, J. Zerweck, T. Knaute,
J. Rechenberger, B. Delanghed, A. Huhmer, U. Reimer, H. Ehrlich, S. Aiche, B. Kuster,
and M. Wilhelm. Prosit: proteome-wide prediction of peptide tandem mass spectra by deep
learning. Nature Methods, 16(6):509, 2019.

[22] K. Li, M. Vaudel, B. Zhang, Y. Ren, and B. Wen. PDV: an integrative proteomics data viewer.
Bioinformatics, 35:1249–1251, April 2019.

[23] F. Yu, G. C. Teo, A. T. Kong, S. E. Haynes, D. M. Avtonomov, D. J. Geiszler, and A. I.
Nesvizhskii. Identification of modified peptides using localization-aware open search. Nature
Communications, 11(1):4065, August 2020. ISSN 2041-1723. doi: 10.1038/s41467-020-17921-y.

[24] S. K. Solntsev, M. R. Shortreed, B. L. Frey, and L. M. Smith. Enhanced global post-
translational modification discovery with metamorpheus. Journal of Proteome Research, 17
(5):1844–1851, 2018.

24



σ search-type

open

open

narrow

open

open

open

DTDILAAFR

DTDILQAFR

DSELF[15.99]LQR

SLVHAIPSR

SLPHAIPSR

LDFEAVNIEK

target PSMs

decoy PSMs

{

{

DTDILAAFRσ
101 

2.04

1.33
DT[15.99]DILAAFRσ

26

DAIATFDLR

DAIAT[15.99]FDLR

σ
259

1.44

1.42

1.05

σ
83

σ
12

rank 1 

rank 1 peptides
in first bin

narrow
group

rank 1
left-over peptides

and
rank 1 peptides

in first bin 

p ≤ 0.01
p > 0.01

left-over peptides

rank 1 
left-over peptides

rank 1 peptides
in first bin low scores high scores

Group 1

Group 2

Group 3

Group 4

targetdecoy

For TOC Only

25


