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Entanglement is a property associated with quantum correlations and represents a key resource in several 
applications of quantum technology. Therefore, the ability to characterize entanglement is important at both 
foundational and practical levels. This work demonstrates how the Pearson correlation coefficient can be used 
to establish an entanglement criterion for quantum systems of two qubits. This criterion is then used to prove 
that a proposed conjecture is correct for the case of two qubits, which allows to efficiently identify entanglement 
without the need of complete prior knowledge of the quantum state. For higher dimensional quantum states 
the conjecture is demonstrated to be false through counter-examples, therefore a modified version of it is 
proposed. Finally, two new strengthened Bell inequalities are derived, which are also efficient in entanglement 
identification.

1. Introduction

Entanglement [1,2] is a type of correlation found in composite quan-
tum systems [3,4]. This correlation is connected with phenomena such 
as the violation of Bell inequalities [5,6], which is a characteristic ex-
ample of how the predictions of quantum mechanics fundamentally 
deviate from what it would be classically expected. Entanglement plays 
a key role in quantum information applications such as quantum com-
puting [7], quantum communication [8], and quantum sensing [9].

The identification of entanglement is in general a nondeterminis-
tic polynomial-time (NP) hard problem [10,11], but for certain sys-
tems with low dimensions or a particular symmetry efficient criteria 
have been derived [12–14]. The first criterion that was formulated 
to identify entanglement is the violation of Bell inequalities [15,16]. 
Another important criterion, called the Peres-Horodecki criterion, is 
based on checking whether the application of the partial transpose 
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map on a quantum state is a completely positive operation [17–19]. 
Various criteria have been derived through Heisenberg-like uncertainty 
relations [20–27] and through entropic uncertainty relations [28–31]. 
Other criteria include the estimation of concurrence [32], the covari-
ance matrix of locally measurable observables [33,34], the cross-norm 
criterion along with its extensions [35–37], optimization methods on 
entanglement witnesses [38–40], and the sum of joint probabilities for 
complementary observables [41].

The above criteria are able to identify correlations in quantum sys-
tems, but differ significantly from the ones used in classical systems 
[42,43], where correlations are typically assessed through the Pearson 
correlation coefficient (PCC) [44] or the mutual information (MI) [45]. 
An entanglement criterion through the MI was already successfully 
established [46], but a criterion through the PCC remains an open prob-
lem.
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The main contribution of this work is the derivation of a PCC-
based entanglement criterion, which can be used to develop experi-
mentally efficient methods to identify entanglement. In particular, the 
PCC-based entanglement criterion is used to prove that the Maccone–
Bruß–Macchiavello (MBM) conjecture [46] is correct for the case of 
qubits. For higher dimensional states, counterexamples of this conjec-
ture are constructed which lead to the establishment of a modified 
version of this conjecture. Another contribution of this work is the es-
tablishment of two strengthened Clauser–Horne–Shimony–Holt (CHSH) 
inequalities, one based on the covariance and another based on the PCC 
of the observables. Those expressions generalize the original strength-
ened CHSH inequality [47–49], which is an expectation value-based 
expression. The violation of any of the above inequalities is itself an 
entanglement criterion.

The paper is structured as in the following. In Section 2, preliminary 
definitions are provided on the PCC, bipartite entanglement, comple-
mentarity, orthogonality, and the Fano form of quantum states. The 
entanglement criterion for qubits through the PCC is presented in Sec-
tion 3. In Section 4, the MBM conjecture is proven for the case of qubits 
and counterexamples for higher-dimensional states are provided that 
lead to a new conjecture. The derivation of the covariance-based and 
the PCC-based strengthened CHSH inequalities is given in Section 5. 
Finally, our conclusion is given in Section 6.

2. Preliminary definitions

This section introduces the necessary definitions required for the rest 
of the paper.

2.1. Pearson correlation coefficient

2.1.1. PCC in classical systems
In classical probability theory [42,43], the linear correlation be-

tween two real random variables �헑 ∈ and �헒 ∈ is measured through 
the PCC [44]

ℂor
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= ℂov{�헑,�헒}√

�핍 {�헑}�핍 {�헒}
, (1)

where �피 
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2.1.2. PCC in quantum systems
In quantum systems [2] we are interested in assessing the correla-

tions within a bipartite quantum state, �푺AB ∈A
𝐶 𝐸B

𝐶 , where 𝐶 is the 
dimension of the Hilbert space for each party, 𝐶 . Given two arbitrary 
observables, i.e., Hermitian matrices, �푿 ∈A

𝐶 and �풀 ∈B
𝐶 , the PCC is 

defined as
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and �풀 , respectively. Similar to the classical case, the PCC is symmetric, 
i.e., ℂor}�푿, �풀

√
= ℂor

}
�풀 , �푿

√. In the Lemma below, it is shown that 
the absolute value of the PCC is invariant under affine transformations.

Lemma 1. Consider two observables, �푿 ∈A
𝐶 and �풀 ∈B

𝐶 . Under affine 
transformations
𝛿�푿 = ⊥𝑗�푿 + 𝑞𝑗 �푰 and 𝛿�풀 = ⊥ℏ �풀 + 𝑞ℏ �푰 , (3)
with ⊥𝑗, ⊥ℏ ∈ %

}
0
√, 𝑞𝑗, 𝑞ℏ ∈ , and �푰 ∈ 𝐶 denoting the identity 

matrix, the absolute value of the PCC is constant, i.e., |||ℂor
}
�푿, �풀

√||| =|||ℂor
} 𝛿�푿, 𝛿�풀

√|||.

Proof. See Appendix A. ⊠

2.2. Bipartite entanglement

A bipartite quantum state �푺AB ∈A
𝐶 𝐸B

𝐶 is called entangled when 
it cannot be written as a convex combination of product states [1,2],

�푺AB ≠∑
�푘
�푝�푘�푺A

�푘 𝐸�푺B
�푘 , (4)

where √�푘 �푝�푘 = 1 and �푺A ∈ A
𝐶 and �푺B ∈ B

𝐶 are marginal quantum 
states. A state that is not entangled is called separable.

2.3. Complementarity and orthogonality

Two finite-dimensional observables, �푿1 ∈ 𝐶 and �푿2 ∈ 𝐶 , are 
called complementary [2,50] if and only if the orthonormal bases 
{|,�푘⟩}𝐶−1�푘=0 and {|ℎ�푘⟩}𝐶−1�푘=0 of their corresponding spectral decomposi-
tions,

�푿1 =
𝐶−1∑
�푘=0

.1�푘 |,�푘⟩⟨,�푘| and �푿2 =
𝐶−1∑
�푘=0

.2�푘 |ℎ�푘⟩⟨ℎ�푘| , (5)

are mutually unbiased in 𝐶 , i.e.,
|||⟨,�푘|ℎ�퓁⟩

|||
2
= 1

𝐶
∀�푘,�퓁 ∈

}
0,1,⋯ ,𝐶 − 1

√
, (6)

and the eigenvalues .1�푘 , .2�푘 ∈  ∀�푘 ∈
}
0, 1, ⋯ , 𝐶 − 1

√ are non-
degenerate. The property of complementarity implies that when a 
measurement outcome of an observable �푿1 can be predicted with cer-
tainty, then the potential measurement outcomes of its complementary 
observable �푿2 are equally probable, i.e., the outcome is uncertain.

Remark 1. There exist at most 𝐶 + 1 mutually unbiased bases in a 
Hilbert space 𝐶 [51].

Lemma 2. When two complementary observables �푿1, �푿2 ∈ 2 have di-
chotomic outcomes ±1, then they are: (i) orthogonal to each other and (ii) 
unitary.

Proof. See Appendix B. ⊠

2.4. Fano representation

Consider a unitary operator basis }�푰 , �휦1, �휦2, �휦3
√, where �푰 ∈2 is 

the identity matrix and �휦�푘 ∈2 ∀�푘 ∈
}
1, 2, 3

√ are the Pauli matrices:

�휦1 ∶=
[
0 1
1 0

]
, �휦2 ∶=

[
0 −�횤
�횤 0

]
, and�휦3 ∶=

[
1 0
0 −1

]
, (7)

where �횤 ∶=
√
−1.

The state of a bipartite two-qubit quantum system, �푺AB ∈A
2 𝐸B

2 , can be written in the Fano representation [52,53] as follows
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�푺AB=1
4

(
�푰 𝐸 �푰+

3∑
�푘=1

�푛�푘�휦�푘 𝐸 �푰+
3∑

�퓁=1
�푠�퓁 �푰 𝐸�휦�퓁+

3∑
�푘,�퓁=1

�푡�푘�퓁 �휦�푘 𝐸�휦�퓁

)
, (8)

where �푛�푘 = �피 
}
�휦�푘 𝐸 �푰

√, �푠�퓁 = �피 
}
�푰 𝐸�휦�퓁

√ and �푡�푘�퓁 = �피 
}
�휦�푘 𝐸�휦�퓁

√ take 
real values. The marginal quantum states on A

2 and B
2 are given by

�푺A = 1
2

(
�푰 +

3∑
�푘=1

�푛�푘�휦�푘

)
and �푺B = 1

2

(
�푰 +

3∑
�퓁=1

�푠�퓁 �휦�퓁

)
. (9)

The marginal states are associated with the Bloch vectors |�푛⟩ =[
�푛1, �푛2, �푛3

]T and |�푠⟩ = [
�푠1, �푠2, �푠3

]T, satisfying ‖‖‖ |�푛⟩ 
‖‖‖2 ⩽ 1 and ‖‖‖ |�푠⟩ 

‖‖‖2 ⩽
1, where ‖‖‖ |�푣⟩ 

‖‖‖2 ∶=
√
⟨�푣|�푣⟩ denotes the Euclidean norm. �푪 is the cor-

relation matrix with elements [�푪]
�푘�퓁 = �푡�푘�퓁 − �푛�푘�푠�퓁 .

An arbitrary 2-dimensional observable �푿 ∈2 can be written as [2]

�푿 = 𝑗0 �푰 +
3∑

�푘=1
𝑗�푘�휦�푘 , (10)

where 𝑗0 = tr
}
�푿
√
%2 and 𝑗�푘 = tr

}
�푿�휦�푘

√
%2, for �푘 ∈

}
1, 2, 3

√, take real 
values.

In the following Lemma, we derive an expression of the PCC for 
2-dimensional observables.

Lemma 3. The PCC for two observables, �푿 = 𝑗0 �푰 + √3
�푘=1 𝑗�푘�휦�푘 ∈ A

2
and �풀 = ℏ0 �푰 +√3

�퓁=1 ℏ�퓁 �휦�퓁 ∈B
2 on �푺AB ∈A

2 𝐸B
2 , is given by

ℂor
}
�푿,�풀

√
= ⟨ 𝛿𝑗|�푪| 𝛿ℏ⟩

√
1− ⟨ 𝛿𝑗|�푛⟩2

√
1− ⟨ 𝛿ℏ|�푠⟩2

, (11)

where | 𝛿𝑗⟩ =
[
𝛿𝑗1, 𝛿𝑗2, 𝛿𝑗3

]T
and | 𝛿ℏ⟩ =

[
𝛿ℏ1, 𝛿ℏ2, 𝛿ℏ3

]T
, in which 𝛿𝑗�푘 = 𝑗�푘%√

𝑗21 + 𝑗22 + 𝑗23 and 𝛿ℏ�푘 = ℏ�푘%
√

ℏ21 + ℏ22 + ℏ23.

Proof. See Appendix C. ⊠

In the following Lemma, we derive a condition of complementarity 
for 2-dimensional observables.

Lemma 4. Two observables �푿1 = 𝑗10 �푰 + √3
�푘=1 𝑗1�푘 �휦�푘 ∈ 2 and �푿2 =

𝑗20 �푰 +√3
�푘=1 𝑗2�푘 �휦�푘 ∈2 are complementary if and only if

3∑
�푘=1

𝑗1�푘𝑗2�푘 = 0 . (12)

Proof. See Appendix D. ⊠

Remark 2. When two observables �푿1, �푿2 ∈2 are unitary and com-
plementary, then they anti-commute [50], i.e.,
[
�푿1,�푿2

]
+
∶=�푿1�푿2 +�푿2�푿1 = 0 . (13)

In the following Lemma, we derive a condition for orthogonality for 
2-dimensional observables.

Remark 3. Two observables �푿1 = 𝑗10 �푰 +√3
�푘=1 𝑗1�푘 �휦�푘 ∈2 and �푿2 =

𝑗20 �푰 +√3
�푘=1 𝑗2�푘 �휦�푘 ∈2 are orthogonal if and only if

3∑
�푘=0

𝑗1�푘𝑗2�푘 = 0 . (14)

Fig. 1. Schematic representation of the three complementary observables mea-
sured on each part of a bipartite quantum state �푺AB ∈A

2 𝐸B
2 .

3. Entanglement criterion

This section presents an entanglement criterion for quantum systems 
of two qubits based on the PCC between the measurement outcomes of 
complementary observables.

3.1. PCC-based entanglement criterion

Consider a bipartite quantum state �푺AB ∈ A
2 𝐸 B

2 . Having as a goal to identify entanglement, measurements are performed in a set 
of three complementary observables: �푨1, �푨2, �푨3 ∈A

2 for part A, and 
�푩1, �푩2, �푩3 ∈B

2 for part B. For a schematic representation see Fig. 1. 
The number of measurements corresponds to the maximum number of 
complementary observables existing in 2, which is equal to three ac-
cording to Remark 1.

Theorem 1 (PCC-based entanglement criterion). A bipartite quantum state 
�푺AB ∈A

2 𝐸B
2 is entangled if there exist pairwise complementary observ-

ables �푨1, �푨2, �푨3 ∈A
2 and �푩1, �푩2, �푩3 ∈B

2 , such that
3∑
𝛾=1

|||ℂor
}
�푨𝛾,�푩𝛾

√||| > 1 . (15)

Proof. Based on Lemma 3, we have
3∑
𝛾=1

|||ℂor
}
�푨𝛾,�푩𝛾

√||| =
3∑
𝛾=1

|||⟨ 𝛿�푎𝛾|�푪|𝛿�푏𝛾⟩|||
√
1− ⟨ 𝛿�푎𝛾|�푛⟩2

√
1− ⟨𝛿�푏𝛾|�푠⟩

2
(16a)

⩽
√3

𝛾=1
|||⟨ 𝛿�푎𝛾|�푪|𝛿�푏𝛾⟩|||√

1− ⟨�푛|�푛⟩
√
1− ⟨�푠|�푠⟩

, (16b)

where (16b) follows from the Cauchy-Schwarz inequality, i.e., ⟨ 𝛿�푎𝛾|�푛⟩2 ⩽
‖‖‖ | 𝛿�푎𝛾⟩ 

‖‖‖
2

2
‖‖‖ |�푛⟩ 

‖‖‖
2

2
= ‖‖‖ |�푛⟩ 

‖‖‖
2

2
= ⟨�푛|�푛⟩, and analogously ⟨𝛿�푏𝛾|�푠⟩

2 ⩽ ⟨�푠|�푠⟩ ∀𝛾 ∈}
1, 2, 3

√. Lemma 4 implies that }| 𝛿�푎1⟩, | 𝛿�푎2⟩, | 𝛿�푎3⟩
√ and 

}|𝛿�푏1⟩, |𝛿�푏2⟩, |𝛿�푏3⟩
√

are sets of orthonormal vectors. Thus, by introducing the 3 ×3 orthonor-
mal matrices:

�푶�퐴 =
⎡
⎢
⎢⎣

⟨ 𝛿�푎1|
⟨ 𝛿�푎2|
⟨ 𝛿�푎3|

⎤
⎥
⎥⎦

and �푶�퐵 =
[ |𝛿�푏1⟩ |𝛿�푏2⟩ |𝛿�푏3⟩

]
, (17)

the numerator of the right-hand side of (16b) can be written as
3∑
𝛾=1

|||⟨ 𝛿�푎𝛾|�푪|𝛿�푏𝛾⟩||| =
3∑
𝛾=1

|||
[
�푶�퐴�푪�푶�퐵

]
𝛾𝛾
||| (18a)

= tr
}
�푫�푶�퐴�푪 �푶�퐵

√ (18b)
= tr

}
�푼�푪

√ (18c)
⩽ ‖‖‖�푪

‖‖‖tr , (18d)
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where �푫 in (18b) is a diagonal matrix with elements [�푫]
𝛾𝛾 = 1 for [

�푶�퐴�푪�푶�퐵
]
𝛾𝛾 ⩾ 0 and 

[
�푫
]
𝛾𝛾 = −1 otherwise. �푼 = �푶�퐵�푫�푶�퐴 in (18c) is 

a unitary matrix since it is a product of unitary matrices. Inequal-
ity (18d) follows from the fact that for unitary operators �푼 we 
have ‖‖‖�푪

‖‖‖tr = max
�푼

}
tr
}
�푼�푪

√√ (see Corollary 7.4.1.3 in [54]), where 
‖‖‖�푿

‖‖‖tr ∶=
√
𝛾
�휎𝛾
}
�푿
√ denotes the trace norm of a matrix �푿, and �휎𝛾

}
�푿
√

are its singular values. Combining (18d) and (16b), we obtain
3∑
𝛾=1

|||ℂor
}
�푨𝛾,�푩𝛾

√||| ⩽
‖‖‖�푪

‖‖‖tr√
1− ⟨�푛|�푛⟩

√
1− ⟨�푠|�푠⟩

. (19)

In Theorem 1 of [37] and equivalently in Proposition IV.2 of [34] it 
was shown that for all separable states we have ‖‖‖�푪

‖‖‖tr ⩽
√
1− ⟨�푛|�푛⟩

√
1− ⟨�푠|�푠⟩. So, for every separable state the following inequality holds

3∑
𝛾=1

|||ℂor
}
�푨𝛾,�푩𝛾

√||| ⩽ 1 , (20)

which completes the proof. ⊠

Theorem 1 proves that if for a given quantum state there exist two 
sets of three pairwise complementary observables violating the inequal-
ity (20), then the state must be entangled. The above entanglement 
criterion is closely connected to the extended cross norm criterion [37]
and the covariance matrix criterion [33]. The critical aspect that differ-
entiates the PCC-based (and the MI-based [46]) entanglement criterion 
from other existing methods is that it provides a unified perspective of 
statistical correlations in both classical and quantum systems. This re-
sult reveals the key role that complementarity plays in quantum systems 
by allowing a type of correlations with no classical counterpart.

3.2. Application examples

The effectiveness of the PCC-based entanglement criterion in Theo-
rem 1 is illustrated below by considering some examples of separable 
and entangled (2 𝐸 2)-dimensional quantum states.

3.2.1. Product states
Product mixed states, defined as

�푺AB
prod ∶= �푺A 𝐸�푺B (21)

vanish PCC for any set of measured observables,

�푺AB = �푺AB
prod ⇒

3∑
𝛾=1

|||ℂor
}
�푨𝛾,�푩𝛾

√||| = 0 , (22)

since �피 
}
�푨𝛾 𝐸�푩𝛾

√
= �피 

}
�푨𝛾

√
�피 
}
�푩𝛾

√
∀𝛾 ∈

}
1, 2, 3

√.

3.2.2. Bell states
Bell states are defined as

�푺AB
Bell, k ∶= |�휙�푘⟩⟨�휙�푘| ∀�푘 ∈ {1,2,3,4} , (23)

with

|�휙1⟩ ∶=
|0⟩𝐸 |0⟩+ |1⟩𝐸 |1⟩√

2
, |�휙2⟩ ∶=

|0⟩𝐸 |0⟩− |1⟩𝐸 |1⟩√
2

,

|�휙3⟩ ∶=
|0⟩𝐸 |1⟩+ |1⟩𝐸 |0⟩√

2
, |�휙4⟩ ∶=

|0⟩𝐸 |1⟩− |1⟩𝐸 |0⟩√
2

.
(24)

For �푺AB = �푺AB
Bell, k the PCC is maximized when �푨𝛾 = �푩𝛾 = �휦𝛾 ∀𝛾 ∈}

1, 2, 3
√,

3∑
𝛾=1

|||ℂor
}
�푨𝛾,�푩𝛾

√||| = 3 (25)

for �푘 ∈ {1, 2, 3, 4}, since �피 
}
�푨𝛾 𝐸�푩𝛾

√
= 1, �피 

}
�푨𝛾

√
= �피 

}
�푩𝛾

√
= 0, and 

�핍
}
�푨𝛾

√
= �핍

}
�푩𝛾

√
= 1 ∀𝛾 ∈

}
1, 2, 3

√.

3.2.3. Bell states through single-qubit quantum channels
Three typical decohering single-qubit quantum channels, �퓁(�푺) for 

�퓁 ∈
}
1, 2, 3

√, are: (i) the bit flip channel 1; (ii) the bit-phase flip chan-
nel 2; (iii) and the phase flip channel 3, defined as follows:

�퓁(�푺) = (
1− �푝

)
�푺 + �푝�휦�퓁�푺�휦�퓁 ∀�퓁 ∈

}
1,2,3

√ (26)
where �푝 ∈ [

0, 1
] is the error probability. Another common quantum 

channel is the depolarizing channel dep, defined as

dep(�푺) =
(
1− �푝

)
�푺 + �푝

2 �푰 , (27)
where �푝 ∈ [0, 1] is the error probability.

Consider the case where one party of the Bell state �푺AB
Bell, k passes 

through the channels above. The output states are given by

�퓁(�푺AB
Bell, k

)
=
(
1− �푝

)
�푺AB

Bell, k + �푝
(
�휦�퓁 𝐸 �푰

)
�푺AB

Bell, k
(
�휦�퓁 𝐸 �푰

) (28)
and

dep
(
�푺AB

Bell, k
)
=
(
1− �푝

)
�푺AB

Bell, k +
�푝
2
(
�푺A

Bell, k 𝐸 �푰
)
, (29)

where �푺A
Bell, k = trB

}
�푺AB

Bell, k
√
= �푰%2 corresponds to the marginal Bell 

state that passes through the channel. The PCC for �푺AB = �퓁(�푺AB
Bell, k)

when �푨𝛾 =�푩𝛾 =�휦𝛾 ∀𝛾 ∈
}
1, 2, 3

√ is

3∑
𝛾=1

|||ℂor
}
�푨𝛾,�푩𝛾

√||| = 1 + 2|||1− 2�푝 ||| , (30)

and thus the output state in (28) is always entangled apart from the 
case when �푝 = 1%2. The PCC for �푺AB = dep(�푺AB

Bell, k) is

3∑
𝛾=1

|||ℂor
}
�푨𝛾,�푩𝛾

√||| = 3
(
1− �푝

)
. (31)

Note that the output state in (29) is known as the Werner state [1], 
which is separable for �푝 ⩾ 2%3 and entangled for �푝 < 2%3. Thus, if there 
is any entanglement left after a Bell state has passed through any of the 
above four channels, the PCC-based entanglement criterion is always 
able to identify it. However, it should be noted that not all entangled 
states can be identified through this method. A specific example is pre-
sented in Fig. 2, where we compare the above states with the case of a 
non-maximally entangled state that passes through the same quantum 
channels. It can be observed that for certain values of �푝 the entangle-
ment is not identified despite this state is known to be entangled.

3.2.4. Bell-diagonal states
Bell-diagonal states are defined as �푺AB

BDS ∶=
√4

�푘=1 �푝�푘�푺
AB
Bell, k where 

√4
�푘=1 �푝�푘 = 1, and their PCC for �푨𝛾 =�푩𝛾 =�휦𝛾 ∀𝛾 ∈ {1, 2, 3} is equal to

3∑
𝛾=1

|||ℂor
}
�푨𝛾,�푩𝛾

√||| =
4∑

�푘=2

|||1− 2(�푝1 + �푝�푘)
||| . (32)

Bell-diagonal states are separable when �푝�푘 ⩽ 1%2 ∀�푘 ∈
}
1, 2, 3, 4

√ [55]. 
Thus, it can be seen from the above expression that several Bell-
diagonal states can saturate the bound (20) in Theorem 1, e.g., 
�푺AB

BDS12 =
(
�푺AB

Bell1 + �푺AB
Bell2

)
%2. In [56], analogous expressions for the 

value √3
𝛾=1

|||ℂor
}
�푨𝛾, �푩𝛾

√||| were derived based on the Fano form of Bell-
diagonal states that pass through bit flip, phase flip, and bit-phase flip 
quantum channels.
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Fig. 2. The PCC is plotted for quantum states passing through a bit flip channel (red lines) in subfigure (a) and a depolarizing channel (blue lines) in subfigure 
(b). Solid lines correspond to a Bell input state |�휙1⟩⟨�휙1| and the dashed lines to the pure non-maximally entangled input state |�휓⟩⟨�휓|, where |�휓⟩ =√

�휇 |0⟩ 𝐸 |0⟩ +√
1− �휇 |1⟩ 𝐸 |1⟩ with �휇 = 0.06. When the input is the Bell state entanglement can always be identified on the output state, since both blue and red solid lines are 

above the unity threshold (horizontal black line) for: (a) �푝 ≠ 1%2 in the case of the bit flip channel; and (b) �푝 < 2%3 in the case of the depolarizing channel. On the 
other hand, when the input state is |�휓⟩⟨�휓| there is a range of the values of �푝, represented by the gray area in the subfigures, for which entanglement cannot be 
identified even though it is present.

4. On the MBM conjecture

The number of measurements needed in the PCC-based entangle-
ment criterion is equal to the one required for reconstructing the density 
matrix of a (2 𝐸2)-dimensional quantum state, a process called quantum 
tomography [57]. The number of measurements needed for quantum to-
mography grows exponentially with the number of quantum states [12], 
which makes it an experimentally very demanding task especially in ap-
plications that require to identify entanglement in large-scale quantum 
networks.

A more practical method to identify entanglement that does not 
presume knowledge of the density matrix �푺AB was proposed by Mac-
cone, Bruß, and Macchiavello in [46]. A bipartite entangled state �푺AB ∈A

𝐶 𝐸B
𝐶 is shared between two parts and measurements are performed 

selected between a pair of complementary observables: �푨1, �푨2 ∈ A
𝐶

for part A, and �푩1, �푩2 ∈B
𝐶 for part B. In [46] it was conjectured that 

when the inequality √2
𝛾=1

|||ℂor
}
�푨𝛾, �푩𝛾

√||| > 1 is satisfied the state �푺AB is 
entangled, that we refer below as the MBM conjecture. The MBM con-
jecture for systems of two qubits is explored in [46], showing that, if 
true, is able to identify entangled states missed by other entanglement 
criteria. This method to identify entanglement can be seen as a special 
case of the PCC-based entanglement criterion, where each party pos-
sesses three complementary observables. Recently, the MBM conjecture 
was proven to be true for pure states and particular (2 𝐸2)-dimensional 
mixed states [58]. The proof of the MBM conjecture for any (2 𝐸 2)-
dimensional quantum state is given as a corollary of Theorem 1.

Corollary 1. A bipartite quantum state �푺AB ∈ A
2 𝐸 B

2 is entangled if 
there exist complementary observables �푨1, �푨2 ∈ A

2 and �푩1, �푩2 ∈ B
2 , such that

2∑
𝛾=1

|||ℂor
}
�푨𝛾,�푩𝛾

√||| > 1 . (33)

Proof. Based on Theorem 1, for any separable state we have
2∑
𝛾=1

|||ℂor
}
�푨𝛾,�푩𝛾

√||| ⩽
3∑
𝛾=1

|||ℂor
}
�푨𝛾,�푩𝛾

√||| ⩽ 1 , (34)

which completes the proof. ⊠

The MBM conjecture has already been employed for entanglement 
identification in several works [56,58–63], so its validation, i.e., Corol-
lary 1, provides a solid basis on the results of those works.

In higher, but finite, dimensional states, we show that the MBM con-
jecture is violated, and thus propose an appropriate generalization. In 
particular, consider a (𝐶 𝐸 𝐶)-dimensional separable quantum state

<�푺AB
sep ∶=

∑
�푘=0,1

�휫,�푘 𝐸�휫,�푘 +�휫ℎ�푘 𝐸�휫ℎ�푘
4 , (35)

where �휫,�푘 = |,�푘⟩⟨,�푘| and �휫ℎ�푘 = |ℎ�푘⟩⟨ℎ�푘|. The mutually unbiased or-
thonormal bases }|,�푘⟩

√𝐶−1
�푘=0 and 

}|ℎ�푘⟩
√𝐶−1
�푘=0 are connected through the 

discrete Fourier transform, |ℎ�퓁⟩ = 1√
𝐶

√𝐶−1
�푘=0 �푤

�푘�퓁|,�푘⟩ with �푤 = ,2>�횤%𝐶 . 
Consider also the 𝐶-dimensional complementary observables, given by:

�푨1 =�푩1 =�휫,0 −�휫,1 + �휖
𝐶−1∑
�푘=2

�푘�휫,�푘 , (36a)

�푨2 =�푩2 =�휫ℎ0 −�휫ℎ1 + �휖
𝐶−1∑
�푘=2

�푘�휫ℎ�푘 , (36b)

with �휖 ∈ %{0}. Note that the expressions �휖
√𝐶−1

�푘=2 �푘 �휫,�푘 and
�휖
√𝐶−1

�푘=2 �푘 �휫ℎ�푘 are employed in order the eigenvalues of the observables 
to be non-degenerate. In the limit of �휖→ 0 we retrieve (see Appendix E): 
�피 
}
�푨𝛾

√
= �피 

}
�푩𝛾

√
= 0, �피 

}
�푨𝛾 𝐸�푩𝛾

√
= 1%2, and �피 

}
(�푨𝛾)2

√
= �피 

}
(�푩𝛾)2

√
=

1%2 + 1%𝐶 for 𝛾 ∈ {1, 2}. Using the results above it follows that

�푺AB = <�푺AB
sep ⇒

2∑
𝛾=1

|||ℂor
}
�푨𝛾,�푩𝛾

√||| = 2− 4
2 + 𝐶

, (37)

which violates the MBM Conjecture for 𝐶 ⩾ 3. Under thorough numer-
ical investigation we have not found separable states in A

𝐶 𝐸B
𝐶 for 

which |||ℂor
}
�푨1,�푩1

√|||+
|||ℂor

}
�푨2,�푩2

√||| surpasses the right-hand side of 
(37),5 therefore we introduce the following conjecture.

5 The random separable states were generated following the method de-
scribed in [64]. The random complementary observables were created by ran-
domly assigning eigenvalues to the spectral decompositions of two observables 
that have mutually unbiased orthonormal bases as in (5).
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Fig. 3. The conjectured entanglement identification method in (38) is presented 
for (𝐶 𝐸 𝐶)-dimensional states as a function of 𝐶. The dark blue line indicates 
the bound above which a quantum state is conjectured to be entangled. The 
light blue region, below the bound, corresponds to states where this criterion 
is inconclusive regarding their separability. It is apparent that the ability to 
identify entanglement through this method diminishes as the dimensions of the 
Hilbert space increase.

Conjecture. A bipartite quantum state �푺AB ∈ A
𝐶 𝐸 B

𝐶 is entangled if 
there exist complementary observables �푨1, �푨2 ∈ A

𝐶 and �푩1, �푩2 ∈ B
𝐶 , such that

2∑
𝛾=1

|||ℂor
}
�푨𝛾,�푩𝛾

√||| > 2− 4
2 + 𝐶

. (38)

Inequality (38) implies that the ability to identify entanglement 
through the PCC diminishes with the dimension of the underlying 
Hilbert space, as also shown in Fig. 3. It is worth mentioning that the de-
pendence on 𝐶 in (38) is not surprising since an analogous dependence 
is also present in the MI-based entanglement criterion [46], which is 
also based on correlations between the outcomes of complementary 
observables. Conditioned on the validity of the conjecture, identifying 
high-dimensional entanglement through (38) has the same merits as the 
method discussed in Corollary 1, as the density matrix of the quantum 
state is not required to be known.

For the sake of completeness, the case of infinite-dimensional quan-
tum states can be analyzed as well, even though it goes beyond the 
scope of the MBM conjecture. In Appendix F, a family of separable 
Gaussian states is considered for which it is shown that the expres-
sion |||ℂor

}
�푨1,�푩1

√||| +
|||ℂor

}
�푨2,�푩2

√||| becomes greater than one. This 
result implies that this type of entanglement identification method is 
not appropriate for infinite-dimensional quantum states.

5. Strengthened Bell inequalities

In this section generalized strengthened Bell inequalities are derived, 
based on the covariance and the PCC.

5.1. Bell inequalities

Consider a quantum state �푺AB ∈A
2 𝐸B

2 and two pairs of observ-
ables �푨1, �푨2 ∈A

2 and �푩1, �푩2 ∈B
2 with dichotomic outcomes ±1. The 

CHSH inequality [6]:

�피
}
�푨1 𝐸�푩1

√
+ �피

}
�푨1 𝐸�푩2

√
+ �피

}
�푨2 𝐸�푩1

√
− �피

}
�푨2 𝐸�푩2

√
⩽ 2 (39)

is satisfied for any so-called local-realistic theory. It has been shown 
that the violation of (39) is a sufficient (but not necessary) condition to 
identify entanglement in a quantum state [15,16]. Note that the CHSH 
inequality belongs to the family of Bell inequalities [5] (see [65–68] for 

an analysis of the assumptions and the implications of the Bell inequal-
ities).

Recently, a generalization of (39) was derived in [69] considering 
the covariance as

ℂov
}
�푨1,�푩1

√
+ℂov

}
�푨1,�푩2

√
+ℂov

}
�푨2,�푩1

√
−ℂov

}
�푨2,�푩2

√
⩽ 16

7 .

(40)
Considering the PCC, a generalization of (39) was derived in [70] as

ℂor
}
�푨1,�푩1

√
+ℂor

}
�푨1,�푩2

√
+ℂor

}
�푨2,�푩1

√
−ℂor

}
�푨2,�푩2

√
⩽ 5

2 . (41)
As it was shown in [69], (40) serves as a device-independent witness 
for the shared randomness in a Bell experiment. Contrary to (39), (40)
and (41) are nonlinear, a property that can offer efficiency in the iden-
tification of quantum correlations in quantum networks, as discussed 
in [71–73].

5.2. Strengthened Bell inequalities

A tighter version of (39), known as the strengthened CHSH inequal-
ity, asserts that for all separable (2 𝐸 2)-dimensional quantum states 
and complementary observables �푨1, �푨2 ∈ A

2 and �푩1, �푩2 ∈ B
2 , with 

dichotomic outcomes ±1, the following inequality is satisfied [47–49]:

�피
}
�푨1 𝐸�푩1

√
+�피

}
�푨1 𝐸�푩2

√
+�피

}
�푨2 𝐸�푩1

√
−�피

}
�푨2 𝐸�푩2

√
⩽
√
2 . (42)

The violation of (42) constitutes a sufficient condition for entanglement. 
Thus, on the one hand (42) is more restrictive than (39) for the con-
sidered observables, but on the other hand it has a smaller violation 
threshold.

Below, we derive a strengthened CHSH inequality based on the co-
variance of the observables.

Theorem 2. For all bipartite separable quantum states �푺AB
sep ∈ A

2 𝐸B
2

measured by complementary observables �푨1, �푨2 ∈A
2 and �푩1, �푩2 ∈B

2 , with dichotomic outcomes ±1, the following inequality is satisfied

ℂov
}
�푨1,�푩1

√
+ℂov

}
�푨1,�푩2

√
+ℂov

}
�푨2,�푩1

√
−ℂov

}
�푨2,�푩2

√
⩽
√
2 .

(43)

Proof. Based on Lemma 2 the observables �푨1, �푨2, �푩1 and �푩2 are uni-
tary and pairwisely orthogonal. Due to Lemma 4 and Remark 3, we 
know that for the observables �푩1 = �푏10 �푰 + √3

�푘=1 �푏1�푘 �휦�푘 and �푩2 =
�푏20�푰 +√3

�푘=1 �푏2�푘 �휦�푘, we have �푏10 = �푏20 = 0, and thus �푩2
𝛾 =

√3
�푘=1 �푏

2
𝛾�푘
�푰 +

2�푏𝛾0
√3

�푘=1 �푏𝛾�푘 �휦�푘 with √3
�푘=1 �푏

2
𝛾�푘
= 1 ∀𝛾 ∈

}
1, 2

√. Let us define the orthog-
onal observables �푩+ ∶= �푩1 + �푩2 and �푩− ∶= �푩1 − �푩2, which, based 
on Lemma 4, are complementary as √3

�푘=1
(
�푏1�푘 + �푏2�푘

)(
�푏1�푘 − �푏2�푘

)
=

√3
�푘=1

(
�푏21�푘 − �푏22�푘

)
= 0. Then, using Corollary 1, we obtain

1 ⩾ |||ℂor
}
�푨1,�푩+

√|||+
|||ℂor

}
�푨2,�푩−

√||| (44a)

=
||||
�피
}
�푨1𝐸�푩1

√
− �피

}
�푨1

√
�피
}
�푩1

√
+ �피

}
�푨1𝐸�푩2

√
− �피

}
�푨1

√
�피
}
�푩2

√
√

�핍
}
�푨1

√
�핍
}
�푩+

√
||||

+
||||
�피
}
�푨2𝐸�푩1

√
− �피

}
�푨2

√
�피
}
�푩1

√
− �피

}
�푨2𝐸�푩2

√
+ �피

}
�푨2

√
�피
}
�푩2

√
√

�핍
}
�푨2

√
�핍
}
�푩−

√
|||| .

(44b)
Taking into account Remark 2, the observables �푩1 and �푩2 anti-
commute, i.e., [�푩1, �푩2

]
+ = 0, thus leading to �푩2

± =
(
�푩1 ±�푩2

)2 = �푩2
1 +

�푩2
2 ±

[
�푩1, �푩2

]
+ = 2�푰 . Then, by noting that �핍}�푨𝛾

√
= �피 

}
�푨2

𝛾
√
−�피 

}
�푨𝛾

√2 ⩽
1 ∀𝛾 ∈ {1, 2} and �핍

}
�푩±

√
= �피 

}
�푩2

±
√
− �피 

}
�푩±

√2 ⩽ 2, we obtain
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1 ⩾
||||
�피
}
�푨1𝐸�푩1

√
− �피

}
�푨1

√
�피
}
�푩1

√
+ �피

}
�푨1𝐸�푩2

√
− �피

}
�푨1

√
�피
}
�푩2

√
√
2

||||

+
||||
�피
}
�푨2𝐸�푩1

√
− �피

}
�푨2

√
�피
}
�푩1

√
− �피

}
�푨2𝐸�푩2

√
+ �피

}
�푨2

√
�피
}
�푩2

√
√
2

||||
(45a)

⩾ 1√
2

(
ℂov

}
�푨1,�푩1

√
+ℂov

}
�푨1,�푩2

√

+ℂov
}
�푨2,�푩1

√
−ℂov

}
�푨2,�푩2

√)
, (45b)

which completes the proof. ⊠

Below, we also derive a strengthened CHSH inequality based on the 
PCC of the observables.

Theorem 3. For all bipartite separable quantum states �푺AB
sep ∈ A

2 𝐸B
2

measured by complementary observables �푨1, �푨2 ∈A
2 and �푩1, �푩2 ∈B

2 , the following inequality is satisfied

ℂor
}
�푨1,�푩1

√
+ℂor

}
�푨1,�푩2

√
+ℂor

}
�푨2,�푩1

√
−ℂor

}
�푨2,�푩2

√
⩽
√
2 . (46)

Proof. Based on Lemma 3 the left-hand side of (46), denoted as �훾 , can 
be written as

�훾 =
2∑
𝛾=1

⟨ 𝛿�푎1|�푪|𝛿�푏𝛾⟩
√
1− ⟨ 𝛿�푎1|�푛⟩2

√
1− ⟨𝛿�푏𝛾|�푠⟩

2
+

2∑
𝛾=1

(−1)𝛾−1⟨ 𝛿�푎2|�푪|𝛿�푏𝛾⟩
√
1− ⟨ 𝛿�푎2|�푛⟩2

√
1− ⟨𝛿�푏𝛾|�푠⟩

2
,

(47)
where, according to Lemma 4, we have ⟨ 𝛿�푎𝛾| 𝛿�푎�푗⟩ = �훿𝛾�푗 and ⟨𝛿�푏𝛾|𝛿�푏�푗⟩ = �훿𝛾�푗
∀𝛾, �푗 ∈

}
1, 2

√. In order to simplify (47) we set ⟨�푎+| =⟨ 𝛿�푎1|%
√
1−⟨ 𝛿�푎1|�푛⟩2, 

⟨�푎−| = ⟨ 𝛿�푎2|%
√
1− ⟨ 𝛿�푎2|�푛⟩2, |�푏+⟩ =

√2
𝛾=1 |𝛿�푏𝛾⟩%

√
1− ⟨𝛿�푏𝛾|�푠⟩

2, and |�푏−⟩ =
√2

𝛾=1(−1)𝛾−1|𝛿�푏𝛾⟩%
√

1− ⟨𝛿�푏𝛾|�푠⟩
2, thus obtaining

�훾 = ⟨�푎+|�푪|�푏+⟩+ ⟨�푎−|�푪|�푏−⟩ . (48)
Let us define the 2 × 3 and 3 × 2 matrices:

�푮 =
[⟨�푎+|
⟨�푎−|

]
and �푱 =

[ |�푏+⟩ |�푏−⟩
]
, (49)

from which it follows that

�훾 = tr
}
�푮�푪�푱

√
= tr

}
�푪�푳

√
, (50)

where �푳 = �푱�푮 = |�푏+⟩⟨�푎+| + |�푏−⟩⟨�푎−| .
Using von Neumann’s trace theorem (see Theorem 8.7.6 in [54]), 

we obtain

�훾 = tr
}
�푪�푳

√
⩽

3∑
𝛾=1

�휎𝛾
}
�푪
√
�휎𝛾
}
�푳
√
⩽ �휎1

}
�푳
√‖‖‖�푪

‖‖‖tr , (51)

where �휎𝛾
}
⋅
√ denotes the 𝛾-th singular value arranged in a decreasing or-

der, i.e., �휎1
}
⋅
√
⩾ �휎2

}
⋅
√
⩾ �휎3

}
⋅
√. By definition �휎1

}
�푳
√
=
√

.1
}
�푳†�푳

√, 
where .1

}
�푳†�푳

√ denotes the largest eigenvalue of the positive semidef-
inite matrix �푳†�푳 . In the orthonormal basis }| 𝛿�푎1⟩, | 𝛿�푎2⟩, | 𝛿�푎3⟩

√ the matrix 
�푳†�푳 can be written as

�푳†�푳 =�푴�푲�푴 , (52)
with

�푴 =

⎡
⎢
⎢
⎢
⎢⎣

1√
1−⟨ 𝛿�푎1|�푛⟩2

0 0

0 1√
1−⟨ 𝛿�푎2|�푛⟩2

0

0 0 0

⎤
⎥
⎥
⎥
⎥⎦

(53)

and

�푲 =
⎡
⎢
⎢⎣

⟨�푏+|�푏+⟩ ⟨�푏+|�푏−⟩ 0
⟨�푏−|�푏+⟩ ⟨�푏−|�푏−⟩ 0

0 0 0

⎤
⎥
⎥⎦
. (54)

Based on Theorem 5.6.9 in [54], we have

.1
}
�푴�푲�푴

√
⩽ ‖‖‖�푴�푲�푴 ‖‖‖2 , (55)

where ‖‖‖�푿
‖‖‖2 ∶= max

‖ |�푣⟩ ‖2=1
‖‖‖�푿|�푣⟩ ‖‖‖2 = �휎1

}
�푿
√ is the spectral norm. Ma-

trix norms are submultiplicative, which implies that
‖‖‖�푴�푲�푴 ‖‖‖2 ⩽

‖‖‖�푴
‖‖‖2

‖‖‖�푲
‖‖‖2

‖‖‖�푴
‖‖‖2 . (56)

�푴 and �푲 are positive semidefinite matrices, therefore
‖‖‖�푴

‖‖‖2 = .1
}
�푴

√
, (57a)

‖‖‖�푲
‖‖‖2 = .1

}
�푲
√
. (57b)

By using ⟨ 𝛿�푎𝛾|�푛⟩2 ⩽ ⟨�푛|�푛⟩ and ⟨𝛿�푏𝛾|�푠⟩
2 ⩽ ⟨�푠|�푠⟩ for 𝛾 ∈ {1, 2}, we have

.1
}
�푴

√
=max

{ 1√
1− ⟨ 𝛿�푎1|�푛⟩2

, 1√
1− ⟨ 𝛿�푎2|�푛⟩2

}
⩽ 1√

1− ⟨�푛|�푛⟩
, (58a)

.1
}
�푲
√
=max

{ 2
1− ⟨𝛿�푏1|�푛⟩

2 ,
2

1− ⟨𝛿�푏2|�푛⟩
2

}
⩽ 2

1− ⟨�푠|�푠⟩ . (58b)

Combining (55) – (58), �휎1
}
�푳
√ is upper-bounded as follows:

�휎1
}
�푳
√
⩽

√
2√

1− ⟨�푛|�푛⟩
√
1− ⟨�푠|�푠⟩

, (59)

and thus

�훾 ⩽

√
2‖‖‖�푪

‖‖‖tr√
1− ⟨�푛|�푛⟩

√
1− ⟨�푠|�푠⟩

. (60)

Utilizing the fact that for all separable states the condition ‖‖‖�푪
‖‖‖tr ⩽√

1− ⟨�푛|�푛⟩
√
1− ⟨�푠|�푠⟩ is satisfied [34,37], we conclude that

ℂor
}
�푨1,�푩1

√
+ℂor

}
�푨1,�푩2

√
+ℂor

}
�푨2,�푩1

√
−ℂor

}
�푨2,�푩2

√
⩽
√
2 , (61)

which completes the proof. ⊠

Inequality (46) is a more general formulation of (43) since it only 
requires the observables to be complementary. All three strengthened 
CHSH inequalities can identify entanglement through their violation.

In Fig. 4 we consider 106 randomly created entangled quantum 
states (see footnote 5 regarding the generation of those random states) 
and a fixed set of observables: �푨1 = �푩1 =�휦1 and �푨2 = �푩2 =�휦2. Using 
Venn diagrams we compare the effectiveness of the four entanglement 
criteria discussed in this paper, i.e., the criterion in (33) and the vio-
lation of the three strengthened CHSH inequalities in (42), (43), and 
(46). With that specific set of observables 0.79% of the entangled states 
were able to be identified from at least one of the four methods.6 Con-
sidering the set of all identified states, in Fig. 4 (a) we represent in 
yellow the percentage of states that were identified using (33) and with 
gray the ones that were identified by the violation of at least one of 
the three strengthened CHSH inequalities. In Fig. 4 (b) we provide a 
more detailed representation of the gray-colored set of states. It can be 
seen that the states identified by the violation of (43), represented in 
green, is a subset of the states identified by the violation of (46), rep-
resented in blue. With red are represented the states that are identified 

6 The percentage of identified entangled states can be significantly increased 
if we perform an optimization over the set of observables, as shown in [46].
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Fig. 4. Comparison among the four entanglement identification methods discussed in this paper is presented through Venn diagrams, i.e., the criterion in (33) and 
the violation of the three strengthened CHSH inequalities in (42), (43), and (46). We consider 106 randomly created entangled quantum states and a fixed set of 
observables: �푨1 =�푩1 =�휦1 and �푨2 =�푩2 =�휦2. For this particular set of observables 0.79% of the entangled states are identified by at least one of the four methods. 
From the total number of entangled states that are identified by any method we represent in subfigure (a) with yellow the ones that (33) is identifying and with gray 
the ones that are identified by the violation of at least one of the strengthened CHSH inequalities. In subfigure (b) we break down the gray-colored set of subfigure 
(a) into the contribution of each strengthened CHSH inequality. In particular, with red we represent the states that are identified due to the violation of (42), with 
green the corresponding states due to the violation of (43), and with blue the corresponding states due to the violation of (46).

from the violation of (42), which is a set that partially overlaps with 
both of the previous sets. The fact that (42) is a linear CHSH inequality 
while (43) and (46) are nonlinear, explains the partial overlap of their 
corresponding sets. On the other hand, it is numerically evident that the 
violation of (46) implies the violation of (43). This is not surprising as 
the left-hand side of both inequalities, has to exceed the same thresh-
old to identify entanglement. Taking into account that the PCC of two 
observables for a given state is by definition the normalized covariance 
of the same system [see (2)], one can consider the special case where 
the variances of all four observables are equal in value. For that case, 
the value of the variance, which is always in the range [0, 1], is multi-
plied with 

√
2, and thus decreasing the threshold. So, inequality (46) is 

easier to be violated than (43).

6. Conclusion

In this paper we showed how the classical method of assessing corre-
lations through the PCC can be extended to quantum systems, providing 
a new perspective on the characterization of non-classical correlations. 
Specifically, we focused on how the property of entanglement can be 
identified.

We derived an entanglement criterion that is able to identify en-
tanglement through the PCC of the measurement outcomes of comple-
mentary observables for quantum systems of two qubits. This criterion 
was then used to assess a previously proposed conjecture [46], which 
was indeed found to be true for the case of qubits, but violated for 
higher-dimensional quantum states (for which an appropriate modifica-
tion is proposed). We also derived new strengthened CHSH inequalities, 
in terms of the covariance and the PCC of the corresponding observ-
ables, which can also be used as entanglement criteria.

The results of this work make evident that the critical aspect that 
differentiates quantum correlations from classical ones is ascribed to 
the complementarity of the properties measured by each party.
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Appendix A. Proof of Lemma 1

Given a quantum state �푺AB ∈ A
𝐶 𝐸 B

𝐶 , we obtain: �피 
} 𝛿�푿

√
=

⊥𝑗 �피 
}
�푿
√
+ 𝑞𝑗, �피 

} 𝛿�풀
√
= ⊥ℏ �피 

}
�풀
√
+ 𝑞ℏ, �피 

} 𝛿�푿 𝐸 𝛿�풀
√
= ⊥𝑗⊥ℏ �피 

}
�푿 𝐸

�풀
√
+ ⊥𝑗𝑞ℏ �피 

}
�푿
√
+ ⊥ℏ𝑞𝑗�피 

}
�풀
√
+ 𝑞𝑗𝑞ℏ, �핍

} 𝛿�푿
√
= ⊥2𝑗�핍

}
�푿
√, and �핍

} 𝛿�풀
√
=

⊥2ℏ�핍
}
�풀
√. So, the PCC is ℂor} 𝛿�푿, 𝛿�풀

√
= ⊥𝑗⊥ℏ

|⊥𝑗||⊥ℏ|
ℂor

}
�푿, �풀

√, which implies 
that |||ℂor

}
�푿,�풀

√||| =
|||ℂor

} 𝛿�푿, 𝛿�풀
√|||, and completes the proof.

Appendix B. Proof of Lemma 2

Two complementary observables �푿1, �푿2 ∈2 with dichotomic out-
comes ±1 have the following spectral decompositions

�푿1 = |,0⟩⟨,0|− |,1⟩⟨,1| , (B.1a)
�푿2 = |ℎ0⟩⟨ℎ0|− |ℎ1⟩⟨ℎ1| , (B.1b)
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where the orthonormal bases }|,0⟩, |,1⟩
√ and 

}|ℎ0⟩, |ℎ1⟩
√ are mutually 

unbiased, i.e., |||⟨,�푘|ℎ�퓁⟩
|||
2
= 1%2 ∀�푘, �퓁 ∈

}
0, 1

√. Then, it is easy to see 
that tr}�푿†

1�푿2
√
= 0, which implies orthogonality, i.e., �푿1⊥�푿2. Simple 

calculations also reveal that �푿1�푿
†
1 =�푿†

1�푿1 = �푰 and �푿2�푿
†
2 =�푿†

2�푿2 =
�푰 , i.e., �푿1 and �푿2 are unitary, which completes the proof.

Appendix C. Proof of Lemma 3

Based on Lemma 1, the PCC ℂor
}
�푿, �풀

√ for any two 2-dimensional 
observables �푿 = 𝑗0 �푰 +√3

�푘=1 𝑗�푘�휦�푘 and �풀 = ℏ0 �푰 +√3
�푘=1 ℏ�푘�휦�푘 is equal 

to ℂor} 𝛿�푿, 𝛿�풀
√ where 𝛿�푿 =√3

�푘=1 𝛿𝑗�푘�휦�푘 and 𝛿�풀 =√3
�푘=1 𝛿ℏ�푘�휦�푘, with 𝛿𝑗�푘 =

𝑗�푘%
√

𝑗21 + 𝑗22 + 𝑗23 and 𝛿ℏ�푘 = ℏ�푘%
√

ℏ21 + ℏ22 + ℏ23, i.e.,

ℂor
}
�푿,�풀

√
= ℂor

} 𝛿�푿, 𝛿�풀
√
. (C.1)

For the observable 𝛿�푿 and the marginal state �푺A given in (9), we 
obtain �피 

} 𝛿�푿
√
= √3

�푘=1 �푛�푘 𝛿𝑗�푘 = ⟨ 𝛿𝑗|�푛⟩ and �핍
} 𝛿�푿

√
= √3

�푘=1 𝛿𝑗2�푘 − ⟨ 𝛿𝑗|�푛⟩2 =
1 − ⟨ 𝛿𝑗|�푛⟩2. Analogously, for the observable 𝛿�풀 and the marginal state �푺B

given in (9) we have �피 
} 𝛿�풀

√
= ⟨�푠| 𝛿ℏ⟩ and �핍

} 𝛿�풀
√
= 1 − ⟨�푠| 𝛿ℏ⟩2. For the ten-

sor product 𝛿�푿 𝐸 𝛿�풀 and the global state �푺AB, we obtain �피 
} 𝛿�푿 𝐸 𝛿�풀

√
=√3

�푘,�퓁=1 �푡�푘�퓁 𝛿𝑗�푘 𝛿ℏ�퓁 = ⟨ 𝛿𝑗|�푻 | 𝛿ℏ⟩. Then, by setting �푪 = �푻 − |�푛⟩⟨�푠| with ele-
ments [�푪]

�푘�퓁 = �푡�푘�퓁 − �푛�푘�푠�퓁 it follows

ℂor
}
�푿,�풀

√
= ⟨ 𝛿𝑗|�푪| 𝛿ℏ⟩√

1− ⟨ 𝛿𝑗|�푛⟩2
√
1− ⟨ 𝛿ℏ|�푠⟩2

, (C.2)

which completes the proof.

Appendix D. Proof of Lemma 4

Consider two complementary 2-dimensional observables with spec-
tral decomposition �푿1 = .10 |,0⟩⟨,0| +.11 |,1⟩⟨,1| and �푿2 = .20 |ℎ0⟩⟨ℎ0|
+.21 |ℎ1⟩⟨ℎ1|, where the orthonormal bases }|,0⟩, |,1⟩

√ and 
}|ℎ0⟩, |ℎ1⟩

√

are mutually unbiased, i.e., |||⟨,�푘|ℎ�퓁⟩
|||
2
= 1%2 and also .10 ≠ .11 and 

.20 ≠ .21 . The above observables can be equivalently written as �푿1 =
𝑗10 �푰 +√3

�푘=1 𝑗1�푘�휦�푘 and �푿2 = 𝑗20 �푰 +√3
�푘=1 𝑗2�푘�휦�푘. Taking into account 

the resolution identity, i.e., �푰 = |,0⟩⟨,0| + |,1⟩⟨,1| = |ℎ0⟩⟨ℎ0| + |ℎ1⟩⟨ℎ1|, 
we obtain another pair of complementary observables through the 
transformations �푿1 → 𝛿�푿1 = �푿1 − 𝑗10 �푰 and �푿2 → 𝛿�푿2 = �푿2 − 𝑗20 �푰 , which have the following spectral decomposition

𝛿�푿1 = 𝛿.10 |,0⟩⟨,0|+ 𝛿.11 |,1⟩⟨,1| , (D.1a)
𝛿�푿2 = 𝛿.20 |ℎ0⟩⟨ℎ0|+ 𝛿.21 |ℎ1⟩⟨ℎ1| , (D.1b)
with

𝛿.10 = − 𝛿.11 and 𝛿.20 = − 𝛿.21 , (D.2)
since the Pauli matrices �휦�푘 have eigenvalues ±1 and they are traceless. 
By noticing that tr} 𝛿�푿†

1
𝛿�푿2
√
= 2 √3

�푘=1 𝑗1�푘𝑗2�푘 and using (D.1) and (D.2)
it follows that tr} 𝛿�푿†

1
𝛿�푿2
√
= 0, implying that √3

�푘=1 𝑗1�푘𝑗2�푘 = 0.
To prove the opposite direction, consider the observables

𝛿�푿1 =
√3

�푘=1 𝑗1�푘 �휦�푘 = 𝛿.10 |,0⟩⟨,0| + 𝛿.11 |,1⟩⟨,1| and 𝛿�푿2 =
√3

�푘=1 𝑗2�푘 �휦�푘 =
𝛿.20 |ℎ0⟩⟨ℎ0| + 𝛿.21 |ℎ1⟩⟨ℎ1| with 𝛿.10 ≠ 𝛿.10 and 𝛿.20 ≠ 𝛿.20 . When the 
condition √3

�푘=1 𝑗1�푘𝑗2�푘 = 0 is satisfied, we have √3
�푘=1 𝑗1�푘𝑗2�푘 = 0 ⇔

tr
} 𝛿�푿†

1
𝛿�푿2
√
= 0, which implies

|||⟨ℎ0|,0⟩
|||
2
− |||⟨ℎ1|,0⟩

|||
2
− |||⟨ℎ0|,1⟩

|||
2
+ |||⟨ℎ1|,1⟩

|||
2
= 0 . (D.3)

For the orthonormal bases }|,0⟩, |,1⟩
√ and 

}|ℎ0⟩, |ℎ1⟩
√ the Euclidean 

norm ‖‖‖|,�퓁⟩
‖‖‖2 =

√√1
�푘=0 |⟨ℎ�푘|,�퓁⟩|2 = 1 ∀�퓁 ∈

}
0, 1

√ takes the form

|||⟨ℎ0|,0⟩
|||
2
+ |||⟨ℎ1|,0⟩

|||
2
= 1 , (D.4a)

|||⟨ℎ0|,1⟩
|||
2
+ |||⟨ℎ1|,1⟩

|||
2
= 1 , (D.4b)

and the norm ‖‖‖ |ℎ�퓁⟩ 
‖‖‖2 =

√√1
�푘=0 |⟨ℎ�퓁|,�푘⟩|2 = 1 ∀�퓁 ∈

}
0, 1

√ takes the 
form
|||⟨ℎ0|,0⟩

|||
2
+ |||⟨ℎ0|,1⟩

|||
2
= 1 , (D.5a)

|||⟨ℎ1|,0⟩
|||
2
+ |||⟨ℎ1|,1⟩

|||
2
= 1 . (D.5b)

From the above relations it follows

(D.4a)− (D.5b)⇒ |||⟨ℎ0|,0⟩
|||
2
− |||⟨ℎ1|,1⟩

|||
2
= 0 , (D.6a)

(D.4b)− (D.5b)⇒ |||⟨ℎ0|,1⟩
|||
2
− |||⟨ℎ1|,0⟩

|||
2
= 0 . (D.6b)

Applying the above six conditions, (D.4a) – (D.6b), onto (D.3) we end 
up with the following four conditions:
|||⟨ℎ0|,0⟩

|||
2
= 1%2 , (D.7a)

|||⟨ℎ1|,0⟩
|||
2
= 1%2 , (D.7b)

|||⟨ℎ0|,1⟩
|||
2
= 1%2 , (D.7c)

|||⟨ℎ1|,1⟩
|||
2
= 1%2 , (D.7d)

which imply that �푿1 and �푿2 are complementary, which completes the 
proof.

Appendix E. Counterexample for (�풅 ⊗�풅)-dimensional states

Considering the state in (35) and taking the limit �휖 → 0, the expec-
tation value of the observables �푨1 in (36a) is given by lim

�휖→0
�피 
}
�푨1

√
=

�피 
{
�휫,0

}
− �피 

{
�휫,1

}
= 0, since �피 

{
�휫,0

}
= �피 

{
�휫,1

}
= 𝐶+2

4𝐶 . Analo-
gously, we have lim

�휖→0
�피 
}
�푨2

√
= lim

�휖→0
�피 
}
�푩1

√
= lim

�휖→0
�피 
}
�푩2

√
= 0.

For lim
�휖→0

�피 
}
�푨1𝐸�푩1

√, we obtain lim
�휖→0

�피 
}
�푨1𝐸�푩1

√
=�피 

{
�휫,0𝐸�휫,0

}
−

�피 
{
�휫,0𝐸�휫,1

}
− �피 

{
�휫,1𝐸�휫,0

}
+ �피 

{
�휫,1𝐸�휫,1

}
= 1

2 , since
�피 
{
�휫,0 𝐸 �휫,0

}
= �피 

{
�휫,1 𝐸�휫,1

}
= 𝐶2+2

4𝐶2 and �피 
{
�휫,0 𝐸�휫,1

}
=

�피 
{
�휫,1 𝐸�휫,0

}
= 2

4𝐶2 . Analogously, we obtain lim
�휖→0

�피 
}
�푨2 𝐸�푩2

√
= 1

2 .
Finally, we have lim

�휖→0
�피 
}
�푨2

1
√
= �피 

{
�휫,0

}
+ �피 

{
�휫,1

}
= 1

2 + 1
𝐶 , and 

analogously lim
�휖→0

�피 
}
�푨2

2
√
= lim

�휖→0
�피 
}
�푩2

1
√
= lim

�휖→0
�피 
}
�푩2

2
√
= 1

2 + 1
𝐶 . So, the 

variances become equal to �핍}�푨1
√
= �피 

}
�푨2

1
√
− �피 

}
�푨1

√2 = �피 
}
�푨2

1
√ and 

similarly, �핍}�푨2
√
= �피 

}
�푨2

2
√, �핍}�푩1

√
= �피 

}
�푩2

1
√, and �핍

}
�푩2

√
= �피 

}
�푩2

2
√. 

Therefore, using these results, we have
|||ℂor

}
�푨1,�푩1

√|||+
|||ℂor

}
�푨2,�푩2

√||| = 2− 4
2 + 𝐶

. (E.1)

Appendix F. Infinite-dimensional quantum states

For infinite-dimensional quantum states �푺AB
( ∈A

( 𝐸B
(, the no-

tion of complementarity cannot be defined through (6), so a slightly 
different analysis is required. In infinite-dimensional Hilbert spaces two 
observables �푸 and �푷 with eigensets {|�푞⟩}�푞∈ and {|�푝⟩}�푝∈ are com-
plementary if they satisfy [74]
|||⟨�푞|�푝⟩

|||
2
= 1

2>ℏ , (F.1)
where ℏ denotes the reduced Planck constant. Typical complementary 
observables in those systems are the position, �푸, and momentum, �푷
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quadratures, where in what follows we set ℏ = 2, so the vacuum state 
has a quadrature variance equal to one.

Consider a bipartite (two-mode) Gaussian state �푺AB
G . Given a vec-

torial operator defined as �푹 ∶=
[
�푸1, �푷 1, �푸2, �푷 2

]T, Gaussian states 
are fully described by a covariance matrix �푽 with elements [�푽 ]

𝛾�푗 =

�피 
{[

)�푹𝛾,)�푹�푗
]
+

}
%2, where )�푿 ∶=�푿 −�피 

}
�푿
√ [75]. Under local oper-

ations and assuming vanishing first moments, the covariance matrix of 
a Gaussian state can be brought to its standard form [19,20]

�푽�푺AB
G

=

⎡
⎢
⎢
⎢
⎢⎣

�피
}
�푸2

1
√

0 �피
}
�푸1 𝐸�푸2

√
0

0 �피
}
�푷 2

1
√

0 �피
}
�푷 1 𝐸 �푷 2

√
�피
}
�푸1 𝐸�푸2

√
0 �피

}
�푸2

2
√

0
0 �피

}
�푷 1 𝐸 �푷 2

√
0 �피

}
�푷 2

2
√

⎤
⎥
⎥
⎥
⎥⎦

.

(F.2)
In the context of our analysis, let us set �푨1 =�푸1, �푨2 = �푷 1, �푩1 =�푸2, 

and �푩2 = �푷 2. Let us have a Gaussian state with the following covariance 
matrix

�푽�푺G,sep =
⎡
⎢
⎢
⎢⎣

�푣 0 �푣− 1 0
0 �푣 0 �푣− 1

�푣− 1 0 �푣 0
0 �푣− 1 0 �푣

⎤
⎥
⎥
⎥⎦
=
[
�푽�퐴 �푽�퐶
�푽 T
�퐶 �푽�퐵

]
, (F.3)

with �푣 ⩾ 1, where �푣 = �핍
}
�푨𝛾

√
= �핍

}
�푩𝛾

√ for 𝛾 ∈ {1, 2}. Based on the 
necessary and sufficient PPT separability criterion [19,20], a bipartite 
Gaussian state is separable when the lowest symplectic eigenvalue of 
the partially transposed covariance matrix, i.e., .−

}
�푽 Γ
�푺G,sep

√, is greater 
or equal to one. This eigenvalue is calculated through

.−
}
�푽 Γ
�푺G,sep

√
=

√√√√�푽�퐸 −
√

�푽 2
�퐸 − 4det

(
�푽�푺G,sep

)

2 , (F.4)

with �푣�퐸 = det
(
�푽�퐴

)
+ det

(
�푽�퐵

)
− 2 det

(
�푽�퐶

). So, we obtain

.−
}
�푽 Γ
�푺G,sep

√
=
√
2�푣− 1 , (F.5)

meaning that it is greater or equal to one for any �푣 ⩾ 1, and thus the 
state �푽�푺G,sep is separable. For those states, we obtain

�푺AB = �푺AB
G,sep ⇒

2∑
𝛾=1

|||ℂor
}
�푨𝛾,�푩𝛾

√||| = 2− 2
�푣
, (F.6)

since |||ℂor
}
�푨1,�푩1

√||| =
|||ℂor

}
�푨2,�푩2

√||| = (�푣 −1)%�푣. Thus, for �푣 > 2, even 
though the state �푺AB

G,sep is by construction separable, the expression 
|||ℂor

}
�푨1,�푩1

√||| +
|||ℂor

}
�푨2,�푩2

√||| becomes larger than one. The above 
counterexamples provide further support on the validity of the pro-
posed Conjecture in (38), since they are consistent with the trend that 
the larger the dimensions of the Hilbert space the harder it is to identify 
entanglement through this method (see Fig. 3).
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