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Entanglement is a property associated with quantum correlations and represents a key resource in several
applications of quantum technology. Therefore, the ability to characterize entanglement is important at both
foundational and practical levels. This work demonstrates how the Pearson correlation coefficient can be used
to establish an entanglement criterion for quantum systems of two qubits. This criterion is then used to prove
that a proposed conjecture is correct for the case of two qubits, which allows to efficiently identify entanglement

without the need of complete prior knowledge of the quantum state. For higher dimensional quantum states
the conjecture is demonstrated to be false through counter-examples, therefore a modified version of it is
proposed. Finally, two new strengthened Bell inequalities are derived, which are also efficient in entanglement

identification.

1. Introduction

Entanglement [1,2] is a type of correlation found in composite quan-
tum systems [3,4]. This correlation is connected with phenomena such
as the violation of Bell inequalities [5,6], which is a characteristic ex-
ample of how the predictions of quantum mechanics fundamentally
deviate from what it would be classically expected. Entanglement plays
a key role in quantum information applications such as quantum com-
puting [7], quantum communication [8], and quantum sensing [9].

The identification of entanglement is in general a nondeterminis-
tic polynomial-time (NP) hard problem [10,11], but for certain sys-
tems with low dimensions or a particular symmetry efficient criteria
have been derived [12-14]. The first criterion that was formulated
to identify entanglement is the violation of Bell inequalities [15,16].
Another important criterion, called the Peres-Horodecki criterion, is
based on checking whether the application of the partial transpose

* Corresponding author.

map on a quantum state is a completely positive operation [17-19].
Various criteria have been derived through Heisenberg-like uncertainty
relations [20-27] and through entropic uncertainty relations [28-31].
Other criteria include the estimation of concurrence [32], the covari-
ance matrix of locally measurable observables [33,34], the cross-norm
criterion along with its extensions [35-37], optimization methods on
entanglement witnesses [38-40], and the sum of joint probabilities for
complementary observables [41].

The above criteria are able to identify correlations in quantum sys-
tems, but differ significantly from the ones used in classical systems
[42,43], where correlations are typically assessed through the Pearson
correlation coefficient (PCC) [44] or the mutual information (MI) [45].
An entanglement criterion through the MI was already successfully
established [46], but a criterion through the PCC remains an open prob-
lem.
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The main contribution of this work is the derivation of a PCC-
based entanglement criterion, which can be used to develop experi-
mentally efficient methods to identify entanglement. In particular, the
PCC-based entanglement criterion is used to prove that the Maccone-
Brul3-Macchiavello (MBM) conjecture [46] is correct for the case of
qubits. For higher dimensional states, counterexamples of this conjec-
ture are constructed which lead to the establishment of a modified
version of this conjecture. Another contribution of this work is the es-
tablishment of two strengthened Clauser-Horne-Shimony-Holt (CHSH)
inequalities, one based on the covariance and another based on the PCC
of the observables. Those expressions generalize the original strength-
ened CHSH inequality [47-49], which is an expectation value-based
expression. The violation of any of the above inequalities is itself an
entanglement criterion.

The paper is structured as in the following. In Section 2, preliminary
definitions are provided on the PCC, bipartite entanglement, comple-
mentarity, orthogonality, and the Fano form of quantum states. The
entanglement criterion for qubits through the PCC is presented in Sec-
tion 3. In Section 4, the MBM conjecture is proven for the case of qubits
and counterexamples for higher-dimensional states are provided that
lead to a new conjecture. The derivation of the covariance-based and
the PCC-based strengthened CHSH inequalities is given in Section 5.
Finally, our conclusion is given in Section 6.

2. Preliminary definitions

This section introduces the necessary definitions required for the rest
of the paper.

2.1. Pearson correlation coefficient

2.1.1. PCC in classical systems

In classical probability theory [42,43], the linear correlation be-
tween two real random variables x € R and y € R is measured through
the PCC [44]

E(xy} — E(x) E(y} _
WIKIVIyE  WVIGVIy]
where [E{x} =Y x,[F"{xi} is the expectation value of a random vari-

able x, with x; being a possible outcome occurred with probability
[F“{xi}, Cov{x,y} 1= [E{xy} - [E{x}[E{y} the covariance between x and
y, and \/{x} 1= [E{xz} - [E{x}2 the variance of x. The PCC is symmet-
ric, i.e., Cor{x,y}: Cor{y,x}, and its range is [— 1, 1]. For vanishing
variances, Cor{x,y} is undefined. The random variables x and y are

Cov{x,y}

Cor{x,y} = (@D)

linearly dependent when Cor{x,y}: +1 (perfectly correlated for +1
and anti-correlated for -1). On the other hand, when x and y are not
correlated, then Cor{x,y}: 0, while the converse is not in general
true. Finally recall that under an affine transformation X = a,x + f,
and y = a,y + B, where a,,a, € R/{0}, .. By € R, the absolute value
of the PCC is constant, i.e., Cor{x,y}| = | Cor{x,y}

2.1.2. PCC in quantum systems

In quantum systems [2] we are interested in assessing the correla-
tions within a bipartite quantum state, S® € #» ® M, where d is the
dimension of the Hilbert space for each party, H,. Given two arbitrary
observables, i.e., Hermitian matrices, X € H? and Y € HS, the PCC is
defined as

Cor{X,¥}i= E(X®Y)-E(X)E(Y} _ Cov(X,Y) .

VIXTV(Y} WIXIVYY
where E{X} := tr{S**X ® D}, E{Y} := u{S**U ® Y)}, and
[E{X ® Y} 1= tr{SAB(X ® Y)} are the expectation values of X and
Y, COV{X,Y} = [E{X [52) Y} - [E{X}[E{Y} is the covariance between
X and Y, and V{X} := tr{S*B(X ® 1)*}—-tr{S*®(X ® D}’ and
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\/{Y} = tr{SAB(I ® Y)Z}—tr{SAB(I ® Y) }2 are the variances of X
and Y, respectively. Similar to the classical case, the PCC is symmetric,
ie., Cor{X,Y}: Cor{Y,X}. In the Lemma below, it is shown that
the absolute value of the PCC is invariant under affine transformations.

Lemma 1. Consider two observables, X € Hg and Y € Hg. Under affine
transformations

X=a,X+p4,I and Y=a,Y+p,1, (3)
with a,, a, € R/{0}, By.B, €ER, and I € H, denoting the identity
matrix, the absolute value of the PCC is constant, i.e., Cor{X ,Y}‘ =
| Cor{)? s Y} |

Proof. See Appendix A. X

2.2. Bipartite entanglement

A bipartite quantum state S*B € H? ® Hg is called entangled when
it cannot be written as a convex combination of product states [1,2],

S o SE®SE, @
k

where Y, p, =1 and S* € H: and S® € HS are marginal quantum
states. A state that is not entangled is called separable.

2.3. Complementarity and orthogonality

Two finite-dimensional observables, X, € H; and X, € H,, are
called complementary [2,50] if and only if the orthonormal bases
{|ek)}Z;(1) and {|hk)}z;(l) of their corresponding spectral decomposi-
tions,

d-1 d-1
X, = Ay leg)e] and Xp= Ay [h)(hyl. ®)
k=0 k=0

are mutually unbiased in H,, i.e.,
2
[¢exln)| =§ Vi, € {0,1,,d -1}, ®)

and the eigenvalues 4,4, € R Vk € {0,1,---,d — 1} are non-
degenerate. The property of complementarity implies that when a
measurement outcome of an observable X can be predicted with cer-
tainty, then the potential measurement outcomes of its complementary
observable X, are equally probable, i.e., the outcome is uncertain.

Remark 1. There exist at most d + 1 mutually unbiased bases in a
Hilbert space H, [51].

Lemma 2. When two complementary observables X |, X, € H, have di-
chotomic outcomes +1, then they are: (i) orthogonal to each other and (ii)
unitary.

Proof. See Appendix B. X

2.4. Fano representation

Consider a unitary operator basis {I VAL A, A3}, where I € H, is
the identity matrix and A, € H, Vk € {1,2, 3} are the Pauli matrices:

01 0 - 1 0
A11=[1 0],112::[[ Ol],andA3::[O _1], ()]

where 1 := \/—_1

The state of a bipartite two-qubit quantum system, S8 € HZA ®HE,
can be written in the Fano representation [52,53] as follows
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sl <I®I+anAk ®I+Z s I ® A+ Z tkak®A/> (8)
k=1

where n;, = [E{Ak ® I}, sp = [E{I ® Af} and t;, = [E{Ak ® Af} take

real values. The marginal quantum states on Hé\ and Hf are given by

3
1
SA=§<I+anAk> and S®=
k=1

2<1+Zszf) ©

The marginal states are associated with the Bloch vectors |n) =
T T .o

[nl,nz,n3] and |s) = [Sl,Sz,S3] , satisfying H |n) Hz <1 and ” |s) ”2 <

1, where ” |v) H2 = 4/(v|v) denotes the Euclidean norm. C is the cor-

relation matrix with elements [C] ke =Tkt = NiSe-

An arbitrary 2-dimensional observable X € H, can be written as [2]

3
X=x01+2xkAk, 10)
k=1

where x; = tr{X}/Z and x; = tr{XAk}/Z, for k € {1,2,3}, take real
values.

In the following Lemma, we derive an expression of the PCC for
2-dimensional observables.

Lemma 3. The PCC for two observables, X = xy I + Zi:l XAy € H?
andY:yOI+ZZ=1 ye A, €HE on S4B € HY @ HE, is given by

(XIC1y)

V1= (Xn)2V1 = (js)?
T T
where |¥) = [x]xzxg] and |3 = [yl,yz,y3] , in which %, = x,/

/2 442 442 S 2,242
X7+ x5+ x5 and Y =y /[ y; + ¥, + V5

Proof. See Appendix C. X

Cor{X,Y}z 11)

In the following Lemma, we derive a condition of complementarity
for 2-dimensional observables.

Lemma 4. Two observables X | = x; I + Zi:l xy, Ay EH, and X, =
xp0 I+ Zz=| x;, Ay € H, are complementary if and only if

Y xi,x,, =0. (12)
=1

Proof. See Appendix D. X

Remark 2. When two observables X |, X, € H, are unitary and com-
plementary, then they anti-commute [50], i.e.,

[XI,XZL (=X, X, + X, X, =0. 13)

In the following Lemma, we derive a condition for orthogonality for
2-dimensional observables.

Remark 3. Two observables X; =x; I+ > xy, Ay € H, and X, =
x5, 1 + E;;l X,, Ay € M, are orthogonal if and only if

Zx|szk=0- a4)
k=0
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Fig. 1. Schematic representation of the three complementary observables mea-
sured on each part of a bipartite quantum state S*® € H; ® H?.

3. Entanglement criterion

This section presents an entanglement criterion for quantum systems
of two qubits based on the PCC between the measurement outcomes of
complementary observables.

3.1. PCC-based entanglement criterion

Consider a bipartite quantum state S*B € H? ® H?. Having as a
goal to identify entanglement, measurements are performed in a set
of three complementary observables: A, A,, A; € H? for part A, and
B,,B,,B; € H? for part B. For a schematic representation see Fig. 1.
The number of measurements corresponds to the maximum number of
complementary observables existing in H,, which is equal to three ac-
cording to Remark 1.

Theorem 1 (PCC-based entanglement criterion). A bipartite quantum state
S48 H; ® Hg is entangled if there exist pairwise complementary observ-
ables Ay, A,, Ay € HY and By, B,, By € HE, such that

i | Cor{a,B;}|>1. as)
i=1

Proof. Based on Lemma 3, we have

5 eotan]- 3 — L2
o A, Big| = *
=1 =\ /T= (g |n)2m
> [aicib)|
(16b)

< )
V1= {(n|n)y/1—(s|s)

where (16b) follows from the Cauchy-Schwarz inequality, i.e., (&;]n)? <

2
[, Jim . = m]. = < (sl vi e
{1,2,3}. Lemma 4 implies that {|d,).,|d,),|d3)} and {|5,),1b,),1b3)}
are sets of orthonormal vectors. Thus, by introducing the 3 X3 orthonor-
mal matrices:

(n|n), and analogously (lv)~|s)2

(]
0, =|(d,|
(as]

the numerator of the right-hand side of (16b) can be written as

and Oy =[1b) 1b) 1b3)]. a7

3 3
2‘ i, Z| 0,C0y|, | (18a)
i=1 i=1
=tr{D0,CO0g} (18b)
=tr{UC} (18¢)
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where D in (18b) is a diagonal matrix with elements [D]I,i =1 for
[0,CO],, >0 and [D], = -1 otherwise. U = OpDO, in (18¢) is
a unitary matrix since it is a product of unitary matrices. Inequal-
ity (18d) follows from the fact that for unitary operators U we

have ”CHU = mlzlix{tr{UC}} (see Corollary 7.4.1.3 in [54]), where
H X “tr := X 0;{X} denotes the trace norm of a matrix X, and o;{ X }
are its singtlllar values. Combining (18d) and (16b), we obtain

3 “ C
Y | cor{,.B,}| < fr : 19)
i= V1= (nln)4/1—(s|s)
In Theorem 1 of [37] and equivalently in Proposition IV.2 of [34] it
V1 —{(n|n)

y/1—(sls). So, for every separable state the following inequality holds

was shown that for all separable states we have ” C “t <
T

i |Cor{a,.B;}|<1. (20)

i=1

which completes the proof. X

Theorem 1 proves that if for a given quantum state there exist two
sets of three pairwise complementary observables violating the inequal-
ity (20), then the state must be entangled. The above entanglement
criterion is closely connected to the extended cross norm criterion [37]
and the covariance matrix criterion [33]. The critical aspect that differ-
entiates the PCC-based (and the MI-based [46]) entanglement criterion
from other existing methods is that it provides a unified perspective of
statistical correlations in both classical and quantum systems. This re-
sult reveals the key role that complementarity plays in quantum systems
by allowing a type of correlations with no classical counterpart.

3.2. Application examples

The effectiveness of the PCC-based entanglement criterion in Theo-
rem 1 is illustrated below by considering some examples of separable
and entangled (2 ® 2)-dimensional quantum states.

3.2.1. Product states
Product mixed states, defined as
sfjfod =54® st (21)

vanish PCC for any set of measured observables,

3

S =508 = 3 | Cor{4,. B;}| =0, 22)
i=1

since E{A, ® B;} =E{A,} E{B,} Vie {1,2,3}.

3.2.2. Bell states
Bell states are defined as

Spen k= |9l VK € (1,2.3,4), 23)
with
py) = Q@IO+IDSID -y, _10@I0-1DSID)

v v2 24)
Iy = Q@I FIDSOI0) . 10@ID-11)®10)

V2 V2

For SAB = §AB the PCC is maximized when A, = B, = A, Vi €

Bell, k
{1,2,3},

i |Cor{a,.B;}|=3 (25)
i=1
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for k € {1,2,3,4}, since E{A;® B;} =1, E{A;} =E{B,;} =0, and
V{A,} =V{B;} =1Vie {1,2,3}.

3.2.3. Bell states through single-qubit quantum channels

Three typical decohering single-qubit quantum channels, C,(S) for
e {1, 2, 3}, are: (i) the bit flip channel C;; (ii) the bit-phase flip chan-
nel C,; (iii) and the phase flip channel C;, defined as follows:
C/(S)=(1-p)S+pA,SA, V¢ €{1,2,3} (26)

where p € [0, 1] is the error probability. Another common quantum
channel is the depolarizing channel Cy,,, defined as

Caep(S) = (1-p)s+’-2’1, 27

where p € [0, 1] is the error probability.

Consider the case where one party of the Bell state SBell « passes

through the channels above. The output states are given by
AB ) _
Co(Sgan i) = (1-p) Spay  +2 (A, ®T) ST, (A, ®T) (28)
and
AB 4

Caep(Spa 1) = (1-0) Spay i + 5 ( peit, k ® 1) (29)
where SB Lk = t1rB{SB = = I/2 corresponds to the marginal Bell

state that passes through the channel. The PCC for S/ = CK(S
when A; = B; = A; Vi€ {1,2,3} is

Bell, k)

i‘@or{Ai,Bi}‘=l+2|l—2p‘, (30)
i=1

and thus the output state in (28) is always entangled apart from the

case when p = 1/2. The PCC for SAB = CdeP(SBell W is

3
Y |cor{a, B} =3(1-p). (€30)
i=1

Note that the output state in (29) is known as the Werner state [1],
which is separable for p >2/3 and entangled for p < 2/3. Thus, if there
is any entanglement left after a Bell state has passed through any of the
above four channels, the PCC-based entanglement criterion is always
able to identify it. However, it should be noted that not all entangled
states can be identified through this method. A specific example is pre-
sented in Fig. 2, where we compare the above states with the case of a
non-maximally entangled state that passes through the same quantum
channels. It can be observed that for certain values of p the entangle-
ment is not identified despite this state is known to be entangled.

3.2.4. Bell-diagonal states
Bell-diagonal states are defined as SBDS 1= ZLI Dk S’gf‘u « Where

Ek=1 pi =1, and their PCC for A; = B; = A, Vi € {1,2,3} is equal to

‘Cor{Al,B Y= (1 = 2py + 1) (32)
= =2

i=
Bell-diagonal states are separable when p, < 1/2Vk € {1 2,3, 4} [55].
Thus, it can be seen from the above expression that several Bell-
diagonal states can saturate the bound (20) in Theorem 1, e.g.,

S‘ggslz (S‘gf“ + SBell )/2. In [56], analogous expressions for the

value 37 | Cor{A;, B, }| were derived based on the Fano form of Bell-
diagonal states that pass through bit flip, phase flip, and bit-phase flip
quantum channels.
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(a) Bit flip channel
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(b) Depolarizing channel

Fig. 2. The PCC is plotted for quantum states passing through a bit flip channel (red lines) in subfigure (a) and a depolarizing channel (blue lines) in subfigure
(b). Solid lines correspond to a Bell input state |¢, ){¢, | and the dashed lines to the pure non-maximally entangled input state |y){y |, where |y) = \/;7 10) ® |0) +

V1 —u|l)®|1) with u =0.06. When the input is the Bell state entanglement can always be identified on the output state, since both blue and red solid lines are
above the unity threshold (horizontal black line) for: (a) p # 1/2 in the case of the bit flip channel; and (b) p < 2/3 in the case of the depolarizing channel. On the
other hand, when the input state is |y){y/| there is a range of the values of p, represented by the gray area in the subfigures, for which entanglement cannot be

identified even though it is present.
4. On the MBM conjecture

The number of measurements needed in the PCC-based entangle-
ment criterion is equal to the one required for reconstructing the density
matrix of a (2®2)-dimensional quantum state, a process called quantum
tomography [57]. The number of measurements needed for quantum to-
mography grows exponentially with the number of quantum states [12],
which makes it an experimentally very demanding task especially in ap-
plications that require to identify entanglement in large-scale quantum
networks.

A more practical method to identify entanglement that does not
presume knowledge of the density matrix S*® was proposed by Mac-
cone, Bruf}, and Macchiavello in [46]. A bipartite entangled state $' AB
H;‘ ® Hg is shared between two parts and measurements are performed
selected between a pair of complementary observables: A, A, € H?
for part A, and B, B, € Hg’ for part B. In [46] it was conjectured that
when the inequality ¥, ’ Cor{A,, B,-}) > 1 is satisfied the state SAB is
entangled, that we refer below as the MBM conjecture. The MBM con-
jecture for systems of two qubits is explored in [46], showing that, if
true, is able to identify entangled states missed by other entanglement
criteria. This method to identify entanglement can be seen as a special
case of the PCC-based entanglement criterion, where each party pos-
sesses three complementary observables. Recently, the MBM conjecture
was proven to be true for pure states and particular (2 ® 2)-dimensional
mixed states [58]. The proof of the MBM conjecture for any (2 ® 2)-
dimensional quantum state is given as a corollary of Theorem 1.

Corollary 1. A bipartite quantum state S48 € H;‘ ® H’; is entangled if

there exist complementary observables A, A, € H? and B,,B, € Hf,
such that

(33)

2
Y |Cor{a, B;}|>1.
i=1
Proof. Based on Theorem 1, for any separable state we have
2 3
Z|Cor{A,.,B,.}(<Z|¢:or{A,.,B,.}|<1, (34)
i=1 i=1

which completes the proof. X

The MBM conjecture has already been employed for entanglement
identification in several works [56,58-63], so its validation, i.e., Corol-
lary 1, provides a solid basis on the results of those works.

In higher, but finite, dimensional states, we show that the MBM con-
jecture is violated, and thus propose an appropriate generalization. In
particular, consider a (d ® d)-dimensional separable quantum state

n, m, +1, I,
. k ek k k
sep'_kZO:l 4 ’ (35

where IT, =|e;){e| and IT, = |h;){h;|. The mutually unbiased or-
thonormal bases {lek)}z;(l) and {lhk)}z;(l) are connected through the
discrete Fourier transform, |h,) = ﬁ Zi;& Wk |e,) with w = e27/4,

Consider also the d-dimensional complementary observables, given by:

d-1

A =B =M, -, +c) kI, , (36a)
k=2
d-1

(36b)

Ay=By=1I, — Iy +c Y kI, ,
k=2

Note that the expressions EZZ;ZlkHek and

with ¢ € R/{0}.
ezz;; kII, are employed in order the eigenvalues of the observables
to be non-degenerate. In the limit of € — 0 we retrieve (see Appendix E):
E{A;} =E{B;} =0, E{A,® B;} = 1/2, and E{(A,*} = E{(B))?} =
1/2+1/d for i € {1,2}. Using the results above it follows that

4

-, 37
24+d @7

2
AB _ AB —
S =80 = Y |Cor{A,.B,}|=2

i=1
which violates the MBM Conjecture for d > 3. Under thorough numer-
ical investigation we have not found separable states in H? ® H[‘? for

which | Cor{Al, B, }’ + | Cor{Az, Bz}‘ surpasses the right-hand side of

(37),° therefore we introduce the following conjecture.

5 The random separable states were generated following the method de-
scribed in [64]. The random complementary observables were created by ran-
domly assigning eigenvalues to the spectral decompositions of two observables
that have mutually unbiased orthonormal bases as in (5).
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2

18k Entangled states

States that cannot be
conclusively categorized as
separable or entangled

Entanglement criterion bound 2 —4/(2 + d)

2 5 10 15 20

Dimensions d

Fig. 3. The conjectured entanglement identification method in (38) is presented
for (d ® d)-dimensional states as a function of d. The dark blue line indicates
the bound above which a quantum state is conjectured to be entangled. The
light blue region, below the bound, corresponds to states where this criterion
is inconclusive regarding their separability. It is apparent that the ability to
identify entanglement through this method diminishes as the dimensions of the
Hilbert space increase.

Conjecture. A bipartite quantum state S48 € HdA ® Hg is entangled if
there exist complementary observables A, A, € H? and B{,B, € Hg,
such that

2
Z | Cor{A,,B,}
i=1

4
>2——. 38
2+d (38)

Inequality (38) implies that the ability to identify entanglement
through the PCC diminishes with the dimension of the underlying
Hilbert space, as also shown in Fig. 3. It is worth mentioning that the de-
pendence on d in (38) is not surprising since an analogous dependence
is also present in the MI-based entanglement criterion [46], which is
also based on correlations between the outcomes of complementary
observables. Conditioned on the validity of the conjecture, identifying
high-dimensional entanglement through (38) has the same merits as the
method discussed in Corollary 1, as the density matrix of the quantum
state is not required to be known.

For the sake of completeness, the case of infinite-dimensional quan-
tum states can be analyzed as well, even though it goes beyond the
scope of the MBM conjecture. In Appendix F, a family of separable
Gaussian states is considered for which it is shown that the expres-
sion ‘ Cor{Al,Bl}‘ + | Cor{Az,Bz}) becomes greater than one. This
result implies that this type of entanglement identification method is
not appropriate for infinite-dimensional quantum states.

5. Strengthened Bell inequalities

In this section generalized strengthened Bell inequalities are derived,
based on the covariance and the PCC.

5.1. Bell inequalities

Consider a quantum state S*8 € H; ® H? and two pairs of observ-
ables A, A, € H? and B, B, € Hg with dichotomic outcomes +1. The
CHSH inequality [6]:

E{A,®B,}+E{A; ® B,} +E{A, ® B, } ~E{A, ® B,} <2 (39)

is satisfied for any so-called local-realistic theory. It has been shown
that the violation of (39) is a sufficient (but not necessary) condition to
identify entanglement in a quantum state [15,16]. Note that the CHSH
inequality belongs to the family of Bell inequalities [5] (see [65-68] for
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an analysis of the assumptions and the implications of the Bell inequal-
ities).

Recently, a generalization of (39) was derived in [69] considering
the covariance as

16
Cov{Al, Bl} + COV{AI, B2} +COV{A2, Bl} - Cov{Az, Bz} < =
(40)

Considering the PCC, a generalization of (39) was derived in [70] as
Cor{A;, B, }+Cor{A, B, }+Cor{Ay, B, }—Cor{A,, By} < % . 4D

As it was shown in [69], (40) serves as a device-independent witness
for the shared randomness in a Bell experiment. Contrary to (39), (40)
and (41) are nonlinear, a property that can offer efficiency in the iden-
tification of quantum correlations in quantum networks, as discussed
in [71-73].

5.2. Strengthened Bell inequalities

A tighter version of (39), known as the strengthened CHSH inequal-
ity, asserts that for all separable (2 ® 2)-dimensional quantum states
and complementary observables A, A, € H? and B}, B, € Hf, with
dichotomic outcomes +1, the following inequality is satisfied [47-49]:

E{A,® B|} +E{A, ® B,} +E{4, ® B, } ~E{4, ® B,} < V2. (42)

The violation of (42) constitutes a sufficient condition for entanglement.
Thus, on the one hand (42) is more restrictive than (39) for the con-
sidered observables, but on the other hand it has a smaller violation
threshold.

Below, we derive a strengthened CHSH inequality based on the co-
variance of the observables.

Theorem 2. For all bipartite separable quantum states S’:ei € H? ® Hf

measured by complementary observables A, A, € H‘z“ and B, B, € Hf,
with dichotomic outcomes +1, the following inequality is satisfied

COV{AI, Bl} + COV{AI, Bz} + COV{AQ, Bl} - Cov{Az, Bz} < \/5
(43)

Proof. Based on Lemma 2 the observables A;, A,, B; and B, are uni-
tary and pairwisely orthogonal. Due to Lemma 4 and Remark 3, we
know that for the observables B, = b; I + Zz=1b1k A, and B, =

by I+ Xj_, by, Ay, we have by = by =0, and thus B} = ¥, b I+
2b;, 22:1 b;, Ay with 22:1 bl?k =1Vi € {1,2}. Let us define the orthog-
onal observables B, := B + B, and B_ := B| — B,, which, based
on Lemma 4, are complementary as ZL] (blk + bzk)(blk - bZk) =
22=1 (b%k - b%k) =0. Then, using Corollary 1, we obtain

(44a)
='[E{A,®B,}—[E{Al}[E{B,}+[E{A1®Bz} —[E{AI}EE{BZ}‘

VV{4}V{B.}

E{A,®B,} —E{A,} E{B,} —-E{A,®B,} +E{A,} E{B,}
VV{4,}v{B_} i)
44

Taking into account Remark 2, the observables B; and B, anti-
commute, i.e., [Bl, B2]+ =0, thus leading to Bi = (B1 + B2)2 = B% +
B2+ [B,.B,|, =2I. Then, by noting that V{4, } =E{A?} ~E{4,}’ <
1Vie (1,2} and V{B, } =E{B2} —~E{B, }’ <2, we obtain

1> |Cor{A1,B+}‘ + ‘ Cor{Az,B_}|

"
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s |[E{A1®Bl} —E{A,}E{B,} +E{A,®B,} —E{A, }E{B,}
; V2
E{A,®B,} —~E{A,} E{B,} —~E{A,®B,} +E{A,} E{B,}
+| 3

(45a)
1
> % <COV{A1,B1 } +C0V{A1,B2}
+Cov{A,,B,} —Cov{A,,B,} ) , (45b)

which completes the proof. X

Below, we also derive a strengthened CHSH inequality based on the
PCC of the observables.

Theorem 3. For all bipartite separable quantum states S‘:é; € Hg ® Hf

measured by complementary observables A, A, € H? and B, B, € Hf,
the following inequality is satisfied
Cor{A,, B, }+Cor{A,, B, }+Cor{A,, B, }— Cor{ A;, B,}< V2. (46)

Proof. Based on Lemma 3 the left-hand side of (46), denoted as y, can
be written as

y=22‘, (@] C1b;) +i (=D~ (&) C1b)

SR Y R RV e A VAR

(47)

where, according to Lemma 4, we have (d;|d;) = 6;; and (lv),-llvyj) =4y

Vi, j e {1,2}. In order to simplify (47) we set {(a, |=(d,|/v/1—(d;|n)2,
. - ¥ v 2

(a_| =@l /VT=(@ln)2, |by) = X0 1B)/\/1=(Bls)", and [b_) =

2 (=1y1b)/\/1 = (Bils)’, thus obtaining

Y =(a,IClb,) +{a_|C|b_). (48)
Let us define the 2 X 3 and 3 X 2 matrices:
G= §Z+H and J=[lb,) [b.)]. (49)

from which it follows that

y=tr{GCJT}=tr{CL}, (50)

where L =JG = |b, ){a, |+ |b_)(a_|.
Using von Neumann’s trace theorem (see Theorem 8.7.6 in [54]),
we obtain

3

r=tr{CL< Y o {Clo{L} <o {L}C
i=1

where o; { . } denotes the i-th singular value arranged in a decreasing or-

der, i.e., 0, { . } > 0'2{ . } > 0'3{ . } By definition o, {L} =1/4 {LTL},

where 1, {LTL} denotes the largest eigenvalue of the positive semidef-

, (51)

tr

inite matrix LT L . In the orthonormal basis {l1d,),1d,),1d3)} the matrix
L' L can be written as

LTL=MKM, (52)
with

1 0 0
\/1=(aIm)?
\/ 1=(ds |n)?

0 0 0
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and
(bylby) (bylb_) O
K=|(b_|b,) (b_|b_) O]. (54)
0 0 0

Based on Theorem 5.6.9 in [54], we have

w{MKM}<|MKM|,. (55)
where H X “2 1= | Iglﬁx 1” X|v) “2 =0 {X} is the spectral norm. Ma-
N lly=

trix norms are submultiplicative, which implies that
[ ], <[], ], 2] 56)
M and K are positive semidefinite matrices, therefore
[ 2], =2 {m3}. (57a)
], =1x)

By using (d;|n)? < (n|n) and (Bi|s>2 < (s|s) for i € {1,2}, we have

(57b)

1 1 1
A {M } =max , < , (58a)
{x/1—<dl|n>2 \/1—<éz|n>2} V1~ (nln)
2 2 2
A {K} = max s < . (58b)
1 {1—<131|n>2 1—<132|n>2} 1= (sls)
Combining (55) - (58), o, {L} is upper-bounded as follows:
o {L} < V2 : (59)
V1 =(n|n)y/1—(s]s)
and thus
v2|e],
- (60)

Y < .
V1= (nln)y\/1—s|s)
Utilizing the fact that for all separable states the condition ” C

V1= <(n|n)y/1—(s|s) is satisfied [34,37], we conclude that

Cor{A,, B }+Cor{A,, B, }+Cor{A,, B, }— Cor{ A;, B,}< V2, (61)

<
tr

which completes the proof. X

Inequality (46) is a more general formulation of (43) since it only
requires the observables to be complementary. All three strengthened
CHSH inequalities can identify entanglement through their violation.

In Fig. 4 we consider 10° randomly created entangled quantum
states (see footnote 5 regarding the generation of those random states)
and a fixed set of observables: A; = By = A; and A, = B, = A,. Using
Venn diagrams we compare the effectiveness of the four entanglement
criteria discussed in this paper, i.e., the criterion in (33) and the vio-
lation of the three strengthened CHSH inequalities in (42), (43), and
(46). With that specific set of observables 0.79% of the entangled states
were able to be identified from at least one of the four methods.® Con-
sidering the set of all identified states, in Fig. 4 (a) we represent in
yellow the percentage of states that were identified using (33) and with
gray the ones that were identified by the violation of at least one of
the three strengthened CHSH inequalities. In Fig. 4 (b) we provide a
more detailed representation of the gray-colored set of states. It can be
seen that the states identified by the violation of (43), represented in
green, is a subset of the states identified by the violation of (46), rep-
resented in blue. With red are represented the states that are identified

¢ The percentage of identified entangled states can be significantly increased
if we perform an optimization over the set of observables, as shown in [46].



S. Tserkis, S.M. Assad, A. Conti, and M.Z. Win

80.04% Q’

3.46%

(a) Entangled states identified by any method
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3.91%

16.96%

(b) Entangled states identified by the violation of
at least one of the strengthened CHSH inequalities

Fig. 4. Comparison among the four entanglement identification methods discussed in this paper is presented through Venn diagrams, i.e., the criterion in (33) and
the violation of the three strengthened CHSH inequalities in (42), (43), and (46). We consider 100 randomly created entangled quantum states and a fixed set of
observables: A; = B, = A| and A, = B, = A,. For this particular set of observables 0.79% of the entangled states are identified by at least one of the four methods.
From the total number of entangled states that are identified by any method we represent in subfigure (a) with yellow the ones that (33) is identifying and with gray
the ones that are identified by the violation of at least one of the strengthened CHSH inequalities. In subfigure (b) we break down the gray-colored set of subfigure
(a) into the contribution of each strengthened CHSH inequality. In particular, with red we represent the states that are identified due to the violation of (42), with
green the corresponding states due to the violation of (43), and with blue the corresponding states due to the violation of (46).

from the violation of (42), which is a set that partially overlaps with
both of the previous sets. The fact that (42) is a linear CHSH inequality
while (43) and (46) are nonlinear, explains the partial overlap of their
corresponding sets. On the other hand, it is numerically evident that the
violation of (46) implies the violation of (43). This is not surprising as
the left-hand side of both inequalities, has to exceed the same thresh-
old to identify entanglement. Taking into account that the PCC of two
observables for a given state is by definition the normalized covariance
of the same system [see (2)], one can consider the special case where
the variances of all four observables are equal in value. For that case,
the value of the variance, which is always in the range [0, 1], is multi-
plied with \/5, and thus decreasing the threshold. So, inequality (46) is
easier to be violated than (43).

6. Conclusion

In this paper we showed how the classical method of assessing corre-
lations through the PCC can be extended to quantum systems, providing
a new perspective on the characterization of non-classical correlations.
Specifically, we focused on how the property of entanglement can be
identified.

We derived an entanglement criterion that is able to identify en-
tanglement through the PCC of the measurement outcomes of comple-
mentary observables for quantum systems of two qubits. This criterion
was then used to assess a previously proposed conjecture [46], which
was indeed found to be true for the case of qubits, but violated for
higher-dimensional quantum states (for which an appropriate modifica-
tion is proposed). We also derived new strengthened CHSH inequalities,
in terms of the covariance and the PCC of the corresponding observ-
ables, which can also be used as entanglement criteria.

The results of this work make evident that the critical aspect that
differentiates quantum correlations from classical ones is ascribed to
the complementarity of the properties measured by each party.
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Appendix A. Proof of Lemma 1

Given a quantum state S4B e H“; ® HB, we obtain: I]E{X } =
o E{X} +f Y} =oE{Y} +5, {X @Y} = a0, {X ®
Y} +a B, E{X}+a,pEY}+5p, VX}=a?V{X}, and V(Y } =
ai\/{Y}. So, the PCC is Cor{X,Y}: Iy Cor{X,Y}, which implies

lay[lay|

that | Cor{X,Y}| = | Cor{)?,lv(}|, and completes the proof.

Appendix B. Proof of Lemma 2

Two complementary observables X, X, € H, with dichotomic out-
comes +1 have the following spectral decompositions

X =leg)(egl —ley Xyl (B.1a)

Xy = |hg)Chol = 1h) (Al (B.1b)
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where the orthonormal bases {leo), leg )} and {lho), |h1)} are mutually
2

unbiased, i.e., )(ek|hf)‘ =1/2Vk,¢ € {0,1}. Then, it is easy to see

that tr{X TX 2}: 0, which implies orthogonality, i.e., X;LX,. Simple

calculations also reveal that XIXT = XTX] =1 and XZX; = X;Xz =
I,i.e, X, and X, are unitary, which completes the proof.

Appendix C. Proof of Lemma 3

Based on Lemma 1, the PCC Cor{X s Y} for any two 2-dimensional
observables X = x, I + Zi:l xp Ay and Y =y, I + Zi:l Vi Ay is equal
to Cor{)?,l?} where X = Zi:l %, A, and ¥ = 2}2:1 Vi Ay, with X, =

x;./ x%+x§+x§ and y, = y,./ yf+y§+y?, ie.,

Cor{X.Y }= Cor{X,Y}. (RN

For the observable X and the marginal state S* given in (9), we
: v 3 v . v 37 N

obtain E{X} = ¥;_, m%; = (XIn) and \/V{X} =D xi —(¥|n)? =
1 — (%|n)2. Analogously, for the observable ¥ and the marginal state S®
given in (9) we have I]E{lvf} = (s|y) and \/{Y} =1 —(s|y)2. For the ten-
sor product X ® Y and the global state SAB we obtain [E{X’ ® Y} =
St soi tkeXiFe = (X|T|). Then, by setting C =T — |n)(s| with ele-
ments [C|, , =1y, — nys, it follows

(X|C|y)
V1= (xn)2y/1=(5s)?

which completes the proof.

Cor{X,Y}= €2

Appendix D. Proof of Lemma 4

Consider two complementary 2-dimensional observables with spec-
tral decomposition X | = Ay leg){egl + 41, ley){e;| and X, = Ay [ho){ho|
+2y, |hy)(h|, where the orthonormal bases {|e,), le;) } and {|h), |h) }

2
are mutually unbiased, i.e., (eklhf)| =1/2 and also 4, # A, and
Ay, # 4y, - The above observables can be equivalently written as X | =

xy, I+ Zi:l xp, Ay and Xy =x; I+ 22:1 X3, Ay Taking into account
the resolution identity, i.e., I = |eg)(eg|+ e ){e;| = |hg){hol +|h|){h],
we obtain another pair of complementary observables through the
transformations X; — )V(l =X —x, I and X, — /\V’z =Xy —xy I,
which have the following spectral decomposition

X =4y leg)eol + Ay, ley) ey (D.1a)
Xy = Aoy 1ho)hol + A, 11y )Ry, (D.1b)
with

jlo = —111 and ’120 = —/121 s (D.2)

since the Pauli matrices A, have eigenvalues +1 and they are traceless.
By noticing that tr{)?i-)?z}: 2 ZLI x1, %, and using (D.1) and (D.2)
it follows that tr{X T)V( »}=0, implying that Zi:l X1, X, =0.

To prove the opposite direction, consider the observables
X, = ZL] Xy, Ay = ;110|e0)(e0| + 111 le;)(e;| and X, = ZL] X, Ay =
Ao lho)(hol + Ay, |hy)(hy| with A, # 4, and A # 1. When the
condition Zi=1 X1, X, =0 is satisfied, we have 2i=1 X1, %, =0 &

tr{)v(lr)v(z }: 0, which implies

[oleq)|” = [¢ilen)|” ~[¢olen| +|chrten)| =0.

For the orthonormal bases {|e0), |e1)} and {lho), |h1)} the Euclidean

norm Hlef)Hz =4/ 211:0 [(hyles)|2=1V2 €{0,1} takes the form

(D.3)
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2 2
|¢oleo)|” + [¢hrleo)| = 1. (D.42)

|<h0|e1>)2+ )<h1|91>‘2 =1,

and the norm ” |hy) ”2 = \/211(:0 [{hyle )2 =1V¢ € {0, 1} takes the

(D.4b)

form
2 2
|(holeq)|| + |(holen)| =1 (.52)
2 2
[hileg)| + [chrlen)| = 1. (D.5b)
From the above relations it follows
2 2
(D.4a)—(D.5b):>|(h0|eO)| —’(hlle,)‘ =0, (D.6a)
2 2
(D.4b)—(D.5b)=>|(h0|el)| —)(h1|e0)‘ =0. (D.6b)

Applying the above six conditions, (D.4a) — (D.6b), onto (D.3) we end
up with the following four conditions:

[holeg)| =172, (.72)
|nteg)| =172, (D.7b)
[olen)| =172, .79)
[(mten)| =172, .7d)

which imply that X, and X, are complementary, which completes the
proof.

Appendix E. Counterexample for (d ® d)-dimensional states

Considering the state in (35) and taking the limit ¢ — 0, the expec-
tation value of the observables A, in (36a) is given by lirr(m)[E{Al} =
€=

P _ _ d+2
[E{Heo} - E{Hel} =0, since [E{Heo} = [E{Hel} = 42 Analo-
ly, we have lim E{ A, } = limE{B,} = lim E{B, } = 0.
vy, v I 4} - iy 0, - 5

ForlLr%E{Al®Bl},we obtain ll_r)r{l)[E{A1®B1}=[E{Heo®HEO}—
1

[E{H%@Hel} - [E{IIL,1®H€0} + [E{H81®HEI} =4
[E{HEU ® HeO} = [E{Hel ®He]} = 22 and [E{Heo®ne]} =

since

4d?

2

B, e, } =2
i : 2\ _ _ 1.1

Finally, we have lLII(l)IE{Al} = [E{Heo} + [E{Hel } =5+ and

So, the

Analogously, we obtain lim [E{A2 ® B2} =1
=0 2

1
E.
variances become equal to V{A,} = [E{A?} - [E{A1}2 = [E{A%} and
similarly, V{A,} = E{A3}, V{B,} =E{B?}, and V{B,} = E{B}}.
Therefore, using these results, we have

analogously m%[E{Ag} = m%E{Bf} = 1irr(1)[E{B§} =3+
€= €= €=

| Cor{ Ay, B }| +| Cor{ 4y, B} | =2 50—

vd’ (E.1)

Appendix F. Infinite-dimensional quantum states

For infinite-dimensional quantum states S’;B € HA ® HE, the no-
tion of complementarity cannot be defined through (6), so a slightly
different analysis is required. In infinite-dimensional Hilbert spaces two
observables Q and P with eigensets {|q)},cx and {|p)},cr are com-
plementary if they satisfy [74]

2
|<q|p>( =owh (F.1)

where 7 denotes the reduced Planck constant. Typical complementary
observables in those systems are the position, Q, and momentum, P
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quadratures, where in what follows we set # = 2, so the vacuum state
has a quadrature variance equal to one.

Consider a bipartite (two-mode) Gaussian state S’éB. Given a vec-
torial operator defined as R := [Q,,P},0,, PZ]T, Gaussian states
are fully described by a covariance matrix V' with elements [V] Gy
[E{ [ARi,ARj]+ } /2, where AX := X — [E{X} [75]. Under local oper-
ations and assuming vanishing first moments, the covariance matrix of
a Gaussian state can be brought to its standard form [19,20]

E{Q]} 0 E{Q, ®0,} 0
Vorn 0 E{P}} 0 E{P, ®P,}
S |E{Q,®0,} 0 E{Q3} 0 '
0 E{P,®P,} 0 E{PZ}

(F.2)

In the context of our analysis, let us set A; = Q,, A, = P, B; =0,,
and B, = P,. Let us have a Gaussian state with the following covariance
matrix

v 0 wv-1 0
1 0 v 0 ov=-1(_|[V, V¢
Sesep " fo—1 0 v 0 _[Vg VB]’ 3

0 v—1 0 v

with v > 1, where v = \/{Ai} = \/{Bi} for i € {1,2}. Based on the
necessary and sufficient PPT separability criterion [19,20], a bipartite
Gaussian state is separable when the lowest symplectic eigenvalue of
the partially transposed covariance matrix, i.e., A_ {VgG - }, is greater

or equal to one. This eigenvalue is calculated through

Vi —/V2—4det (VSG’SEP)

A{Vse) = 5 , (F.4)
with vy =det (V) +det (V) — 2det (V). So, we obtain
A{ Vgc’sep} =Vaw-1, (F.5)

meaning that it is greater or equal to one for any v > 1, and thus the
state Vg, o is separable. For those states, we obtain

SAB — SAB

Gisep (F.6)

= i‘COr{Ai,Bi})=2—%,
=1

since ) Cor{Al,B1}| = ( Cor{Az,B2}| = (v—1)/v. Thus, for v> 2, even

AB
SG,sep

)Cor{Al,Bl }‘ + |C0r{A2,B2}‘ becomes larger than one. The above
counterexamples provide further support on the validity of the pro-
posed Conjecture in (38), since they are consistent with the trend that
the larger the dimensions of the Hilbert space the harder it is to identify
entanglement through this method (see Fig. 3).

though the state is by construction separable, the expression

References

[1] R.F. Werner, Quantum states with Einstein-Podolsky-Rosen correlations admitting a
hidden-variable model, Phys. Rev. A 40 (8) (1989) 4277-4281.

[2] T. Heinosaari, M. Ziman, The Mathematical Language of Quantum Theory, 1st edi-
tion, Cambridge University Press, Cambridge, 2012.

[3] A. Einstein, B. Podolsky, N. Rosen, Can quantum-mechanical description of physical
reality be considered complete?, Phys. Rev. 47 (10) (1935) 777-780.

[4] E. Schrodinger, Discussion of probability relations between separated systems, Math.
Proc. Camb. Philos. Soc. 31 (4) (1935) 555-563.

[5] J.S. Bell, On the Einstein Podolsky Rosen paradox, Phys. Phys. Fiz. 1 (3) (1964)
195-200.

[6] J.F. Clauser, M.A. Horne, A. Shimony, R.A. Holt, Proposed experiment to test local
hidden-variable theories, Phys. Rev. Lett. 23 (15) (1969) 880-884.

[7] J. Preskill, Quantum computing in the NISQ era and beyond, Quantum 2 (2018) 79.

[8] S. Wehner, D. Elkouss, R. Hanson, Quantum Internet: a vision for the road ahead,
Science 362 (6412) (2018) 303.

10

Physics Letters A 519 (2024) 129635

[9] S. Pirandola, B.R. Bardhan, T. Gehring, C. Weedbrook, S. Lloyd, Advances in pho-

tonic quantum sensing, Nat. Photonics 12 (12) (2018) 724-733.

[10] L. Gurvits, Classical complexity and quantum entanglement, J. Comput. Syst. Sci.
69 (3) (2004) 448-484.

[11] S. Gharibian, Strong np-hardness of the quantum separability problem, Quantum
Inf. Comput. 10 (3) (2010) 343.

[12] O. Giihne, G. Téth, Entanglement detection, Phys. Rep. 474 (1) (2009) 1-75.

[13] R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Quantum entanglement,
Rev. Mod. Phys. 81 (2) (2009) 865-942.

[14] D. Chrusciniski, G. Sarbicki, Entanglement witnesses: construction, analysis and clas-
sification, J. Phys. A, Math. Theor. 47 (48) (2014) 483001.

[15] V. Capasso, D. Fortunato, F. Selleri, Sensitive observables of quantum mechanics,
Int. J. Theor. Phys. 7 (5) (1973) 319-326.

[16] N. Gisin, Bell’s inequality holds for all non-product states, Phys. Lett. A 154 (5)
(1991) 201-202.

[17] A. Peres, Separability criterion for density matrices, Phys. Rev. Lett. 77 (8) (1996)
1413-1415.

[18] M. Horodecki, P. Horodecki, R. Horodecki, Separability of mixed states: necessary
and sufficient conditions, Phys. Lett. A 223 (1) (1996) 1-8.

[19] R. Simon, Peres-Horodecki separability criterion for continuous variable systems,
Phys. Rev. Lett. 84 (12) (2000) 2726-2729.

[20] L.-M. Duan, G. Giedke, J.I. Cirac, P. Zoller, Inseparability criterion for continuous
variable systems, Phys. Rev. Lett. 84 (12) (2000) 2722-2725.

[21] V. Giovannetti, S. Mancini, D. Vitali, P. Tombesi, Characterizing the entanglement
of bipartite quantum systems, Phys. Rev. A 67 (2) (2003) 022320.

[22] H.F. Hofmann, S. Takeuchi, Violation of local uncertainty relations as a signature of

entanglement, Phys. Rev. A 68 (3) (2003) 032103.

H.F. Hofmann, Bound entangled states violate a nonsymmetric local uncertainty

relation, Phys. Rev. A 68 (3) (2003) 034307.

O. Giihne, Characterizing entanglement via uncertainty relations, Phys. Rev. Lett.

92 (11) (2004) 117903.

C. Kothe, G. Bjork, Entanglement quantification through local observable correla-

tions, Phys. Rev. A 75 (1) (2007) 012336.

[26] L.-S. Abascal, G. Bjork, Bipartite entanglement measure based on covariance, Phys.
Rev. A 75 (6) (2007) 062317.

[27] C.-J. Zhang, H. Nha, Y.-S. Zhang, G.-C. Guo, Entanglement detection via tighter local
uncertainty relations, Phys. Rev. A 81 (1) (2010) 012324.

[28] V. Giovannetti, Separability conditions from entropic uncertainty relations, Phys.
Rev. A 70 (1) (2004) 012102.

[29] O. Giihne, M. Lewenstein, Entropic uncertainty relations and entanglement, Phys.
Rev. A 70 (2) (2004) 022316.

[30] Y. Huang, Entanglement criteria via concave-function uncertainty relations, Phys.

Rev. A 82 (1) (2010) 012335.

P.J. Coles, M. Piani, Improved entropic uncertainty relations and information exclu-

sion relations, Phys. Rev. A 89 (2) (2014) 022112.

W.K. Wootters, Entanglement of formation of an arbitrary state of two qubits, Phys.

Rev. Lett. 80 (1998) 2245-2248.

O. Giihne, P. Hyllus, O. Gittsovich, J. Eisert, Covariance matrices and the separabil-

ity problem, Phys. Rev. Lett. 99 (13) (2007) 130504.

[34] O. Gittsovich, O. Giihne, P. Hyllus, J. Eisert, Unifying several separability conditions
using the covariance matrix criterion, Phys. Rev. A 78 (5) (2008) 052319.

[35] O. Rudolph, Some properties of the computable cross-norm criterion for separabil-
ity, Phys. Rev. A 67 (3) (2003) 032312.

[36] K. Chen, L.A. Wu, L. Yang, A matrix realignment method for recognizing entangle-
ment, Quantum Inf. Comput. 3 (3) (2003) 193-202.

[37] C.-J. Zhang, Y.-S. Zhang, S. Zhang, G.-C. Guo, Entanglement detection beyond the
computable cross-norm or realignment criterion, Phys. Rev. A 77 (6) (2008) 060301.

[38] M. Lewenstein, B. Kraus, J.I. Cirac, P. Horodecki, Optimization of entanglement
witnesses, Phys. Rev. A 62 (5) (2000) 052310.

[39] J. Eisert, P. Hyllus, O. Giihne, M. Curty, Complete hierarchies of efficient approxi-
mations to problems in entanglement theory, Phys. Rev. A 70 (6) (2004) 062317.

[40] L.M. Ioannou, B.C. Travaglione, D. Cheung, A.K. Ekert, Improved algorithm for
quantum separability and entanglement detection, Phys. Rev. A 70 (6) (2004)
060303.

[41] C. Spengler, M. Huber, S. Brierley, T. Adaktylos, B.C. Hiesmayr, Entanglement de-
tection via mutually unbiased bases, Phys. Rev. A 86 (2) (2012) 022311.

[42] A. Rényi, Probability Theory, 1st edition, Dover Publications, Mineola, NY, 2007.

[43] D.P. Bertsekas, J.N. Tsitsiklis, Introduction to Probability, Athena Scientific, Bel-
mont, MA, 2008.

[44] K. Pearson, F. Galton, VII. Note on regression and inheritance in the case of two
parents, Proc. R. Soc. Lond. 58 (4) (1895) 347-352.

[45] C.E. Shannon, A mathematical theory of communication, Bell Syst. Tech. J. 27 (3)
(1948) 379-423.

[46] L. Maccone, D. Bruf3, C. Macchiavello, Complementarity and correlations, Phys. Rev.
Lett. 114 (13) (2015) 130401.

[47] S.M. Roy, Multipartite separability inequalities exponentially stronger than local
reality inequalities, Phys. Rev. Lett. 94 (1) (2005) 010402.

[48] G.A. Durkin, C. Simon, Multipartite entanglement inequalities via spin vector geom-
etry, Phys. Rev. Lett. 95 (18) (2005) 180402.

[23]

[24]

[25]

[31]

[32]

[33]



S. Tserkis, S.M. Assad, A. Conti, and M.Z. Win

[49] M. Seevinck, J. Uffink, Local commutativity versus Bell inequality violation for en-
tangled states and versus non-violation for separable states, Phys. Rev. A 76 (4)
(2007) 042105.

[50] J. Schwinger, Unitary operator bases, Proc. Natl. Acad. Sci. 46 (4) (1960) 570-579.

[51] W.K. Wootters, B.D. Fields, Optimal state-determination by mutually unbiased mea-
surements, Ann. Phys. 191 (2) (1989) 363-381.

[52] U. Fano, Pairs of two-level systems, Rev. Mod. Phys. 55 (4) (1983) 855-874.

[53] J. Schlienz, G. Mahler, Description of entanglement, Phys. Rev. A 6 (52) (1995)
4396-4404.

[54] R.A. Horn, C.R. Johnson, Matrix Analysis, 2nd edition, Cambridge University Press,
New York, NY, 2013.

[55] R. Horodecki, M. Horodecki, Information-theoretic aspects of inseparability of
mixed states, Phys. Rev. A 54 (3) (1996) 1838-1843.

[56] M.-M. Du, D. Wang, L. Ye, The dynamic behaviors of complementary correlations
under decoherence channels, Sci. Rep. 7 (1) (2017) 40934.

[57] M. Paris, J. Rehat¢ek (Eds.), Quantum State Estimation, 1st edition, Springer-Verlag,
Berlin/Heidelberg, 2004.

[58] S. Sadana, S. Kanjilal, D. Home, U. Sinha, Relating an entanglement measure with

statistical correlators for two-qudit mixed states using only a pair of complementary

observables, Quantum Inf. Process. 23 (4) (2024).

P. Deb, M. Banik, Role of complementary correlations in the evolution of classical

and quantum correlations under Markovian decoherence, J. Phys. A, Math. Theor.

48 (18) (2015) 010402.

Z. Huang, L. Maccone, A. Karim, C. Macchiavello, R.J. Chapman, A. Peruzzo, High-

dimensional entanglement certification, Sci. Rep. 6 (1) (2016) 27637.

C. Jebarathinam, D. Home, U. Sinha, Pearson correlation coefficient as a measure

for certifying and quantifying high-dimensional entanglement, Phys. Rev. A 101 (2)

(2020) 022112.

D. Ghosh, T. Jennewein, U. Sinha, Direct determination of arbitrary dimensional

entanglement monotones using statistical correlators and minimal complementary

measurements, Quantum Sci. Technol. 7 (4) (2022) 045037.

[591]

[60]

[61]

[62]

11

Physics Letters A 519 (2024) 129635

[63] R. Ghosh, S. Bose, Separability criterion using one observable for special states:
entanglement detection via quantum quench, Phys. Rev. Res. 6 (2024) 023132.

[64] J.A. Miszczak, Generating and using truly random quantum states in mathematica,
Comput. Phys. Commun. 183 (1) (2012) 118-124.

[65] B.S. Cirel’son, Quantum generalizations of Bell’s inequality, Lett. Math. Phys. 4 (2)
(1980) 93-100.

[66] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, S. Wehner, Bell nonlocality, Rev.
Mod. Phys. 86 (2) (2014) 419-478.

[67] H.M. Wiseman, The two Bell’s theorems of John Bell, J. Phys. A, Math. Theor.
47 (42) (2014) 424001.

[68] S. Hossenfelder, T. Palmer, Rethinking superdeterminism, Front. Phys. 8 (May
2020).

[69] V. Pozsgay, F. Hirsch, C. Branciard, N. Brunner, Covariance Bell inequalities, Phys.
Rev. A 96 (6) (2017) 062128.

[70] Y. Huang, P.O. Vontobel, Sets of marginals and Pearson-correlation-based chsh
inequalities for a two-qubit system, in: 2021 IEEE International Symposium on In-
formation Theory (ISIT), IEEE, 2021, pp. 1338-1343.

[71] C. Branciard, N. Gisin, S. Pironio, Characterizing the nonlocal correlations created
via entanglement swapping, Phys. Rev. Lett. 104 (17) (2010) 170401.

[72] D. Rosset, C. Branciard, T.J. Barnea, G. Piitz, N. Brunner, N. Gisin, Nonlinear Bell
inequalities tailored for quantum networks, Phys. Rev. Lett. 116 (1) (2016) 010403.

[73] R. Chaves, Polynomial Bell inequalities, Phys. Rev. Lett. 116 (1) (2016) 010402.

[74] S. Weigert, M. Wilkinson, Mutually unbiased bases for continuous variables, Phys.
Rev. A 78 (2) (2008) 020303.

[75] A. Serafini, Quantum Continuous Variables: A Primer of Theoretical Methods, 1st
edition, CRC Press, Boca Raton, FL, 2017.



