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Abstract—Quantum networks (QNs) are expected to play a
key role in next-generation networks. A QN is comprised of
quantum nodes and links (or bonds) representing entangled
qubit pairs (EQPs) shared between two nodes. The probability
of establishing a pure maximally entangled pair, known as
Einstein-Podolsky—Rosen (EPR) pair, between two neighboring
nodes represents the linking probability (or bond occupation
probability). If such probability exceeds the so-called percolation
threshold, the QN exhibits a percolation phenomenon charac-
terized by the emergence of a giant cluster spanning the entire
network. In the presence of such a giant cluster, any two arbitrary
nodes in the system are connected by a chain of links with
a non-zero probability, thus establishing EPR pairs at remote
nodes. This work introduces a procedure for obtaining QNs from
initially isolated quantum nodes. In the proposed procedure, two
copies of EPR pairs are prepared at a source node and two qubits,
one from each pair, are sent to a neighboring node through a
noisy quantum channel. Then, a pair of mixed quantum states is
established between the source node and the neighboring node.
By performing local operations and classical communication,
an EPR pair can be established between these two nodes with
non-zero probability. Repeating this procedure for every pair of
source node and neighboring node, a QN exhibiting a percolation
phenomenon can be obtained.

Index Terms—Quantum network, quantum noise, percolation
theory, entanglement.

[. INTRODUCTION

Quantum networks (QNs) represent a leap forward in build-
ing resources for quantum computing, communication, and
sensing. A quantum network (QN) consists of nodes and
links, respectively symbolizing quantum devices and pairs of
quantum bits (qubits) in an arbitrary two-qubit quantum state
shared between two nodes. The qubit is a basic unit of quan-
tum information realized with a two-level quantum system [1]—
[9]. In a QN, it is assumed that each pair of neighboring nodes
shares a pair of qubits in a partially entangled two-qubit state,
which is referred to as an entangled qubit pair (EQP). An
EQP shared between any two nodes can be converted into an
Einstein—Podolsky—Rosen (EPR) pair representing a pair of
qubits in a maximally entangled state, known as an EPR state,
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by local operations and classical communication (LOCC).!
This transformation successfully occurs with a certain prob-
ability, referred to as a singlet conversion probability (SCP)
[10], [11], which can serve as a bond occupation probability
in classical percolation theory [12], [13]. When an EPR state is
established between two nodes, the two nodes are considered
to be connected by an occupied bond and therefore are able
to exchange one-qubit quantum information via LOCC. If the
SCP surpasses the percolation threshold, percolation phenom-
ena known as classical entanglement percolation (CEP) arise.
Thus, a lower percolation threshold implies a higher proba-
bility of establishing long-distance entanglement between any
pair of nodes. Lowering the percolation threshold in quantum
systems has been a significant challenge for over a decade.
The threshold of a random percolation transition is solely
determined by the network topology, which is defined by the
connections between nodes within the system. Consequently,
altering the network topology is crucial for reducing the
percolation threshold.

Research efforts, as documented in [11], [14], have demon-
strated that modifying the entire network topology can reduce
the percolation threshold of the CEP. The percolation, which
benefits from quantum properties, is referred to as quantum
entanglement percolation (QEP). These investigations have
successfully introduced strategies for altering the topology of
QNs to reduce percolation thresholds. However, the founda-
tional aspect of obtaining QNs, particularly from their initial
stages, remains relatively unexplored.

Obtaining QN is a fundamental challenge for the practical
deployment and scalability of QN. Thus, devising techniques
to obtain a QN from scratch represents an important research
goal. Here, our objective is to outline a procedure for obtaining
QNs in the presence of amplitude damping noisy quantum
channels. In noisy QNs obtained by the proposed procedure,
a chain of bi-partite entanglement can be established, allowing
for long-distance entanglement between two distant nodes via
entanglement swapping [15], [16]. Additionally, establishing
entanglement between two nodes has potential applications
in quantum error correction [17]-[21], decoherence mitiga-

'In this study, an EPR state (or singlet state) denotes a state described by
the ket [¢), which is one of the four Bell states, since Bell states can be
converted into each other by LOCC.
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tion [22]-[24], quantum routing [25], [26], and quantum
internet [27]-[30].

This research lays the groundwork for obtaining a noisy
quantum system facilitating the creation of long-distance en-
tanglement. The key contributions of this paper are as follows:

o describing the process of obtaining QNs from initially
isolated nodes in the presence of amplitude damping
channels; and

« confirming that the formed QNs can exhibit entanglement
percolation phenomena depending on the amount of am-
plitude damping quantum noise.

The remaining sections are organized as follows: Section II
briefly introduces percolation theory in non-quantum networks
and QNs. Section III outlines the conventional definition
of entanglement percolation in noiseless QNs. Section IV
provides a strategy for obtaining QNs in the presence of ampli-
tude damping quantum noise. The corresponding entanglement
percolation phenomena in the noisy QNs are described at the
end of Section IV. Section V provides final remarks.

Notations: For a positive integer n > 1, Z,, denotes the
set {0,1,2,...,n — 1}. Quantum states and quantum density
operators are denoted by bold lowercase letters, e.g., |¢).
Quantum operators and quantum density operators are both
denoted by bold uppercase letter, e.g., =. The notation AT
denotes the Hermitian adjoint of a linear operator A. All these
quantities are defined in connection to some finite-dimensional
Hilbert space. The identity operator is denoted by I on a
single-qubit Hilbert space. The symbol & denotes the tensor
product.

II. RUDIMENTS OF PERCOLATION THEORY
A. Preliminaries on Percolation Model

A system formed by multiple interacting individual units
is referred to as a complex system. Such a complex sys-
tem can be effectively represented using a network model
comprising nodes (also known as vertices) and links (or
edges), symbolizing the individual units and their interactions,
respectively. In cases where nodes are arranged regularly in
a given dimensional space and links are established between
adjacent nodes, the system is referred to as a lattice network.
In a lattice network, a link (or bond) between two nodes is
said to be occupied when interactions take place between them,
which occurs with a specified bond occupation probability, and
is empty otherwise. When bonds between neighboring nodes
are occupied, the nodes coalesce into a cluster of connected
nodes. Consequently, a giant cluster of connected nodes’,
spanning the entire system, emerges if the bond occupation
probability surpasses a critical threshold known as percolation
threshold. This phenomenon, known as percolation transition
in percolation theory, explains the formation of a giant cluster
within complex systems [12], [13]. The described percolation
model has been applied to various real-world phenomena,
including transitions in protein-protein interaction [31]-[37],

2A cluster of connected nodes, whose size is proportional to the system
size, is referred to as a giant cluster.
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coauthorship [38]-[42], and communication networks [43]—
[46].

B. Non-quantum Networks

Consider a network consisting of nodes that symbolize
individual units and links that denote possible interactions
among units. Links facilitate connectivity between any two
nodes, determining the network’s topology. A bond between
two nodes is considered occupied if the two nodes interact,
and empty if they do not interact. A cluster denotes a group
of connected nodes where any two nodes within the cluster can
interact via a chain of occupied bonds. Assume that each bond
in the network is occupied independently with probability p,
regardless of the other bonds’ status. Thus, a giant cluster
spanning the entire network emerges if p > p., while the
network only contain small clusters when p < p.. In such
a random percolation, the critical value p. is characteristic
of the given network and is referred to as the percolation
threshold [12], [13].

C. Quantum Networks

Consider a QN where each node functions as a quantum
repeater. These repeaters are devices designed to generate EPR
pairs, which are pure maximally-entangled pairs of qubits, and
to execute quantum operations. A qubit of an EPR pair locally
generated at one quantum node can be sent to an adjacent node
through a noisy quantum channel. The amount of entanglement
of the EQPs shared between neighboring nodes is determined
by the noise level of quantum channel. A pair of qubits in a
two-qubit quantum state shared between two adjacent nodes
represents a bond, also referred to as a link or an edge within
the network. A bond is considered occupied if two nodes share
an EPR pair while a bond is empty if two nodes share a pair
of qubits in a state different from an EPR state. When a bond
between two nodes is occupied, the two nodes are merged into
a cluster of connected nodes.

The EQP shared between two nodes, following the transmis-
sion of one qubit from a locally generated EPR pair through
a noisy quantum channel, is described by a mixed state.
Through a purification procedure [47]-[49], multiple EQPs,
each described by a mixed state, can be transformed into an
EQP characterized by a pure state. Likewise, multiple EQPs,
each described by a pure state, can be converted into an
EPR pair through a singlet conversion procedure [10], [50],
[51]. Hence, by employing the combination of purification
and singlet conversion procedures, it is possible to convert
multiple EQP described by mixed states into an EPR pair.
This combination is achieved via LOCC and succeeds with
probability p € [0, 1].

If p exceeds the percolation threshold of the network, a
giant cluster spanning the entire network emerges, enabling the
establishment of EPR pairs between any two arbitrary nodes
of the network through entanglement swapping at intermediate
nodes along the chain connecting the two nodes [11]. The
value of p depends on the noise level of the quantum channels.
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III. ENTANGLEMENT PERCOLATION IN NOISELESS QNS

This section presents a preliminary scenario featuring noise-
less quantum channels for connecting quantum nodes within a
QN. The quantum nodes, representing quantum devices, have
the capability to generate partially-entangled pair of qubits.

Consider two adjacent nodes, named Alice and Bob. Alice
generates an EQP that exists in a partially-entangled pure state,
described by the ket

| (X)) = VAo [00) + /A1 [11), )]
where the Schmidt coefficients Ay and \; satisfy A\g > A1 > 0
and Ao + A\ = 1 [52]. Note that \g € [1/2,1] and \; €
[0,1/2]. Two Z-basis states |0) and |1) satisfy

Y|O> = Z‘1>7 Y|1> = _Z|0>7 (2b)
Z|0) =10), Z1)=-[1), (2¢)

where 7 = v/—1 and the quantum operators X, Y, and Z are
known as Pauli operators [52].

Alice transmits one qubit of a locally generated EQP to Bob
through an ideal quantum channel, establishing a shared EQP
between them. This procedure is repeated among all pairs of
neighboring nodes within the QN, ensuring each pair shares
an EQP described by (1).

The partially entangled state described by (1) can be trans-
formed into either the maximally-entangled state

1
N 21p(1/2) = —=
lo™) = | (1/2)) 7
or the separable state |00). This transformation can be achieved
by performing a measurement on a single qubit of the EQP
employing the measurement operators [10], [50], [51]

(100) +[11)), 3)

Moy =/ A1/ [0)(0] + [1)(1] , (4a)
My = /1= X1/ 0)(0] , (4b)

with M(}LMO + MM, = > icz, |1)(i| = I. The measure-
ment outcomes can correspond to either M (representing
the maximally-entangled state |¢")) or M; (indicating the
separable state |00)), with the probabilities of occurrence being
p =2)\; and 1 — p, respectively. The probability p is referred
to as the SCP. After performing the measurement with the
operators (4a) and (4b), each bond between two neighboring
nodes is occupied with probability p = 2A\; and empty with
probability 1 — p. Note that the occupancy status of any bond
is independent on the occupancy status of any other bonds
within the QN. According to percolation theory, a chain of
occupied bonds connecting any two distant nodes in the QN
exists with a non-zero probability provided that p > p., where
P is the percolation threshold of the network [12], [13].

IV. ENTANGLEMENT PERCOLATION IN NOISY QNS

This section describes a scenario involving the presence
of noisy quantum channels between quantum nodes within
a QN. These quantum nodes have the ability to generate an
EPR pair. However, due to the noisy nature of the channels,
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the EQPs shared between neighboring nodes are partially-
entangled qubit pairs. This section also introduces an entangle-
ment purification protocol aimed at converting these partially
entangled pairs into maximally entangled ones.

A. Sharing Two Qubits

Consider two adjacent nodes, named Alice and Bob. Alice
generates an EPR pair, which is an EQP in a maximally-
entangled pure state described by the ket (3). Then, Alice
transmits the initial qubit of the locally generated EQP to Bob
through an amplitude damping channel, which is defined by
the Kraus operators

Ey = |0)(0[ + /1= ¢[1){],
E, = \/¢lo)1],
with ESEO + E[E, = I, where ¢ € [0,1] is a parameter that
quantifies the energy dissipation caused by the channel [47],

[48], [52]. Alice and Bob finally share an EQP in the mixed
state

(52)
(5b)

m

) =D (EiaI)|p*) (¢t (B @ 1)

1€

= 0 [ (10)) (@ (10)| + 61 [01){01], (6)

where
po=1/(2-0), (7Ta)
So=1-¢/2, (7b)

pu1 =1—pp, and 64 = 1 — &g with pg € [1/27 1] and dg €
[1/2,1].> The whole procedure is schematically depicted in
Fig. 1(a). Note that two neighboring nodes share the EPR pair
and are always connected by an occupied bond when ( is
equal to zero.

B. Generating an EPR State

The procedure outlined in Section IV-A can be repeated to
obtain multiple copies of the EQP described by the density
operator (6). Consider two such copies. In general, the ampli-
tude damping quantum channel between Alice and Bob may
vary over time. In such cases, the parameter ( characterizing
the channel may assume different values, denoted as C and
@ , at two different time instants when the channel is utilized.
Consequently, Alice and Bob share the two EQPs described by
the density operators = (C ) and & (C ) These two mixed states
are referred to as purifiable mixed states (PMSs) as they can
be purified to obtain a single EQP with stronger entanglement
than either of the two original pairs.

The initial operation of the entanglement purification pro-
tocol involves applying the CNOT operator on the two qubits
in the possession of Alice and Bob. The qubits described by
= (C ) serve as control qubits, while the qubits described by

(C ) serve as target qubits. Following this operation, the two
target qubits are measured in the Z-basis. Each measurement

—
=
—_

3For notational simplicity, the dependence of y, and §;, with k = 0,1 on
¢ is not made explicit. The parameter j11 is defined for later use.
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Fig. 1. (a) In a process of sharing two qubits (red circles) between two
neighboring nodes (black empty circles), one qubit of an EPR pair (solid
line) prepared at a source node is sent to another node through a amplitude
damping noisy quantum channel. Then, the two nodes share two qubits in a
mixed state (dashed line). In a process of generating an EPR state between
a source node and its neighboring nodes for (b) n = 1, (¢) n = 2, and
(d) n = 3, n copies of two EPR pairs are prepared at the source node and
one qubit from each pair is sent to the neighboring node through a noisy
amplitude damping channel. The source node and each adjacent node can
share two pairs of qubits in two different mixed states (dashed and dotted
lines). Following the entanglement purification, each pair of the two mixed
states undergoes transformation into one of four possible final states (dash-
dotted line). Finally, the EPR state can be established from the final states
with probability P(¢).

yields two possible outcomes, corresponding to the basis
elements |0) and |1), resulting in a total of four possible
outcomes.

Define ¢ = (¢, (). The two measurement outcomes align
and correspond to |1) and |1) with probability*

Qp (€) = 800 (fiofu + frofin) , (8

in which case the two non-measured qubits collapse into a
pure state described by the ket |¢ (1,,0)) where

fiofi1
H,:l_ﬂ.:,\f- 9
o P o + fofin
The two measurement outcomes align and correspond to |0)
and |0) with probability
Qu (¢) = dodo (fiofto + firjn) + 6101, (10)
in which case the two non-measured qubits collapse into a
new PMS

En ()= Om,0 @ (Ntn,0)><¢ (Ntn,0)| + 0m,1 |01)(01] , (11)

4The definitions of &, i and dy, fux with k = 0,1, are as in (7) with ¢
replaced by ¢ and ¢, respectively.
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Fig. 2. Probability P({) as a function of ¢ € (0, 1] (solid line) when ¢ =
¢ = (. The dash-dotted guidelines indicate the percolation threshold p. and
the corresponding (. in the QN for the dice lattice.

where
im0 = 1 — = —0___ (12a)
fofto + fiafi
5 5 ;N PN
Sy = 1— Gy = 000 (flofto + fr1fur) (12b)

QIH (C)

In the remaining two cases, the results of the measurements
do not align, which occurs with probability

QI(C):l_QP(C)_Qm(C)

In these cases, the two non-measured qubits collapse into a
mixed state that is not in the PMS form.

The outlined procedure is termed as a pure-state conversion
measurement (PCM) [53]. In PCM, two distinct mixed states
are purified into one pure state with probability @, (¢) given
by (8). As shown in Section III, the purified state |¢ (up,)) can
be converted into the EPR state |¢T) described by (3) with
probability 24, 1. Consequently, the total probability P(¢) of
obtaining the EPR state from two mixed states Z({) and

(€) is given by

13)

—
=
—

1, for (=0o0r (=0,

PO =19,. . ¢ C 3 ¢ (14)
2f10f110000 , for ¢, ¢ € (0,1].

Note that P(¢) can be rewritten as P(¢) = (1 —()/2 for

¢=¢(=Ce (o, 1], as shown in Fig. 2.

Additionally, consider that n copies of two EPR pairs are
generated at a specific source node and each copy is then
shared with one of the n neighboring nodes. To achieve this
sharing, one qubit from each EPR pair is transmitted to the
neighboring node through a noisy quantum channel, resulting
in the formation of two mixed states between the source node
and each neighboring node. After performing entanglement
purification on these mixed states, the source node and each
neighboring node share an EPR pair with probability P(¢).
Fig. 1 (b), (c), and (d) depict the method for generating an
EPR state for n = 1, n = 2, and n = 3, respectively.
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Fig. 3. The lattice structures considered in this work are (a) Bethe, (h) honeycomb, and (i) dice lattices, with nodes and bonds are represented by filled
circles and solid lines, respectively. Three copies of two EPR pairs, each pair of which is in an EPR state (solid line), are prepared at each of all source nodes
for obtaining QNs with lattice structures of (d) Bethe, (e) honeycomb, and (f) dice lattices. After the qubit sharing process over the noisy quantum channels,
two pairs of qubits in distinct mixed states (dashed and dotted lines) are shared between each pair of two adjacent nodes, forming a quantum (g) Bethe with
a coordination number 3, (h) honeycomb lattice, and (i) dice lattice. Subsequently, by performing the entanglement purification protocols, each pair of two
mixed states is transformed into one of 4 possible final states (dash-dotted line). Finally, each pair of two neighboring nodes can share an EPR pair with

probability P(¢).

C. Establishing Global Entanglement in Noisy QNs

We now consider three specific QNs with lattice structures,
namely Bethe (coordination number® k = 3), honeycomb, and
dice lattices as shown in Fig. 3 (a), (b), and (c), respectively.
Initially, each source node, positioned in correspondence to the
nodes of Bethe (k = 3), honeycomb, and dice lattices, prepares
three sets of two EPR pairs, as depicted in Figs. 3 (d), (e),
and (f). Then, as illustrated in Figs. 3 (g), (h), and (i), the
process of sharing qubit pairs between each source node and
its neighboring nodes results in the formation of a QN. In
this network, every pair of adjacent nodes shares two pairs
of qubits in the state = (§ ) ® (C ) achieved by transmitting
single qubits through a time-varying amplitude damping noisy
quantum channel, as outlined in Section IV-B. Finally, by
employing entanglement purification protocols, each four-
qubit state = (C) ® = (C) can be converted into a two-qubit

—
=
—

5The coordination number indicates the number of nearest neighbors of a
node within a specific complex system.
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EPR state |¢")(¢p| with probability P(¢). The probability
P(¢) corresponds to the bond occupation probability between
two neighboring nodes in the QN. A giant cluster, whose size
scales with the system size /N, emerges when the probability
P(¢) surpasses the percolation threshold p. of the formed
network [11]-[13]. The presence of a giant cluster signifies the
occurrence of percolation phenomena. Therefore, percolation
phenomena occur when P({) > p.. Assuming ( = (=4,
there exists a threshold (. for the energy dissipation parameter
of the channel at which the percolation phenomena begin to
occur. The threshold (. is defined as the value of ¢ at which
P(¢) = pe if pc < 1/2, whereas (. = 0 if p. > 1/2.

The percolation threshold for the Bethe lattice in which
all nodes have the same coordination number % is known
to be p. = 1/(k —1) [54], [55]. Consequently, for k = 3,
the percolation threshold in the Bethe lattice equals 1/2. The
percolation thresholds in the honeycomb and dice lattices are
known to be 0.6527 and 0.4756, respectively [12], [13]. The
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TABLE 1
PERCOLATION THRESHOLDS pc AND THE CORRESPONDING AMPLITUDE
DAMPING THRESHOLDS (¢ IN NOISY BETHE, HONEYCOMB, AND DICE
QNS WHEN ( = ¢ = (.

Lattice Pe (e
Bethe (k = 3) 0.5 0
Honeycomb 0.6527(1) 0
Dice 0.4756(1) 0.0488(1)

corresponding values of (. are 0, 0, and 0.0488(1) for the
Bethe (kK = 3), honeycomb, and dice quantum lattice networks,
respectively. Thus, percolation phenomena are observed in the
noiseless Bethe (kK = 3) and noiseless honeycomb QNs, and
in the noisy dice QN with ¢ < 0.0488(1). The values of p.
with their corresponding (. for the considered quantum lattice
networks are presented in Table I. By utilizing the explicit
expression for P(¢) = (1—¢)/2 with ¢ = = € (0,1], a
plot of the order parameter (G, which denotes the normalized
largest cluster size, as a function of ¢ € (0,1] in the noisy
dice QN is shown in Fig. 4.

V. CONCLUSION

This study has developed practical procedures to obtain
QNs in the presence of amplitude damping quantum noise.
The QN comprises source nodes initially generating a specific
quantity of EPR pairs. These pairs are then shared with
neighboring quantum nodes over noisy quantum channels. By
combining entanglement purification and singlet conversion
protocols, the systems may exhibit percolation phenomena
depending on the level of noise in the quantum channels.
When percolation phenomena occur, any pair of nodes in the
system can establish long-distance entanglement with a non-
zero probability via entanglement swapping. This study aids in
the practical implementation of quantum systems. Our findings
are anticipated to have an impact on future investigations in
quantum information and quantum percolation phenomena.
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