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ABSTRACT

Entangled quantum states serve as important resources in
quantum communication, quantum computing, and quantum
sensing. Creating entangled states between remote nodes
is referred to as remote entanglement establishment (REE).
REE typically consists of three types of quantum opera-
tions: entanglement generation, distillation, and swapping.
By carefully designing the sequence describing the order
of these operations, this paper investigates REE in a repeater
chain under the requirement that the fidelity of the established
entanglements be above a desired threshold. Specifically, the
paper derives an asymptotically achievable upper bound on
the maximum REE rate.

Index Terms— Entanglement distribution, entanglement
distillation, entanglement swapping, quantum networks.

1. INTRODUCTION

The principles of quantum mechanics have inspired numer-
ous signal processing methods [1, 2]. A unique phenomenon
in quantum mechanics is the entanglement [3], which can be
employed for efficient quantum communication [4–7], quan-
tum computing [8–10], and quantum sensing [11–13]. On
the other hand, creating entanglement between remote source
nodes and destination nodes, namely remote entanglement es-
tablishment (REE), is a challenging task.

An important technique for REE is to use repeater nodes.
In this technique, entangled qubit pairs are first generated
locally and shared over elementary links, and then entangle-
ment swapping operations [14–16] are performed to establish
entangled qubit pairs between the source node and the des-
tination node. The quality of these established qubit pairs
is characterized by their fidelities. Efficient REE techniques
maximize the number of established qubit pairs while en-
suring that their fidelities be above a desired threshold. One
method for fidelity improvement is to perform entangle-
ment distillation [17–19] before and/or after entanglement
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Node 0 Node 1 Node 2 Node L

Fig. 1. A repeater chain of length L + 1. Green dashed lines
represent crude qubit pairs (CQPs) over elementary links.
Swapping is performed to create qubit pairs (purple dash dot-
ted line) between nodes 0 and 2 by consuming CQPs marked
by red crosses.

swapping. Specifically, entanglement distillation creates
high-fidelity qubit pairs consuming low-fidelity qubit pairs.

REE has been studied in the literature [20–23]. Some of
the existing works assume ideal quantum channels, whereas
some works do not consider entanglement distillation. This
paper presents a general model for REE in the presence of
noisy quantum channels via entanglement generation, distil-
lation, and swapping. We derive an upper bound on the op-
timal REE rate that can be achieved asymptotically when the
number of qubit pairs generated locally is sufficiently large,
while meeting the requirement on the fidelity of the estab-
lished qubit pairs.

Notations: Random quantities are displayed in sans serif,
upright fonts. Vectors are denoted by bold lowercase letters.
The expectation of x is denoted by E{x}. The ℓ1 norm of a
vector x is denoted by |x|. The relationship that vector x1 is
larger than or equal to (resp. smaller than or equal to) vector
x2 entry-wise is denoted by x1 ! x2 (resp. x1 " x2). The
vector of zeros (resp. ones) is denoted by 0 (resp. 1).

2. SYSTEM MODEL

Consider a repeater chain consisting of L+1 nodes, where L
represents the length of the repeater chain. These nodes are
assigned indices 0, 1, . . . , L, as shown in Fig. 1. In particular,
the link between nodes l−1 and l is referred to as an elemen-
tary link for l = 1, 2, . . . , L. In addition, node 0 and node L
are referred to as the source node and the destination node,
respectively. The aim of REE is to create high-fidelity entan-
gled qubit pairs (EQPs) between nodes 0 andL by performing
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the quantum operations described next.

• Entanglement generation: for 1 # l # L, create qubit
pairs called CQPs over elementary link (l − 1, l). The
CQPs are in mixed Bell states, to account for the ef-
fect of the noisy quantum channel between nodes l− 1
and l. The density operatorΞl−1,l describing the quan-
tum state shared by nodes l− 1 and l is given by

Ξl−1,l := wl−1,l
∣

∣φ+
〉〈

φ+
∣

∣+ (1 − wl−1,l)
∣

∣ψ+
〉〈

ψ+
∣

∣

(1)

where 1/2 < wl−1,l # 1 is a scalar representing the
fidelity of Ξl−1,l. All fidelities considered in this pa-
per are computed with respect to |φ+⟩⟨φ+|. Here and
in (1), the kets |φ+⟩ and |ψ+⟩ describe pure Bell states

∣

∣φ+
〉

:=
1√
2

(

|00⟩+ |11⟩
)

∣

∣ψ+
〉

:=
1√
2

(

|01⟩+ |10⟩
)

where {|00⟩ , |01⟩ , |10⟩ , |11⟩} represents the computa-
tional basis for two-qubit systems.

• Entanglement distillation: for 0 # i < j # L, con-
sume two qubit pairs between nodes i and j to cre-
ate one qubit pair called a distilled qubit pair between
nodes i and j. This operation is referred to as entan-
glement distillation between nodes i and j. Entangle-
ment distillation can fail. Specifically, the probabil-
ity pd

(

wi,j
)

of successfully creating one distilled qubit
pair by consuming two qubit pairs with fidelity wi,j is
given by [18]

pd
(

wi,j
)

:=
(

wi,j
)2

+
(

1− wi,j
)2

. (2)

If the distillation operation is successful, the fidelity
gd
(

wi,j
)

of the distilled qubit pair is [18]

gd
(

wi,j
)

:=

(

wi,j
)2

(

wi,j
)2

+
(

1− wi,j
)2 . (3)

Entanglement distillation increases fidelity: it holds
that gd

(

wi,j
)

$ wi,j for any 1/2 < wi,j # 1, with
equality achieved if and only if wi,j = 1.

• Entanglement swapping: for 0 # i < j < l # L,
consume one qubit pair between nodes i and j and one
qubit pair between nodes j and l to create one qubit
pair called a swapped qubit pair between nodes i and
l. This operation is referred to as entanglement swap-
ping between nodes i and l at node j. Entanglement
swapping can fail. Specifically, the probability of suc-
cessfully swapping one qubit pair between nodes i and l
is 0 < q # 1. If the swapping operation is successful,

the fidelity gs
(

wi,j , wj,l
)

of the swapped qubit pair is
given by [14]

gs
(

wi,j , wj,l
)

:= wi,j wj,l +
(

1− wi,j
)(

1− wj,l
)

(4)

where wi,j represents the fidelity of the qubit pair
between nodes i and j, and wj,l represents the fi-
delity of the qubit pair between nodes j and l. En-
tanglement swapping reduces fidelity: it holds that
gs
(

wi,j , wj,l
)

# min
{

wi,j , wj,l
}

for any 1/2 <
wi,j , wj,l # 1, with equality achieved if and only
if wi,j = 1 or wj,l = 1.

Entanglement distillation can be performed on multiple
qubit pairs. Suppose that there are ni,j qubit pairs between
nodes i and j, each with fidelity wi,j . These qubit pairs can
be consumed to create ni,jd distilled qubit pairs between nodes
i and j. The described quantum operation that distills all of
the qubit pairs is called performing “one round of distillation
between nodes i and j” and is denoted by di,j . The number
n
i,j
d of qubit pairs created by di,j is a random variable with

the following binomial distribution

n
i,j
d ∼ Bin

(⌊ni,j

2

⌋

, pd
(

wi,j
)

)

(5)

where pd(·) is given in (2). The fidelity of these n
i,j
d qubit

pairs is given in (3).
The qubit pairs created by performing one round of entan-

glement distillation between nodes i and j can be consumed
to perform another round of distillation in order to further im-
prove the fidelity of distilled qubit pairs and so forth. This
is called performing multiple rounds of distillation between
nodes i and j.

Entanglement swapping can be performed on multiple
qubit pairs. Suppose that there are ni,j qubit pairs between
nodes i and j, each with fidelity wi,j , whereas there are nj,l

qubit pairs between nodes j and l, each with fidelity wj,l.
Then at most min

{

ni,j , nj,l
}

qubit pairs between nodes i
and j, together with the same number of qubit pairs between
nodes j and l, can be consumed to create n

i,l
s qubit pairs

between nodes i and l via entanglement swapping. The quan-
tum operation that swaps the maximum number of qubit pairs
is called performing “one round of swapping between nodes
i and l at node j” and is denoted by si,j,l. The number ni,ls
of qubit pairs created by si,j,l is a random variable with the
following binomial distribution

n
i,l
s ∼ Bin

(

min
{

ni,j , nj,l
}

, q
)

. (6)

The fidelity of these ni,ls qubit pairs is given in (4).
The REE task is described as follows. The L + 1 nodes

aim to establish EQPs between node 0 and node L by gener-
ating CQPs and performing entanglement distillation as well
as swapping. In particular, a qubit pair is referred to as an
EQP if its fidelity is above a predefined threshold w > 1/2.
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The objective is to maximize the expected number of estab-
lished EQPs between nodes 0 and L by designing an REE
policy, which is a sequence of quantum operations consisting
of entanglement generation and rounds of distillation as well
as swapping. A constraint on the REE policy is that the to-
tal number of CQPs generated between each pair of nodes is
within a predefined budget. Specifically, let bl−1,l represent
the budget of CQPs between node l − 1 and l, and let wl−1,l

represent the fidelity of the CQPs generated between these
two nodes for l = 1, 2, . . . , L. Define CQP budget vector b
and CQP fidelity vectorw as

b :=
[

b0,1 b1,2 · · · bL−1,L
]T

(7a)

w :=
[

w0,1 w1,2 · · · wL−1,L
]T

. (7b)

Given b and w, the number of EQPs established between
nodes 0 and L via a policy π is a random variable denoted
by zπ(b,w). Define the REE rate rπ(b,w) of policy π as the
ratio between the expectation E

{

zπ(b,w)
}

and the average
budget |b|/L, i.e.,

rπ(b,w) :=
L

|b|
E
{

zπ(b,w)
}

.

The optimal REE rate r∗(b,w) is defined as the maximum of
the REE rates over all policies, i.e.,

r∗(b,w) := max
π

rπ(b,w) . (8)

This paper derives an upper bound on r∗(b,w) and shows that
such a bound is asymptotically achievable when each entry of
b is sufficiently large.

3. UPPER BOUND ON THE REE RATE

This section first introduces some notions including REE pro-
cedures, number of established EQPs under certainty equiva-
lence (CE), and allocation vector for an REE procedure. Then
the upper bound on REE rates is presented.

3.1. REE Procedures

Definition 1 (REE procedure). An REE procedure for a re-
peater chain is a sequence of entanglement swapping and en-
tanglement distillation rounds for establishing qubit pairs be-
tween the source node and the destination node.

To clarify this definition, consider as an example the fol-
lowing REE procedure u0 for a repeater chain of length L =
3:

u0 :=
(

d0,1, s0,1,2, s0,2,3
)

. (9)

This REE procedure consists of performing one round of dis-
tillation between nodes 0 and 1, then one round of swapping
between nodes 0 and 2 at node 1, and finally one round of

swapping between nodes 0 and 3 at node 2. Note that the se-
quence

(

s0,1,2, d0,1, s0,2,3
)

is not an REE procedure on this
repeater chain. Specifically, after performing s0,1,2, all the
qubit pairs between nodes 0 and 1 have been consumed, and
thus the round of distillation d0,1 cannot be performed be-
tween these two nodes.

Using the notion of REE procedures, an REE policy π
can be decomposed into multiple iterations, where each it-
eration consists of: 1) generating CQPs over each elemen-
tary link using a proportion of the budget, and 2) establish-
ing EQPs by performing an REE procedure consuming the
generated CQPs. The REE rate of policy π is the sum of ex-
pected numbers of established EQPs in all iterations divided
by the average budget. Specifically, consider a policy π con-
sisting of K iterations. Let nl−1,l

k represent the number of
CQPs generated between nodes l − 1 and l in the kth iter-
ation of π, and denote the REE procedure performed in the
kth iteration by uk. Moreover, define the generation vector

nk :=
[

n0,1
k n1,2

k · · · nL−1,L
k

]T
and denote the number of

established EQPs in the kth iteration by žuk
(nk,w), which

is a function of the generation vector nk and the CQP fidelity
vectorw. Then the REE rate rπ(b,w) is given by

rπ(b,w) =
L

|b|

K
∑

k=1

E
{

žuk
(nk,w)

}

. (10)

Vectors nk with k = 1, 2, . . . ,K satisfy the constraint that
the total number of CQPs generated in all the iterations over
each elementary link does not exceed the budget assigned to
that link. In other words,

∑

k nk " b, where b is defined in
(7a).

Deriving r∗(b,w) is challenging. First, there are multiple
REE procedures that can be used for creating EQPs. Second,
the expected number of created EQPs is difficult to compute
for long repeater chains. To overcome these challenges, we
use the technique of CE as described in the next subsection.

3.2. Number of Established EQPs under CE

CE is an approximation method that replaces random quanti-
ties by their expectations. This method has been used in con-
trol and learning theories. To explain this method, consider a
repeater chain of length L = 3, and let n andw represent the
CQP number vector and the CQP fidelity vector, respectively,
for this chain. In the following, we show the approximation
via CE ζu0(n,w) for the expected number E

{

žu0(n,w)
}

of established EQPs if the REE procedure u0 given by (9) is
performed. The number of qubit pairs between nodes 0 and 1
after performing d0,1 is a random variable whose distribution
is given by (5). With the floor function in (5) omitted, the
expectation of this random variable is n0,1pd(w0,1)/2. We
approximate the number of qubit pairs between nodes 0 and 1
after performing d0,1 by this expected value, and consider the
expected number of qubit pairs between nodes 0 and 2 after
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performing s0,1,2. According to (6), the expected number of
qubit pairs between nodes 0 and 2 can be approximated by
qmin

{

n0,1pd(w0,1)/2, n1,2
}

. Using this approach leads to

ζu0(n,w) = qmin
{

qmin
{

n0,1pd(w
0,1)/2, n1,2

}

, n2,3
}

.

The definition of the number ζu(n,w) of established EQPs
for a general REE procedure u under CE is detailed in [24].

The next proposition (see [24] for its proof) shows that
E
{

žu(n,w)
}

is no greater than ζu(n,w).

Proposition 1. For any REE procedure u, CQP number vec-
tor n, and CQP fidelity vectorw, it holds that

E
{

žu(n,w)
}

# ζu(n,w) . (11)

Next, we define the notion of feasible REE procedures.
Letw represent a CQP fidelity vector on a repeater chain and
let w represent an EQP fidelity threshold. An REE procedure
u is said to be feasible for w and w if the fidelity of qubit
pairs created by performing u exceeds w. We also introduce
the notion of efficient REE procedures in the following.

Definition 2. Let u represent a feasible REE procedure for
w and w > 1/2 on a repeater chain. REE procedureu is said
to be efficient if there does not exist a different feasible REE
procedure u′ on this repeater chain such that ζu(n,w) #

ζu′(n,w) for all n ! 0.

Finally, we introduce the notion of allocation vector for
an REE procedure. An allocation vector for a repeater chain
of length L is an L-dimensional vector. Specifically, the lth
entry of this vector represents the number of CQPs that should
be generated between nodes l − 1 and l for establishing one
qubit pair between nodes 0 and L under CE. As an example,
consider the allocation vector vu0(w) for the REE procedure
u0 defined in (9) for a repeater chain of length L = 3 with
CQP fidelity vector w. Note that the last operation in u0 is
s0,2,3. In order to establish one EQP between nodes 0 and 3
by performing this operation, 1/q qubit pairs are needed on
average between nodes 0 and 2 as well as between nodes 2
and 3. The operation preceding s0,2,3 in u0 is s0,1,2. In order
to establish 1/q qubit pairs between nodes 0 and 2, we need
1/q2 qubit pairs on average between nodes 0 and 1 as well
as between nodes 1 and 2. Continuing this calculation gives

vu0(w) =
[

2/(pd(w0,1)q2) 1/q2 1/q
]T

. The definition
vu(w) for a general REE procedure u is presented in [24].

3.3. Asymptotically Achievable Bound on REE Rates

Consider a chain of length L with CQP budget vector b, CQP
fidelity vector w, and EQP fidelity threshold w > 1/2. Let
M represent the number of efficient REE procedures for w
and w, and let u(m) represent the mth efficient REE proce-
dure. The next theorem presents an upper bound on the opti-
mal REE rate.

Theorem 1. The optimal REE rate r∗(b,w) satisfies

r∗(b,w) # r̆ (12)

where−r̆ is the optimal objective value of linear programP

given by

P : minimize
x

−L
(

1
Tx

)

(13a)

subject to x ! 0 (13b)
M
∑

m=1

[x]m v
u

(m)(w) "
b

|b|
. .(13c)

Moreover, there exists a policy π∗ such that

lim
t→∞

rπ∗(tb,w) = lim
t→∞

r∗(tb,w) = r̆ . (14)

Proof: Detailed proof is presented in [24]. Here, we
summarize the outline of the proof for (12). Substituting (10)
into (8), and applying Proposition 1, we obtain r∗(b,w) #

r1, where r1 represents the optimal objective value of the fol-
lowing optimization problemP1

P1 : maximize
{

K,{nk,uk}K

k=1

}

L

|b|

K
∑

k=1

ζuk
(nk,w)

subject to nk ! 0 ∀k = 1, 2, . . . ,K
K
∑

k=1

nk " b .

In P1, vectors nk and uk represent the CQP number vector
and the REE procedure, respectively, for the kth iteration of
the REE policy. Note that we only need to consider efficient
REE procedures in P1. Combining the iterations where the
same REE procedure is used, we can show that r1 equals the
optimal objective value r2 of problemP2 given by

P2 : maximize
{n̆(m)}M

m=1

L

|b|

M
∑

m=1

ζ
u

(m)

(

n̆(m),w
)

(15a)

subject to n̆(m) ! 0 ∀m = 1, 2, . . . ,M (15b)
M
∑

m=1

n̆(m) " b . (15c)

Finally, r2 can be shown to equal r̆. Therefore, the desired
result (12) is proved. %

4. CONCLUSION

This paper characterized the optimal REE rate in repeater
chains under fidelity requirements. Specifically, an asymptot-
ically achievable upper bound on the optimal REE rate was
derived and this bound was shown to be the solution to a lin-
ear program. Results in this paper provide guidelines for the
design of signal processing techniques in quantum networks.
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