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Abstract—The Dynamic State Estimation (DSE) for Inverter-
Based Resources (IBRs) is an emerging topic as IBRs gradually
replace synchronous generators (SGs) in power systems. Unlike
SGs, the dynamic models of IBRs heavily depend on their
control algorithms, and conventional DSE methods for SGs,
which assume a unchanged state space and dynamic model,
cannot handle IBRs with control mode changes in real time,
particularly when the power grid operators are unaware of the
current control mode of the IBRs. In response to these challenges,
an Expectation-Maximization Sliding-Window Iterated Extended
Kalman Filter (EM-SW-IEKF) method is proposed in this paper.
It theoretically achieves maximum likelihood estimation under
different modes through the EM algorithm, providing the most
probable control mode of the system as well as the corresponding
state estimate. This method is validated in various IBR systems
(battery energy storage systems and solar photovoltaic systems)
and under different control mode transitions (switching between
grid-following and grid-forming controls and between low voltage
ride through and maximum power point tracking controls).

Index Terms—switching model, dynamic state estima-
tion, inverter-based resources, renewable energy, expectation-
maximization algorithm, Kalman filter, grid-forming control, low
voltage ride through mode

I. INTRODUCTION

LTHOUGH the replacement of traditional fossil-fuel

generation with renewable energy generation, primarily
Inverter-Based Resources (IBRs), has significantly benefited
carbon emission reduction, new chanllenges have been intro-
duced to the power systems as well [1]. The dynamics of IBRs
significantly differ from traditional synchronous generators
(SGs), characterized by being fast, inertia-less, heterogeneous,
and distributed [2], [3]. These challenges must be taken care of
by advanced monitoring and control technologies to maintain
power system stability.

As a real-time monitoring technology enabled by granular
sensor measurements, Dynamic State Estimation (DSE) has
been widely studied for tracking the dynamics of SGs in power
systems. Ref. [4] provides an overview of common DSE meth-
ods, among which are Extended Kalman Filter (EKF), Cuba-
ture Kalman Filter (CKF), Unscented Kalman Filter (UKF),
Ensemble Kalman Filter (EnKF), and Particle Filter (PF), to
name a few. In recent years, as IBRs increasingly become
the focus of concern, the research on DSE for IBRs has been
on a rising trend. Refs. [5] and [6] develop DSE for Doubly
Fed Induction Generator based Wind Turbines (DFIG-WTs)
and Permanent Magnet Synchronous Generator-based Wind
Turbines (PMSG-WTs) using UKF and EKF, respectively.

An adaptive CKF approach used in [7] achieves improved
performance in DSE for PV systems. A DSE framework
based on the EKF method, combined with consensus control,
is proposed in Ref [8] for microgrids containing multiple
Battery Energy Storage Systems (BESS). Not all inputs can be
accurately measured in the DSE of IBRs. Ref. [9] employes
the EKF with Unknown Input (EKF-UI) method to achieve
the DSE of DFIGs when mechanical torque is unknown, while
Ref. [10] uses the UKF-UI method for DSE under conditions
of unknown wind speed. The methods mentioned above all
follow the standard DSE architecture originally designed for
SGs. Recognizing the essential difference between SGs and
IBRs, Ref. [11] introduces a new framework for DSE for IBRs,
which decouples the control subsystem from the physical
subsystem to account for the signal uncertainty in between.
Even though the DSE for IBRs is still an emerging area of
research, it has already manifested the potential to enable new
applications in the modeling, monitoring, control, protection
of power systems [12]. For example, a fault detection method
based on DSE for switching power inverters is presented in
[13]; a frequency estimation and control method using IBRs,
based on UKEF, is proposed in [14]; a supplementary predictive
control enabled by DSE to minimize transients in systems rich
with IBRs is presented in [15].

Given that most dynamic behaviors of IBRs are determined
by the digital controllers, all the DSE methods reviewed above
model the control subsystem of the IBR and estimate its dy-
namics, in addition to the dynamics of the physical subsystem
itself. An underlying assumption of all these existing methods
is that the control mode of the IBR does not change, such that
the IBR has an unchanged state space and dynamic model.
However, this assumption is often unrealistic. For instance, as
the voltage at the Point of Common Coupling (PCC) drops,
IBRs often switch from the normal control mode to the Low
Voltage Ride Through (LVRT) control mode, where certain
state variables are restricted to prevent overcurrent conditions,
and the model of the control subsystem changes [16], [17].
Another example of control mode change is that during main
grid outages leading to unintentional islanding, some IBRs
may switch from Grid Following (GFL) mode to Grid Forming
(GFM) mode to support the continuous operation of the
local grid [18]. In addition, as IBRs in the GFM mode can
provide ancillary services to the grid [19], research has been
undertaken for the optimal control mode selection for BESS
based on the varying rates of electricity and auxiliary services
[20]. It is obvious that when IBRs switch between different
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control modes, their state spaces and dynamic models will
change, and the existing DSE methods assuming an uniform
state space and dynamic model are unable to recognize such
changes and track system states effectively. In fact, as system
operators who implement DSE do not have access to the
internal information of IBR controllers, they are likely to be
unaware of such control mode switching events. Therefore,
in addition to DSE itself, the detection of IBR control mode
switching is another practical problem to address.

Outside the power system domain, DSE methods that can
handle switched system models have already found applica-
tions in various fields. Switching Kalman Filter (SKF) [21]
is a typical method in this category. Ref. [22] uses SKF
to identify and estimate the different dynamic modes in a
communication network transmission environment, taking into
account Denial-of-Service (DoS) attacks. SKF is also used
for the processing of electrocardiogram signals with automatic
selection of the most probable model [23]. Ref. [24] employs
SKF to detect the most likely model for the aircraft health
system and verifies its effectiveness. Similarly, Ref. [25] uses
a robust SKF for lifespan analysis and verifies its reliability
under non-Gaussian noise. This technique is also applied
to corrosion detection for offshore wind turbines [26]. The
combination of SKF with neural network technologies has led
to the development of Switching Recurrent Kalman Networks
[27] and a deep neural network switching Kalman filter [28]
for pattern recognition technologies used in environments such
as autonomous driving. A comprehensive review of various
SKF techniques has been provided in Ref. [29].

Even though the SKF has been applied across various fields,
it cannot be directly applied to the DSE for IBRs with control
mode switching. The primary issue lies in the assumption of
SKF that different modes of a model share the same state space
(i.e., the same set of state variables), typically differing only
in the parameters of the state transition model or measurement
model. However, this is not the case in the control mode
switching of IBRs. For example, in the switching between
GFL and GFM, the state variables under the two modes are
completely different; upon operating in the LVRT mode, some
state variables of IBRs are locked, leading to a change in
the number of state variables. Therefore, for IBRs with mode
switching, the state space may be completely changing, and
only the output space is identical. These challenging situations
cannot be handled by the existing SKF methods.

To address the aforementioned challenges, we propose
a switching dynamic state estimation method, namly, the
Expectation-Maximization Sliding-Window Iterated Extended
Kalman Filter (EM-SW-IEKF),to accomplish joint dynamic
state estimation and control mode switching detection for
IBRs. The method employs the EM algorithm to solve the
maximum likelihood estimation problem under varying control
modes. By formulating a sliding-Window IEKF approach
embedded into the EM framework, the stability and reliability
of the method are enhanced, allowing for state estimation
to be performed concurrently with control mode switching
detection (control mode recognition). The main contributions
are summarized as follows.

1) An EM-SW-IEKF method is proposed, enabling the

detection of IBR mode switching events. The mode switching
issue is transformed into a maximum likelihood estimation
problem, solved by the EM algorithm to obtain the probabil-
ities of each mode, thereby allowing the recognition of the
control mode under a probabilistic framework. The reliability
and stability of the method are enhanced by employing a
sliding-window implementation.

2) The proposed EM-SW-IEKF method can accomplish
continuous dynamic state estimation during control mode
changes of IBRs, which cannot be accomplished by traditional
DSE methods assuming an unchanged state space and dyanmic
model of IBRs.

3) The EM-SW-EKF method is validated for various mode-
switching scenarios of IBRs, including the switch between
the GFL mode and the GFM mode, as well as the transition
between the normal GFL mode and the LVRT mode.

The rest of the paper is organized as follows. Section II
introduces the general IBR model with control mode switch-
ing, then presents the novel EM-SW-EKF method. Section III
presents simulation results for various IBRs under different
mode switching scenarios. Section IV concludes the paper.

II. EXPECTATION-MAXIMIZATION SLIDING-WINDOW
ITERATED EXTENDED KALMAN FILTER

In order to derive the proposed method, it is first necessary
for a general mathematical representation to be constructed,
that is, the multi-mode state transition and measurement equa-
tions.

A. General Form of Dynamic Equations for IBR with Multiple
Control Modes

Here, taking an IBR that switches between two different
control modes as an example, the general state transition
equation is as follows:

el — ) (x(0) u) + w® i =1,2,...,k

z=3 c® . b0 (x® u) +v,

=1

(D

where x represents the total number of modes; x() g Rrix1
represents the state variables of mode i; w(® e R7*1
represents the process noise of mode i; f() represents the
state transition equation of mode i; h(*) represents the output
equation of mode 7; u € R™=*! represents the external input,
which includes all input signals of the x control modes;
z € R™=*! represents the measurement (system output),
which is the same set of variables under different modes;
v € Rm=x1 represents the measurement noise; % is a random
variable that takes the value of 0 or 1, with the probability of
being 1 equal to ¢*). Since the IBR can only be in one mode
at any given time, it follows that ¢/ 4+ ¢(®) 4+ .. 4 ¢ =1
which follows a categorical distribution. There is often a lack
of prior knowledge regarding the probability distribution of the
modes: 1) the control modes may be determined by unmodeled
external factors, such as the external grid condition or the IBR
owner’s behavior, which are not dependent on the IBR state;
and 2) before knowing the mode, there is not a single set of
state variables that can be used to derive the mode probability,
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as the definition of the state space is dependent on the mode
itself. Therefore, to reflect the lack of prior knowledge, a naive
assignment of the prior estimate of ¢(¥) can be adopted, e.g.,
each mode being assigned with the same prior probability. The
posterior estimate of ¢() will be obtained by the proposed
method after observations are made about the system (i.e.,
after measurements are received). Regarding the process noise
and measurement noise, it is assumed that they both follow
Gaussian distributions. Taking a simple case, such as kK = 2,
then mode 1 and mode 2 could respectively represent the GFL
mode and the GFM mode, or alternatively, the normal control
mode and the LVRT mode, among other possibilities.

By contrast, the state transition equation for the problem
solved by the traditional SKF method is as follows:

% _ Z RONE G (x,u) +w,i=1,2,..,k )
i=1
7 = h (x,u) + V.

Upon comparing Eq. (1) and Eq. (2), it is observed that in
the control mode switching of an IBR, not only the state tran-
sition equations differ across modes, but also the definitions
and quantities of state variables x(*) may be entirely different.
The SKF method primarily deals with DSE problems under
conditions where the same state variables x exhibit different
state transition equations (such as changes in parameters
or fitting the actual nonlinear system using multiple linear
models), as the model shown in (2). The state space, i.e., the
number and definition of state variables in Eq. (2) are exactly
the same under different modes, so the output equations in the
problem solved by SKF do not change with different modes.
All state variables exist and are observable by the outputs
(i.e., measurements), if the outputs are configured properly.
However, they are unable to handle the IBR systems with
control mode changes, as the model shown in (1), where each
mode is associated with a distinct state space, and when the
system is in a certain mode, the state variables of the other
modes become completely irrelevant to the outputs. They are
either non-existent or unobservable in the actual system.

Discretizing (1) yields:

(Z)_ [ 1) 5o
X(j) = f()( X(j-1) )+W()a7f—1,2,-.-,f< N
z() = Z“h”(()), )+v,

=1

where j represents jth time step. As previously mentioned,
using only a single point of measurement for mode detection
may lead to unreliable results due to the uncertainty of mea-
surements. Therefore, measurements over a period of time can
be selected to form a sliding window, and the measurements
within this time window can be used for mode detection. Eq.
(3)in a sliding window can be consolidated as:

) i)+ (@)
xip) = £ (x(q) ’“<0>) +W<1>v

<@ — p() (@ ) (4)

Xz =19 (X0 0 ) T W), )
( ) _ G (1) (1)

XNy = £ (X(Nq)v u(Nfl)) +Win_y:

where N the number of time steps (measurement points)
within the time window; n inside the subscript brackets

indicates the nth point within the time window, u) is the
in ut at the last time step of the previous sliding window;
9% s the last point in the previous time window, with
1ts covariance matrix being obtainable from the DSE of the
previous time window, which is assumed to be P(z)+.
Eq. (4) can be transformed into the following form:

O(Z) — )_((i) o ?(i) ()_((i>’ﬁ7 XEZO))“F) 4 V_V(t),l — 1’ 27 .

%D @, (O
. . (1)’ (2)7...7 (N). . . .

vector within the sliding window, with the dimension being

n;N x 1; similarly, @ = [u); u(1);...; uv_1)] and w( =

{ El)) 22)), ...;ng\),)} represent the concatenated input and

K (5)

where x(0 = is concatenated state

. ()
process noise vectors, respectively; f = represents the con-
catenated state transition equation of mode ¢ within sliding
window; 0() is a zero vector having the same dimension as

i( Y éo)) is the last point in the previous time window, with
(i)+

its covariance matrix to be P( 0)
state transition equation of mode <.

Eq. (5) provides constraints on the state variables by the
state transition equations within the sliding window, while
the constraints by the measurements are determined by the
measurement (output) equation, which is as follows:

7= i: ¢ . p@ (i“), ﬁ) + 9, (6)

i=1

represents the augmented

where Z = [z(1);2(2); ...;Z(n)] is the concatenated measure-
ment vector of the sliding window, with the dimension being
m.N x 1 and Vv = [v(1); V(2);...; V()] is the concatenated
measurement (output) noise; h(*) represent the concatenated
measurement (output) equations for control mode .

It can be observed that the zero on the left side of each
equation in (5) can also be considered as a form of measure-
ment (pseudo-measurement). Therefore, by multiplying both
sides of the ith equation in (5) by ¢(*) and combining it with
(6), a unified augmented expression can be formed:

zzz ©

where z = [2,00;03);..;0("] represents the aug-
mented measurement vector with actual measurements and
pseudo-measurements given by state transition; Vv =
[¥; cDwD; D@ L e®w ()] represents the augmented
noise including output noise and process noise; 4 represents all

(Xi, 1) + v, )

the inputs including @ and xg(l);+ to XES))+. %@ is the same
as %) BO = [RO;00);..500-D5F0; 00+ ;009] g

the augmented measurement equations that incorporate the
state transition and output equations, where £ (i(i),ﬁ) =
%) —F@) (), 1@). For h(®, the parts corresponding to the
state transition equations of modes other than mode ¢ are all
Zero.

B. Maximum Likelihood Estimation and the EM Algorithm

Through the derivation process described above, an aug-
mented measurement equation for the multi-control mode
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IBR, combining the state transition equation and the actual
measurement (output) equation, is obtained as shown in Eq.
(7). Assuming that both the measurement (output) noise and
the process noise are independent Gaussian white noise with a
mean of zero, v.€ N (0, 02), the covariance matrix of v is a
block diagonal matrix, consisting of the covariance matrix of
the measurement (output) noise R and the covariance matrix
of the process noise for mode i (which is ¢ - Q") as its
diagonal blocks. Then the probability density function (PDF)
of augmented measurements can be expressed as follows:

p@) =Yg o (350 (x0.5)),  ®
=1

where p (z) represents the PDF of Zz.
Given z, the likelihood function can be formulated into:
L(RD,%®,., %0, qM, % q™) = log (p(7) . ©)

the maximum likelihood estimation of
, %) and ¢V, ¢2, ..., ¢ is to find:

] = arg ma (log (; oo (70 (= f‘)))) |

Therefore,
M %@

(10)
where X represents all dynamic state variables
%M %@ )“c("””)} and ¢ represents all the mode probabilities
[@V,¢®,...,¢"W]. The mode with the highest probability

can be deemed the detected control mode of the IBR. It is
challenging to solve (10) directly.

The EM algorithm is a powerful statistical tool for finding
maximum likelihood estimates of parameters in probabilistic
models such as (10). The EM algorithm consists of two steps,
namely the Expectation (E) step and the Maximization (M)
step.

1) Expectation step: The () function is defined as the
expected value of the log-likelihood function with respect to
the current conditional distribution of the given measurements
z and the current estimates of the parameters X and ¢:

Q(iq)zl?(bg<§:q®-p(iﬂﬁﬂ(i“%ﬁ)))).
i=1

(11
By utilizing the definition of expectation, E (z) =

> a;p (x;), it can be transformed into:

Q=

-

p(e) = 112) -log p (3]e) = 1) p (9 = 1)]
1

w® log [p(z]c =1)p (D =1)],

7

I
M=

1

-
Il

(12)
where w(® is called the membership probabilities of each
mode, typically considered as the output of the Expectation
step. By using the formula for conditional probability, the
expression for membership probabilities can be obtained:

ARG (i) —
w® =p (9 = 1]z) = NP(Z|C Dp () =1)

p (B[ =1)p (0 = 1),

13)

where p () =1) = ¢@. To solve Eq. (13), it is also
necessary to know all the probabilities p (Z |c(l) = 1) for [
from 1 to k. Observing (7), it is noted that when M =1,
aside from the measurement item (z in z) and the pseudo-
measurement item corresponding to the state transition equa-
tion of the ith mode (0 in %), the equations constructed
from the state transition equations of the other modes have
both sides equal to zero. Therefore, it does not affect the PDF
of p (2 ’c(i) = 1). Furthermore, since the measurement noise
and process noise within the time window are independent
Gaussian white noises, the conditional probability density
distribution follows a Gaussian distribution given by:

p (2 =1) = p (7RO (29, 7))

T G (IR CE R C]
= w(")e 2 2,
(14)
where:
: 1
w® = (15)

(vam)" " VRLflao |

2) Maximization step: The Maximization step assumes that
the membership probabilities, which have been calculated in
Expectation step, are known, and estimates the state variables
and the parameters g. This is done by maximizing a convex
lower bound J of the () function:

Jr (¥ =1)).

X,q :iw(i)'log(p(i c
= (16)

Substituting (14) and (15) into (16) yields:

(%, ) = argmin (J (%, 9)) =
(o () o o))

= HONEIORN)) H

oo ).
a7

Observing (17), it is noted that the first term is constant,
and the last two terms are independent of each other. More
importantly, in the last term, the weighted-least-square terms
of each mode i = 1 to k are independent from each other,
thus can be minimized independently. Therefore, maximizing
J can be divided into two steps:

a) Individual state estimation for each mode 7 = 1 to k:

1

=
@)™ (0

b) Probability estimation by differentiating the objective
function with respect to ¢ and equating it to zero based on
the constraint w 4+ w® + .. 4w = 1:

— =
Jdq ¢

z—h(Z x(z u H

— O (%0 ) H

min
%(1)

(18)

= w®. (19)
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The EM algorithm is deemed convergent when the differ-
ence between the objective function values of two consecutive
iterations is lower than a threshold. However, it is surprisingly
found that, according to Eq. (17), the state estimation of
each mode is not dependent on the probability of the mode,
even though the probability of the mode is dependent on the
state estimation result. Therefore, in this case, the entire EM
algorithm can be completed by first assuming a set of prior
values of ¢(?), then performing DSE for each mode, and finally
obtaining the posterior values of ¢(*) based on the obtained
state variables. There is no need to repeat the DSE for each
mode after ¢(¥) is updated. Therefore, no iterative computation
is required.

It can be observed that in order to use the EM algorithm to
obtain the probability of the IBR operating in mode £, it is first
necessary to solve x Weighted Least Squares (WLS) problems
of the form presented in Eq. (18), finding the state estimate Xy,
of each mode 7 = 1 to . Notably, according to Ref. [30], the
well-known DSE method for dynamical systems with a single
mode, IEKF, can be transformed into a WLS problem using the
Matrix Inversion Lemma (MIL) and the Gain Expression (GE)
Identity. For nonlinear systems, this equivalent WLS problem
for a sliding window can be expressed as [31]:

(z -0 (%9, 7)) R~ (z - hO (89, 7)) +

T

o (0 O (00, ﬁ)) Q™) (0 ONCE ﬁ))
(20)
It can be found that Eq. (20) and Eq. (18) are the same.
Consequently, an elegant conclusion is reached: part of the
Maximization step of the EM algorithm for IBRs with &
modes is equivalent to solving x sliding-window IEKF (SW-
IEKF) expressed in the WLS form (20). In other words,
it can be assumed that the measurements originate from
each mode 7+ = 1 to x and solve the standard SW-IEKF
problem in the WLS form (20). Afterwards, utilizing the
state estimates obtained from solving the WLS problems, the
probabilities of each mode can be evaluated by (19), another
part of the Maximization step of the EM algorithm, then mode
detection/recognition can be completed by choosing the mode
with the highest probability. Another beauty of this conclusion
is that the SW-IEKF problem for each mode Eq. (20) is an
independent computation task. Hence, parallel computing may
be applied to each node should there be a computational need.

C. Sliding-Window Iterated Extended Kalman Filter

As discussed above, the proposed EM algorithm embeds a
step where ~ instances of SW-IEKF should be solved. Here,
we introduce the process of SW-IEKF for any ¢ =1 to k.

1) Initialization. Obtain all measurements within the sliding
window z = [Z(l);Z(g); e z(N)]; obtain the state variable of
the last time step from the previous sliding window, designated
as x&”; use the state transition equation to recursively derive
the initial estimates of all dynamic state variables within the
sliding window %(V(9) where the superscript 0 indicates the
estimate after the Oth iteration.

2) Prediction. Using (4), we can obtain the prior estimates of
£(D0-), £ (H(0-), . £(9)(0-)
(1) )

i §(@)(0-) —
thestate variables X = i X (2) P XN

Step (1):

- i Sk pll pl)+ (x)+
Initialization H X(g) »eees Xy 5P *Pw) ..... l’m

Initialize the values for the parameters related to the state variables.
(0 50
X s

Step (2):
—» Measurement
collection

Collect measurements and store them in the buffer.
Start performing SW-IEKF from mode 1 (Seti= 1),

EM Method
A4
Compute the initial values of the pseudo-
Step (3): measurements for the state variables
Pseudo- through state transition equation.
P measurement &)=
computation 0 0
= )
Step (4):
Augn?ented Q" :mg((,_.m)l,‘\’:: (7Y Qi)
weight .
matrix R = diag(R.Q")
computation SW-IEKF
Algorithm
Step (5): i \.—..]}
Augmented
expression
construction {hL,
Step (6):
Tteratively
solve the
WLS
problem.
Step (7): - %
Update initial oo
—p Z GO
values. Foy =Fi) =G
Step (8):
Compute
LNR of
measurement
T
v - z
Sewor 1 ]
Conditional {#(#c" =1)=a"e
PDF i 0_ 1 )
computation (v27)"" RllQ]
Step (10): § L
To next mode; feivl
i<k ik
Step (11): (i 0 :1) PO
Membership q('b — ) = [)(Cm :l‘i) _ Kp ‘ p( ) .
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Step (12): Let p, (7]c"” =1) denote the result in current time window.
Bad data oy _ 0
detection Ap(i)=p (2l =1)-p. (21" =1).
m >
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Step (13): ol e o
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(=)
correction
Step (14):
Mode Based on the magnitude of the membership probabilities, determine the
| current mode and state of the system. ¢
determination

Fig. 1. Proposed EM-SW-IEKF algorithm.

After converting it to the form of (5), obtain the covariance
matrix of the prior estimates within the sliding window:

) T ) ) )
0D g i @O+ (g @) @ (4)
Q( ) = dzag ((F( )> P(O) (F( )) 7Q(0)7Q(0)7 (a3 Q(O)) ’
(21
wherein the first item of the block diagonal matrix Q_(i) is a
product of F(*), the Jacobian matrix of £(), and PEQﬁ, the
posterior covariance of xgé);r; the remaining N — 1 items are
: , the process noise covariance of mode 7.
{6) the p f mod

3) Correction. To facilitate the solution to (20), it can be
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rewritten in the following form:

%+ = argmin

R
() ’ { QM }

O 5D z0 &) (RO)
(iaug - haug (i(l)a ﬁ)) (R(l))
: (igfl?g - B:(allzg (i(l)v ﬁ)) ,
. 22)
where Zgﬂg = [2;0(] is the part of Z that extracts the pseudo-

= arg min
%(4)

measurements related to mode i; ﬁgfu)g = [ﬁ(i); f(i)} is the part
of h); R = diag (R,Q(i)). The Gauss-Newton method
can be used for solving this problem as follows.
3.1) Set iteration number j = 0 and setstate estimate
tolerance 7. Initialize the state variables X()() = %(0)(0-),
3.2) The Jacobian matrix, augmented residuals and the gain
matrix are evaluated as follows:

OhL, (x0W0)

qHG) — 272\
H PG (23)
re(:u)g = 2§th - hgzu)g <}~((z)’ ﬁ) ) (24)
GMH0U) — (ﬁ(i)(j))T(f{u))’lﬁ(i)(j). (25)
3.3) Compute the update value of the state variables:
AgDG) — (é(i)(j))_lﬂ(i)(j) (f{u))_lrﬁﬁg (26)
3.4) Update the state variables:
W0+ — 2OG) L A% (27)

3.5) If AX®DWU) > 7/ set j « j + 1 then back to step 3.2.
Otherwise, set x(V* = (00U and proceed to Step 3.6.
3.6) Compute the covariance matrix of the state estimates:

. e NT s N =1 o\ T RN |
P<z>+((H<z>u>> (Rm) H(z)(a)) :(Gu)u)) ,

‘ (28)
3.7) Obtain the state variable )“(E;\),'; at the last time step

from %(V* and obtain the corresponding sub-matrix PE%'

from P+, When the next SW-IEKF is initiated, they serve
as inputs for )“((E)H and P(SH.
3.8) Compute the normalized residuals of measurements

using posteriori state variable %()* and covariance matrix
P+ as follows:

() — ST ’ (29)
Q) _R_ (ﬁ(i))TP(i)+ﬁ(i)7 (30)
£ — (diag (20)) 7 (-850 (x0+.a)). 6D

By performing the above SW-IEKF for all x modes, the
optimal state estimates can be obtained for the EM algorithm.

D. Bad Data Detection and Correction

Bad data in measurements can be effectively detected and
corrected using the method of the Largest Normalized Resid-
ual (LNR) method [32]. However, in the proposed EM-SW-
IEKF purposed for IBRs with control mode switching, it is
first necessary to differentiate whether increases in normalized
residuals in the estimation result of a certain mode arise from
a mode switching event or bad data in measurements. The
rationale of differentiation between the two situations is as
follows. If it is a mode switching event, assuming the mode
of IBR switches from Mode 71 to Mode i, at the M -th point in
a window of length N, which means the first A/ measurements
originate from Mode ¢, while the remaining N — M measure-
ments from Mode is, the normalized residuals #(1) and #(2)
for both modes will be abnormally large. At this time, the
normalized conditional probability w(2) is not immediately
adjusted to recognize that the system is in Mode i5. However,
the conditional probability density p (Z|c("2) = 1) increases
because some measurements in this time window conform
to the patterns of Mode i5. In comparison, if it is bad data
instead of a mode switching event, as the bad data points do
not conform to any mode, the conditional probability densities
of all modes will decrease.

Therefore, two conditions should be concurrently met to de-
clare the detection of bad data: first, the maximum normalized
residual of the current Mode i, (’f'(i*) Oo) exceeds the set
threshold 7 (e.g., 7 = 5, representing five times the standard
deviation); second, the conditional probability densities of all
modes decrease, indicating that there are measurement data
that do not conform to any mode. Then, the bad data can be
eliminated or corrected using the following formula:

uu
},z“ . (QI:))uurq(f)
After bad data are corrected or ignored, the IEKF is performed
again, ultimately yielding a state estimation result where no
bad data is detected. On the other hand, if a possible mode
switching is detected, bad data detection and correction are
disabled during the current and subsequent cycles.

_ A(is)
U = arg mjax {’rj (32)

E. Summary

The introduction and derivation of the proposed EM-SW-
IEKF method shown in Fig. 1 have been completed. It can be
clearly observed that the SW-IEKF algorithm, corresponding
to steps 3 to 8 as described in Section II-C is part of
the Maximization step of the EM algorithm for iteratively
solving the maximum likelihood estimation problem (8). The
EM algorithm also encompasses corresponding to steps 9 to
11 for the Expectation step (13) and the other part of the
Maximization step (19), as described in Section II-A, which
is primarily used for calculating membership probabilities. The
bad data detection and correction described in Section II-D is
executed between steps 12 and 13. It can be found that for
the DSE and mode detection of an IBR with multiple control
modes, the state estimates of each possible mode under the
current measurement set can be obtained by first performing
SW-IEKF. Afterwards, using the EM algorithm, assuming
equal prior probabilities for each mode (since we have no prior
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Fig. 2. One-line diagram of IEEE 13-node test feeder with 3 IBRs.

knowledge to determine which mode is currently active), the
membership probabilities for each mode are calculated using
the state estimates. The mode with the highest membership
probability is considered to be the most likely current oper-
ating mode of the IBR, and its corresponding state estimates
are taken as the final DSE results (i.e., the state estimates of
unlikely modes are disregarded).

III. SIMULATION RESULTS

This section will verify the proposed method on multiple
test systems. First, it will be verified on a BESS in the IEEE
13-node test feeder. The test scenario is the switching between
the GFM mode and the GFL mode, wherein the definition and
number of state variables are completely different between
these two control modes. Then, it will be verified on a PV
inverter in the IEEE 34-node test feeder. The test scenario is
the switching between the normal operation (Maximum Power
Point Tracking, MPPT) mode and the LVRT mode, these two
modes have similar structures but differ only in the number
of state variables (some state locked in the LVRT mode). The
detailed state-space equations of all the IBR control modes are
provided in Appendix.

The true state of the system is simulated via Simulink
(Version 10.5, R2022a), and the EM-SW-IEKF algorithms
are implemented in MATLAB (Version 9.12, R2022a). The
measurement sampling frequency is 3840 Hz, i.e., 64 points
per cycle, a specification easily met by merging units (MUs),
digital fault recorders (DFRs), and smart inverters. It is worth
noting that for DSE purposes, both MUs and DFRs have been
extensively discussed in existing literature [33]. Moreover, the
recent IEEE standard recommends smart inverters to provide
data output capabilities that can be used for DSE [34] .

A. Case 1: Switching between GFM and GFL Modes

In the modified IEEE 13-node test feeder shown in Fig.
2, three IBRs integrated into the system include two PV
generation systems operating in the GFL mode and one BESS
capable of switching between the GFL and GFM modes.

For the BESS, regardless of whether it is in the GFL mode
or in the GFM mode, a set of voltage references is generated
and converted into Pulse Width Modulation (PWM) signals to
drive the inverter. The control mode selection is performed by

Mode Switch

Transform

BESS

GFL mode PLL

Equivalent

634

PWM Signal

$ TL2 ( :Q: ) E o ¥

Battery | CTPT

Equivalent

GFM mode

choosing the appropriate PWM signals from the two control
modes. Regardless of how the control mode changes, it can
be observed that the model and parameters of the physical
subsystem remain unchanged. For the control subsystem, its
dynamics conform to the form of (3), hence the proposed EM-
SW-IEKF method can be used for control mode switching
detection and DSE.

Initially, the BESS operates in the GFM mode with Virtual
Synchronous Generator (VSG) control. At 2s, a transition is
made from the GFM mode to the GFL mode, where the active
power reference value (0.7 p.u.) and reactive power reference
value (0 p.u.) are directly specified in the GFL mode. At 3s, the
active power reference in the GFL mode changes to 0.6 p.u.;
at 5s, a transition back to the GFM mode occurs; and from
8s to 8.1s, the system frequency drops from 60Hz to 59.75Hz
and remains at 59.75Hz until the simulation ends. The total
simulation time is 10s. It is important to clarify that in reality,
control mode switching and system disturbance events do not
occur as frequently as demonstrated in the simulation. The use
of specific simulation conditions and parameters is primarily
to verify the accuracy and reliability of the proposed method
within the constraints of limited computational resources. In
order to test the proposed method under bad data, at 1.25s
(GFM mode), Vlf] is observed to have abnormal values (0 p.u.)
at three consecutive sampling points; at 4s, uniformly changing
abnormal values (from 0.3 p.u. to 0) are observed in V,§; over
four consecutive points.

1) Seamless transition method: As shown in Fig. 2, the
IBR needs to select a set of voltage reference signals to drive
the inverter. When a control mode switching occurs, if there
is a significant difference between the two sets of voltage ref-
erences signals, it will generate a large disturbance. To avoid
such disturbances, a transition process can be implemented,
allowing the switching to be made when the outputs of the
two modes are the same. There are currently several methods
for transition between GFM and GFL modes [35]. A general
disturbance-free and delay-free transition scheme has been
used to achieve this transition [36].

The control block diagrams, state variables, and parameters
of the GFL and GFM modes are shown in Fig. 3. It is observed
that the GFM mode has morestate variables and parameters, as
well as more complex control logic, compared with the GFL
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GFM mode, there are also the equivalent angular frequency w;,
the power angle A6, and the flux linkage ¢; from the VSG.
Apart from the PI parameters, the GFM mode also introduces
additional parameters such as the virtual inertia coefficient J
and the virtual impedance L,, compared to the GFL mode.

When an IBR operates in one control mode, the other
idle mode does not output voltage references for closed-loop
control; hence, a relatively simple method is to lock all PI
blocks of the idle mode. Using this method, if the idle mode is
not activated in advance when a mode switch occurs, directly
switching will result in disturbances. The newly proposed
method in [36] adjusts the references tracked by the idle mode
to make its output the same as the active mode, thus making
the idle mode a standby mode for seamless switching. When
the IBR operates in the GFL mode, the GFM mode operates as
the standby mode, shifting from tracking the power reference
to tracking the voltage of the PCC, so that when the switch
occurs, the voltage at the PCC does not change abruptly.
Similarly, when the IBR operates in the GFM mode, the GFL
mode operates as the standby mode, shifting from tracking
the power reference to tracking the current of the PCC, so
that when the switch occurs, the current at the PCC does not
change abruptly.

Simulation results, as shown in Fig. 3, reveal that the seam-
less switching method achieves negligible disturbances when
switching between the two modes, significantly outperforming
the lock-integrator method. Additionally, at 3s, the GFL mode
effectively tracks the changes in the active power reference;
at 8s, as the transmission system frequency decreases, the
BESS operates like a SG, using inertia to provide active power
support, thanks to the VSG control. Both modes function
correctly, setting the stage for verification of the proposed
method for control mode switching detection and DSE. A
simulation of 8.5s real time is completed in 4.96 seconds, with
the VSG part taking 3.04 seconds and the GFL part taking 1.92
seconds, meeting the real-time requirements.

2) Control mode switching detection: As described in Sec-
tion I, the proposed EM-SW-IEKF algorithm first applies SW-
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IEKF to all possible modes, then calculates the membership
probability for each mode. In the case of switching between
GFM and GFL modes, there are only two possible modes.
Therefore, it can be considered that the mode with the higher
membership probability is the active mode that controls the in-
verter, while the mode with the lower membership probability
is the standby mode.

The length of the sliding window affects the performance
of the algorithm. Considering that mode switches do not
occur frequently in practice, the EM-SW-IEKF algorithm
is performed every 32 points (i.e., half a cycle) here. For
the measured voltage reference values (Vi; and V), ie.,
the controller outputs, Gaussian noise N (0,0.12) is added.
Given that the nonlinearity and complexity of the GFM mode
are significantly higher than those of the GFL mode, more
process noise is introduced during the discretization process.
Therefore, Q(GFM) js set to 2 x 10~ 7T and Q(GFL) is set to
1 x 10781

Simulation results, as shown in Fig. 4 (a), reveal that the
membership probabilities obtained through the EM-SW-IEKF
algorithm can effectively reflect the current operating mode
of the IBR. The conditional probability density between 2-5
seconds is shown in Fig. 4 (b). Simulation results indicate that
at 2.01s, the conditional probability density of the GFL mode
exceeds that of the GFM mode for the first time. After Ss,
the conditional probability density of the GFM mode exceeds
that of GFL mode. Note that the other events introduced
in the simulation (active power reference change at 3s and
frequency disturbance at 8s) do not affect the result of the
model switching detection, demonstrating that the proposed
method is highly robust.

3) DSE: Fig. 5 (a) and (b) present the estimation results
of state variables A and ¢y under the GFM mode. For
a VSG, which simulates SG operation, the virtual power
angle and flux linkage are considered very critical variables
to track. It is observed that when the IBR operates in the
GFM mode, the SW-IEKF for the GFM mode estimates them
accurately; whereas when the IBR operates in the GFL mode,
the SW-IEKF for the GFM mode produces results that are not
meaningful, because the IBR is not actually controlled by the
standby GFM mode. Because the proposed algorithm correctly
detects that the system actually operates in the GFL mode (Fig.
4), the DSE results for the GFM mode will be disregarded.

Similarly, estimation results for some state variables (M;
and M3) under the GFL mode are shown in Fig. 5 (¢) and (d).
When the IBR operates in GFL mode, the SW-IEKF for the
GFL mode estimates them accurately; when the IBR operates
in the GFM mode, the estimation results for these variables
are not meaningful and will be automatically disregarded.

Fig. 5 (e) and (f) illustrate the bad data detection and
correction performed by the proposed method. It is observed
that under different modes and when encountering various
types of bad data in different outputs, effective detection and
correction are achieved by the method. No adverse impact on
the DSE results or mode detection results is caused by using
the corrected measurements.

In conclusion, for a BESS with both GFM and GFL control
modes, the EM-SW-IEKF method enables accurate detection

of the control mode switching jointly with the estimation of
state variables of the active control mode.

B. Case 2: Switching between Normal and LVRT Modes

The control subsystem of an IBR contains numerous PI
blocks. To prevent overflow in the integrators within these PI
blocks under abnormal operating conditions, limiters should
be imposed. When the integrators reach their limit, the IBR
state transition equation undergoes a change, with a reduced
number of dynamic state variables, which cannot be handled
by traditional DSE methods for IBRs without considering
limiters. LVRT represents a typical scenario that triggers
current limitations. To maintain the same power output when
the voltage at the PCC drops, an increase in current is
necessary. The current output capacity of an IBR is finite,
primarily determined by the overcurrent capacity of IGBTs.
To ensure the low-voltage ride-through, the current must be
limited. Additionally, when the voltage at the PCC point drops,
increasing the reactive power output of the IBR to support
the grid voltage can further reduce the limit of active current.
In this section, we will demonstrate that the proposed EM-
SW-IEKF method is capable of detecting the event ofan IBR
entering the LVRT mode, while also performing DSE for the
IBR in both the LVRT mode and the normal operation mode.

Here, we will present results for a PV system connected to
the more complex IEEE 34-node test feeder. The system one-
line diagram and the control block diagram of the PV system
are shown in Fig. 6 (a). EM-SW-IEKEF is performed on an IBR
with a rated power of 500 kW connected to node 850. Other
components incorporated into the test feeder include two PV
inverters operating in the GFL mode, one BESS operating in
the GFM mode, and two dynamic loads [37].

Assuming the overcurrent capability of the IGBT is 1.2 p.u.,
to maintain a certain margin, the current limit Ij;,,, is set to
1.05 p.u. Compared with IBRs operating in the MPPT mode,
the LVRT mode mainly introduces two additional features. 1)
Reactive power control capability. Here, the reactive power
curve is designed in three segments. When the PCC voltage
(IVecc)) is below 0.7 p.u., the reactive power reference is
set to 1.05 |Vpeoc|, with the IBR striving to output maximum
reactive power; when the |Vpcco| is between 0.7 p.u. and
0.85 p.u., the reactive reference is kept constant at 0.735
p-u.; when the PCC voltage is above 0.85 p.u., the reactive
reference decreases linearly until the voltage exceeds 0.95 p.u.,
after which the reactive reference becomes zero. 2) Current
limitation. The total current should be below Ij;,, thus the
active current reference is limited.

In the simulation, the irradiance is set to 900 W/ m? (the
corresponding active power is 0.92 p.u.). The measurement
noise of the voltage reference is the same as in Case 1, being
Gaussian noise with a distribution of N (0,0.1%). The MPPT
mode and LVRT mode differ only in that one integrator is
limited, and their structure is similar to the GFL mode in
Case 1. Therefore, Q for both modes are set to 1 X 10781,
At 2s, the transmission system voltage starts to drop from
1.0 p.u., reaching 0.6 p.u. by 2.5s. At 4.5s, the transmission
system voltage begins to recover, returning to 0.98 p.u. by 5.5s.
The power output (both active and reactive power) of the IBR
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Fig. 7. Simulation results of mode detection during the switching between
LVRT and MPPT modes.

and the voltage of the PCC (voltage at node 850) are shown
in Fig. 6 (b) and (c). It is observed that as the transmission
system voltage decreases, the IBR increases its reactive power
output. When the voltage falls below 0.7 p.u., the reactive
power drops due to current limitations, maintaining a constant
reactive current. The active power is limited by the current.
The operation of the IBR conforms to the design. A simulation
of 5.5s real time is completed in 2.16 seconds, with the
MPPT part taking 1.18 seconds and the LVRT part taking
0.98 seconds, meeting the real-time requirements.

1) Control mode switching detection: Fig. 7 (a), shows that
before the voltage drop, the IBR operates in the MPPT mode,
with active power output close to 0.9 p.u., leading to rapid
saturation of the current as the voltage decreases, triggering
the LVRT mode. The conditional probability density from 2s
to 5.5s is shown in Fig. 7 (b). It can be observed that at 2s,
the conditional probability density of the MPPT mode rapidly
decreases. However, the rise in conditional probability density
for the LVRT mode takes some time, and at 2.2s, the system
is determined to have entered LVRT mode. This slight delay
in mode detection is due to the initial values of the dynamic
state variables in the LVRT mode having significant errors,
requiring time to track the actual dynamic state. Similarly, as
the voltage rises, at 5.06s, the IBR is determined to resume
operation in the MPPT mode.

2) DSE: In Case 1 with the switching between GFM and
GFL modes, due to the significant differences in the two con-
trol modes, the definition and the number of state variables are
largely different. However, in the switching between the LVRT
and normal operation (MPPT) modes, the overall control
does not undergo significant changes, but some state variables
become irrelevant due to saturation, leading to a change in the
number of state variables. Taking the system shown in Fig.
6 as an example, when operating in the MPPT mode, there
are four dynamic state variables, M; — M,. When the IBR
enters LVRT mode, M; is limited, leaving only My — My
as the state variables. Consequently, the corresponding state
transition equations and output equations also change.

Due to the decoupled control adopted by the PV system,
the state variables (M3 and M,) are related to reactive power
control and their control blocks remain the same under the
normal (MPPT) mode and the LVRT mode. Thus, when the
IBR operates in the LVRT mode, the SW-IEKF for both modes
achieve good DSE results, as shown in Fig. 8 (c) and (d). When
the IBR operates in the normal (MPPT) mode, the estimation
by the SW-IEKF for the LVRT mode exhibits a minor error.
This is because the LVRT mode only has three state variables,
while there are actually four state variables at this time, leading
IEKF to converge to an approximate but inaccurate result. For
the state variable related to active power control, as shown in
Fig. 8 (a), M; is only relevant in the normal (MPPT) mode,
and when the IBR operates in the MPPT mode, the SW-
IEKF of the MPPT mode also achieves accurate estimation
results. For Ms, as shown in Fig. 8 (b), it is observed that
when the IBR operates in the LVRT mode, the estimation
result of the SW-IEKF of the MPPT mode shows significant
error, while SW-IEKF of the LVRT mode estimates accurately;
when the IBR operates in the MPPT mode, SW-IEKF of the
MPPT mode obtains accurate estimation results. Overall, as
the results of the SW-IEKF corresponding to the mode with
the highest membership probability (see Fig. 7) is selected as
the final DSE result, the estimation is accurate through the
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entire simulation peoriod with control mode switching.
3) Influence among multiple IBRs: To better validate the

versatility of the proposed method under conditions where
multiple IBRs are connected to the power system with mode
switching, the BESS at node 832 is switched from GFL mode
to GFM mode at 1.5s based on the previous experiments. The
two control modes utilized by this IBR are the same as those in
Fig. 3. As the voltage of the transmission system decreases, an
increase in the reactive power output of the BESS is observed.

The mode detection result and the conditional probabilities
of the two modes are shown in Fig. 9 (a) and (b). It can
be observed that the proposed method still effectively accom-
plishes mode detection. The DSE results are presented in Fig.
9 (c) and (d). It is observed that when the IBR operates in a
certain mode, the proposed method effectively tracks the state
variables corresponding to that mode.

Furthermore, since the EM-SW-IEKF method is applied to
a single IBR using its own measurements, the complexity
of the power system and the number of IBRs do not affect
the proposed method. Possible interactions among multiple
IBRs are present as potential inputs in the DSE process. It
is observed that there is no impact between the DSE of the
BESS and that of the PV unit connected to node 850.

IV. CONCLUSION

A novel switching DSE method for IBRs with multiple
control modes is proposed in this paper. This is motivated
by the fact that the multiplicity of IBR control modes of IBRs
may render conventional DSE methods with the assumption
of a single system model ineffective. The proposed EM-SW-
IEKF method utilizes the EM algorithm for the estimation
of the probabilities of each control mode, leading to the
detection of control mode switching. It is remarkable that the
most intensive step of the EM algorithm is equivalent to the
standard SW-IEKF method for each mode, which significantly
facilitates the algorithmic implementation and the ease of
computation. Simulations demonstrate the capabilities of the

1 1

2 3 4 5 3 .
(¢) Flux of GFM mode and Reactive Power (d) M, of GFL mode

proposed method in IBRs with typical scenarios of control
mode switchings.

As an emerging topic, DSE for IBRs requires further
exploration, and future work may include the use of the
proposed method to detect faults and cyber attacks, and the
extension of the proposed method to IBR model identification.
Additionally, considering that the proposed EM-SW-IEKF
method requires comprehensive knowledge of the IBR model,
which may not always be fully available to power system
operators from IBR manufacturers. Even though generic IBR
models and system identification methods could be applied,
future work may also involve the combination of data-driven
modeling with the proposed switching DSE method.
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APPENDIX

The state transition equations and output equations of the
four different control modes of the IBRs used in this paper
are shown in Fig. 10. Since all the IBRs are voltage source
inverters, the output variables consist of two components,
namely the voltage references in the dg-axis (V5 and V
indicated in red in the figure). The state variables at the current
time step are indicated in blue. In Case 1, the GFM mode
contains seven state variables, including angular frequency
w;, power angle A, flux linkage ¢y and the outputs of four
integrators (M; to My). The state variables in the other three
GFL modes are all the outputs of the integrators (M7 to My),
and due to the current outer loop being limited under LVRT,
there are only three state variables (Ms to My).

The sampling interval is represented by At, w denotes
the process noise, and v denotes the output noise. The state
variables shown in green represent the predicted values for the
next time step, calculated based on the discrete state transition
equations.

The definitions of the relevant parameters for the two modes
in Case 1 are as follows: J, represents the inertia constant;
D, and D, represent the damping coefficients for active and
reactive power, respectively; K, represents the reactive power
coefficient; L,, denotes the virtual impedance of the VSG; £,
to kps and k;y to ky4 represent the PI parameters of the four PI
blocks; L;, L, and C represent the inductance on the inverter
side, the inductance on the grid side, and the filter capacitance
of the LCL filter, respectively.

The relevant external inputs of Case 1 are defined as fol-
lows: Pg}M and g}fM represent the active power reference
and reactive power reference in GFM mode, respectively;
PéEPfL and Qgelé ;, represent the active power reference and
reactive power reference in GFL mode, respectively; wg®
represents the grid angular frequency obtained from the PLL;

ex ex 1 . exr exr
va and Vy, are the grid voltage measurements; gd> Lgq»
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Fig. 10. State transition equations and output equations in this paper.

I;y, and I77" are the current measurements on the grid side and
inverter side, respectively. Finally, P*, %, and V7 represent
the active power, reactive power, and voltage.

The definitions of the relevant parameters for the two modes
in Case 2 are as follows: kp; to k,4 and k;; to k;4 represent
the PI parameters of the four PI blocks; L; and L, represent
the inductance on the inverter side and grid side of the LCL
filter, respectively; Ij;,, represents the current limit.

The relevant external inputs of Case 2 are defined as
follows: V[ng represents the DC voltage reference obtained
from the MPPT algorithm; Qgelff ;, Tepresents the reactive
power reference; wg® represents the grid angular frequency
obtained from the PLL; V77" and V" are the grid voltage mea-
surements; Io5, 1o, 157, and 177" are the current measurements
on the grid side and inverter side, respectively; V5% represents
the voltage measurement of the DC capacitor. Finally, P* and
Q* represent the active power and reactive power calculated
from the above measurements.
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