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Abstract—Traditional Dynamic State Estimation (DSE) tech-
niques focus on the filtering of noise and gross errors in
output variables, which are commonly assumed to come from
measurements. In power systems, however, input variables may
have substantial uncertainty as well, as many of them are also
measured or telecommunicated signals. This paper discusses the
impact of uncertainty in different types of inputs and proposes
an Adaptive Iterated Cubature Kalman Filter with Uncertain
Input (AICKF-Ucl) approach to systematically handling this
problem. In the prediction stage, the method utilizes the Cubature
transform to address system nonlinearity. Then, it converts the
correction stage into a problem akin to Weighted Least Squares
(WLS) regression, enabling iterative joint estimation of the state
and uncertain input. Additionally, this method incorporates an
adaptive algorithm for real-time estimation of noise distribution.
Furthermore, the method is devised to have the unique capability
of detecting and suppressing gross errors in input variables,
and differentiating them from those in output variables. The
advantages and versatility of the proposed method are validated
through DSE on a Permanent Magnet Synchronous Generator
(PMSG) based wind turbine in a distribution system and a
synchronous generator (SG) in a transmission system.

Index Terms—adaptive estimation, cubature Kalman filter,
dynamic state estimation, inverter-based resources, power grid
monitoring, situational awareness, uncertain input

I. INTRODUCTION

HE modern power system is faced with numerous opera-
tional challenges as the penetration of renewable energy
increases. The widespread deployment of Inverter-Based Re-
sources (IBRs) complicates the dynamic characteristics of the
power system with a broader time scale, less inertia, a more
distributed structure, and more diverse control strategies. To
address these challenges, system operators require enhanced
monitoring and situational awareness capabilities to dispatch,
stabilize, and protect the grid. Leveraging high-resolution
measurement data emerging in power systems, such as PMU
(Phasor Measurement Unit) and merged units [1], Dynamic
State Estimation (DSE) has become a promising technique
that may potentially provide these functionalities to system
operators. Popular estimation methods for dynamic systems,
such as Extended Kalman Filtering (EKF) [2], Unscented
Kalman Filtering (UKF) [3], Cubature Kalman Filtering (CKF)
[4], Ensemble Kalman Filtering (EnKF) [5], and Particle
Filtering (PF) [6], have been applied to the DSE of power
systems, as have been thoroughly reviewed in [7].
Conventional estimation methods [2]-[6] mentioned above
are all based on several common assumptions about the
dynamic system, such as known model structures, parame-
ters, inputs, and measurements of system outputs, and the
process noise and measurement noise have known (typically

Gaussian) distributions. In practice, however, assuming that
all the aforementioned information is completely known may
not always be realistic. To handle the issue of estimator
instability caused by unknown non-Gaussian noise and gross
errors, various robust estimators have been proposed. Ref. [8]
combines the generalized correntropy (GC) loss with Adaptive
CKF (ACKF), forming AGCLCKEF, to address this issue, with
results reported on the New England 68-bus test system.
Ref. [9] adopts a similar approach to Ref. [8], integrating
the generalized maximum correntropy criterion with EnKF
to form GMCC-EnKF, which effectively implements DSE for
Doubly-Fed Induction Generator (DFIG) wind turbines under
non-Gaussian noise. Ref. [10] combines the IEKF with the
generalized maximum likelihood approach to form a GM-
IEKF technique. The robust KF framework can also be utilized
to address the issue of inaccurate model parameters [11], and
it is shown that joint estimation of parameters and states is fea-
sible [12]. To mitigate the impact of non-Gaussian noise and
randomly occurring denial-of-service (DoS) attacks, Ref. [13]
proposes an resilient DSE method by combining the Cauchy
kernel maximum correntropy (CKMC) optimal criterion with
the CKF (CKMC-CKF) and verifies the effectiveness of this
method in the IEEE 39-bus system.

Apart from unknown noise distributions and inaccurate
model parameters, another practical challenge is the difficulty
in obtaining complete and accurate input information. To cope
with the challenge of unknown inputs, various novel DSE
methods have emerged. One of the most popular family of
approaches is the variation of KF methods with Unknown
Input (UI), referred to as xKF-UI in this paper. Ref. [14]
employs the EKF-UI method, where the torque obtained from
the previous step is used as an input during the prediction
step. The unknown input and state of the SG are jointly
updated in the correction step. Ref. [15] uses the CKF-UI
to estimate the unknown inputs of SGs. This method involves
an initial biased CKF step, followed by the correction of the
unknown input using the output information. Subsequently, an
unbiased CKF step is carried out using the corrected unknown
input. Ref. [16] employs CKF-UI to perform joint estimation
of unknown wind speed and states for DFIG wind turbines.
A notable difference from the conventional CKF-UI is that
after the biased estimation, the relation between the unknown
input and measurements is directly obtained through power
series. Ref. [17] builds upon the CKF-UI and introduces an
adaptive interpolation process to enhance stability. Ref. [18]
extends the UKF-UI and includes the estimation of process
noise distribution. In addition to the xKF-UI framework, there
are other methods to address Uls in DSE. For example, Ref.
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Condition: Giveny, f, H, u, 0, and the Gaussian distributions of w and v, estimate x.

Methods: EKF [2]; UKF [3]; CKF [4]; EnKF [5]; PF [6]. The review is in [7].

Condition: Giveny, f, h, u. 0 is
unknown or uncertain, or the
distributions of w and v is
unknown, estimate X.

Methods: AGCLCKEF [8]; GMCC-
EnKF [9]; GM-IEKF [10]; Robust
KF [11-12]; CKMC-CKF [13].

Condition: Giveny, f, h, 0, and the distributions of w and v, u is unknown, estimate x.

Methods: EKF-UI [14]; CKF-UI [15-17]; UKF-UI [18]. L-infinity method + State
observer [19]; UKF-UI + H-infinity control [20]; Augmented state estimation in linear
system [21]; DSE with Uls and cyber-attacks [22].

Fig. 1. The main areas and distinctions in DSE research within power systems.

[19] utilizes the L-infinity method to design a state observer,
assuming the system possesses local Lipschitz stability and
guarantees the state estimation error norm relative to the
worst case disturbance. Ref. [20] combines UKF-UI with H-
Infinity control principles to achieve satisfactory estimation
results with non-Gaussian noise. For distribution networks,
Ref. [21] constructs a linear system and performs augmented
state estimation in the presence of Uls. Ref. [22] proposes a
DSE method for SGs in the presence of both cyber-attacks
and Uls with a linear system model.

Overall, current DSE research in power systems primarily
focuses on three areas, which addresses different problems
associated with a dynamic power system model as shown in
Fig. 1. The first area addresses the classical DSE problem,
which assumes complete knowledge of the system information
and focuses on estimating dynamic state variables. The second
area addresses the DSE problem when the noise distribution is
unknown or when there is uncertainty in the parameters. The
final area addresses the problem where some input parameters
are unknown, specifically in the presence of Uls. Despite the
reported effectiveness of the aforementioned DSE methods for
systems with Uls, a vast majority of the existing DSE methods
still have “’bipolar” assumptions about input variables in power
systems: they are either assumed to be precisely known, or
assumed to be completely unknown (as indicated by the names
of the methods, with the term “unknown input”). In many
practical situations in power systems, however, the inputs
are not precisely known nor completely unknown, meaning
that some information is provided about the inputs, but with
uncertainty (both noise and gross errors). This happens when
the inputs also come from measurement devices just as the
outputs, or from remote agents via communication subject
to corruptions. For instance, in the DSE models of SGs,
the terminal voltage phasor is treated as an input, and the
terminal current phasor is treated as an output [14], [23].
While it is recognized in conventional methods that the output
(current phasor) comes from measurement devices (PMUs in
this case) with imperfection, it is commonly ignored that the
input (terminal voltage phasor) is also obtained from PMU
measurements and is subject to noise and gross errors as well.
In addition, it is often assumed that the excitation current
is a completely unknown input, while it is actually possible
to transmit its measurements, although it may carry noise or

gross errors. Similar situations also exist in the DSE of IBRs.
Unlike the assumptions of existing works that wind speeds
are completely unknown inputs [16], [17], wind turbines
commonly have wind speed sensors, while their low sampling
rates and accuracy levels create significant uncertainty in the
measurements. All the examples described above involve the
condition of Uncertain Input (Ucl) (as opposed to Unknown
Input (UI)), for which limited research has been conducted.
One approach is to incorporate these uncertainties into the
process noise [23], [24]. However, when the noise of input
variables are propagated through the state transition equations,
they will yield correlated uncertainty between different states,
which cannot be accurately characterized by the independent
process noise model. Furthermore, these methods lack the ca-
pability of detecting and suppressing the impact of gross errors
(leading to anomalies or bad data) in the inputs, which do not
follow probability distributions assumed by the estimator.

In view of the aforementioned challenges, we propose
an innovative Adaptive Iterated CKF with Uncertain Inputs
(AICKF-Ucl) to harvest uncertain information about inputs,
providing an effective DSE solution to many practical appli-
cations such as the monitoring of SGs and IBRs. The main
contributions are summarized as follows.

1) A universal AICKF-Ucl framework is proposed for
dynamic systems with various types of input structures. By
reformulating the state transition equations and defining three
different types of inputs, it enables the joint estimation of state
variables and all types of inputs appearing in both the state
transitions and/or output equations.

2) By devising an extended noise estimation algorithm,
the statistics (i.e., variances) of noises in input variables can
be estimated, and the optimal filtering performances can be
achieved online. The propagation of input noise through non-
linear state and output equations are also accurately modeled.

3) The integration of the Largest Normalized Residual
(LNR) method into the AICKF-UclI framework allows explicit
and accurate detection and correction of bad data in input
variables, which is commonly mistakenly blamed as bad data
in output variables in conventional methods due to their
inability to inspect input variables.

The effectiveness of the proposed method is validated on
a virtual system test case with all types of input structures,
followed by practical power system test cases with both SGs
and IBRs, and both transmission and distribution systems.

II. ADAPTIVE ITERATED CKF WITH UNCERTAIN INPUTS
A. Problem Formulation

A continuous-time dynamic system with inputs is com-
monly described by state transition equations and output
equations written as follows:

d
{ %:fc(x,uﬂ)—i—w, )
}_’ = hC(Xauaa) +Va

where f. and h,. respectively denote the state transition func-
tion and output function of the continuous system; x € R"=*?
is the state variables; u € R™* %1 is the external inputs;
y € R ! is the measurements of output; @ is the parameters
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of the system, and w and v represent process noise and
measurement noise, respectively.
Discretizing (1) yields:
Xk+1 :f(xk,uk,ﬂ) +Wk,, (2)
Vi1 =h (Xpq1, Wy, 0) + Vi,

where k represents the time step, f and h respectively de-
note the state transition function and output function of the
discretized system.
The currently prevalent DSE methods involving Uls extends
system formulation (2) as follows:
{ Xk+1 :f(xk,uk,G)Jerkerk, 3)
Vi1 = h(Xp41, Upr1,0) + Vi,

where d represents Uls, and u represents known and determin-
istic inputs. This representation differentiates Uls from known
inputs, separating the influences of Uls on the state transition
equations from those of the other inputs. It facilitates the joint
estimation of state variables and Uls.

However, as mentioned in the Section I, the xKF-UI frame-
work with Eq. (3) assumes inputs to be either exactly known
(error-free) or completely unknown, which does not reflect
many scenarios in the real world. Moreover, there are two more
limitations that were not mentioned in Section I. 1) The influ-
ences of the Uls on the state transition are linearized, which
may introduce large errors in systems with strong nonlinearity.
2) In general, Uls can appear in different structures in the
equations, i.e., only in state transition equations, only in output
equations, or in both set of equations. The representation used
in existing works, Eq. (3), can only handle the first structure,
not the second and third ones.

To overcome the limitations of (3) widely used in existing
works, this paper proposes a generic formulation as follows:

Xp4+1 = f (xk,uz,ui,ﬁ) + Wi,
Yit1=h (Xk+1,uz+1, u}kLJrl’ ‘9) + Vit 4)
ﬁi-s-l u£+1 + Ci+1v ¢ € {a,h}
a;, =ug +cy,.

where u® € R"« <! represents inputs that influence both the
output equations and the state transition equations simulta-
neously; u/ € R™ X! represents inputs that only influence
the state transition equations; and u” € R™ ! represents
inputs that only influence the output equations. Meanwhile,
as mentioned earlier, the true values of the inputs cannot be
obtained; rather, the measured values of the inputs ﬁf 4 are
available with noise cfH where ¢ € {a, h}; similarly, for the
control input u‘,i applied to the state transition equation at the
time step k, we can only obtain its noisy measurement ﬁf(. It
should be noted that a practical system may not always include
all three types of inputs. However, the proposed formulation
(4) provides a comprehensive representation of systems with
Ucls, allowing the proposed DSE algorithm to address systems
with all types of input structures. By employing Eq. (4) to
describe the Ucl problem, we can qualitatively understand
the relationship between different inputs and outputs. For
instance, we can estimate uf and u} solely using the outputs,

while the estimation of u£_1 is also influenced by the state
transition equation; the estimation of uj will affect the state
transition equation in the next time step, thus the impact of
the previous step’s estimation accuracy of ug on DSE needs
to be considered. For detailed analysis, please refer to Section
II-C. It is also evident from Eq. (4) that, unlike traditional
state variables, the transition rule of inputs is not known,
and therefore, only the output equations are available for
them. This difference prevents the traditional KF framework
from being directly applied to Ucl problems, necessitating the
development of a new framework (AICKF-Ucl) to achieve
joint estimation of state variables and input variables.

B. The Proposed AICKF-Ucl Algorithm

Following the Section II-A, the proposed AICKF-Ucl
method explicitly recognizes the uncertainty of input vari-
ables and extends the traditional KF framework to filter the
uncertainty. It equivalently transforms the correction step of
the KF problem with Ucls into a weighted least squares
(WLS) regression problem, while still employing the Cubature
transform to mitigate the impact of system nonlinearity in state
transition equation. Mechanisms for handling the estimation of
unknown noise variances and the detection and correction of
gross errors (leading to bad data) are also integrated for both
input and output variables. The specific steps are as follows.

1) Initialization. Set time step k = 0, and initialize the pos-
terior estimate of the state variables Xy, and the covariance
matrix f’k(ﬂ; initialize the posterior estimate of uy ) and
the covariance matrix CZ( ny

2) Time increment. Set k < k + 1.

3) Prediction. According to Eq. (4), to predict the state
variables at time step k, it is necessary to have the posterior
estimate of the state variables at time step k£ — 1, §k—1(+)’
the posterior estimate of u®, uf_, (+)° and the value of
uﬁ_l( - The first two can be obtained from the previous time
step, Wflﬂe the last item needs to be iteratively updated. The
equations for the prediction step are written as follows:

_ Rp_
Ry =T ([ k1) ] ,ugl). 5)

a
Ue1(4)
For Eq. (5), X,_1(4) and ﬁ271(+) are known, and their
covariance matrices can be obtained from the previous DSE
process, denoted as Pfial( e However, ui_l needs to be

updated through the correction step. The latest u£_1 can be
used for computation in each iteration. As the state transition
equations are nonlinear, a first-order Taylor expansion, as
done in the EKF approach, can introduce significant errors.
Therefore, we use the Cubature transform method to predict
the state variables and their covariance matrix at time step k.
The Cubature points are computed as:

/\ajua % § —
Yirkor = (PEi) G+ [ ﬁiii: } (©)

where (; represents the i-th column of matrix
Vg + g Ln,+nys —Ing+n,] Un,+n, represents the n, +n,
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dimensional identity matrix). Propagate them through the
state equations:

Xiklk—1 = (Xi,k—uk—l ; ui_l) . @)
Then, we can obtain the predicted values of the state variables
along with their covariance matrix:
N 1
MO T 2 (g + 1)

Ngtna

Z Xi,klk—15 (®)

i=1

Xk|k—1 Xk|k— 1T ~ ~T 9
T2 +na) Xp(—)Xp(—) T Q=1 (9)

4) Correction in the form of WLS regression. Ref. [25] uti-
lizes the Matrix Inversion Lemma (MIL) and Gain Expression
(GE) Identity to demonstrate that in the EKF, the correction
step can be equivalently represented as a WLS problem,
and the traditional EKF obtains the solution to this problem.
Leveraging this elegant conclusion, here the correction step is
also transformed into a WLS problem:

Py =

~
~

. ~ TS 1 -

Xj(+) = arg min { (Xk(,) — xk) Pk(l_) (Xk(,) — xk)
X
+(Fr — b (xi, W) Ry (31 — h(xy, ﬁk))} :
(10)
For systems with Ucls, however, the three different types of
inputs also need to be estimated. Meanwhile, we have noisy
measurements for each input. Therefore, the above-mentioned
WLS can be augmented as follows:
. “~ TS (~

arg min {(xk(_) — xk) Pk(lf) (xk(_) — Xk)

f h
Xk, W Up_q s “k
a

+(g _uk> ( B l(ﬁ%_uk)

( -1 uk 1>T(C£ 1)_1 (ﬁi—l - ui—l)

+

+(a - )" (Ch) (af - u)
+<k b (xe uf uf)) Ry (9 — b (i uf,uf)) |

11
where ug, ﬁifl, and ﬁz respectively represent the mea-
sured values of the three types of inputs, which may carry
noise and even gross errors (to be handled in a subsequent
step); Cy, Ck 1> and CZ are the covariance matrices of
these measured values, respectively. We can concatenate all
the unknown variables as an augmented state vector, X, =

[ui_l,xk,ug,ug] . Then the augmented output equations
can be expressed as follows:

u£:1
Xi — Xi(-)
h (%) = u?
ol

h(xk,ui,uZ)

12)

Similarly, we construct an augmented measurement vector
T
Ve = [ﬁifl,o,ﬁg,ﬁg,yk} . Then problem (11) can be
rewritten as follows:
- T -
Xy = argmin { (yk —h (ik)) R,;1 (yk —h (ik)>} ’
Xk
R;, = diag (C£_17f’k(_), C¢,Ch, Rk)
(13)

Eq. (13) formally adheres to the structure expected of a
\iVLS problem. However, according to Eq. (9), it is evident that
P k(=) contains the unknown variable uifl , which implies that
the weights R, in the WLS problem also contain an unknown
variable. This makes the entire problem more complex and
difficult to solve. It should also be noted that, based on
Eq. (7) and Eq. (8), u£71 is present not only in the first
term of h (%) but also in the second term Xj(—). Given
that each iterative update of u£71 has a modest impact on
P k(—)» @ simpliﬁcation is applied to facilitate solving Eq. (13).
Initially, the value of P k(—) is calculated using the previously
known u£71 (or the measured value in the first iteration),
thereby eliminating unknowns from the weights in the WLS
problem. This transforms the problem into a standard WLS
form, allowing a WLS solver to obtain an updated ui_l,
which is then used to further update f’k(,). This process is
iterated until convergence is achieved. Through this method,
a stable solution to Eq. (13), which is otherwise difficult to
solve directly, is gradually obtained.

5) Iterative solution. As the correction step of KF filtering
has been expressed as a WLS problem (13), iterative opti-
mization algorithms such as the Gauss-Newton method, the
Levenberg-Marquardt algorithm, etc., can be used to solve it.
In this paper, we present the Gauss-Newton method for solving
(13), while other solution algorithms to nonlinear least squares
problems can also be employed.

5.1) Set iteration number j = 0. Initialize the augmented
state vector X;p, set the state estimate tolerance 7 > 0,
and bad data detection threshold x > 3 corresponding to a
confidence level of 99.74% [26].

5.2) Compute the Jacobian matrix and the gain matrix:

- oh (X, 1)
H . (%) = —"F 14
ik (Xjk) FE (14)
Gin (Rn) =H], Zin) R Hx (Xjn).  (19)

There are two points to note here. Firstly, the predicted
value of §k(,) contains information about u£71~ Therefore,
when computing the Jacobian matrix for the first subvector of
h (X&), Xj(—) cannot be treated as a constant Secondly, Pk( )
will be updated along with the update of uk 1> 0 here Ry, is
variable with the number of iterations j, denoted as Rjyk.

5.3) Evaluate the augmented state update:

AR;p = Gjr(®i0) T H], (R0 RS, {5% ~h (ij,.k)} :
(16)
5.4) Update the augmented state vector:

ij+1,k = ij,k =+ Aij,k- (17)

5.5) Check the termination criterion. If |[AX; ;| < 7 then set
Xk(+) = Xjk and Hk = Hj k,» and go to step 6. Otherwise,
set j < 7+ 1 and go to step 5.6.

5.6) As previously mentioned, utilize the updated ui L1 (@
subvector of the augmented vector X; ) to accomplish the
prior prediction of the state variables Xy and form the
augmented vector according to Eq. (5) - Eq. (8) in step 3.
At the same time the weights for the WLS problem, Py,_)
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are recomputed according to Eq. (9) in step 3. Then go to step
5.2.

6) Update the posterior covariance matrix of the augmented
state vector as follows:

~ -~ ~ \ 1 ~
P = (HZR;;Hk) =G (18)
7) Bad data detection and correction. When the error in a
measurement exceeds the normal range of noise, it is deemed a
gross error, and the data point is deemed bad data. Traditional
DSE methods typically do not consider the possibility of bad
data in inputs, only focusing on the possibility of bad data
in the output. For example, Ref. [27] employs a combination
of the robust exponential-absolute-value-based estimator and
the UKF to mitigate the effects of bad data or outliers.
Another example is the resilient estimator employed in Ref.
[13] , which can also reduce the influence of outliers on the
outputs. However, as discussed earlier, many input variables
in power systems also originate from measurement devices all
are telecommunicated, thus are also subject to gross errors.
In order to detect and suppress bad data in both inputs and
outputs, this paper implements the LNR method [28], [29].

7.1) Compute the residual covariance matrix:
Qi =Ry, — H (i) Py Hy () - (19)

7.2) Compute the normalized residuals by dividing the
absolute values of the residuals by the corresponding diagonal
elements of the covariance matrix:

f‘g = (diag (Qk)) : (5’1« - fl (ik(-&-))) .
7.3) Find the input/output measurement corresponding to
the largest normalized residual as follows:

(20)

u:argmax{‘f%N‘}, 20
J
where f‘iN is the j'" element of FL.

7.4) If |[T3N| > & then the u'® entry is deemed bad data
and corrected as follows:

Su k_ =u

i< V' - = (22)
then go back to step 5. Otherwise, go to step 8. When
bad data is detected, removing the bad data of measurement
and performing DSE is a common approach. In this paper,
the correction method is used for ease of implementation,
as it does not require modification of the dimensions of
the measurement vector, measurement function vector, and
Jacobian matrix. In practice, both the removal method and the
correction method are technically acceptable. Another method
for handling bad data is to de-weight it without correction,
such that its impact on the DSE result is reduced. However, in
our approach, the detected bad data is actively corrected until
the magnitude of the error is in the range of regular noise. In
this process, the measurement should keep the same weight
(i.e., keeping the same error variance as regular noise) such
that the hypothesis testing can be correctly performed.

8) Noise adaptation. In view of the fact that the statistics
of input/output/process noise are typically unknown in power

system applications, an adaptive estimation method based on
covariance matching [30] is devised to obtain an approxi-
mate estimate of the noise distribution variances. Covariance
matching can be divided into two types based on the infor-
mation it uses: Residual-based Adaptive Estimation (RAE)
and Innovation-based Adaptive Estimation (IAE) [30]. As the
correction step is transformed into a WLS regression problem
where the residuals are explicitly obtained, RAE is adopted in
the proposed method. In addition, the residual data within a
certain time window is used to to reduce errors.

8.1) Compute the covariance matrix of the augmented
residuals as follows:

1 N . = T

A== Y (-EEe) (3 -B&wm))

j=k—M+1
(23)

where M represents the length of the time window.
8.2) Compute the covariance matrix of the augmented noise
as follows:

Rk‘(+) =A;+ f)k(Jr) 24)

Based on Eq. (13), the posterior covariance matrices of mea-
surement noise (i.e., the diagonal block of Ry, ) correspond-
ing to actual measurements) and of process noise (i.e., the
diagonal block of f{k(+) corresponding to states minus the
prior covariance matrix f’k(,)) can be extracted.

9) Go back to step 2.

In summary, this subsection outlines the specific process
of the AICKF-Ucl method. Addressing potential nonlinearity
in the state transition and output equations, AICKF-Ucl em-
ploys Cubature rule and iterative solving methods respectively.
Furthermore, AICKF-UcI utilizes the LNR method to detect
and correct bad data in the inputs and outputs, and employs
an adaptive algorithm to update the covariance matrix of the
noise. The flowchart of the algorithm is provided in Fig. 2.

C. Observability, Redundancy and Accuracy

If the complete set of the states of a system can be
reconstructed from its outputs, then the system is considered
observable. The observability of a dynamic system has been
extensively studied. Ref. [31] provides some methods for
assessing observability in both linear and nonlinear systems.
Compared with conventional DSE methods wherein only the
states are to be estimated, the AICKF-Ucl framework increases
the number of variables to be estimated (i.e., the Ucls); how-
ever, unlike Uls which are completely unknown and dependent
on output measurements for inference, each Ucl has its own
direct measurement; hence, all the Ucls are always observable.
In conclusion, including the estimation of Ucls will not turn an
observable system into an unobservable one; in other words,
for a given dynamic system, as along as all the state variables
are observable in the conventional KF framework where the
inputs are assumed to be completely known, the system will
remain observable in the proposed framework where the inputs
are uncertain but with measurements.

In addition to observability, the information redundancy can
also be analyzed, which is defined as the ratio of the number
of independent equations that can be used to infer unknown
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Initialize the values for the parameters related to the state variables.

io(ﬂ = E("o)
Step 1): 5 .Y
Initialization Pogy = E[(xo B x“(*))( X“(*)) ii
Sgt the noise covariance.
C;.C;.Cy.R,.Q,
Step 2): H
_>| Time update i ke k+l |
A Xk 1(+)
A (Pk I(+ ) ¢+
llA 1(+)
Step 3): Li k-1 :f(xiA 1k~ oY uj,
State prediction R ngtn,
by CT Xi() = T Z} Yoapir-
~ ) SRy ST ~
Py :%_x XA +Qk 1
v
~ a T
Xy :[“A( 1 xu“u“:] .
Stend) yk:[x/ 0,1}, 1, Yk:' .
€ : hic a h a h
Tl—ansg,mljng h(xk)_[uk 15Xk ’x’(( )> Uy s “/C h(xk’u}mui )]
the form ﬁ =dzag(C,( 15 Ek(=)5 CkickaR )
%, :arg}min{(yk ~h(%, )) R/ (7, -h(x, ))}
v
5.1) Set iteration number j=0
o oh(%,,)
52) H,, (XM ) = X, :
Step 5): ( ‘) /k( )R H/k(i )
I i find C: R h
oo 8% 2O () (50 )RA L9 (S, )]
5.4) X=X, +AX,,

If the absolute value of nay entry of step 5.3 is greater than the
limit, then proceed to step 5.6: otherwise, proceed to step 6.

5.6) Use the method in step 2 and the results from step 5.4 to

perform the prediction step again and return to step 5.2.

5.5)

Step 6):

Update Py = (HZR;lkﬁA ) =G,
covariance
0, =R, - R (%,)P, 1, (,)

Step 7): .
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v
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Step (9):
Iterate

Fig. 2. The flowchart of proposed AICKF-Ucl.

Go back to step 2 |

variables to the number of unknown variables. Obviously,
any observable system must have a redundancy level that is
greater than 1. The higher the redundancy level, the better
the noise filtering and bad data processing capabilities. In the
conventional KF framework with inputs are completely known,
the goal is to estimate the state vector with a dimension of n,,
while there are n, state transition equations and n, output
equations. Hence, at each particular time step, the redundancy
level is (ny, + ng)/ny > 1. A larger number of n, leads
to a higher redundancy level. For AICKF-Ucl, due to the
recognition of the imperfection of input variables, the number

of variables to be estimated is increased. In addition to the n,
state variables, we also need to estimate n y +ny, +n, external
inputs simultaneously. At the same time, since these inputs are
obtained through measurements, ny + nj + n, measurement
equations are suplemented. Therefore, one has (ny,+n;)/n, >
(ny+ngy+ng+np+ng)/(ng+ns+np+n,) > 1, namely, the
redundancy level is reduced due to the imperfection of input
variables, yet it is still greater than the critical level of 1.

Another aspect that needs to be discussed is the accuracy
of DSE results. Both qualitative and quantitative analyses can
be performed by examining the augmented gain matrix G; j
shown in Eq. (25) (For the sake of brevity, we have omitted
the subscript 'k’ for the covariance matrix and moved the
superscripts that represent different variables, such as ’a’ and
’h’, to subscripts).

Examining the diagonal blocks of the matrix in Eq. (25),
each diagonal block exhibits a form similar to the innovation
(or the so-called pre-fit residual) covariance in the traditional
KF framework. Quantitative analysis can be performed by
computing the inverse of matrix G ;, which yields the covari-
ance matrix of the errors in the estimates of all the variables.
However, a qualitative analysis that examines the structures
of the diagonal blocks can provide very useful insights as
well. Taking the accuracy of u,’: 1 as an example C !
represents the contribution of the measurements of ul b1 1tself
while F}FP IFT + represents the contribution of the inference
based on the state transition equations. When F? is small,
the estimation result will rely more on the measurements of
the Ucls themselves, whereas, a larger FF}F will make the
estimation more dependent on the inference based on the state
transition equations. A practical example of the former case
is when the discretization of (1) takes a very small time step
length (as is the often case of the DSE of IBRs), where the
estimation of u£_1 can be relatively inaccurate unless its own
measurement is of very high quality. This will be demonstrated
in the case 1 of Section III.

III. SIMULATION RESULTS

To validate the performance of AICKF-Ucl, this section will
present simulation results on three different test cases: a virtual
dynamic system, a PMSG in the IEEE 34-node test feeder, and
a SG in the New England 68-bus test system.

A. DSE of a Virtual Dynamic System

The three types of inputs in Eq. (4) may not all exist in the
objects of the power system that actually require DSE (such
as SG, IBR, etc.). Therefore, to demonstrate the algorithm’s
versatility to handle systems with all three types of Ucls in
Eq. (4), i.e., u?, u’f, u”, a virtual dynamic system is designed,
as shown in Fig. 3.

Suppose there is a wooden block with a mass of m fixed in
a wind tunnel using a spring with an elastic constant r. The
wooden block experiences an external tension force F' and, at
the same time, experiences air resistance. The air resistance
is proportional to the square of the relative velocity between
the block and the air, with a proportionality coefficient of
n. As a result, we have two state variables, which are the
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Fig. 3. Hypothetical experiment: a wooden block in a wind tunnel.

relative position (z,) and velocity (zs) of the wooden block,
to estimate. The state transition equations involve two inputs,
namely the tension force upr and the wind speed u.,:

dx,

@ — Ts (26)
d;ts — % (uF +mg — ray — nuy, + xs)z) )

This virtual dynamic system has two measurements. One is
a sensor on the wooden block measuring the relative velocity
between the block and the spring (z,), and a rigidly linked
sliding rheostat measuring the current (z;) through an external
voltage (uy ). The output equations are as follows:

{ Yr = ot
Ys = Uy + Ts.

In this system, ur only exists in the state transition equation,
uy only exists in the output equation, and w,, simultaneously
exists in both. It is a simple and small system but with all
three types of external inputs present in (4).

To perform DSE, independent Gaussian white noise is added
as process noise and measurement noise, with standard devia-
tions of 0.0026 and 0.1, respectively. The Standard Devitations
(SDs) of the noises in inputs wu,, u,, and up are 0.5, 0.5,
and 1, respectively. The sampling frequency is 240Hz. Three
widely-known baseline methods, CKF, IEKF, and EKF-UI, are
performed along with the proposed AICKF-UcI method.

1) State estimation result: For the purpose of comparison,
all Q and R values used in the DSE methods are set to
their true values. From Fig. 4 (a) and (b), it can be observed
that, using the Root Mean Square Error (RMSE) as a metric,
the AICKF-Ucl method consistently achieves superior results
compared to the other methods. In Fig. 4 (b), it can be
observed that that EKF-UI, as a typical method of the xKF-
UI framework, produces much higher state estimation errors
than the proposed method. This is because it adds an input

27)

7
0 0
HTR-'H, HTR-'H, (25)
C;!'+HTR'H, H'R'H),
TRr-1 -1 Tp-1
H'R 'H, C;! +HI/R'H,
i /90”#\ :MW . ‘L |
1f ‘\ [ ¥ |
24 A N I
”/ / HWW
*‘W‘/ CKF: RMSE = 0.050 ! ERF-Ui. Emii*z:;g 1
18 ! IEKF: RMSE=0.050 1 CKF: SE = 0.
e "¢ i
@, ® =« T
Fig. 4. State estimation results under Ucls.
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Fig. 5. Bad data detection and correction of input variables.

variable to be estimated without the introduction of additional
information, leading to a drastic declination of information
redundancy. The proposed method, on the other hand, further
incorporates measurements of inputs as additional information,
leading to enhanced information redundancy and estimation
accuracy compared with the conventional xKF-UI framework.

2) Bad data detection and correction: In this experiment,
bad data are intentionally introduced into the input variables as
follows: From 10s to 10.67s, the measurement of u,, becomes
0; measurement anomalies. From 12.5s to 12.92s and 23.33s
to 23.5s, uy and up are set to 8 and -5, respectively.

The traditional CKF and IEKF methods, both integrated
with the LNR test for the bad data detection and correction,
are taken as baselines for comparison. The results are shown
in Fig. 5 and Fig. 6. AICKF-Ucl successfully achieves the
detection and correction of bad data in input variables and
maintains high accuracy of state estimation. The traditional
methods falsely blame the bad data in the input variables on
the output variables, leading to incorrect output corrections
and deterioration of state estimation accuracy. This is due to
their underlying assumption of precise inputs and inability to
inspect gross errors in input variables.
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Fig. 7. Variance estimation results of some inputs and outputs.

3) Noise adaptation: The condition of unknown variances
of input, output, and process noise distributions is also tested.
Simulation results shown in Fig. 7 validates that the adaptive
algorithm effectively drives the covariance estimates of the
noise close to the true values.

In the simulation tests, the length of time window M is
set to 128 (equivalent to two fundamental waveform cycles).
The standard deviation of the input signal u,, noise is abruptly
changed at 21s, becoming 60% of the previous one (resulting
in the covariance changing to 36%). The standard deviation of
the output measurement noise zy is gradually reduced starting
at 5s, reaching 60% of the previous value at 10s and then
remaining constant. As seen in Fig. 7, whether the standard
deviation of the noise changes abruptly or gradually, the
method can accurately track the changes in noise covariance
when a time window of 128 points is used. Furthermore, when
zooming in on the tracking of u,, at 21s, it can be observed
that the adaptive algorithm effectively converges to the new
covariance within approximately 34 ms, which aligns with
expectations.

4) Estimation results of inputs in the state transition equa-
tions: This subsection studies the estimation of input vari-
ables that appear in state transition equations, which are
very common in power systems. As analyzed in Section II-
C, different values of F; will affect the accuracy of the
estimation. In the process of converting continuous differential
equations into difference equations, longer discretization step
length leads to higher values of Fy, which helps increase
the accuracy of input estimation. To verify this observation,
all other conditions are kept constant, and only the sampling
frequency is varied in this experiment. The advantages of
AICKF-UclI and the influence of sampling frequency on xKF-
UI will be concurrently assessed.

The estimation results at a sampling frequency of 240Hz
are shown in Fig. 8 (a). The RMSE of the EKF-UI results
is even larger than that of the measurement. AICKF-Ucl
produces the most accurate estimation results. Furthermore,
if we further increase the sampling frequency, EKF-UI fails
to converge. Upon reducing the sampling frequency (i.e.,
increasing the discretization step length), as depicted in Fig. 8
(b), the estimation accuracies of both methods are considerably
improved as expected. Again, the RMSE of the proposed

—h —— Actual value

(a): Sampling frequency is 340Hz (b): Sampling frequency is 120Hz

Fig. 8. Estimation results of inputs in the state transition equations.

AICKF-Ucl method remains consistently lower than that of
the EKF-UI method.

While high sampling frequencies (short sampling intervals)
can decrease the accuracy of input estimation, excessively low
sampling frequencies (long time intervals) bring additional
challenges, for example, increased discretization errors of
nonlinear systems, reducing the precision of DSE results.
Therefore, for DSE involving Ucl or Ul in the state transition
equations, an appropriate sampling frequency that is neither
too high nor too low must be selected.

B. DSE of a PMSG in a Power Distribution System

Through the experiments in the virtual dynamic system with
all three types of input structures, we have gained insights into
the performance of the AICKF-Ucl algorithm in all aspects.
Next, it will be validated in actual power system test cases.

In this section, DSE is performed on a PMSG wind turbine
connected to the IEEE 34-node test feeder, illustrated in Fig.
9. The rated capacity of the PMSG is 1.2 MVA. Additionally,
PV systems, energy storage systems, and dynamic loads are
integrated into the grid to represent an comprehensive active
distribution system. The disturbances to the PMSG primarily
stem from fluctuations in the wind speed. The state transition
equations of the PMSG are illustrated in Fig. 9. The wind
speed of the PMSG begins to increase from 8 m/s at 2s,
reaching 9.5 m/s at 2.4s, and remains stable until the end of
the simulation. The transmission system experiences a voltage
change at 3.5s. The voltage drops from the initial 1.05 p.u. to
1.0 p.u. at 3.6s, and then stabilized for the remainder of the
simulation.

The output variables are the mechanical rotational speed
of the PMSG, w?,; dqg-axis currents on the PMSG side, IZ,
and [ §q, the voltage of the DC-link capacitor, V3 ; the active
power output to the grid, P,

Based on the proposed framework, the input variables can
be categorized as follows: the wind speed v, and the four
control signals VG, Vo, Vi, and V5 solely influence the
state transition equations, thus forrmng u’. Viyd and VF
influence both state transition equations and output equations,
thus forming u®. There is no output categorized into u”.

In the DSE of the PMSG, the dynamic model account for
the electro-magnetic transients of inductors and capacitors,
so Point-of-Wave (PoW) measurements are directly used by
the DSE. The sampling frequency of measurements is set
as 480Hz, which is down-sampled from PoW measurements
provided by PMSG sensors, whose sampling rates are typically
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Fig. 10. State estimation results under Ucls.

thousands of kilo Hertz. Taking into account the relatively
limited accuracy of measurement devices in the distribution
system and the challenge of accurately measuring wind speed,
the standard deviations of input noise are as follows: The wind
speed v, from lower-precision measurement devices is set to
10%, Whlle the remaining electrical quantities from the same
measurement devices are set to 2%.

1) State estimation result: Three methods were chosen
as baselines, namely IEKF, CKF, and ACKF. Due to the
poor performance of the IEKF-UI (low accuracy and numer-
ical stability) observed in Case 1, it is not included in the
baseline methods for comparison. To test the performance
under unknown noise statistics, the initial measurement noise
covariance estimate is set to four times the true value. Some
results are shown in Fig. 10, and the RMSE of different
methods are shown in Table L.

TABLE I
THE RMSE OF DIFFERENT DSE METHODS.

AICKF-Ucl  ACKF IEKF CKF
Wim 1.32% 1.85% 1.90% 2.44%
Iog 1.24% 1.35% 2.22% 2.13%
Ieq 1.45% 1.76% 2.35% 3.07%
Iy 3.02% 4.99% 3.50% 3.54%
Ioq 7.03% 9.78% 6.04% 6.01%
Vbo 0.54% 0.70% 0.62% 0.70%

From the results, it can be observed that compared to
CKF, ACKF improves estimation accuracy for DSE of w;,,
Iyq and I,,. When comparing two methods for handling
nonlinear systems, IEKF and CKF, no significant differences
are observed. Therefore, only CKF is selected as the baseline
for further comparison. On the other hand, the AICKF-Ucl
method exhibits significantly higher accuracy than all baseline
methods for all state variables except I, with a similar of
RMSE. The results verifies that the by explicitly considering
the uncertainty of inputs, the proposed method can achieve bet-
ter filtering performance compared with conventional methods
that do not explicitly model and filter noise in inputs.

In terms of computation time, EKF-UI is the shortest, at
0.033s; followed by IEKF at 0.12s; CKF at 0.23s; and AICKF-
Ucl at 0.68s as well as the noise adaptation capabilities.
However, it is still much faster than real time (estimating
the trajectory of 4s takes 0.68s, which means that at a
sampling/reporting frequency of 480 Hz, completing 1920
DSEs over 4s requires only 0.68s, with an average of just 0.35
ms per DSE.), indicating its satisfactory capability of real-time
applications. Note that the proposed DSE method is designed
for a distributed estimation scheme where each estimator only
tracks the state of an individual dynamic component of a power
system, so the dimension of the dynamic system modeled by
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Fig. 11. State estimation results in the presence of bad data in the inputs.

the DSE is moderate. Given that PMSG is a relatively complex
component, and this simulation also examines a relatively
demanding case where the DSE adopts an EMT model and
intakes POW measurements with a much higher frequency than
that of phasor-domain PMU measurements, the fact that the
DSE works well for this case is a good indication that it is
likely to satisfy the real-time computational requirements of
all potential use cases of the proposed DSE.

2) Bad data detection and correction: As traditional meth-
ods assume that input information is reliable, bad data
detection and correction are only for processing outputs
(conventionally-defined “measurements”). Therefore, bad data
in input variables are attributed to abnormalities of the mea-
surements of output variables, leading to incorrect correction
actions. Additionally, input noise can interfere with the LNR
statistical test, resulting in erroneous outcomes. To validate the
robustness of the proposed AICKF-UcI algorithm against bad
data in input variables, two experiments are conducted.

First, it is assumed that at 1.2s, due to communication
anomalies or a cyber attack, V from the controller (an input
of the PMSG system) becomes 0 and lasts for 0.25 cycle. The
DSE results are depicted in Fig. 11. The proposed method
accurately identifies and corrects the erroneous input signal,
and the accuracy of state estimation is maintained. In contrast,
for the traditional CKF method, there are significant deviations
in the state estimates.

Next, we consider the scenario where bad data is present in
the output variables (conventionally-defined “measurements’).
At 1.41s, due to sensor anomalies, the measured value of the
PMSG output, V5, becomes 0 and lasts for half a cycle.
The results of DSE are shown in Fig. 12. Similar with the
situation where bad data exists in the inputs, the LNR method
effectively detects and corrects the bad data in the outputs.
Therefore, it can be concluded that the proposed method can
clearly distinguish gross errors in input variables and those in
output variables, a unique capability that conventional methods
do not have.

C. DSE of an SG in a Power Transmission System

Finally, the proposed AICKF-UclI framework is validated on
an SG in the 68-bus 16-machine test system, which is based
on a reduced-order equivalent model of the New England test
system (NETS) and New York power system (NYPS) [24],
shown in Fig. 13.

An SG is modeled by a set of sixth-order differential
equations, where E:i and E; represent transient EMF due to
the flux in g-axis damper coil and field flux linkages; ¢4 and
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Fig. 12. State estimation results in the presence of bad data in the outputs.

g represent subtransient EMFs due to the fluxes d and ¢
axes damper coils, respectively; w and § represent the rotor
speed and angle, respectively. For the parameters, x;, x/d,
and x4 refer to the d-axis subtransient reactance, transient
reactance and synchronous reactance, respectively; T;O and
T;O represent d-axis subtransient time constant and transient
time constant, respectively. The subscript ¢ indicates g-axis
parameters. x5 is the armature leakage reactance and J is the
inertia coefficient. Vy, V;, I; and I, represent the voltage and
current in d and q axis, respectively. All the data are in per
unit values.

The inputs of the state transition equation include the input
torque T, provided by the governor, the excitation voltage
Eq supplied by the excitation system, and the current phasor
I, and I; (representing the real part and the imaginary part
respectively) obtained through PMU. The system output is
the terminal voltage phasor V,. and V; (representing the real
part and the imaginary part respectively) obtained through a
PMU. At 1s, a three-phase-to-ground fault occurs along line
54, and at 1.18s, the faulted line is disconnected. The DSE is
performed for SG 1. The reporting rate of the PMU is 120
frames per second, meeting IEEE standard requirements [32].

Ref. [24] employs the UKF method and incorporates the
influence of inputs through an augmented matrix in both
the prediction and update steps. It demonstrates improved
estimation results under conditions of relatively low noise
levels. Since the comparison between AICKF-UcI and various
methods under higher noise has already been validated in the
PMSG case, in this experiment we opt for a situation similar
to that in Ref. [24]. Considering the use of PMUs as mea-
surement devices in the transmission system, it is reasonable
to assume that the measurements have relatively small errors
under normal conditions. In this case, the performances of
different DSE methods do not make a significant impact. As
shown in Figs. 14 and 15, when there is no gross error in
the measurements (either input or output), traditional CKF
yields very satisfactory estimation results. This also indicates
that the traditional approach of not considering input noise
in DSE for SG has some validity. However, gross errors still
exist due to issues such as the lack of calibration, loss of
GPS signals, communication disruptions, and cyber attacks,
which pose severe threats to DSE applications. Notably, these
gross errors can potentially appear in the output as well as
in the input as both voltage phasors (outputs) and current
phasors (inputs) are measured by PMUs. This will cause
problems for conventional DSE methods as they do not have
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the capability of inspecting bad data for inputs as they do
for outputs. Meanwhile, a unique advantage of AICKF-UclI is
that it can explicitly identify and correct bad data in the input
signals caused by various reasons, thereby reducing the impact
of gross errors in input variables on the estimation results.
Therefore, the focus of this test case is on the detection and
correction of bad data in input variables.

Given that electrical measurements for SGs are typically
taken using PMUs, which provide accurate measurements even
during significant changes in electrical quantities due to faults,
the standard deviation of noise for electrical quantities is set
to 1%, while the noise standard deviation for torque and
excitation voltage is set to 10%.

In this case, we take the CKF as the baseline for comparison,
as it has similar performance with ACKF in the case when
the noise level is low. Suppose that at 8.325s, I; experiences
bad data, becoming -10, and persists for two cycles. From the
results shown in Fig. 14, it can be observed that traditional
DSE methods like CKF, which do not estimate and inspect the
inputs, are significantly affected by the presence of bad data
in the inputs. By contrast, the AICKF-Ucl method effectively
detects and corrects bad data in the inputs, thereby tracking the
true state trajectory very closely even in the presence of bad
data in system inputs. The RMSE results, as shown in Table
II, clearly indicate that when there is no bad data in the input,
the proposed method performs consistently with the traditional
CKF method. However, when bad data is present in the
input, as illustrated in the figures, the performance of AICKF-
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TABLE III
DETECTION RATES OF THE LNR METHOD UNDER DIFFERENT BIASES.

Bias (+) 4.00  4.50 5.00 5.50 6.00 6.50 7.00
Detection Rate  17% 24% 49% 66% 78% 87% 95%
Bias (%) 8.00 9.00 10.00 12.00 15.00 20.00 30.00
Detection Rate  99%  100%  100%  100%  100%  100%  100%

Ucl only slightly decreases, whereas the traditional method,
lacking joint estimation of the inputs, results in significant
errors.

In addition, we also verify the detection and correction
capabilities of AICKF-Ucl when bad data is present in the
outputs. We assume that at 12.5s, V,. becomes 0 due to an
abnormal operating condition of the PMU. As demonstrated
by the results shown in Fig. 15, the LNR method is also
capable of effective detection and correction when bad data is
present in the outputs. Overall, the simulation results shown
in Figs. 14 and 15 demonstrate the proposed method’s unique
capability of distinguishing between gross errors in input and
output variables. This is a highly desirable feature for systems
like SGs where both inputs and outputs come from PMU
measurements and are prone to corruptions.

To validate the detection capability of the LNR method,
10 random V, measurements are selected between 14s to
15s, and biases with a given magnitude are added to these
measurements, which already contain noise. This simulation
with 10 bad data points is repeated 10 times, effectively
generating 100 different instances of bad data. The detection
rate of bad data is evaluated on these 100 instances of bad
data that are randomly selected but with the same magnitude
of bias. Then, this whole process is repeated with different
magnitudes of biases, gradually increasing from 4o (which
means 4 times the standard deviation) to 30c. With the
threshold « set to 5, meaning that deviations exceeding 5 times
the standard deviation are considered bad data, the detection
rates under different magnitudes of biases are shown in Table
IIIL. It is observed that when the bias reaches 9o, the detection
rate reaches 100%.

Ten simulations of the AICKF-Ucl without any bad data
are repeated, and it is found that completing a 15s simulation
takes an average of 0.4922s per run, which means that at
a sampling/reporting frequency of 120 Hz, completing 1800
DSEs over 15s requires only 0.4922s, with an average of
just 0.27 ms per DSE. Subsequently, ten simulations of the
AICKF-Ucl with ten bad data points, each with a 100 bias, are
repeated, and it is observed that completing a 15s simulation
takes an average of 0.4944s per run. The results show almost
no difference between the two, as the additional loops required
by the LNR method after detecting bad data are very limited
and do not impose a significant computational burden. This
demonstrates that the computational efficiency of proposed
method meets the real-time performance requirements for
practical DSE of SGs.

IV. CONCLUSION

Traditional DSE methods focus on the noise filtering
and bad data processing of output variables (conventionally-

defined “measurements”), and treat input variables as either
precisely known or completely unknown. Considering that
in power systems, input signals are often obtained through
measurement and/or telecommunication as well, this paper
focuses on addressing situations where inputs are uncertain,
i.e., with available information that may carry noise or gross
errors. The proposed AICKF-Ucl method aims at the joint
estimation of inputs and states by adaptively filtering uncertain
input information in nonlinear power systems.

Simulations are first carried out in a virtual system, which
included all three types of input structures, to verify the effec-
tiveness of the proposed method. Then, DSE tests are carried
out on a PMSG in the IEEE 34-node test feeder and on an
SG in the New England 68-bus 16-machine test system. These
tests validate the versatility and reliability of the AICKF-
Ucl method for applications ranging from IBRs to SGs, and
from distribution systems to transmission systems. Results
show that the proposed method can 1) achieve high state
estimation accuracy in the presence of substantial input noise,
2) distinguish between and suppress the impact of bad data
in inputs and outputs, and 3) estimate the unknown statistics
of various noise and enhance filtering performance. These
features are highly desirable for many DSE applications where
inputs may be corrupted in the complicated measurement and
communication environment of power systems.
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