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Abstract--This letter addresses the incorporation of transmis-
sion line sensor measurements into power system state estimation 
(SE). These measurements are obtained from various locations 
along a line and are different from conventional RTU measure-
ments at line terminals (i.e., substations).  We propose a measure-
ment function that can relate the current measurements at arbi-
trary positions along a line to the existing state variables at substa-
tion buses using line parameters and sensor locations. Hence, these 
measurements can be easily incorporated into SE without altering 
its state vector or system model. Simulation results on the IEEE 
14-bus system and the NPCC 140-bus system demonstrate that the 
incorporation of line sensor measurements can significantly en-
hance SE’s noise filtering and bad data processing performances. 
 

Index Terms-- State estimation, transmission line monitoring, 
line sensor, current measurement. 

I.  INTRODUCTION 
VERHEAD line sensors have been gaining popularity 

in improving the situational awareness of power systems 
in recent years [1]-[3]. They are typically installed along the 
span of a transmission line to monitor its detailed conditions in 
support of line-level applications such as dynamic line rating 
(DLR) [4] and fault detection and location [5], etc. However, 
this new source of information has not been incorporated into 
system-level applications, such as state estimation (SE). The in-
corporation of such measurements can enhance the information 
redundancy that contributes to the noise filtering and bad data 
processing performance of SE [6]; It also expands the set of use 
cases of line sensor assets and increases returns on investments.  

As conventional SEs only use the measurements at the termi-
nals of transmission lines (RTUs at substations), they typically 
employ the lumped π-equivalent model of the lines [8]. In con-
trast, overhead line sensors are usually equipped along the span 
of a line, with varying current measurements at different loca-
tions due to the distributed shunt capacitance along the line. 
Hence, the measured current cannot be easily related to the ex-
isting state variables at substation buses (bus voltage phasors). 
A straightforward idea is to segment the transmission line into 
multiple π-models and add virtual nodes at the locations of the 
sensors; however, this will change the system models used by 
conventional SEs and introduce unnecessary states at the loca-
tions of sensor installations, which are not of interest to SE. 

To address this issue, this letter proposes a novel method for 
incorporating the current measurements of the sensors installed 
along a transmission line into SE without changing the conven-
tional SE model (i.e., without introducing virtual nodes and 
states). Specifically, current measurements collected by over-
head line sensors are related to the state variables of the two 

terminal buses via the sensor location as well as the line param-
eters. Simulation results show that with its ease of implementa-
tion, the proposed method can fully utilize sensor measure-
ments to enhance SE’s noise filtering and bad data processing 
performance to a significant extent. 

It should be noted that the primary objective in this letter is 
to develop a novel approach to enhance SE by measurements 
from existing line sensors primarily purposed for other applica-
tions, such as DLR and fault detection/location. Hence, the op-
timization of sensor placement for SE performance enhance-
ment will not be considered. Moreover, regarding measurement 
uncertainty modeling and advanced SE methods for countering 
the uncertainties, please refer to our recent work [7]. 

II.  ENHANCED POWER SYSTEM STATE ESTIMATION WITH 
OVERHEAD LINE SENSORS 

A.  Proposed Measurement Functions for Line Sensor Current 
Overhead line sensors are typically equipped along the trans-

mission line to monitor diverse quantities such as current and 
conductor temperature [1]-[3]. As line sensors are installed 
along the span of (as opposed to at the terminal of) a line, the 
representation of their current measurements at least requires a 
split of the π-equivalent model into two, as illustrated in Fig. 1. 
However, this will change power system models formulated by 
conventional SE, and introduce new state variables at the virtual 
node, kV , which is not of interest to SE. In this section, we will 
derive a novel measurement function for incorporating line sen-
sor currents without expressing kV .  Based on the π-equivalent 
model of the line between bus i and sensor k, the current phasor 
measurement can be expressed as follows, 

 ( ) ,ik i k ikI V V Z= −  (1) 

 ,si k siI V Y=   (2) 
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Fig. 1.  π-equivalent models with and without overhead line sensors. 
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 ,kk ik siI I I= −  (3) 
where iV  and kV  represent voltage phasors at bus i and sensor 
k, respectively; ikZ  and siY  are the series impedance and half 
shunt admittance of the line segment between bus i and sensor 
k; ikI  and siI  represent the current phasors through ikZ  and siY
, respectively; and kkI  represents the current phasor at sensor k. 
 Substituting (1) and (2) into (3), the current phasor at sensor 
k can be expressed as, 

 ( ) .kk i k ik k siI V V Z V Y= − −   (4) 
Similarly, based on the π-equivalent model of the line between 
sensor k and bus j, the current phasor can alternatively be ex-
pressed as follows, 

 ( ) ,kj k j kjI V V Z= −  (5) 
 ,sj k sjI V Y=   (6) 
 ,kk kj sjI I I= +  (7) 

where jV  is the voltage phasor at bus j; kjZ  and sjY  are the se-
ries impedance and half shunt admittance of the line segment 
between sensor k and bus j; kjI  and sjI  are the current phasors 
through kjZ  and sjY , respectively. 

Substituting (5) and (6) into (7), the current phasor at sensor 
k can also be expressed as, 

 ( ) .kk k j kj k sjI V V Z V Y= − +   (8) 

To eliminate kV , (4) and (8) can be transformed as follows, 

 ,
1 1

ik i
kk k

si ik si ik

Z VI V
Y Z Y Z

 = −
+  + 

 (9) 

 .
1 1

kj j
kk k

sj kj sj kj

Z V
I V

Y Z Y Z
 = − +

+  + 
 (10) 

By adding (9) and (10), kV  will be eliminated, allowing the 
expression of the current phasor at sensor k, i.e., kkI , by using 
the state variables at the terminals of the line, iV  and jV , and 
network parameters, 

 .
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 (11) 

Finally, the current phasor at sensor k can be expressed as: 
 ,kk i jI A V B V=  −   (12) 

where 
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Z and Y are the series impedance and shunt admittance of the 
transmission line between bus i to bus j, respectively; ρ is the 
ratio between the length of the line segment between bus i and 
sensor k and the total length of the line between bus i and bus j. 

To obtain the current magnitude from (12), the law of cosines 
can be adopted. First, the two terms in (12) can be expressed by 
using the polar coordinate, 

 ( ),i i i AA V A V   =   +  (15) 

 ( ),j j j BB V B V   =   +  (16) 

where θi and θj represent voltage phase angles of buses i and j, 
respectively; |A| and |B| represent the magnitudes of variables A 

and B, respectively; and φA and φB represent phase angles of var-
iables A and B, respectively. Then, the measurement function of 
the current magnitude measured by sensor k is as follows, 

( )
2 22 2 2 cos .kk i j i j i j A BI A V B V A B V V    =  +  −     − + −  (17) 

B.  State Estimation Incorporating Line Sensor Current 
Consider the set of measurements that includes current mag-

nitude measurements collected by overhead line sensors: 
 ( ) ,= +z h x e  (18) 

where ( ) 1 ,
Tm s T T

I
+ 

  =  z z z  is the measurement vector, which 
consists of the conventional measurements 1mz  and the 
current magnitude measurements collected by overhead line 
sensors 1s

I
z ; m and s are the numbers of measurements z 

and Iz , respectively; ( ) 1 ,
Tm s T T

I
+ 

  =  h h h  is the measurement 
function vector, which consists of the conventional measure-
ment functions 1mh  and the proposed line sensor current 
magnitude measurement function 1s

I
h , i.e., (17); 1nx  

is the same state vector as in conventional SE; n is the number 
of state variables; ( ) 1m s+ 

e  is the measurement error vector. 
 The weighted least squares (WLS) state estimator aims to 
minimize the following objective function: 

 ( ) ( ) ( )1min ,
T

J −   = −   −   x
x z h x R z h x  (19) 

where ( ) ( )m s m s+  +
R  is the measurement error covariance. 

By exploring the Gauss-Newton method [8], the non-linear 
WLS SE can be solved via an iterative solution scheme as:  

 ( ) ( ) ( )
11 1 1ˆ ˆ ˆ ˆ ,l l l l−

+ − −    =   −
   

x H x R H x R z h x  (20) 

 1 1ˆ ˆ ˆ ,l l l+ += + x x x  (21) 
where x̂  is the state estimate vector; l is the iteration index; and 

( )m s n+ 
H  is the Jacobian matrix, which is given as follows,  

 ,
I I

    
=  

    

h h V
H

h h V



 (22) 

where θ and V represent voltage phase angle and magnitude 
state variables, respectively. Note that although the new line 
sensor measurements are introduced, the state vector and the 
functions of the conventional measurements (i.e., substation 
RTUs) remain unaltered, owing to the elimination of the virtual 
node voltage kV , making the formulation easily implementable. 
To address the flat start issue, state estimates obtained from SE 
using the measurement set excluding current magnitude meas-
urements (i.e., SCADA only) are used as the initial values. In 
addition, as these overhead line sensor measurements are all re-
dundant measurements to a set of SCADA power measure-
ments, solution multiplicity is not an issue in this problem. 

III.  CASE STUDY 
The IEEE 14-bus and NPCC 140-bus systems are used to 

verify the proposed method. For the IEEE 14-bus test system, 
the conventional measurements include 1 voltage magnitude, 3 
pairs of real and reactive bus power injection, and 13 pairs of 
real and reactive branch flow measurements. For the NPCC 
140-bus test system, there are 20 voltage magnitude, 50 pairs of 
bus power injection, and 139 pairs of branch flow measure-
ments. All measurement errors are assumed to follow a zero-
mean Gaussian distribution with a 0.01 p.u. standard deviation. 



 3 

All simulations are repeated 3,000 times to report the average. 
5 different cases (Cases 1~5) are designed to have 10%, 30%, 
50%, 70%, and 90% of lines equipped with sensors, respec-
tively. In each case, the number of sensors installed along each 
line is varied from 1 to 20; the sensors are assumed to be evenly 
distributed along the span of a line. In real-world power sys-
tems, the number of overhead line sensors deployed along a line 
is impacted by different factors but are typically large in support 
of line-level applications such as DLR. The mean absolute error 
(MAE) is used to evaluate the performance of SE. 

A.  Enhancement of State Estimation Under Regular Noise 
The MAEs of voltage magnitude and phase angle estimates 

of the two test systems are illustrated in Figs. 2-a (2-b) and 3-a 
(3-b), respectively. The results demonstrate that the accuracy of 

SE is significantly improved by incorporating line sensor meas-
urements. For instance, even when only 10% of lines are 
equipped with a single sensor, the performance of SE can be 
improved by 37% (31%) and 35% (14%) for the voltage mag-
nitude (phase angle) estimates in the IEEE 14-bus (NPCC 140-
bus) system, respectively. Moreover, the improvement in-
creases with the number of lines equipped with sensors and the 
number of sensors per line. It is generally saturated when the 
number of sensors per line is over 5; typically, sensors installed 
for monitoring each line is greater than 5 to fulfill the require-
ments of other applications such as DLR; therefore, it can be 
concluded that typical line sensor configurations in practice 
have remarkable benefits to SE. As the number of sensors per 
line increases, the MAE improvement finally reaches the range 
of 60-70% when 70% of lines are equipped with line sensors. 

B.  Enhancement of Bad Data Detection and Identification 
To evaluate the performance of bad data detection and iden-

tification, we identify critical measurements (CMs) of the sys-
tem before line sensor measurements are introduced. These are 
the measurements whose bad data cannot be detected in con-
ventional SE, reflected by the fact that their normalized residu-
als are undefined (please refer to Chapter 5 of [8] for detailed 
information). Then, the CMs are corrupted with 0.1 p.u. gross 
error, and we attempt to compute the normalized residuals after 
line sensors are incorporated. Results in the IEEE 14-bus sys-
tem are summarized in Table I. The normalized residuals of 
CMs become computable when line sensor measurements are 
incorporated into SE, implying that CMs become redundant 
measurements whose bad data can be detected. Moreover, the 
numbers of CMs and critical pairs (CPs) of both test systems 
are shown in Tables II. Here, a CP is a pair of measurements 
whose bad data are detectable but non-distinguishable from 
each other [8]. These results indicate the following: 1) the num-
ber of CMs will be decreased as the number of lines equipped 

 
Fig. 2.  MAEs of State Estimates of the IEEE 14-bus System Under Dif-
ferent Cases. (a) Voltage Magnitudes and (b) Voltage Phase Angles. 

 
Fig. 3.  MAEs of State Estimates of the NPCC 140-bus System Under Dif-
ferent Cases. (a) Voltage Magnitudes and (b) Voltage Phase Angles. 

TABLE I 
NORMALIZED RESIDUALS OF CMS OF IEEE 14-BUS SYSTEM  
(UD: UNDEFINED, INDICATING UNDETECTABLE BAD DATA) 

 No Current Case 1 Case 2 Case 3 Case 4 Case 5 
P2-3 UD UD 6.56 7.64 7.67 7.66 
Q2-3 UD UD 0.79 2.32 2.33 2.33 
P4-7 UD UD UD 4.28 4.71 4.83 
Q4-7 UD UD UD 0.42 0.42 0.42 
P6-12 UD UD UD UD UD 6.76 
Q6-12 UD UD UD UD UD 4.51 
P6-13 UD UD UD UD UD 6.45 
Q6-13 UD UD UD UD UD 3.76 
P7-8 UD UD UD 1.87 1.86 1.85 
Q7-8 UD UD UD 6.85 6.80 6.79 
P9-14 UD UD UD UD 6.62 6.73 
Q9-14 UD UD UD UD 4.46 4.45 

TABLE II 
NUMBERS OF CMS AND CPS OF IEEE 14-BUS AND NPCC 140-BUS 

SYSTEMS UNDER DIFFERENT CASES 
Test 

Systems 
CM 
/CP 

No 
Current 

Case 
1 

Case 
2 

Case 
3 

Case 
4 

Case 
5 

IEEE 
14-bus 

CMs 12 12 10 6 4 0 
CPs 0 0 1 1 2 4 

NPCC 
140-bus 

CMs 24 20 18 14 10 10 
CPs 36 32 21 19 17 8 

 
 

TABLE III 
BAD DATA DETECTION RATES (%) OF THE IEEE 14-BUS SYSTEM BASED ON THE 

PROPOSED METHOD (I) AND THE VIRTUAL NODE METHOD (II) UNDER 
DIFFERENT CASES AND GROSS ERRORS (⍻ REPRESENTS DETECTABLE BUT 

UNIDENTIFIABLE; √ REPRESENTS DETECTABLE AND IDENTIFIABLE). 

 
10σ 30σ 50σ 

⍻ √ ⍻ √ ⍻ √ 
I II I II I II I II I II I II 

No C. 0 0 42 42 9 9 55 55 16 16 48 48 
Case 1 3 15 46 36 9 23 57 41 14 26 52 43 
Case 2 8 21 47 35 16 34 58 41 16 35 58 44 
Case 3 0 45 70 33 24 50 60 32 26 55 60 35 
Case 4 7 49 71 33 20 51 69 36 25 58 67 36 
Case 5 17 59 71 30 21 59 77 34 23 71 78 29 

 
Fig. 4. Computational costs of the IEEE 14-bus system under different cases. (a) 
based on the proposed method; and (b) based on the virtual node method.  
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with sensors increases; 2) the number of CPs may be increased 
or decreased; the cases with increased CPs are due to the fact 
that CMs are converted into CPs. Notably, all the new CPs are 
pairs of real and reactive power measurements at the same lo-
cation, indicating that the source of errors can at least be nar-
rowed down to the P and Q measurements derived from the 
same potential transformer (PT) and current transformer (CT). 
This is a significant improvement compared with CMs, since 
bad data in CMs are not detectable at all. 

In addition, the bad data detection rates of the IEEE 14-bus 
system based on the proposed method and the virtual node 
methods under different cases and gross errors are presented in 
Table III. These results demonstrate that the virtual node 
method leads to a larger number of measurements with detect-
able but unidentifiable errors, while the proposed method leads 
to a larger number of measurements with detectable and identi-
fiable errors. This is because the virtual node method introduces 
a large number of new state variables into the SE problem and 
does not enjoy the benefit of increased measurement redun-
dancy as the proposed method. The computation times of the 
two methods shown in Fig. 4 also demonstrate the benefit of the 
proposed method: as it does not introduce new state variables, 
the computation cost stays almost constant with the increase of 
the number of line sensors.  

IV.  CONCLUSION 
In this letter, we propose a method to enhance SE by incor-

porating the current measurements of sensors deployed along 
the span of transmission lines. The developed measurement 
function relates these sensor measurements to conventional 
state variables at line terminals and does not introduce addi-
tional state variables, making it implementation-friendly. Sim-
ulation results verify the feasibility of the proposed method and 
demonstrate clear values of line sensor assets to SE in terms of 
noise filtering and bad data processing. In the future, the 
proposed method can be evaluated on real-world power systems 
and complex measurement environments. 
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