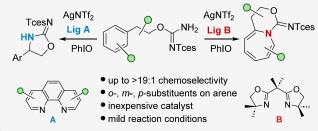


pubs.acs.org/JACS Article

Chemoselective Silver-Catalyzed Nitrene Transfer: Tunable Syntheses of Azepines and Cyclic Carbamimidates

Emily Z. Schroeder, Chenxi Lin, Yun Hu, Zhen-Yao Dai, Amory F. Griffin, Thomas S. Hotvedt, Ilia A. Guzei, and Jennifer M. Schomaker*

Cite This: J. Am. Chem. Soc. 2024, 146, 22085-22092


ACCESS I

Metrics & More

Article Recommendations

Supporting Information

ABSTRACT: Azepines and their saturated azepane counterparts are important moieties in bioactive molecules but are under-represented in current drug screening libraries. Herein, we report a mild and efficient azepine formation via silver-catalyzed dearomative nitrene transfer. A 2,2,2-trichloroethoxysulfonyl (Tces)-protected carbamimidate nitrene precursor, coupled with the appropriate ligand for silver, is essential for achieving the unexpected chemoselectivity between arene dearomatization and benzylic C(sp³)-H amination. Potential applications in the late-stage diversification of azepines to complex

molecular scaffolds and diastereoselective hydrogenations to sp³-rich derivatives are also highlighted.

INTRODUCTION

N-Heterocycles are common motifs in natural products and drugs; approximately 60% of the Food and Drug Administration (FDA)-approved small-molecule drugs contain at least one heterocycle. Of these, seven-membered rings containing one nitrogen atom, including azepines and azepanes, are unrepresented in the current drug libraries. However, this is not due to a lack of bioactivity, as there are examples of azepanes that function as glycosidase inhibitors, antidiabetics, anticancer agents, and antiviral compounds (Scheme 1A).

Common strategies for the syntheses of substituted azepanes (Scheme 1B) include various types of intramolecular cyclizations, [4 + 3] and related cycloadditions, expansion of strained ring intermediates, and ring-closing metathesis.2 However, these de novo approaches largely require preinstallation of desired functionality and stereochemistry into the precursors and are not particularly modular; thus, there is intense interest in new methods for the synthesis of sevenmembered N-heterocycles that employ readily available precursors. Based on our group's long-standing interest in transition metal-catalyzed nitrene transfer (NT), we were intrigued by an underexplored strategy involving nitrene insertion into an aromatic ring to form the seven-membered heterocycle. While the Büchner reaction to insert a carbene into an arene to form a seven-membered carbocycle is well known, 3a-h the analogous "aza-Büchner" involving insertion of a nitrene into an aromatic precursor is underexplored. Early examples employed sulfonylazide^{4a} or carbamate^{4b} precursors, high temperatures, and/or pressures to generate the key free nitrene intermediate. As a result of these harsh conditions, reactions were generally low-yielding and exhibited poor

chemoselectivity between competing reactions of free nitrene. More recently, the Wei group reported a Rh₂(esp)₂-catalyzed (esp: $\alpha,\alpha,\alpha',\alpha'$ -tetramethyl-1,3-benzenedipropionic acid) insertion of a nitrene formed from a carbamoyl azide precursor to furnish azepine scaffolds. However, inconsistent selectivity between nitrogen insertion and $C(sp^2)$ -H amination, coupled with the need for high temperatures, high Rh loadings, and prolonged reaction time, limited the versatility of this chemistry. Luan and co-workers similarly reported the synthesis of azepinones via the aminative dearomatization of naphthols, although high temperatures and arene functionality at the ortho position were required. The Leonori group reported an elegant synthesis of azepines via a singlet aryl nitrene generated from photolysis of a nitroarene (Scheme 1C) followed by reduction of the azepines to their respective azepanes. A large excess of P(OiPr)3 in the presence of blue LEDs was required to generate the nitrene intermediate, with the amine reagent required to trap the resultant ketimine en route to the 1H-azepine product. Thus, functionality at the ortho position of the nitroarene is not tolerated, and high loadings of Pd and/or Pt catalysts were typically needed for reduction to the saturated azepane.

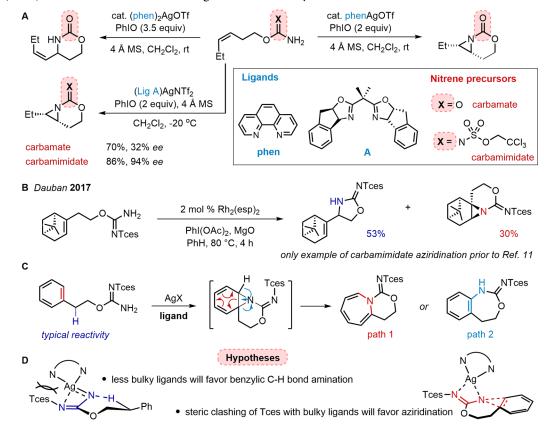
Our group has reported several examples of chemo- and siteselective silver-catalyzed nitrene transfer (NT), where the identity of the nitrene precursor and the ligand can be fine-

Received: June 20, 2024 Revised: July 15, 2024 Accepted: July 17, 2024 Published: July 25, 2024

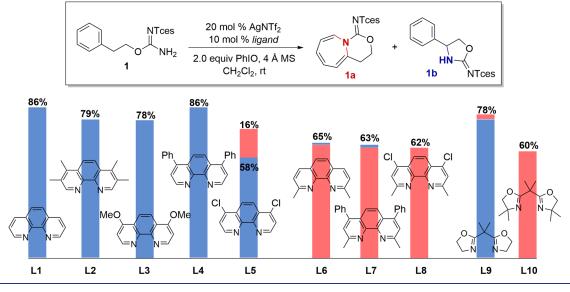
Scheme 1. (A-D) Previous Approaches to Azepine Synthesis and Chemoselective Silver-Catalyzed Dearomative Ring Expansion

tuned to control the reaction outcome. We envisioned that the combination of a suitable nitrene precursor and an appropriate ligand would enable us to selectively toggle between either benzylic C-H amination or insertion of the nitrene into the aromatic ring in an aza-Büchner-type reaction (Scheme 1D). Herein, we report a chemoselective method for the synthesis of either azepines or cyclic carbamimidates using silver-catalyzed nitrene transfer. Highlights of our method include the replacement of expensive Rh complexes with cheaper silver salts, no need for photolysis, excellent chemoselectivity for either C-H insertion or aziridination, mild reaction conditions, the ability to tolerate substitution at any carbon of the arene, and the ability for diverse postfunctionalizations of the azepine products.

■ RESULTS AND DISCUSSION


Research Strategy and Approach. Our group has harnessed the diversity of coordination environments available to Ag(I) complexes to achieve catalyst-controlled NT. For example, simple changes to the ratio of 1,10-phenanthroline (phen):AgOTf (Scheme 2A) enabled tuning for aziridination vs C-H amination using carbamates as nitrene precursors. More recently, we reported a highly chemo- and enantioselective intramolecular aziridination catalyzed by a silver catalyst supported by an indan-based bis(oxazoline) (BOX) ligand A (Scheme 2A). Interestingly, large differences in the *ee* of the product aziridine were noted based on the identity of the nitrene precursor. Photos acarbamate was employed, the use of (S,S)-indanBOX (A; Scheme 2A) resulted in only 32% *ee* of

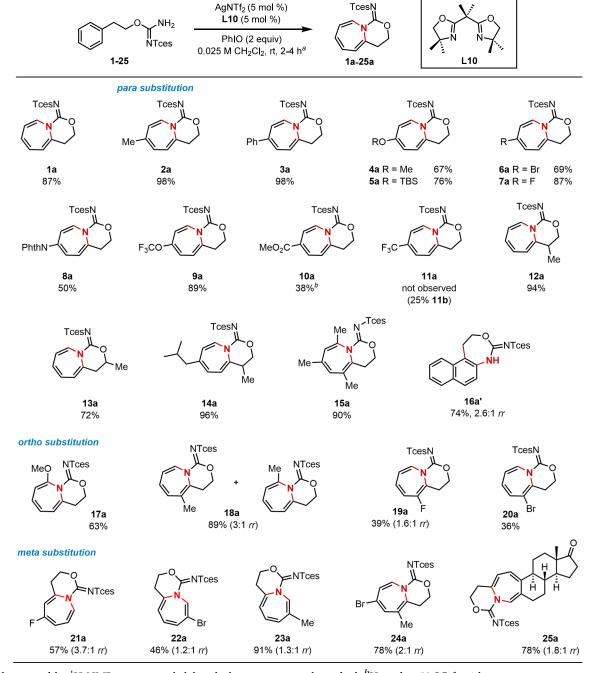
the aziridine. ¹⁰ However, the carbamimidate furnished an 86% yield and 94% *ee* of the aziridine. These observations, coupled with other works from our group showing divergent site selectivity in C–H amidation that can be achieved by using either a carbamate or sulfamate in tandem with the optimal ligands, ⁸ⁱ highlight our ability to "match" the steric bulk of the nitrene precursor with that of the ligand to influence the reaction outcome. ⁹


We were intrigued by the potential to achieve a unique example of a tunable and chemoselective NT using carbamimidates, which are underexplored as nitrene precursors; indeed, prior to our work, only one example of aziridination was reported by the Dauban group. 11 We were curious whether the steric bulk of a Tces-protected carbamimidate, combined with the appropriate ligands, might enable selective tuning for either amination at a benzylic C-H bond or dearomative NT via an aza-Büchner reaction (Scheme 2C) to generate a transient fused aziridine. The intermediate could then undergo an electrocyclic ring-opening along Path 1 to furnish the azepine or rearomatize via Path 2 to deliver a product that represents the formal amination of a $C(sp^2)$ -H bond. It should be mentioned that this mode of reactivity has not been observed using sulfamates or carbamates as nitrene precursors, despite significant effort.

Two main elements of the reaction design were used to guide our hypothesis for catalyst-controlled chemoselectivity (Scheme 2D). First, we proposed that the sp²-hybridized nitrogen of the carbamimidate would behave similarly to the carbamate oxygen in our previous work, binding to the Lewis

Scheme 2. (A-D) Precedent and Reaction Design for Silver-Catalyzed Chemoselective NT with Carbamimidates

Scheme 3. Ligand Screening for Silver-Catalyzed Chemoselective Nitrene Transfer



acidic silver and enforcing a square-planar geometry in the transition state of the NT.81 Second, we reasoned that combining the bulky Tces-protected carbamimidate with a sterically undemanding ligand would favor typical benzylic C-H amination. In contrast, employing a bulky ligand would lead to clashing between the ligand and the Tces group and might favor competing aziridine despite the energy penalty associated with disrupting aromaticity.

Results. The impact of diverse bidentate ligands on the chemoselectivity of silver-catalyzed amination of model Tcesprotected carbamimidate 1 was investigated (Scheme 3). A 2:1

silver/ligand ratio was initially employed for two reasons: first, it is expected to preferentially form a monomeric silver complex in solution to promote reactivity, and second, we have previously noted that excess silver salt aids in breaking down the polymeric PhIO. 8a,12 A series of substituted phenanthroline ligands L1-L5 favored the C-H insertion product 1b; more electron-rich ligands L2 and L3 gave slightly lower yields compared to electron-neutral L1 and L4. Excitingly, installing an electron-withdrawing chlorine on L5 gave the first indication of desired azepine 1a, albeit in a 3.6:1 ratio of 1b:1a. This result highlights the ability of electronic effects to

Table 1. Scope of Chemoselective Silver-Catalyzed Ring Expansion of Carbamimidates to Azepines

"Yields determined by ¹H NMR using trimethylphenyl silane as an internal standard. ^bHeated at 50 °C for 4 h.

exert an impact on chemoselectivity. Ultimately, more sterically demanding ligands, as exemplified by the neocuproine ligands L6-L8 and the dmBOX ligand L10, strongly favored formation of the azepine 1a, with minimal-toundetectable formation of 1b by ¹H NMR. Previous density functional theory (DFT) calculations on the transition state of silver-catalyzed NT catalyzed by (dmBOX)AgClO₄ showed that a seven-membered transition state was required to accommodate the near-linear geometry needed for the hydrogen atom transfer step; 8b,c coordination of carbonyl oxygen of the carbamate to silver was key to favoring the larger transition state. The results in Scheme 3 support our hypothesis that the imidate nitrogen binds the Ag similarly,

with the increased steric congestion of the bulky Tces protecting group further destabilizing the smaller transition state that leads to competing C-H insertion.

With the identification of L10 as the best ligand for the formation of azepine 1a, further optimization was carried out prior to exploring the scope of the chemistry. Decreasing both the catalyst loading and the concentration to minimize product degradation resulted in an improved yield of 1a to 87% (see the Supporting Information for details). The optimal conditions were applied to a range of substituted arenes to ascertain the scope of the azepine formation (Table 1), with excellent chemoselectivity observed across the majority of substrates. A variety of para substituents on the arene were

Table 2. Scope of Chemoselective Silver-Catalyzed $C(sp^3)$ -H Amination

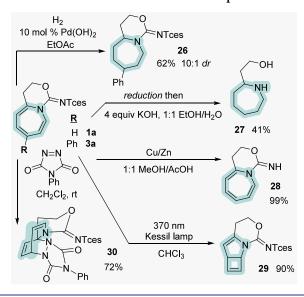
"Yields determined by 1 H NMR using trimethylphenylsilane as the internal standard. b Me₄phen was used. Bathophen was used. Decomposition upon workup.

tolerated, including a methyl in 2a, a phenyl in 3a, protected amine and alcohol functional groups in 4a-5a and 8a, halogens in 6a and 7a, an ester in 10a, and a trifluoromethoxy group in 9a. Excellent-to-good yields were observed with electron-neutral and electron-donating substituents, while diminished yields were observed with the electron-withdrawing ester group in 10a. As expected, no formation of azepine 11a was noted with a highly electron-deficient arene; competing C-H insertion to 11b was observed instead. Modifications to the carbamimidate tether to furnish 12a and 13a were well tolerated. A carbamimidate derived from ibuprofen delivered 14a in 96% yield, while we were pleased to see that both ortho and para substitution precursors 24 and 15 successfully furnished a 78% yield of trisubstituted azepine 24a and a 90% yield of the tetrasubstituted azepine 15a. Due to the high propensity of the intermediate aziridine to rearomatize,

naphthalene-derived carbamimidate 16 did not furnish the azepine but instead yielded the formal $C(sp^2)$ –H insertion products 16a' and 16a'' through Path 2 in Scheme 2C; efforts are ongoing to identify conditions tunable for both Paths 1 and 2.

The ring expansion was next investigated with a series of o-substituted carbamimidates 17–20. An electron-donating OMe group in 17 resulted in a single regioisomer 17a. The o-Me substituted carbamimidate 18 favored aziridination at the less substituted alkene of the arene, presumably due to increased steric hindrance. The presence of the electronegative, albeit small, F group in carbamimidate 19, resulted in a 1.6:1 mixture of isomers of 19a, where aziridination was favored at the less substituted C=C bond of the arene, likely due to electronic effects. In contrast, the increased steric demand of the bromine in 20 significantly improved the regioselectivity

for the aziridination at the less substituted double bond, resulting in the observation of only one regioisomer 20a. These results provide insight into the likely regiochemical behavior of arenes containing substituents that vary in their steric and electronic properties.


The electronic effects of the meta substituents in 21-23 were diminished compared to their ortho-substituted counterparts, and essentially a 1:1 mixture of regioisomeric products was observed in 22a and 23a. However, a moderate regioselectivity of 3.7:1 in favor of the initial aziridination of a less substituted alkene of the precursor was observed in the reaction of the m-F carbamimidate 21-21a. This improved regioselectivity suggested that the steric and electronic effects of various substituents can be biased toward different regioisomers. The small, electronegative fluorine promotes formation of the electronically favored azepine isomer, while bulkier electron-neutral to slightly donating substituents show little bias. The potential for the ring expansion strategy to be employed in late-stage functionalizations of complex molecules is highlighted by the reaction of the estrone-derived carbamimidate 25 under mild conditions to furnish the azepines 25a in 78% yield. This result also showcases the ability of the chemistry to accommodate substituents at both the meta and para positions of the arene.

The scope of the benzylic $C(sp^3)$ -H bond amination was examined next by using either 3,4,7,8-tetramethylphenanthroline L2 or bathophenanthroline L4 as the ligand (Table 2). Similar to the azepine formation, precursors 1-3 bearing electron-neutral substituents gave excellent yields of the C-H amination products 1b-3b. Strong electron-donating groups in the p-position, such as the -OMe group of 4, resulted in amination of the benzylic C-H bond, but product 4b rapidly decomposed under the reaction conditions. Halogens in 6-7 gave the corresponding benzylic amines in good yields. Interestingly, replacing the -OMe group of 4 with a -OCF₃ group in 9 furnished 9b in 79% yield with no decomposition. Compared to the azepine formation, the precursors 10-11, bearing electron-withdrawing substituents, furnished better yields and chemoselectivity for the C-H amination, including a 61% yield of 11b. Substituents in the carbamimidate tethers of 12 and 13 successfully delivered 12b and 13b, respectively. The stereochemistry in 13b was validated through the collection of an X-ray crystallographic structure (see the Supporting Information for details). However, precursors bearing electron-donating groups on the arene showed competing azepine formation. For example, 14 derived from ibuprofen gave a 1:1 mixture of 14a:14b; sterics at the benzylic carbon may also play a role in controlling the reaction outcome. In the case of the mesityl carbamimidate 15, no 15b was observed and an 81% yield of the azepine 15a was obtained, even using the typical $C(sp^3)$ -H amination conditions; a similar result was noted for 17. The naphthylderived precursor 16 gave only 3% 16b and 14% of a 4:1 mixture 16a':16a" (see the Supporting Information for details). Halogens and alkyl groups at both the ortho and meta positions of the arene in 18-23 gave the desired products 18b-24b in good yields. Finally, the estrone-derived 25 furnished the C-H amination product 25b in moderate yield, highlighting the ability of this chemistry to be employed for chemoselective nitrene transfer in more complex molecule settings.

The azepine scaffolds could be postfunctionalized in diverse ways to generate high Fsp³ (number of sp³-hybridized

carbons/total carbon count) scaffolds and unusual nitrogencontaining molecular architectures (Scheme 4). Hydrogena-

Scheme 4. Selective Diversifications of Azepine Scaffolds

tion of azepine 3a gave 26 in a good yield and 10:1 diastereoselectivity, highlighting the promising potential of this approach for modular and stereocontrolled syntheses of highly substituted azepanes. Reduction of 1a, followed by further hydrolysis, yielded 1,3-amino alcohol 27. The Tces protecting group of 1a was also easily removed under mild conditions in essentially quantitative yield to give 28. The bicyclic azepines serve as convenient precursors for the construction of more complex scaffolds. For example, irradiation of 1a in degassed CHCl₃ using a 370 nm Kessil lamp furnished the [4.5.6] tricyclic product 29 in 90% yield. 13 Furthermore, the unusual, bridged tricycle 30 could be prepared in good yield via a regioand stereoselective intermolecular hetero-Diels-Alder reaction.14

CONCLUSIONS

In conclusion, we have developed a highly chemoselective NT of aryl-substituted carbamimidates where the nature of the ligand controls the reaction outcome. More sterically hindered bidentate ligands promote dearomative ring expansion to deliver substituted azepines in good yields, while less congested ligands yield C-H amination products. The interaction of the steric bulk of the Tces protecting group with the ligand controls the favored transition state in the NT to achieve the observed chemoselectivity. Arenes bearing a wide range of functional groups and varying electronics were tolerated in the chemistry. Simple postfunctionalizations of the azepine products produced substituted azepanes with good yield and dr as well as complex fused and bridged compounds. Ongoing efforts are focused on expanding this chemistry to heteroarenes and achieving intermolecular aza-Büchner reaction selectivity on a broad range of substituted arenes.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.4c08249.

Characterization data, optimization tables, additional substrates/catalysts, and details of computational methods (PDF)

Accession Codes

CCDC 2363662-2363663 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Author

Jennifer M. Schomaker – Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States; orcid.org/0000-0003-1329-950X; Email: schomakerj@chem.wisc.edu

Emily Z. Schroeder – Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States

Chenxi Lin – Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United

Yun Hu – Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States; orcid.org/0000-0002-0385-3362

Zhen-Yao Dai - Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United

Amory F. Griffin – Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United

Thomas S. Hotvedt – Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States; orcid.org/0009-0002-9131-8999

Ilia A. Guzei - Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States; orcid.org/0000-0003-1976-7386

Complete contact information is available at: https://pubs.acs.org/10.1021/jacs.4c08249

Author Contributions

^TE.Z.S. and C.L. contributed equally. The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Funding

J.M.S. is grateful to NSF (CHE-1954325) for the financial support of this research. The Paul Bender Chemistry Instrumentation Center includes Thermo Q Exactive Plus by NIH 1S10 OD020022-1, Bruker Avance-500 by a generous gift from Paul J. and Margaret M. Bender, Bruker Avance-600 by NIH S10 OK012245, and Bruker Avance-400 by NSF CHE-1048642.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Dr. Charles G. Fry, Dr. Heike Hofstetter, and Dr. Cathy Clewett at UW-Madison are thanked for helping with NMR techniques. Dr. Martha M. Vestling at UW-Madison is thanked for mass spectrometry characterization.

REFERENCES

- (1) Heravi, M. M.; Zadsirjan, V. Prescribed Drugs Containing Nitrogen Heterocycles: An Overview. RSC Adv. 2020, 10, 44247-44311.
- (2) Chiacchio, M. A.; Legnani, L.; Chiacchio, U.; Iannazzo, D.Recent Advances on the Synthesis of Azepane-Based Compounds. In More Synthetic Approaches to Nonaromatic Nitrogen Heterocycles; John Wiley & Sons, Ltd, 2022; pp 529-558.
- (3) (a) Panne, P.; Fox, J. M. Rh-Catalyzed Intermolecular Reactions of Alkynes with α -Diazoesters That Possess β -Hydrogens: Ligand-Based Control over Divergent Pathways. J. Am. Chem. Soc. 2007, 129, 22-23. (b) Anciaux, A. J.; Demonceau, A.; Noels, A. F.; Hubert, A. J.; Warin, R.; Teyssie, P. Transition-Metal-Catalyzed Reactions of Diazo Compounds. 2. Addition to Aromatic Molecules: Catalysis of Buchner's Synthesis of Cycloheptatrienes. J. Org. Chem. 1981, 46, 873-876. (c) Zeng, Q.; Dong, K.; Pei, C.; Dong, S.; Hu, W.; Qiu, L.; Xu, X. Divergent Construction of Macrocyclic Alkynes via Catalytic Metal Carbene $C(Sp^2)$ -H Insertion and the Buchner Reaction. ACS Catal. 2019, 9, 10773-10779. (d) Mo, S.; Li, X.; Xu, J. In Situ-Generated Iodonium Ylides as Safe Carbene Precursors for the Chemoselective Intramolecular Buchner Reaction. J. Org. Chem. 2014, 79, 9186-9195. (e) Nakayama, H.; Harada, S.; Kono, M.; Nemoto, T. Chemoselective Asymmetric Intramolecular Dearomatization of Phenols with α -Diazoacetamides Catalyzed by Silver Phosphate. J. Am. Chem. Soc. 2017, 139, 10188-10191. (f) Wang, H.; Zhou, C.-Y.; Che, C.-M. Cobalt-Porphyrin-Catalyzed Intramolecular Buchner Reaction and Arene Cyclopropanation of In Situ Generated Alkyl Diazomethanes. Advanced Synthesis & Catalysis 2017, 359, 2253-2258. (g) Xia, J.; Liu, J.; Yu, Y.; Zhang, J.; Huang, X. Divergent Access to Polycyclic N-Heterocyclic Compounds through Büchner-Type Dearomatization Enabled Cycloisomerization of Diynamides under Gold Catalysis. Org. Lett. 2022, 24, 4298-4303. (h) Shi, C.-Y.; Zhu, G.-Y.; Xu, Y.; Teng, M.-Y.; Ye, L.-W. Recent Advances in Catalytic Asymmetric Büchner Reaction. Chin. Chem. Lett. 2023, 34, No. 108441.
- (4) (a) DeGraff, B. A.; Gillespie, D. W.; Sundberg, R. J. Phenyl Nitrene. A Flash Photolytic Investigation of the Reaction with Secondary Amines. J. Am. Chem. Soc. 1974, 96, 7491-7496. (b) Sundberg, R. J.; Heintzelman, R. W. Reactivity of Aryl Nitrenes. Competition between Carbazole Formation and Internal Bond Reorganization in Biphenylnitrenes. J. Org. Chem. 1974, 39, 2546-
- (5) Li, H.; Li, N.; Wu, J.; Yu, T.; Zhang, R.; Xu, L.-P.; Wei, H. Rhodium-Catalyzed Intramolecular Nitrogen Atom Insertion into Arene Rings. J. Am. Chem. Soc. 2023, 145, 17570-17576.
- (6) Li, L.; Wang, D.; Zhang, Y.; Liu, J.; Wang, H.; Luan, X.Diversification of Naphthol Skeletons Triggered by Aminative Dearomatization. Org. Lett.2024, doi.org/264910.
- (7) Mykura, R.; Sánchez-Bento, R.; Matador, E.; Duong, V. K.; Varela, A.; Angelini, L.; Carbajo, R. J.; Llaveria, J.; Ruffoni, A.; Leonori, D. Synthesis of Polysubstituted Azepanes by Dearomative Ring Expansion of Nitroarenes. Nat. Chem. 2024, 16, 771.
- (8) (a) Rigoli, J. W.; Weatherly, C. D.; Alderson, J. M.; Vo, B. T.; Schomaker, J. M. Tunable, Chemoselective Amination via Silver Catalysis. J. Am. Chem. Soc. 2013, 135, 17238-17241. (b) Rigoli, J. W.; Weatherly, C. D.; Vo, B. T.; Neale, S.; Meis, A. R.; Schomaker, J. M. Chemoselective Allene Aziridination via Ag(I) Catalysis. Org. Lett. 2013, 15, 290. (c) Scamp, R.; Alderson, J. M.; Phelps, A. M.; Dolan, N. S.; Schomaker, J. M. Ligand-Controlled, Tunable Silver-Catalyzed C-H Amination. J. Am. Chem. Soc. 2014, 136, 16720. (d) Weatherly, C. D.; Alderson, J. M.; Berry, J. F.; Hein, J. E.; Schomaker, J. M. Catalyst-Controlled Nitrene Transfer by Tuning Metal:Ligand Ratios: Insight into the Mechanisms of Chemoselectivity. Organometallics 2017, 36, 1649-1661. (e) Corbin, J. R.; Schomaker, J. M. Tunable Differentiation of Tertiary C-H Bonds in Intramolecular Transition Metal-Catalyzed Nitrene Transfer Reactions. Chem. Commun. 2017,

- 53, 4346-49. (f) Alderson, J. M.; Corbin, J. R.; Schomaker, J. M. Tunable, Chemo- and Site-Selective Nitrene Transfer through the Rational Design of Silver(I) Catalysts. Acc. Chem. Res. 2017, 50, 2147-2158. (g) Dolan, N. S.; Scamp, R. J.; Yang, T.; Berry, J. F.; Schomaker, J. M. Catalyst-Controlled and Tunable, Chemoselective Silver-Catalyzed Intermolecular Nitrene Transfer: Experimental and Computational Studies. J. Am. Chem. Soc. 2016, 138, 14658. (h) Ju, M.; Huang, M.; Vine, L. E.; Dehghany, M.; Roberts, J. M.; Schomaker, J. M. Tunable Catalyst-Controlled Syntheses of β - and γ -Amino Alcohols Enabled by Silver-Catalysed Nitrene Transfer. Nat. Catal. 2019, 2, 899-908. (i) Fu, Y.; Zerull, E. E.; Schomaker, J. M.; Liu, P. Origins of Catalyst-Controlled Selectivity in Ag-Catalyzed Regiodivergent C-H Amination. J. Am. Chem. Soc. 2022, 144, 2735-2746. (j) Huang, M.; Yang, T.; Paretsky, J.; Berry, J. F.; Schomaker, J. M. Inverting Steric Effects: Using 'Attractive' Non-Covalent Interactions to Direct Silver-Catalyzed Nitrene Transfer. J. Am. Chem. Soc. 2017, 139, 17376-17386. (k) Mat Lani, A. S.; Schomaker, J. M. Site-Selective, Catalyst-Controlled Alkene Aziridination. Synthesis 2018, 50, 4462-4470. (1) Scamp, R. J.; Sheffer, B.; Schomaker, J. M. Regioselective Differentiation of Vicinal Methylene C-H Bonds Enabled by Silver-Catalyzed Nitrene Transfer. Chem. Commun. 2019, 55, 7362-7365. (m) Huang, M.; Paretsky, J.; Schomaker, J. M. Rigidifying Ag(I) Complexes for Selective Nitrene Transfer. ChemCatChem. 2020, 12, 3076-3081. (n) Ju, M.; Zerull, E. E.; Roberts, J. M.; Huang, M.; Guzei, I. A.; Schomaker, J. M. Silver-Catalyzed Enantioselective Propargylic C-H Bond Amination through Rational Ligand Design. J. Am. Chem. Soc. 2020, 142, 12930-12936. (o) Liu, W.; Choi, I.; Zerull, E. E.; Schomaker, J. M. Tunable silvercatalyzed nitrene transfer: From chemoselectivity to enantioselective C-H amination. ACS Catal. 2022, 12, 5527-5539.
- (9) Trinh, T. A.; Fu, Y.; Hu, D. B.; Zappia, S. A.; Guzei, I. A.; Liu, P.; Schomaker, J. M. Chemo- and Enantioselective Intramolecular Silver-Catalyzed Aziridinations of Carbamimidates. *Chem. Commun.* **2023**, 60, 224–227.
- (10) Ju, M.; Weatherly, C. D.; Guzei, I. A.; Schomaker, J. M. Chemo- and Enantioselective Silver-Catalyzed Aziridinations. *Angew. Chem., Int. Ed.* **2017**, *56*, 9944–9948.
- (11) Grelier, G.; Rey-Rodriguez, R.; Darses, B.; Retailleau, P.; Dauban, P. Catalytic Intramolecular C(sp³)–H Amination of Carbamimidates. *Eur. J. Org. Chem.* **2017**, *14*, 1880–1883.
- (12) Huang, M.; Corbin, J. R.; Dolan, N. S.; Fry, C. G.; Vinokur, A. I.; Guzei, I. A.; Schomaker, J. M. Synthesis, Characterization, and Variable-Temperature NMR Studies of Silver(I) Complexes for Selective Nitrene Transfer. *Inorg. Chem.* **2017**, *56*, 6725–6733.
- (13) (a) Fu, C.; Zhang, Y.; Xuan, J.; Zhu, C.; Wang, B.; Ding, H. Diastereoselective Total Synthesis of Salvileucalin C. *Org. Lett.* **2014**, *16*, 3376—3379. (b) Matador, E.; Tilby, M. J.; Saridakis, I.; Pedrón, M.; Tomczak, D.; Llaveria, J.; Atodiresei, I.; Merino, P.; Ruffoni, A.; Leonori, D. A Photochemical Strategy for the Conversion of Nitroarenes into Rigidified Pyrrolidine Analogues. *J. Am. Chem. Soc.* **2023**, *145*, 27810—27820.
- (14) Craig, D.; Spreadbury, S. R. J.; White, A. J. P. Synthesis and Hetero-Diels—Alder Reactions of Enantiomerically Pure Dihydro-1H-Azepines. *Chem. Commun.* **2020**, *56*, 9803—9806.