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Abstract— We present a novel system which blends multiple
distinct sensing modalities in audio-visual surveys to assist
marine biologists in collecting datasets for understanding the
ecological relationship of fish and other organisms with their
habitats on and around coral reefs. Our system, designed
for the CUREE AUY, uses four hydrophones to determine
the bearing to biological sound sources through beamforming.
These observations are merged in a Bayesian Occupancy Grid
to produce a 2D map of the acoustic activity of a coral reef.
Simultaneously, the AUV uses unsupervised topic modeling
to identify different benthic habitats. Combining these maps
allows us to determine the level of acoustic activity within each
habitat. We demonstrated the system in field trials on reefs in
the U.S. Virgin Islands, where it was able to autonomously dis-
cover the favored habitats of snapping shrimp (genus Alpheus).

I. INTRODUCTION

Coral reefs are one of the most biologically active environ-
ments on earth, with over 25% of all known marine animals
spending some portion of their life cycle on a reef [1].
Existing methods for surveying biological activity on coral
reefs rely heavily on vision, whether using human divers
counting organisms [2], [3], or automated with autonomous
underwater vehicle (AUV) surveys [4]. However, in the
underwater domain, relying purely on vision provides only a
partial picture of the environment, since effects like optical
backscatter and light attenuation diminish the effectiveness
of vision-based approaches developed for terrestrial appli-
cations [5], [6]. Hotspots of biological activity are usually
far easier to detect acoustically than visually because many
of the animals contributing to the reef soundscape, such as
snapping shrimp ( genus Alpheus) use the structure of the
reef to hide and are not visible in visual surveys [7].

While active acoustics are a widely-used tool among
AUVs and ROVs for navigation, mapping, and commu-
nications tasks, passive acoustics have seen comparatively
limited use. Yet, they can also provide valuable information
in an underwater environment. Recent studies have shown
that a reef’s soundscape is an important indicator of its
overall health, and has links to fish abundance [3], and
larvae settlement [8], [9]. Existing methods for measuring
sound on reefs use fixed recorders which can be deployed for
months at a time [10] or uncontrolled drifters that can drift
across a reef [11]. Single-channel recorders collect only point
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Fig. 1: The Curious Underwater Robot for Ecosystem Exploration (CUREE)
AUV equipped with four hydrophones surveying a reef. The hydrophones
are mounted on arms extending from the vehicle’s body to increase the
aperture width of the hydrophone array and consequently the angular
resolution with which the AUV can localize sound sources.

data, which is often assumed to generalize across the entire
reef. Multi-channel recorders gain a small amount of spatial
context, however such hydrophone-based observations are
bearing-only, meaning that these recorders typically cannot
precisely localize sound sources in two dimensions on a reef.
AUVs such as the Curious Underwater Robot for Ecosystem
Exploration (CUREE) [12], shown in Fig. 1, allow acoustic
sources to be precisely localized, since they can act as a
mobile sensor platform, moving both hydrophones around a
reef, allowing the AUV to build a map of sound sources.

The primary contribution of this paper is a new multi-
sensor method for locating hotspots of biological activity on
a coral reef using an AUV. Our approach, the audio-visual
survey, uses passive acoustics to map the distribution of
biological activity on a reef and vision to identify the distinct
types of benthic habitats that make up the reef. As a sensing
modality, passive acoustic observation is an excellent com-
pliment to vision underwater. Cameras provide information-
dense observations, but their effective range underwater is
limited. In contrast, passive acoustic observations offer more
limited information (e.g. they only provide the bearing to
a target, not a full localization), however they can collect
data across much longer ranges. While acoustic hotspot maps
and visual habitat maps are individually useful datasets for
marine biologists, the true utility of an audio-visual survey
lies in combining the two sensing modalities. This allows
the AUV to begin to act as a partner to human scientists
in ecological studies, autonomously investigating questions
like “Which habitats on a coral reef are the most biologically
active?”



The remainder of this paper is organized as follows. Sec-
tion II provides an overview of related work in autonomous
reef monitoring and audio-visual sensing. In Section III we
provide a detailed description of the two primary components
of an audio-visual survey: the passive acoustic mapping, and
the unsupervised benthic habitat topic model. In Section IV
we demonstrate the audio-visual survey on reefs around St.
John in the U.S. Virgin Islands, where we use the CUREE
AUV to autonomously identify habitats where snapping
shrimp tend to gather. Finally, in Section V we offer some
final conclusions and directions for future work.

II. BACKGROUND AND RELATED WORK

Many methods have been proposed that use autonomous
vehicles to measure biodiversity and bioactivity underwater,
and specifically to estimate the number and type of species
present in a marine environment. Such methods include envi-
ronmental DNA (eDNA) sampling for population estimation
[13], active acoustics for measuring biomass in the water
column [14], and visual detection, counting, and tracking
of individual organisms [6], [15], [16]. However, eDNA
requires laboratory analysis, often taking significant time and
presenting a barrier to its use in autonomous applications.
Active acoustics sensors are typically expensive and have
considerable power requirements, adding an additional bur-
den on the already limited battery of a small, reef-capable
AUYV, such as the platform used in this work. Finally, vision-
based methods are less effective underwater compared to
terrestrial deployments, have a significant error rate, and
suffer from a double-counting problem where fish swim
in and out of frame, making them a less-reliable source
of bioactivity estimation [6]. Where visual methods have
seen the most success underwater is mapping the static
components of the underwater environment. Spatiotemporal
topic modeling has been used to identify semantically distinct
habitat types [17]. The chief advantage that topic models
have over other vision-based approaches is that they do not
rely on any pre-training or large datasets.

An increasingly popular sensing modality for studying
underwater ecosystems is passive acoustics. Like vision,
passive acoustics is inexpensive and non-invasive, making it
easier to observe an underwater without disturbing it with
physical sampling (eDNA) or significant acoustic energy
(active acoustics). Biologists have used passive acoustic
recorders to measure changes in biological activity on coral
reefs over time [3], [8], [10], but focus has often been tem-
poral patterns; these methods have been traditionally limited
in their ability to measure spatial variation. While passive
acoustics can localize a sound source [18], in the typical far-
field source model, only information about the bearing to the
source is recovered (Fig. 2). A limited number of methods
exist that can reconstruct the range information in the far-
field [19]. However, these approaches rely on assumptions
about the propagation of sound over long distances, and
are not well-suited to localization on coral reefs, where
the ranges are short and the bathymetry is complex and
unknown. Triangulation allows for a set of bearing-only
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Fig. 2: Sound source localization methods use the time delays (dt1, ..., dtn)
and the known geometry of the IV receivers to compute the angle of arrival
of a sound source, 6,. These delays are computed relative to a chosen
reference channel by applying a steering vector a(6) of phase delays to the
multi-channel signal and compute the resultant energy.

observations to reconstruct range information by moving the
bearing-only sensor, and methods to accomplish this have
been developed for domains like radiation source detection
[20], indoor SLAM using WiFi signals [21], and locating tar-
gets underwater [22]-[24]. However, these methods typically
assume a small number of targets, or uniquely identifiable
targets, which enables detection-based methods. In contrast,
a reef sounsdscape is made up of a multitude of sources, each
creating a signal with relatively low information content,
making detection-based source localization infeasible.

In terrestrial robotics applications, sound and vision have
been combined to give robots a greater awareness of their
surroundings. In particular, these methods have been used in
human-robot applications to track the movement of people
and objects [25], [26], to identify unique speakers in the
canonical “cocktail party problem” [27]-[29], or to improve
in navigation and mapping [30], [31]. However, to our knowl-
edge, applications of audio-visual methods in the marine
domain are limited to static sensors [32], and have not been
explored for mobile sensing.

III. METHODS

As its name suggests, an audio-visual survey builds two
parallel maps of the coral reef. One map uses using a set
of passive acoustic observations to map the distribution of
biological acoustic sources on the reef, and the other uses
visual observations to characterize the different habitats that
compose the reef. Independently, each map is valuable to
marine biologists, however when combined, they allow us
to discover which habitats are hotspots of acoustic, and
therefore biological, activity. In this work, we make several
simplifying assumptions about the distribution of sound
sources on the reef. The first of these assumptions is that
the number of sound sources is large and spatially varying.
The second is that acoustic sources are distributed in only
two dimensions across the reef. While some fish, particularly
larger predators, inhabit the water column above the reef, the
majority of organisms are close to the bottom.

A. Passive Acoustic Mapping

To build an acoustic map of the coral reef, the AUV must
collect a set of acoustic observations Q¢ = {of, 03, ...0 }.
Unlike visual observations, which are collected continuously



as the AUV moves, audio observations can only be made
when the robot is stationary due to the noise created by the
robot’s thrusters. To collect a single acoustic observation, of,
CUREE stops its thrusters and drifts for 10 to 15 seconds to
allow it to observe the reef soundscape.

The origin vector of a planar sound wave is defined as
the vector from the robot position z, to the sound source
r, where r, = x, — x,. It is typically defined in spherical
coordinates with origin azimuth 6, and origin elevation ¢,,

r, = &cos(¢,)sin(f,) + gsin(¢p,)sin(6,) + zcos(6,), (1)

where Z, g, and Z are the unit vectors along the x, y, and
z axes. However, z, is unknown, and so to estimate the
angle of arrival we use the Bartlett Beamformer [18], which
computes the origin vector using

00, ¢o = argmax a(f, ¢)"” x R x a(, ¢), 2)
0€0,pcd

where © = [0,27) and ® = [T, 5]. Here a(f, ¢) is the
steering vector of phase delays associated with a particular
azimuth and elevation, ¥ is the Hermetian operator, and R is
the spatial covariance matrix which captures the pairwise cor-
relations between the signals arriving at the array elements.
This matrix is defined as

<$1,$T> <$17$§> <.%'1,5L'7V>
R — <.’L‘2,$>{> <.Z'27.:L‘§> (va.x}‘\ﬁ 7 3)
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where the () operator computes the time averaged power of
a pair of signals over a window of length 7" using
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@ltohalto)) =7 [ alayd @
to

The Bartlett beamformer is a narrowband beamformer,
since the phase delays in a(f, ¢) are dependant on the carrier
frequency. In our system, the exact frequency of the sound
source is unknown since individual organisms can produce
sounds over a range of frequencies. To account for this, we
use multiple Bartlett beamformers evenly spaced over the
expected frequency range, with their power output averaged.
For beamforming the sound produced by snapping shrimp,
we use 10 beamformers over the frequency range of 5 kHz
to 20 kHz. In this work we use the Bartlett beamformer
provided in the ARL Tools Python package [33].

The output of the beamformer is the maximum-power
azimuth and elevation angles. For a single audio source,
solving the optimization problem presented in Eq. 2 would
be sufficient to determine the origin vector. However, on
a reef we are presented with an unknown but assumed
large number of individual sound sources. Thus, instead
of computing a single origin vector, we are interested in
computing the distribution of sources, p(s) € P(© x P).
To compute this distribution, we subdivide each observation
window into a set of snapshots 0.1 seconds in length, and
solve Eq. 2 for each. An example of this distribution is
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Fig. 3: Distribution of acoustic energy across 169 0.1s windows taken during
a single acoustic observation.
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Fig. 4: Histogram of azimuths in the snapshots shown in Fig. 3 (left axes),
and corresponding Bayesian GMM with 4 components (right axes).

shown in Fig. 3. While the beamformer does produce a two-
dimensional output (O, ®), we assume that the sources we
are mapping are on the seafloor, and therefore we can discard
the elevation angle and simplify p(s) to a single-dimensional
distribution over O. Since there can be multiple hotspots on
a reef, p(s) can be multimodal with an unknown number of
components. To represent p(s) we use a Bayesian Gaussian
Mixture Model (GMM), which can represent an arbitrary
probability distribution using a sum of M weighted Gaussian
components o, = Zﬁl ;N (pi,0;). The advantage of
using a Bayesian GMM over the standard GMM formulation
is that the number of components is not fixed but rather
varies according to a Dirichlet distribution [34]. For brevity,
we omit including the full Bayesian GMM formulation here,
but it can be found in [34], and the implementation used in
this work is part of the scikit-learn Python toolkit [35].

The other challenge with representing p(s) with a GMM
is that p(s) is a circular distribution. While there has been
recent work on fitting a GMM in a circular distribution
[36], we chose a simpler approach by embedding p(s) on a
manifold in R? by changing the domain from © to sin(©) and
cos(O). One the GMM is converged, the component means,
[:U’cos(@); ,usin(@))], and covariances, X;, can be converted
back to the original domain by

po = arctan2(ficos(@); Hsin(O))s (%)



2Zsin,sin))
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The weights of the GMM components are unaffected by
the return to the single-dimension basis. An example of our
angle-wrapped Bayesian GMM is shown in Fig. 4.

The final step to produce an audio map of a reef is to
reverse the forward sensor model described in Eq. 1, and
combine the one-dimensional (bearing only) audio obser-
vations described by the GMM components into a two-
dimensional map of source locations. To accomplish this,
we use a Bayesian Occupancy Grid (BOG). BOGs have
seen significant prior use in mapping underwater sound
sources [23], [24]. The BOG discretizes the world into a
grid of uniform cells, and with each observation, performs
a bayesian update of the likelihood that a source exists in
that cell. In this work, we chose this discretization level to
be 0.1 m. We adopt the formulation for a BOG given in [23]
modified to account for multimodal observation distributions.
For a single component of a visual observation (p;, o;, ;) €
0%, the source likelihood of a location x; is

p(@i = 1pi, 04, 9;) = Yilles Zzrlla exp (A(#ivxngTF) (D
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for a robot located at z, where A(u,x;, ) is the minimum
angle between the vector defined by x, — x; and p. The
parameter [ accounts for the lower signal-to-noise ratio with
increased distance to a source in the presence of background
noise. Based on empirical data we set [ to be 20 m.

B. Habitat Identification

As CUREE moves through the world, it continuously
builds a set of visual observations of the seafloor, Q¥ =
{of,05,...05 }, using its downward-facing cameras. Each
oy € 1V is a bag-of-words of visual feature “words” w € V,
where V' is a “vocabulary” comprised of quantized ORB
features as well as quantized hue and lightness features
from the HSL color model. To minimize the impact of
light attenuation and backscatter on the distribution of these
features, we color-correct the images before word extrac-
tion using DeepSeeColor [5]. Each word is associated with
the spatiotemporal coordinates of the time and location at
which it was observed. In order to fuse the observations
Q" into a single spatial model mapped over our region of
interest, we employ Realtime Online Spatial Topic Modeling
(ROST) [17]. While in this work V' is comprised exclusively
by visual features, in future work it could be expanded to
include measures of 3D terrain complexity, such as rugosity,
or oceanographic variables such as temperature or salinity

At a high level, ROST performs unsupervised clustering
of the 0¥ € Y based on both the distribution of words
within 0", as well as the spatiotemporal proximity of o, to
other observations in V. It divides the region of interest
into a grid of cells such that each cell contains all of the
words observed in a distinct spatiotemporal volume. ROST
assumes that every cell has a latent distribution Z € IT¥ over

a space of K “topics”,! and that a cell’s latent distribution

'Note ITX = {p € RI;O : [|p|l1 = 1} denotes the probability simplex.

is correlated to its neighbors’. ROST uses Monte Carlo
sampling techniques to simultaneously learn these topics
and assign each feature observation to a particular topic
in realtime. Without any pretraining, this approach learns
topics which reflect visually-distinct ecological habitats in
the environment, such that Z(x) represents the mixture of
habitats observed at location X.

C. Data Synthesis

To learn the mapping between the learned visual topics
and acoustic activity, we used Bayesian Linear Regression
[35], [37], since it balances the simplicity of Ordinary Linear
Regression while also providing estimates of model and
predictive uncertainty. The model assumes there is weight
vector 1) € RX such that

ARx)=v " Z(x) +e, (8)

where Z(x) is the topic map, A(x) is the audio map, and
e ~ N(0,0). Bayesian Linear Regression finds the most
likely weight vector ¢) = max, Pr(y | Z(x), A(x)), which
describes the mean acoustic activity level of each topic.

One key advantage of Bayesian Linear Regression over
more expressive models, such as Gaussian Process Regres-
sion, is that Bayesian Linear Regression is significantly less
computationally expensive, scaling at O(|x|) as opposed to
the O(|x|) [38]. Experimentally, we found that the expres-
sive power we lost by using the simpler Bayesian Linear
Regression was a minor issue more than compensated by
the reduced computational requirements.

IV. FIELD EXPERIMENTS

In two expeditions to St. John in the U.S. Virgin Islands,
we conducted multiple audio-visual surveys on three differ-
ent reefs. The first of these reefs, Joel’s Shoal, is a highly
compact and isolated reef approximately 30 m in diameter,
surrounded by mostly sand. The second reef, Booby Rock,
is a larger reef which wraps around its namesake rock. It
features a mix of sandy channels, rocky and soft coral,
seagrass beds, and on the eastern edge is a 5 m cliff, beyond
which the seafloor drops off to a relatively flat sandy bottom.
The final reef, Tektite, has a similar structure to BR, with a
patchy mix of sand, seagrass, and hard and soft corals. Work
was conducted under the National Park Service Scientific
Research and Collecting Permit #VIIS-2022-SCI-0005.

The CUREE platform [12], shown in Fig. 1, was used to
conduct all surveys. It was equipped with four calibrated HTI
Min-96 hydrophones mounted on the end of aluminum arms
30 cm long and arranged in a planar array. The maximum
separation between hydrophones along the vehicle’s sway
axis was 89 cm, and 36 cm along the surge axis.

A. Synthetic Sound Source Localization

To evaluate the accuracy of our acoustic mapping ap-
proach, we conducted a series of tests using an underwater
speaker deployed on a sandy seafloor as a synthetic acoustic
hotspot. During these tests, the speaker either played acoustic
chirps (a pure tone linearly varying in frequency from 2 kHz



Dataset: 2022-11-03 Joels Shoal Dendrogyra

Orthomosaic Topic Map Audio Map le—5
-2.5 -2.5 -25
-5.0 5.0 —=5.0
-7.5 75 -75 -
=]
@ @ w 0=
g -10.0 8 ~10.0 & -100 E
£ £ £ 7
= - = = _ .5 @
T -125 T 125 T 125 ¢
[=]
-15.0 _15.0 -15.0 o9
-17.5 175 -17.5
—-20.0 -20.0
—20.0 4.0
-5 0 5 -5 0 5
X (meters) X (meters) X (meters)
Predicted Audio Map 1._s5 1e-5 Topic Weights Topic 2 Prevalence
1.0
—25 7.0 35
-5.0 6.5 -5.0 0.8
-75 . 0§ -7.5
=z = = 0.6 Y
Py 7 bt <
g 100 2 g -100 &
E 559 E S
> -125 I+ > -125 04 g
=
[=]
~15.0 30: ~15.0
0.2
-17.5 45 -17.5
-20.0 . ; i 40 -20.0 0.0
-5 0 5 -5 0 5
X (meters) Topic Index X (meters)

Fig. 5: Dataset collected in a grid survey on the edge of Joel’s Shoal near St. John, USVI. The top-left image shows a color-corrected reconstructed
orthomosaic of the Joel’s Shoal site around a dead Dendrogyra cylindrus (Pillar Coral). The pillar coral is located at approximately (-4m, -7.5m). Seven
semantically distinct topics were identified by the unsupervised topic model discussed in Section III-B (top-center). The corresponding audio map is
constructed from 56 10 second drifting periods (top-right). Using Bayesian Linear Regression, we can choose a set of weights (bottom-center) that best
predict the audio map from the topic map (bottom-left). The distribution of the highest-weighted topic covers rocky coral regions (bottom-right).
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Fig. 6: Audio sample positions and o, from a synthetic sound source figure-
eight experiment using the Bartlett beamformer. Audio samples taken closer
to the sound source have lower variance in estimated direction compared to
samples taken farther away.

to 20 kHz), or a recording of a healthy reef soundscape
recorded at Tektite. An example mission is shown in Fig. 6 In
each synthetic localization mission, CUREE tracked a figure-
eight pattern with loops 8 m in diameter, and the acoustic
source positioned at the center of one loop. CUREE went
around each figure-eight once clockwise and once counter-
clockwise per mission. We evaluated two different acoustic
recording systems, a Teensy4.l Audio board, sampling at
44.1 kHz, and a Oceanlnstruments Soundtrap sampling at
288 kHz. Ultimately, we found no meaningful advantage
to the higher sampling rate offered by the Oceanlnstru-

TABLE I: Beamformer Evaluation with Synthetic Sound Source

Average Angular  Final Localization

Beamformer Domain Uncertainty Error

Delay-and-Sum  Time 38.296° 2.151 m
Bartlett Frequency  44.668° 1.699 m
Capon Frequency  54.305° 1.211 m
MUSIC Frequency  58.064° 2221 m

ments Soundtrap, and the additional samples require ad-
ditional computation time to process. We also evaluated
the performance of four common beamformers: the Bartlett
beamformer described in Sec. III-A, as well as the Capon,
MUSIC, and Delay-and-Sum beamformers. The results of
this anaylysis are shown in Table I. In each experiment
we evaluated both the average angular uncertainty (i.e., the
variance of snapshot angle within each observation window),
and the localization error of the estimated sound source
location. We found that the Bartlett beamformer provided the
best balance of localization accuracy and angular uncertainty.

B. Acoustic Hotspots on Coral Reefs

Across the two field expeditions and three reefs, we
conducted 17 audio-visual surveys. Seven surveys were
conducted at Joel’s Shoal, six at Booby Rock, and four
at Tektite. Each survey was conducted using a pre-planned
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Fig. 7: Dataset collected in a transect survey over Joel’s Shoal. The maximum-weighted topic, Topic 2, covers the rocky coral that forms the main mass
of Joel’s Shoal reef, while Topics 0, 1, and 3 cover the sandy surrounding regions. The difference between the topic map and orthomosaic geometry is
due to errors in the AUV localization that are corrected when the visual imagery is stitched into the orthomosiac.

trajectory at approximately 1.5 meters altitude. The surveys
can be broadly categorized into two types. Dense grid
surveys cover small regions of a reef (20 to 30 m squares)
with a lawnmower pattern. Transect surveys cover much
larger areas, however they do not achieve complete coverage,
and are instead focused on observing a breadth of habitats.
Examples of grid and transect surveys at Joel’s Shoal are
shown in Fig. 5 and Fig. 7, respectively. In both surveys,
the primary source of acoustic activity is the rocky coral at
the center of the reef. While we lack a ground truth count
of snapping shrimp populations on Joel’s Shoal, this result
matches studies at other sites, where researchers found that
snapping shrimp tend to prefer complex bathymetry where
they can safely hide from predators beneath rocks and coral
[7]. This result was replicated in surveys conducted at the
other sites. At Booby Rock, five of the six surveys were
transect surveys which followed the same 300 m long path
over the reef on the northern side of the rock. In each
survey, the primary acoustic activity was located in shallow
coral-covered regions, similar to the most acoustically active
portions of Joel’s Shoal shown in Figs. 5 and 7.

V. CONCLUSION

In this paper we demonstrated a new system for conduct-
ing multi-sensor surveys of coral reefs. Our system uses
Bartlett beamforming to measure the distribution of acoustic
energy in the soundscape of a coral reef and fused using a

Bayesian Occupancy Grid. Simultaneously, we use Realtime
Spatiotemporal Topic Modelling to cluster benthic habitat
types based on visual features. By combining these maps,
we were able to identify which habitat types on a coral reef
are biological “hotspots” and responsible for most of the
acoustic energy in the reef soundscape. We demonstrated
the system in field experiments on reefs off of St. John in
the US Virgin Islands, where we autonomously identified the
preferred habitat of snapping shrimp.

An implicit assumption of our system is that the survey
domain is small enough that the AUV can achieve complete
coverage of the environment. In future work, we plan to relax
this assumption and use the audio map in an informative path
planning architecture, where the AUV optimizes its trajectory
to both produce the most accurate acoustic map of the reef
and maximize its time spent visually surveying the biological
hotspots it discovers. Another avenue for improvement is ex-
panding the range of organisms the AUV targets in the audio-
visual survey. In this work we targeted snapping shrimp due
to their ubiquity and ease of detection however, with neural
network trained to identify fish calls in lower frequency
bands, we could apply the same techniques outlined to map
the distribution of specific species of fish. Finally, we also
plan to expand the variables used for habitat identification to
include temperature, salinity, and 3D measures of structure,
such as rugosity.
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