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Abstract 11 

Decarbonizing the residential buildings sector is important to realize a net-zero future. However, 12 

little research comprehensively explores how residential energy by end-uses, i.e., space heating, space 13 

cooling, water heating, and appliances, vary across different climate, building, and occupant 14 

characteristics. Therefore, based on Residential Energy Consumption Survey 2015, this study investigates 15 

how these energy end-uses correlated with different influential factors, i.e., climate, demographics, 16 

housing and appliance features. Recursively random forest regression and partial dependency plots were 17 

employed to analyze and quantify the impact of influencing factors on end-use energy usage. The 18 

developed models illustrate nonlinear and varying impacts of influential factors on different end-uses, 19 

with R-square from 0.481 (appliance) to 0.885 (space cooling). Specifically, housing size and climate are 20 

determinant factors of space heating/cooling, while family size and total appliance number determine 21 

water heating and appliance usage, respectively. Use frequency, size, and vintage of appliances (e.g., 22 

refrigerator, laundry) affect appliance energy consumption. Furthermore, one-way ANOVA confirms the 23 

statistically significant differences in energy consumption across varying household income groups, i.e., 24 

households with higher incomes consume more energy. Houses with older vintages use more total energy, 25 

especially in space heating, while less in cooling due to lower penetration of air conditioners. Finally, the 26 

analysis proves that residential end-use electrification, mainly space heating and water heating, is 27 

beneficial for energy efficiency. The findings contribute to understanding influential factors on different 28 

end-uses in households, which from a holistic level informs the potential pathway for building 29 

decarbonization, especially targeting at specific end-uses or occupant groups. 30 
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1 Introduction 36 

Multiple initiatives (e.g., zero-carbon buildings) have been implemented to reduce buildings’ carbon 37 

emissions in the past few years (Aydin & Brounen, 2019; Duzgun et al., 2022), although the building 38 

sector still contributes to around 40% of total global energy consumption (Khalil et al., 2022). In the 39 

United States (US), the share of energy consumed by residential buildings has increased gradually, 40 

reaching 21% of total energy usage in 2021 (US EIA, 2022). US residential energy consumption accounts 41 

for 17% of global residential energy consumption (Fumo and Rafe Biswas, 2015). Consequently, US 42 

residential buildings show great energy saving and carbon reduction potential.  43 

Residential buildings consume electricity, natural gas, and other end-use energy sources to provide 44 

various services, i.e., space heating, air conditioning (space cooling), water heating, and appliances (Fell, 45 

2017; Swan and Ugursal, 2009). Analyzing these energy end-uses is crucial for the design of specific 46 

energy-conservation programs and system resiliency for the security of energy services (Tiwari et al., 47 

2022). Compared with the research on total energy consumption, the main obstacle to analyzing energy 48 

end-use, which corresponds to the range of energy services utilized in residential homes, is the 49 

disaggregation of total energy usage at the end-use level due to measuring difficulty of utility meters 50 

(González-Torres et al., 2022).  51 

Generally, several techniques can be used to break down total energy consumption for different 52 

energy service use. The first is the sensor-based disaggregation method. Although this method has high 53 

accuracy based on distributed direct sensors, the installation and maintenance cost is non-negligible 54 

(Larsen and Nesbakken, 2004), which impedes its application on a large scale. Another approach is 55 

statistical modeling (i.e., data-based method), e.g., conditional demand analysis (CDA) and regression 56 

methods. However, CDA has limited capability in modeling end-use energy consumption, in that only a 57 

few variables are allowed to adjust in the model (Aydinalp-Koksal and Ugursal, 2008). Regression, 58 

especially linear regression, is widely applied due to its straightforward interpretation but has poor 59 

performance in explaining the nonlinear impacts (Kim et al., 2020). Additionally, engineering models (i.e., 60 

model-based analyses) are commonly used to decompose total energy consumption. This method does not 61 

rely on historical consumption data but is based on occupant behaviors, appliance ratings, building 62 

characteristics, etc. (Swan and Ugursal, 2009). The energy consumption simulated by engineering models 63 

can precisely match the actual energy by obtaining the details of the building and occupants (Zhao, 2012). 64 

Since 2015, Residential Energy Consumption Survey (RECS), a national survey administered by US 65 

Environment Information Administration (EIA), started adopting engineering models to disaggregate total 66 

energy use. Furthermore, RECS 2015 was conducted and validated through a cross-sectional household 67 

survey and an energy supplier survey to ensure the quality of energy disaggregation (US EIA, 2015a). 68 

Hence, RECS is reliable for a detailed analysis of residential energy end-uses.  69 

Numerous studies have been conducted on building total energy use and corresponding influencing 70 

factors based on various datasets, including RECS, but few studies focus on energy services differentiated 71 

by energy end-use. Estiri (2014) examined the direct and indirect impacts of building and household 72 

characteristics on residential total energy consumption based on RECS 2015. Likewise, Karatasou & 73 

Santamouris (2019) used RECS 2015 to model the relationship between socioeconomic status (e.g., 74 

income, housing size, and the number of rooms) and total energy consumption. Debs & Metzinger (2022) 75 

also analyzed RECS 2015 but compared the energy consumption and the influencing factors in different 76 

climate zones. Furthermore, a few studies are based on particular energy fuels, mainly electricity. 77 
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Sanquist et al. (2012) analyzed how household demographics and energy consumption behavior affect 78 

residential electricity consumption using multiple regression modeling based on RECS 2005. 79 

Iraganaboina & Eluru (2021) compared influencing factors on residential energy use from the perspective 80 

of different energy sources, including electricity, natural gas, and fuel oil. In contrast, fewer studies 81 

analyzed end-use energy consumption. Matsumoto (2016) only explored the impacts of household 82 

characteristics on electrical appliance energy consumption in Japan. Similarly, in a recent study, Zhu et al. 83 

(2023) focused on the contributors to space cooling energy use in China. RECS can be applied to analyze 84 

end-use consumption as well. Min et al. (2010) and Li (2014) adopted RECS 2005 and RECS 2009 to 85 

model end-use energy consumption using linear regression; however, the influencing factors considered 86 

are incomprehensive, mainly household and housing characteristics.  87 

Understanding the differences in energy end-uses (i.e., space heating/cooling, water heating, and 88 

appliances, which provide different energy services needed at home) and their driving factors is the 89 

prerequisite to developing energy efficiency programs for residential buildings and, ultimately, 90 

conserving energy consumption. However, the research on energy end-uses is limited. Although it has 91 

been revealed that household demographics, housing characteristics, home appliances, and climate affect 92 

residential energy consumption (Estiri, 2014), most former studies are from the perspective of total 93 

household energy consumption, and the incorporated factors are incomprehensive. How these factors 94 

affect each end-use energy consumption remains unclear. Hence, comprehensive investigations and 95 

comparisons of the influencing factors across various residential energy end-uses are required. 96 

Therefore, this study aims to explore and compare the driving factors of residential energy 97 

consumption from the perspective of end-uses based on RECS 2015. The remainder of this paper is 98 

organized as follows: section 2 reviews existing studies on the influencing factors of energy consumption. 99 

Section 3 describes the data screening and processing and introduces the used methods. In section 4, the 100 

results of descriptive analysis and fitted regression models are presented. Then, section 5 discusses and 101 

compares the driving factors and their impacts across different end-uses. Finally, section 6 draws up 102 

conclusions.  103 

2 Literature Review 104 

2.1 Influencing Factors of Total Residential Energy Use 105 

Various factors contribute to residential energy consumption, including climate and geography, 106 

household demographics, housing and appliance characteristics. One of the most studied areas is the 107 

influence of occupant demographics on energy use. Household income and family size are generally 108 

identified as the determining factors that drive energy consumption, although the findings on the impacts 109 

of demographics are inconsistent among existing studies (Frederiks et al., 2015; Mohr, 2018; Wang et al., 110 

2020). Age is considered another contributor to energy consumption due to elderly residents’ frugal 111 

energy consumption behaviors (Chen et al., 2013). Besides these, household members’ education levels 112 

and employment status are recognized as potential factors (Jones and Lomas, 2015; Karatasou and 113 

Santamouris, 2019; Kumar et al., 2022; Tiwari et al., 2022). In particular, these demographics reflect the 114 

socio-economic status of households (Chen et al., 2013). A few studies demonstrated that socio-economic 115 

status indirectly affects energy consumption by influencing housing choice, e.g., housing type, number of 116 

appliances, and housing size (Estiri, 2014; Tso and Guan, 2014).  117 
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Another key driving factor to energy consumption is housing, which can be classified into housing 118 

and appliance characteristics (Jones et al., 2015). Housing size, measured by total square footage or 119 

heated/cooled area, significantly contributes to energy consumption (Karatasou and Santamouris, 2019). 120 

Generally, larger housing sizes are associated with higher energy usage. The total number of rooms is 121 

related to housing size and positively affects energy consumption (Iraganaboina and Eluru, 2021; Wang et 122 

al., 2021). Besides, housing vintage (i.e., the built year of the house) is another influencing factor; 123 

however, its impact is inconsistent across existing studies. The housing of old vintage has less electricity 124 

usage in Bedir et al. (2013), while Bartusch et al. (2012) found that newly constructed houses consume 125 

less electricity. Also, the impacts of housing vintage on different energy fuels (e.g., electricity and natural 126 

gas) are different (Brounen et al., 2012). Additionally, energy consumption varies by housing type 127 

(Brounen et al., 2012; Kaza, 2010).  128 

Compared with other factors, fewer studies have included appliance characteristics in their 129 

investigation (Jones et al., 2015). Bartusch et al. (2012) proposed that energy consumption cannot be fully 130 

explained by household and housing characteristics alone. For appliance characteristics, the number of 131 

appliances effectively predicts energy consumption (Mo and Zhao, 2021). Iraganaboina & Eluru (2021) 132 

analyzed the number of some specific appliances, e.g., desktops, clothes dryers, refrigerators, etc. 133 

Similarly, Karatasou & Santamouris, (2019) found that the number of appliances, measured as the sum of 134 

the number of refrigerators, freezers, dishwashers, clothes washers, dryers, TVs, personal computers, and 135 

ACs, has a positive correlation with energy consumption. Use frequency and size of common appliances, 136 

e.g., AC, laundry, personal computer, and TV, also greatly impact energy consumption (Sanquist et al., 137 

2012; Genjo et al., 2005). Similarly, Steemers and Yun (2009) and Ruan et al. (2017) concluded that 138 

appliance usage behavior, mainly AC, contributes to energy consumption. Additionally, appliance energy 139 

consumption is increased with aging (Paul et al., 2022); however, the impacts of appliances’ vintage are 140 

not fully explored (Wang, 2017). Đurišić et al. (2020) only considered the average age of kitchen 141 

appliances, laundry, and HVAC. Chen et al. (2022) incorporated the age of appliances but only focused 142 

on the AC when analyzing the influencing factors among different income groups.  143 

In addition, the climate and location of houses are recognized to affect residential energy 144 

consumption. It is proven that outdoor temperature affects residential energy consumption (Fumo and 145 

Rafe Biswas, 2015). Some studies adopted heating or cooling degree days (HDD/ CDD) to measure the 146 

climate of the areas. Strong correlations between energy consumption and HDD exist in the European 147 

Union (Tsemekidi et al., 2019) and the US (Li et al., 2022); that is, the colder the region, the higher the 148 

energy consumption. Besides HDD and CDD, climate zones are also used to classify regional climates. 149 

Differences in climate zones contribute to energy consumption gaps in total energy consumption (Mo and 150 

Zhao, 2021). Debs and Metzinger (2022) asserted that energy consumption’s driving factors have varying 151 

effects in different climate zones. Furthermore, the effects of the housing location, usually classified into 152 

rural and urban, are identified in a few studies. There are some differences in energy consumption 153 

between urban and rural households (Chun-sheng et al., 2012). Zheng et al. (2014) found the urban-rural 154 

variance in energy consumption as well.  155 

2.2 Residential End-use Consumption and Influencing Factors 156 

The residential sector consumes energy for various end-uses or services, e.g., space heating, space 157 

cooling, domestic hot water, and appliances, for occupant living (Swan and Ugursal, 2009). These energy 158 

end-uses can be referred as energy services (Fell, 2017; González-Torres et al., 2022). Some studies 159 
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reported end-use energy consumption; however, they still studied the total energy consumption. For 160 

instance, Aydinalp et al. (2002) studied the total energy usage of appliances, lighting, and space cooling, 161 

which are major sectors of building energy use. Hence, this research still focuses on aggregated energy 162 

consumption. Moreover, although Wang et al. (2021) used “residential energy end-use” as their research 163 

topic, unfortunately, they mixed the concepts of energy end-use and total energy consumption. In this 164 

case, they have not disaggregated the total energy consumed to end-use level nor analyzed the influencing 165 

factors of each energy end-use.  166 

Generally, total energy consumption can be obtained directly by energy meters or billings (Swan and 167 

Ugursal, 2009), while it is challenging to obtain the energy consumed by specific categories of end uses 168 

(González-Torres et al., 2022). Small-scale research always uses direct measurement to obtain end-use 169 

data. Lee et al. (2019) adopted gas or electricity meters to measure the annual end-use energy 170 

consumption data, i.e., heating, cooling, water heating, ventilation, electric appliances, and cooking. This 171 

study covered 71 households with less than 40 valid samples for most end-uses. In a similar manner, Xie 172 

& Noor (2022) collected 66 households’ annual residential end-use energy consumption data using an 173 

installed measurement system. Nevertheless, direct measurement is not feasible on large scales, and some 174 

statistical or engineering models are needed to disaggregate energy consumption (González-Torres et al., 175 

2022). Among earlier studies, large-scale end-use energy consumption data were roughly estimated. 176 

Farahbakhsh et al. (1998) divided the total energy consumption into end uses by constant percentages of 177 

each end-use. Similarly, the cooling energy consumption in Aydinalp et al. (2002) was approximately 178 

estimated by a reported general frequency of AC usage. Afterward, more information, including housing 179 

characteristics, household demographics, and occupant behaviors, has been collected to disaggregate 180 

energy consumption, e.g., RECS 2015; hence, data quality is improved correspondingly (Jin et al., 2023).  181 

Compared with the total energy consumption, less research is conducted on residential energy end-182 

uses, and the factors considered when analyzing end-use energy consumption are incomplete. The end-183 

use models developed by Ren et al. (2013) are based on occupancy patterns, requiring many details about 184 

occupants and their behaviors to predict energy consumption; however, this information is difficult to 185 

obtain in most cases (Wang, 2017). Min et al. (2010) and Li (2014) modeled the residential energy end-186 

uses using RECS 2005 and RECS 2009, respectively. However, both studies’ influencing factors are 187 

incomplete, e.g., lacking housing appliances. Karatasou et al. (2018) only compared the impacts of 188 

housing and family size on the energy consumption of electric appliances, space heating, and water heater 189 

of 244 dwellings. Lee & Song (2022) analyzed the determinants of housing, socio-demographics, and 190 

appliance on end-use energy consumption based on 71 apartment households in South Korea. However, 191 

these studies are small-scale with insufficient variables under consideration.  192 

Furthermore, a few studies focus on certain specific end-uses. Matsumoto (2016) examined the 193 

effects of households’ socioeconomic characteristics on the electric usage of 19 residential appliances in 194 

Japan. Huo et al. (2021) only studied space heating in Chongqing, China, and viewed electricity as the 195 

sole energy source. Other fuel types providing space heating and appliance characteristics are ignored in 196 

these two studies. Guerra Santin et al. (2009) investigated the influence of occupancy and building on the 197 

total energy consumption of space and water heating. Liu et al. (2021) considered multiple fuels to 198 

explore the main driving factors of space heating in China, including types of energy consumed, heating 199 

area, and climate, but used a small dataset (only around 200). Feng et al. (2016) pointed out the 200 

determinant impact of occupant behavior on space cooling usage based on survey and energy bills. 201 

However, the behavior involved is incomplete, with only a general cooling setpoint. Yun and Steemers 202 
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(2011) adopted RECS 2001 to analyze the impacts of behavior, physical, and socio-economic factors on 203 

residential energy consumption, but only space cooling usage was considered. Hence, the comprehensive 204 

analysis and comparisons of the influencing factors of each end-use energy consumption are limited and 205 

need further exploration.  206 

Overall, climate, household demographics, housing characteristics, and appliance characteristics 207 

contribute to residential energy consumption. Existing studies on the influencing factors of energy 208 

consumption are mainly from the perspective of total energy consumption. Although a few studies have 209 

been conducted at the end-use level, they are not nationwide, and the influencing factors considered are 210 

incomprehensive. 211 

3 Data and Methods 212 

3.1 Data and Data Screening 213 

RECS is a national survey conducted every five years by US EIA to collect detailed information on 214 

household energy-related data. RECS 2015, the most recently available energy consumption survey data, 215 

is adopted for this study (US EIA, 2015b). The housing characteristics (including physical housing 216 

characteristics, household demographics, energy-related behavior, and home appliance) of RECS 2015 217 

were collected between August 2015 and April 2016, with 5686 households involved representing 118.2 218 

million US households. Besides this, to collect the energy consumption and expenditures of the surveyed 219 

houses, EIA uses the energy supplier survey to gather household energy billing data from energy 220 

suppliers directly, including electricity, gas, and fuel oil (US EIA, 2015a). The energy billings cover the 221 

energy usage from September 2014 to April 2016.  222 

Due to the cost and difficulty of large scale submetering of end-uses, the end-use energy 223 

consumption is decomposed from metering data of total household energy usage with calibration and 224 

validation based on the engineering model-based method, as commonly adopted method in large-scale 225 

building surveys (González-Torres et al., 2022; Swan and Ugursal, 2009). Specifically, building 226 

characteristics, demographics, climate, owned appliances, and occupant behavior were first collected in 227 

RECS 2015 (US EIA, 2015a). Based on this information, physics-based engineering models use 228 

published values of building and appliance parameters (e.g., Unit Energy Consumption [UEC], space 229 

heating/cooling load) and consider occupant behaviors, building characteristics, and equipment efficiency 230 

to derive energy usage for each category of end-uses. For example, coffee maker energy consumption is 231 

based on the average UEC value from published sources, the presence of coffee makers, and the use 232 

frequency of surveyed occupants. Space heating energy usage is modeled based on the equipment 233 

characteristics, reported usage behaviors, and required space heating load. After model-based 234 

decomposition, the end-use energy consumption is further calibrated and validated using the collected 235 

total energy bills of each fuel for the surveyed household, considering the uncertainties of end-use 236 

estimate and correlations between energy end-uses (e.g., clothes washers and cloth dryers). The detailed 237 

information can be found in (US EIA, 2015a). 238 

The housing unit in the RECS was classified into 5 types, including mobile home, single-family 239 

detached house, and single-family attached house, among which single-family detached houses occupy 240 

the most part, with around 62%. To reduce the impact of different housing units (Estiri, 2014; Kaza, 241 

2010), this study focuses on the single-family detached house. Also, considering the impact of bill 242 
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payment responsibilities (Best et al., 2021), this study further delimits the research samples only to 243 

consider the households responsible for paying all used energy bills, i.e., electricity, natural gas, propane, 244 

and fuel oil. Therefore, the final sample size is 3702.  245 

3.2 Factors Selection Overview 246 

Figure 1 shows the flowchart of factor selection. First, based on the literature review and the 247 

available factors in the RECS dataset, we preselect explainable variables for each end-use. These factors 248 

are processed and recoded for further analysis. Then, Spearman rank correlation analysis is employed to 249 

find the correlated factors with each end-use and total energy consumption, where the threshold is set as 250 

0.2 (Akoglu, 2018). Next, these correlated factors are fed into random forest regression models, from 251 

which the variable importance (VI) scores are calculated, followed by a recursive feature elimination 252 

process (Darst et al., 2018). In this iterative step, we keep tuning the model and eliminating the variables 253 

with a VI score less than 0.01 until the VI scores of all factors in the regression model are larger than or 254 

equal to 0.01. Based on the final model, we obtain the determinants and corresponding VI scores.  255 

 256 

Figure 1 Variables Selection Process 257 

3.3 Factors and Measurements 258 

The preselected variables in the RECS can be classified into four types: climate and location, 259 

occupant demographics, building characteristics, and appliance characteristics (Rafsanjani, 2016), 260 

including categorical and numerical variables. The factors and descriptions are shown in Appendix Table 261 

1. Some categorical variables are processed into ordinal or dummy variables.  262 

Climate and Location We select the urban type of housing (Zhang et al., 2016), climate zones 263 

(Debs and Metzinger, 2022), and heating/cooling degree days (Nie et al., 2018) to describe the climate 264 

and location of the surveyed houses. Urban types and climate zones are converted into dummy variables. 265 

Specifically, UATYP10 is converted into UATYP10_R and UATYP10_U, among which each value of 266 

the two dummy variables equal to 1 means the house is in rural or urban areas, respectively; if both values 267 

equal 0, the house is in the urban cluster. Moreover, we use the Building American Climate Zone to 268 

classify the climate zones. The original variable (i.e., CLIMATE_REGION) is one-hot coded using 269 

“Cold/Very Cold”, “Hot-Dry/Mixed-Dry”, “Hot-Humid”, “Marine”, and “Mixed-Humid” to represent the 270 

five climate zones. Additionally, HDD65 and CDD65 are continuous numerical variables, measuring how 271 

cold/hot the temperature was in the area during 2015 based on 65F.  272 



8 
 

Household Demographics RECS 2015 did not collect the age, education levels, and employment 273 

status of all occupants in the household; therefore, the three variables are represented by the respondents’ 274 

age (HHAGE), education (EDUCATION), and employment status (EMPLOYHH) (Estiri, 2014; 275 

Karatasou and Santamouris, 2019). Family size (NHSLDMEM), household income (MONEYPY), and 276 

the number of weekdays someone is at home (ATHOME) are driving factors commonly identified in 277 

existing studies as well (Debs and Metzinger, 2022; Tso and Guan, 2014). We recode the employment 278 

status with 0 representing not employed/retired, 0.5 representing employed part-time, and 1 representing 279 

employed full-time. In this way, household income, education, and employment status are ordinal 280 

variables. Family size, age, and the number of weekdays someone is at home are continuous variables.  281 

Housing Characteristics Various housing characteristics, e.g., vintage, housing area, and the 282 

number of total rooms, influence residential energy consumption (Li et al., 2022; Wang, 2017; Wang et 283 

al., 2021). RECS uses square footage to measure the housing size, which is converted to square meters. In 284 

this study, three types of housing size variables, i.e., total cooled area in square meters (TOTCM2), total 285 

heated area in square meters (TOTHM2), and total housing area in square meters (TOTHOUSING), are 286 

used to model the space cooling, space heating, and other end-use energy consumption. Total number of 287 

rooms (TOTROOMS) in the housing unit is a numerical variable. Vintage (YEARMADERANGE), the 288 

number of stories (STORIES) and windows (WINDOWS), level of insulation (ADQINSUL), and 289 

frequency of drafty (DRAFTY) are ordinal variables, which we viewed as continual variables. ATTIC 290 

and CELLAR are dummy variables to show if the house has a basement or attic.  291 

Appliance Characteristics Some characteristics of essential appliances, e.g., equipment type (Debs 292 

and Metzinger, 2022), vintage (Jones et al., 2015), usage frequency and behavior (Iraganaboina and Eluru, 293 

2021; Tso and Guan, 2014), and fuel type (Mo and Zhao, 2021), are selected and encoded. Specifically, 294 

the ages of vital appliances (e.g., refrigerator, freezer, space heating, and air conditioner) are recoded by 295 

using 0-6 to indicate not appliable, less than 2 years old, 2-4 years old, 5-9 years old, 10-14 years old, 15-296 

19 years old, and over 20 years old, respectively. Then, we use “0” to replace “-2” in the RECS’s original 297 

codes of size and use frequency of appliance to represent not applicable. In this way, the size of 298 

refrigerators, freezers, TVs, and water heaters are ordinal variables. Larger values of these variables mean 299 

a larger size of the appliance. The use frequency of the cooktop and oven part of the stove, separate 300 

cooktop and oven, microwave, and TV are numerical variables. Furthermore, HVAC usage behavior, type 301 

of fuels used by appliances, and equipment type of appliances (e.g., stove, clothes dryer, main and 302 

secondary space heating, and water heating) are also dummy coded. Finally, we add another variable, 303 

“NUMAP”, to represent the total number of appliances owned (Karatasou and Santamouris, 2019). It is 304 

measured by the total number of refrigerators, separate freezers, stoves, separate cooktops, separate ovens, 305 

microwaves, outdoor grills, toasters, toaster ovens, coffee makers, crockpots, food processors, rice 306 

cookers, blenders or juicers, dishwashers, laundry (i.e., clothes washers and dryers), televisions, 307 

computers (desktop, laptop, and tablet), printers, fans, humidifiers, and light bulbs. 308 

End-use Energy Consumption This study uses kilowatt hours (kWh) as the energy unit to combine 309 

different fuels or energy sources on an equal basis. Except for electricity, RECS uses British thermal units 310 

(Btu) to quantify other consumed fuels, e.g., natural gas and propane, which are correspondingly 311 

converted to kWh†. The calculations for the end-use energy consumption are shown in equations (1)-(4). 312 

                                                   
† 1 kWh = 3412.14 Btu 
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Space cooling (SPCKWH) only consumes electricity, consisting of air conditioning, air handlers used for 313 

cooling, and evaporative coolers. In contrast, space heating (SPHKWH) can be provided by electricity, 314 

natural gas, propane, and fuel oil/kerosene. The electricity consumed by air handlers and boiler pumps for 315 

heating is incorporated into space heating. Water heating (WTHKWH) also consumes electricity, natural 316 

gas, and fuel oil. The remaining energy consumption is by appliances (APKWH). Some appliances only 317 

consume electricity, e.g., refrigerators, freezers, microwaves, clothes washers, and dishwashers, while 318 

other applications support multiple energy sources, e.g., cooking, clothes dryers, and swimming pool 319 

pumps and heaters. The total energy consumption is summed by RECS and called “TOTALBTU”, 320 

converted to kWh and named “TOTALKWH”. Finally, after testing, we transform the energy 321 

consumption of space heating, space cooling, appliance, and total energy consumption to log and use Btu 322 

for better fitting the model (Debs and Metzinger, 2022), while the results are reported in kWh for easier 323 

interpretations.  324 

SPCKWH = KWHCOL + KWHAHUCOL + KWHEVAPCOL       (1) 325 

SPCKWH: Total energy consumption by space cooling, in kWh 326 

KWHCOL: Electricity usage for air conditioning (central systems and individual units), in kWh 327 

KWHELAHUCOL: Electricity usage for air handlers used for cooling, in kWh 328 

KWHELEVAPCOL: Electricity usage for evaporative coolers, in kWh 329 

SPHKWH = KWHSPH + KWHELAHUHEAT + KWHNGSPH + KWHLPSPH + KWHFOSPH    (2) 330 

SPHKWH: Total energy consumption by space heating, in kWh 331 

KWHELSPH: Electricity usage for main and secondary space heating, in kWh 332 

KWHELAHUHEAT: Electricity usage for air handlers and boiler pumps used for heating, in kWh 333 

KWHNGSPH: Natural gas usage for main and secondary space heating, in kWh 334 

KWHLPSPH: Propane usage for main and secondary space heating, in kWh 335 

KWHFOSPH: Fuel oil/kerosene usage for main and secondary space heating, in kWh 336 

WTHKWH = KWHWTH + KWHNGWTH + KWHFOWTH       (3) 337 

WTHKWH: Total energy consumption by water heating, in kWh 338 

KWHELWTH: Electricity usage for main and secondary water heating, in kWh 339 

KWHNGWTH: Natural gas usage for main and secondary water heating, in kWh 340 

KWHFOWTH: Fuel oil/kerosene usage for main and secondary water heating, in kWh 341 

TOTALKWHWTH: Total usage for main and secondary water heating, in kWh 342 

APKWH = KWHELRFG + KWHELFRZ + KWHELMICRO + KWHELCW + KWHELDWH + KWHELLGT + KWHELTVREL +343 
KWHELCFAN + KWHELDHUM + KWHELHUM + TOTALKWHCOK + TOTALKWHCDR + TOTALKWHPL +344 
TOTALKWHHTB + TOTALKWHNEC         (4) 345 

APKWH: Total energy consumption by appliances, in kWh 346 

KWHELRFG: Electricity usage for all refrigerators, in kWh 347 

KWHELFRZ: Electricity usage for freezers, in kWh 348 

KWHELMICRO: Electricity usage for microwaves, in kWh 349 

KWHELCW: Electricity usage for clothes washers, in kWh 350 
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KWHELDWH: Electricity usage for dishwashers, in kWh 351 

KWHELLGT: Electricity usage for indoor and outdoor lighting, in kWh 352 

KWHELTVREL: Electricity usage for all televisions and related peripherals, in kWh 353 

KWHELCFAN: Electricity usage for ceiling fans, in kWh 354 

KWHELDHUM: Electricity usage for dehumidifiers, in kWh 355 

KWHELHUM: Electricity usage for humidifiers, in kWh 356 

TOTALKWHCOK: Total usage for cooking (stoves, cooktops, and ovens), in kWh 357 

TOTALKWHCDR: Total usage for clothes dryers, in kWh 358 

TOTALKWHPL: Total usage for swimming pool pumps and heaters, in kWh 359 

TOTALKWHNEC: Total usage for other devices and purposes not elsewhere classified, in kWh 360 

3.4 Spearman Rank Correlation 361 

Spearman rank correlation measures the degree of correlation between two variables by calculating 362 

the Pearson correlation coefficient between the ranked variables (see equation (5)). The Spearman 363 

correlation coefficient is denoted by r, whose value is between -1 and +1. Spearman correlation works 364 

well with nonlinear monotonic and ordinal data, as well as data with outliers (Schober et al., 2018). 365 

Correlation analysis can be used to select features before developing models by selecting correlated 366 

variables to reduce the risk of model retrofitting (Marques Ramos et al., 2020; Zhang et al., 2018). The 367 

larger the absolute coefficient, the stronger the correlation between the two variables. Generally, the 368 

absolute value of r greater than 0.2, 0.4, and 0.6 means that the correlation between the two variables is 369 

weak, moderate, and strong, respectively (Akoglu, 2018). To incorporate more variables into our models, 370 

we selected 0.2 as the threshold of correlation analysis. Variables with an absolute correlation coefficient 371 

value with end-use or total energy consumption larger than 0.2 are selected.  372 

,  = ,   
         (5) 373 

Where R(X) and R(Y) are ranked variables X and Y; Cov (X, Y) is the covariance of ranked X and 374 

Y; Var (X, Y) is the variance between the ranked variables.  375 

3.5 Radom Forest Regression 376 

Random forest (RF) is an ensemble learning method based on the decision tree (Breiman, 2001). 377 

Ensemble learning is a technique to combine predictions from multiple machine learning algorithms for 378 

higher predictive performance than a single model (Sagi and Rokach, 2018). Random forest uses the 379 

Bagging (short for Bootstrap aggregating) sampling method to randomly extract k different sample 380 

datasets, as the sub-training sets of each decision tree (i.e., the single weak learner), from the original 381 

dataset with replacement. The size of each sample set is the same as that of the original dataset (denoted 382 

as m). With the increase of dataset size (m), around 37% of samples will not be selected for training due 383 

to sampling with replacement, see equation (6). The unselected sample of each Bagging sampling is 384 

called Out-of-Bag (OOB), which can be used to evaluate the performance of RF models, i.e., OOB score, 385 

measuring the model’s R-squared in the out-of-bag samples (37% of the training dataset). Then, k sub-386 

training sets are used to generate k decision trees correspondingly based on partial features randomly 387 

selected from total features. The training process is repeated until the random forest is generated by trees. 388 
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is upper bound by 1, representing perfect fit; a higher R2 is considered desirable (Chicco et al., 2021). 429 

Similarly, the higher value of cross-validation score and OOB means better model fitness. MAE and 430 

RMSE measure the difference between predicted and true values; therefore, a lower value of MAE and 431 

RMSE implies higher model accuracy.  432 

 = 1 −  ∑  
∑  

         (7) 433 

 = 
  ∑ | − |          (8) 434 

 = 
 ∑  −          (9) 435 

Where  , , and   represent the predicted values, true values, and mean values of the true values of 436 

energy consumption.  437 

4 Results 438 

4.1 Descriptive Analysis 439 

4.1.1 Household Demographics 440 

The distributions of household demographic indicators are shown in Figure 2. Among 3702 surveyed 441 

households, around 40% of single-family households have 2 persons, followed by 3 persons and 1 person 442 

with around 17% and 16%. In terms of annual gross income, about half of the households have an annual 443 

gross household income of less than $60,000, among which 20% of respondents earned $20,000 - 444 

$39,999 (the largest part). The youngest respondent is 18 years old, and the oldest is 85 years old, with an 445 

average age of 54.5 years old. Over 60% of respondents are between 40-70 years old.  446 

  

(a) Family size (b) Household income (c) Respondent’s age 

Figure 2 Distribution of Household Demographics 447 

4.1.2 Housing Characteristics 448 

Figure 3 shows the distributions of housing characteristics of all surveyed households. The numbers 449 

of houses built before 1950 and between 2000 and 2009 are almost the same, at about 610 (17%), 450 

followed by 1970-1979, 1990-1999, and 1980-1989. Over 72% of houses have 5-8 rooms, excluding 451 

bathrooms in the unit. The total housing area of the housing unit is a continuous variable. The minimum 452 

and maximum areas for single-family houses are 29.45 square meters (m2) and 789.77 m2, respectively, 453 

with a mean value of around 238.77 m2 and a standard deviation of 118.28 m2. The distribution of 454 

housing area shows that 21% of houses’ areas are between 150-200 m2, followed by 100-150 m2 and 200-455 

250 m2. 61% of houses have only 1 story, and only 4% have 3 or more stories. 40% of houses have 10-15 456 
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windows, two times larger than those with 6-9 windows. Also, 86% of houses are well or adequately 457 

insulated. There are 56% of houses with an attic, 42% of houses with a basement, and only 1% of 458 

households use solar.  459 

   

(a) Housing vintage (b) Number of stories (c) Total area of housing 

   
(d) Total number of rooms  (e) Number of windows (f) Level of insulation 

Figure 3 Distribution of Housing Characteristics 460 

4.1.3 Appliance Characteristics 461 

The total number of appliances owned is 25.8 on average, with a minimum of 3 and a maximum of 462 

107. We analyzed the ownership of common appliances (see Figure 4), including freezers, dishwashers, 463 

and televisions. Among surveyed single-family households, almost all households have one or more 464 

refrigerators and televisions. 87% and 77% of households have at least 1 stove and 1 dishwasher, 465 

respectively. The proportion of households with clothes washers, clothes dryers, or microwaves at home 466 

is over 95%. Around 70% of households have outdoor grills, toasters, coffee makers, or laptops. 467 

 
 

(a) The number of total appliances owned (b) Percentage of Household Using Appliances 

Figure 4 Distribution of Housing Appliances 468 

(Fri: refrigerators; Fre: separate freezers; St: stoven; Ct: separate cooktops; Ov: separate ovens; Mic: microwave; Tv: television; 469 
Pc: desktop computers; Lp: laptop computers; Dw: dishwasher; Cw: clothes washer; Dry: clothes dryer; Gri: outdoor grill; To: 470 
toaster; Cof: coffee maker; Cp: crockpot or slow cooker; Fp: food processor; Rc: rice cooker; Ble: blender or juicer; Oth: other 471 
small appliance.) 472 

In terms of HVAC (see Figure 5), most houses (68%+5%=73%) have a central conditioner, and 20% 473 

(15%+5%) have an individual wall/window or portable unit, while 12% of houses do not have an air 474 
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conditioner at home. In contrast, 97% of houses have space heating equipment, among which a central 475 

furnace is the most common (66%), four times larger than houses with a heat pump (15%). Also, around 476 

46% of houses have secondary space heating, with 18% having a portable electric heater. 477 

(a) Type of air conditioning equipment (b) Main space heating equipment type 

Figure 5 Type of Air Condition and Space Heating 478 

(Figure (b-c): 2 Steam/hot water system with radiators or pipes; 3 Central furnace; 4 Heat pump; 5 Built-in electric units installed 479 
in walls, ceilings, baseboards, or floors; 6 Built-in floor/wall pipeless furnace; 7 Built-in room heater burning gas, oil, or kerosene; 480 
8 Wood-burning stove (cordwood or pellets); 9 Fireplace; 10 Portable electric heaters; 21 Some other equipment.) 481 

4.1.4 Climate and Location 482 

The distribution of climate factors (Figure 6) shows that 36% of houses are in cold/very cold zones, 483 

which is three times more than the hot-dry/mixed-dry zone and twice larger than the hot-humid zone. The 484 

mean and median of CDD65 are 1686 and 1343, respectively, with 60% of houses’ CDD65 between 500 485 

and 2000. On the other hand, the mean and median of HDD65 are 3775 and 3922, respectively, with over 486 

60% of houses’ HDD65 above 3000. Additionally, we analyzed the urban type of houses: 64% in urban 487 

areas, compared with 25% in rural areas. The remaining 11% of houses are in the urban cluster. 488 

 
  

(a) Climate zone (b) CDD65 (c) HDD65 

Figure 6 Distribution of Climate Factors 489 

4.1.5 Energy Consumption 490 

The distributions of end-use energy usage and corresponding share to total energy consumption are 491 

shown in Figure 7 and Table 1. The total energy consumption has the highest of 143.66 kWh and the 492 

lowest of 0.64 kWh, with an average of 27.38 kWh and a median of 25.09 kWh. There are 134, 374, and 493 

7 households not consuming energy for space heating, space cooling, and water heating, respectively, 494 

while appliance usage is necessary for each household, with a minimum of 0.35 kWh. Generally, space 495 

heating consumes the largest part of the energy, with around 40% of total energy consumption, followed 496 

by appliance and water heating, while space cooling only consumes 10% of total energy.  497 
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(a) End-use and total energy consumption (b) Share of each end-use to energy consumption 

Figure 7 Distribution of End-Use and Total Energy Consumption with Outlier Excluded 498 

Table 1 Descriptive Analysis of Energy Usage (KWH) and Percentage of Each End-Use 499 

End Use 
Min. Quartile Median 3 Quartiles Max. Mean STD. 

Usage Share Usage Share Usage Share Usage Share Usage Share Usage Share Usage Share 

Space heating 0 0 4.20 23% 10.04 41% 18.49 58% 80.04 94% 12.48 40% 10.56 0.22 

Space cooling 0 0 0.65 2% 1.61 6% 3.39 15% 21.78 82% 2.46 10% 2.63 0.12 

Water heating 0 0 2.77 12% 4.34 17% 6.12 24% 21.65 80% 4.74 19% 2.70 0.10 

Appliance 0.35 3% 4.60 20% 6.39 28% 9.22 39% 105.35 91% 7.71 30% 5.36 0.14 

Total 0.64 17.53 25.09 34.63 143.66 27.38 13.67 

4.2 Correlation Analysis 500 

Correlation analysis is conducted to select the variables for further regression modeling. The factors 501 

with an absolute value of correlation coefficient with end-use energy consumption or total energy 502 

consumption over 0.2 are selected, summarized in Table 2. We only consider the explainable factors. For 503 

example, although FUELH2O_1 and FUELH2O_5 (using natural gas and electricity for the main water 504 

heater) have coefficients of correlation with space heating over 0.2, they are not able to explain the energy 505 

consumption of space heating. Hence, both factors are excluded from the regression model for space 506 

heating. In a similar manner, TOTHM2, TOTCM2, and TOTHOUSING are used to model space heating, 507 

space cooling, and other end-uses, respectively. Space heating and cooling models are established with 508 

HDD65 and CDD65, respectively. 509 

Correlation results demonstrate that the energy consumption of space heating positively correlates 510 

with the Cold/Very Cold climate zone and HDD65, while space cooling has positive correlations with the 511 

Hot-Humid climate zone and CDD65. The colder the area where the house is located, the higher the 512 

energy consumption of space heating. The hotter the area where the house is located, the higher the 513 

energy consumption of space cooling. In contrast, the correlations between appliance energy consumption 514 

and climate factors are poor, with coefficients less than 0.2. Also, the correlation coefficients between 515 

housing urban type and end-use and total energy consumption are small, with an absolute value of less 516 

than 0.2. Regarding household demographics, water heating energy consumption strongly correlates with 517 

family size (NHSLDMEM, r=0.684). Household income weakly correlates with water heating, appliance, 518 

and total energy consumption (r≈0.3). However, the correlations of space heating/ space cooling with 519 

demographics are negligible. Various housing characteristics, e.g., housing size and the number of total 520 

rooms and windows, have different degrees of correlation with energy consumption. In terms of the 521 
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appliance, although the appliances vary by end-use, in general, the age, fuel type, equipment type, and 522 

size of appliances correlate with the corresponding energy consumption.  523 

Table 2 Correlated Factors with Each End-Use and Total Energy Consumption* 524 

Use Climate Household Housing  Appliance 

SPH 
(15) 

Cold/Very Cold 
(0.496), Hot/Mixed-
Dry (-0.296), Hot-
Humid (-0.402), 
HDD65 (0.649) 

None CELLAR (0.524), 
STORIES (0.292), 
TOTROOMS (0.257), 
WINDOWS (0.304), 
TOTHM2 (0.364) 

EQUIPM_2 (0.201), EQUIPM_3 (0.364), 
EQUIPM_4 (-0.297), FUELHEAT_1 
(0.436), FUELHEAT_3 (0.253), 
FUELHEAT_5 (-0.450) 

SPC 
 (9) 

Cold/Very Cold (-
0.449), 
Hot-Humid (0.488),  
Mixed-Humid 
(0.220),  
CDD65 (0.742) 

None CELLAR (-0.259), 
TOTCM2 (0.506) 

AGECENAC (0.418), COOLTYPE_1 
(0.531), USECENAC_1 (0.259) 

WTH 
(12) 

Hot-Humid (-0.243), 
CDD65 (-0.211), 
HDD65 (0.223) 

MONEYPY 
(0.244), 
NHSLDMEM 
(0.684), 
HHAGE (-
0.324) 

TOTROOMS (0.211) DWASHUSE (0.230), WASHLOAD 
(0.332), DRYRUSE (0.321), FUELH2O_1 
(0.405),  
FUELH2O_5 (-0.445) 

AP 
(22) 

None MONEYPY 
(0.356), 
NHSLDMEM 
(0.326) 

YEARMADERANGE 
(0.213), TOTROOMS 
(0.367), WINDOWS 
(0.291), 
TOTHOUSING (0.296) 

NUMAP (0.623), AGERFRI2 (0.381), 
AGEFRZR (0.224), DWASHUSE (0.414), 
WASHLOAD (0.420), DRYRUSE (0.436), 
SEPOVENUSE (0.229), AMTMICRO 
(0.223), SIZRFRI1 (0.300), SIZRFRI2 
(0.397), TVSIZE1 (0.247), TVSIZE2 
(0.323), TVONWD2 (0.264), TVONWE2 
(0.276), DWCYCLE_2 (0.258), SIZFREEZ 
(0.249) 

Total 
(26) 

Cold/Very Cold 
(0.353), Hot-
Dry/Mixed-Dry (-
0.200), Hot-Humid 
(-0.242), HDD65 
(0.434), CDD65 (-
0.237) 

MONEYPY 
(0.266), 
NHSLDMEM 
(0.230) 

CELLAR (0.413), 
STORIES (0.332), 
TOTROOMS (0.391), 
WINDOWS (0.401), 
TOTHOUSING (0.454) 

NUMAP (0.372), AGERFRI2 (0.261), 
DWASHUSE (0.272), WASHLOAD 
(0.227), DRYRUSE (0.248), SIZRFRI2 
(0.266), TVSIZE2 (0.205), 
STOVENFUEL_5 (-0.203), EQUIPM_3 
(0.303), EQUIPM_4 (-0.215), 
FUELHEAT_1 (0.391), FUELHEAT_5 (-
0.412), FUELH2O_1 (0.296), FUELH2O_5 
(-0.359) 

Note: *All correlations are significant at the 0.01 level (2-tailed). 525 
Abbreviation: SPH: space heating, SPC, space cooling, WTH: water heating, AP: appliance (the same below). 526 
MONEYPY: Annual gross household income, NHSLDMEM: number of household members, HHAGE: household age. 527 
CELLAR: with cellar, STORIES: number of stories, TOTROOMS: total number of rooms, WINDOWS: number of windows, 528 
TOTHM2: total heated area, TOTCM2: total cooled area, TOTHOUSING: total housing area. 529 
EQUIPM_2: steam/hot water system with radiators or pipes for main space heating, EQUIPM_3: central furnace for main space 530 
heating, EQUIPM_4: heat pump for main space heating, FUELHEAT_1: natural gas from underground pipes as main space 531 
heating fuel, FUELHEAT_3: fuel oil as main space heating fuel, FUELHEAT_5: electricity as main space heating fuel, 532 
AGECENAC: age of central air conditioner, COOLTYPE_1: central air conditioning system, USECENAC_1: set one 533 
temperature and leave it there most of the time, DWASHUSE: frequency of dishwasher use, WASHLOAD: frequency of clothes 534 
washer use, FUELH2O_1: natural gas for water heater, FUELH2O_1: electricity for water heater, NUMAP: total number of 535 
owned appliances, AGERFRI2: age of second most-used refrigerator, AGEFRZR: age of most-used freezer, SEPOVENUSE: 536 
frequency of separate oven use, AMTMICRO: frequency of microwave use, SIZRFRI1: size of most-used refrigerator, 537 
SIZRFRI2: size of second most-used refrigerator, TVSIZE1: size of most-used TV, TVSIZE2: size of second most-used TV, 538 
TVONWD2: second most-used TV usage on weekdays, TVONWE2: second most-used TV usage on weekends, DWCYCLE_2: 539 
normal or default cycle with heated dry using dishwasher, SIZFREEZ: size of most-used freezer, STOVENFUEL_5: electricity 540 
for stove. 541 
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Furthermore, the correlations between demographics and housing characteristics are analyzed, as 542 

shown in Table 3. Household annual income positively correlates with housing size and the number of 543 

appliances, with r around 0.4. Housing vintage has slight correlations with housing size (r≈0.2). Also, a 544 

correlation between family size and the number of total appliances owned can be found. The number of 545 

total rooms strongly correlates with housing size as well, with a coefficient over 0.5.  546 

Table 3 Correlations between Housing Characteristics and Household Demographics** 547 

Variables 1 2 3 4 5 6 7 8 9 

1. Housing income (MONEYPY) -         

2. Family size (NHSLDMEM) 0.262 -        

3. Education level (EDUCATION) 0.494 0.051 -       

4. Housing vintage (YEARMADERANGE) 0.221 0.131 0.176 -      

5. Number of rooms (TOTROOMS) 0.398 0.201 0.285 0.174 -     

6. Total cooled area-square meters (TOTCM2) 0.379 0.130 0.267 0.350 0.481 -    

7. Total heated area-square meters (TOTHM2) 0.384 0.125 0.263 0.231 0.602 0.668 -   

8. Total housing area-square meters (TOTHOUSING) 0.366 0.131 0.252 0.178 0.592 0.608 0.863 -  

9. Number of appliances (NUMAP) 0.468 0.379 0.330 0.224 0.450 0.372 0.402 0.387 - 

** All correlations are significant at the 0.01 level (2-tailed). 548 

4.3 Determinants of End-Use and Total Energy Consumption 549 

Based on correlation results, correlated variables are selected to train preliminary models using 550 

default parameters for each energy consumption model. Then, the models are tuned recursively using grid 551 

search methods and eliminating unimportant variables. The parameters and final model performance (e.g., 552 

obb score and R squared) for the end-use and total energy consumption are shown in Table 4.  553 

Table 4 Parameter Setting and Model Performance for Energy Consumption Models 554 

 
Model Log SPH Log SPC WTH Log AP Log Total 

Number of factors included 7 2 4 21 19 

Parameter 

n_estimators 92 40 257 273 93 

max_depth 7 5 5 11 12 

min_samples_split 6 7 19 19 14 

min_samples_leaf 1 3 19 3 5 

Model Performance 

Cross-validation score 0.760 0.876 0.650 0.478 0.538 

Obb Score 0.741 0.862 0.655 0.471 0.520 

R squared 0.761 0.885 0.643 0.481 0.542 

RMSE 6.577 2.782 1.625 3.924 8.832 

MAE 4.472 0.953 1.019 2.284 6.589 

4.3.1 Space Heating 555 

7 important variables are incorporated in the energy consumption model of space heating. The R-556 

square is 0.761, demonstrating that the developed regression model can explain around 76% of the 557 

variability in space heating energy consumption. Combined with other metrics, the developed model for 558 

predicting space heating energy consumption is reliable.  559 

The VI scores of these variables are shown in Figure 8. We plot the partial dependence of the 560 

important variables to visualize their marginal effects on space heating energy consumption, see Figure 9. 561 

Since the model is the logarithm of space heating energy consumption in Btu, the partial dependence plots 562 

are converted to the true energy consumption value in kWh by exponent arithmetic. Among these 563 

influencing factors, total heated area (TOTHM2) is the most important for predicting the energy 564 

consumption of space heating, followed by heating degree days based on 65F (HDD65), with 66.45% and 565 
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13.60% of VI scores, respectively. Both factors positively affect the energy consumption of space heating, 566 

and their corresponding impact ranges on energy consumption are around 9 kWh. The energy consumed 567 

for space heating grows sharply when TOTHM2 changes from 50 to 150 m2. Then, the increasing trend 568 

gradually slows down and reaches the minimum when the TOTHM2 is larger than 400 m2, after which 569 

the energy consumption almost keeps unchanged. Likewise, as HDD65 increases from 1000 to 5000, the 570 

energy consumption goes up dramatically from 0.5 to 8.5 kWh. After that, HDD65 has little effect on 571 

energy consumption. Furthermore, some characteristics related to space heating equipment affect energy 572 

consumption. If the main space heating equipment is EQUIPM_3 (central furnace), the energy 573 

consumption of space heating will increase by 2.6 KWH. The fuel type of main space heating also 574 

determines the space heating energy consumption. The households using FUELHEAT_1 (natural gas) or 575 

FUELHEAT_3 (fuel oil) as the space heating fuel type consumes more energy than those using 576 

FUELHEAT_5 (electricity). Additionally, more windows contribute to higher energy consumption for 577 

space heating, especially when the number of windows increases from 10-15 to 16-19. 578 

 579 

Figure 8 Rank of Variable Importance of Space Heating 580 
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Figure 9 Marginal effects of important factors on space heating energy consumption  581 

4.3.2 Space Cooling 582 

Total cooled area (TOTCM2) and cooling degree days based on 65F (CDD65) are determinants for 583 

space cooling energy consumption. The percentage of variance explained by this model on energy 584 

consumption for space cooling is 88.5%, which is the highest among the four end-uses. 585 

Figure 10 and Figure 11 show the VI scores and partial dependency of the two variables. TOTCM2 586 

determines the energy consumption of space cooling, with a VI score of 87.10%. The energy consumed 587 

increases dramatically from 0 to 2 kWh with the changes of TOTCM2 from 0 to 200 m2. For residential 588 

buildings with TOTCM2 larger than 250 m2, the impact of TOTCM2 on space cooling becomes 589 

insignificant. CDD65 has a positive impact on space cooling energy consumption as well. When the 590 

CDD65 is less than 3000, the energy consumption of space cooling rises considerably, although there are 591 

some fluctuations. The impact range on the energy consumption of space cooling caused by CDD65 is 592 

1.83 kWh. 593 

 594 

Figure 10 Variable importance scores of space cooling energy consumption 595 
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Figure 11 Marginal Effects of Important Factors on Space Cooling Energy Consumption 596 

4.3.3 Water Heating 597 

There are 4 important variables included in the final regression model of water heating energy 598 

consumption, i.e., family size (NHSLDMEM), electricity used for the main water heater (FUELH2O_5), 599 

and heating and cooling degree day (HDD65 and CDD65). Around 64% of the variability in water 600 

heating energy consumption can be explained by the fitted model.  601 

The VI scores and partial dependency plots of three variables (see Figure 12 and Figure 13) illustrate 602 

that NHSLDMEM is a determinant of water heating energy consumption, with a VI score of 66.45% and 603 

an impact range of 5.94 kWh. The energy consumed for water heating increases gradually with the family 604 

size between 1 and 4. Then, the upward trend of energy consumption slows down until the difference in 605 

energy consumed between households with 7 persons or more becomes not obvious. The increase in 606 

HDD65 is also associated with rising water heating energy use, especially when HDD65 changes from 607 

500 to 4000. Contrarily, FUELH2O_5 and CDD65 have negative impacts on water heating energy 608 

consumption. Households using electricity for water heating consume 2.17 kWh less than those using 609 

other energy sources, e.g., natural gas. The higher CDD65 is associated with less energy consumed for 610 

water heating, which decreases by around 0.44 kWh, with CDD65 increasing from 500 to 3500.  611 

 612 

Figure 12 Variable importance scores of Water Heating energy consumption 613 
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Figure 13 Marginal effects of important factors on water heating energy consumption 614 

4.3.4 Appliance 615 

The RFR model for appliance energy consumption has 21 factors, with an R squared of 0.481. These 616 

variables are sorted based on the VI scores (see Figure 14), and corresponding partial dependency plots 617 

are shown in Figure 15.  618 

Among the 21 variables, the number of total appliances (NUMAP) is the most determinant, with a 619 

VI score of over 50%. The energy consumed by appliances rises significantly from 3 to 13 kWh, with the 620 

number of total appliances changing from 5 to 60. Some other characteristics of appliances affect energy 621 

consumption as well, such as the frequency of using appliances (e.g., clothes dryer [DRYRUSE], clothes 622 

washer [WASHLOAD], dishwasher [DWASHUSE], microwave [AMTMICRO], and second most-used 623 

television [TVONWD2 and TVONWE2]), the vintage of appliances (e.g., second most-used refrigerator 624 

[AGERFRI2] and freezer [AGEFRZR]), and the size of appliances (e.g., the most and second most-used 625 

refrigerator [SIZRFRI1 and SIZRFRI2] and TV [TVSIZE1 and TVSIZE2]). Generally, the more 626 

frequently these appliances are used, or the older the appliances are, or the larger the size of the 627 

appliances is, the more energy these appliances consume. Among these appliances’ characteristics, 628 

DRYRUSE is the most important, with a VI score of 5.62% and an impact range of around 2 kWh. 629 

Additionally, some housing characteristics, e.g., total housing area (TOTHOUSING), vintage 630 

(YEARMADERANGE), and the number of total rooms and windows (TOTROOMS and WINDOWS), 631 

positively affect appliance energy consumption. The impact of TOTHOUSING on appliance energy 632 

consumption is small when TOTHOUSING is less than 600 m2, while the energy consumption goes up 633 

sharply when TOTHOUSING increases to 700 m2. Furthermore, in terms of the impacts of demographics, 634 

annual gross household income (MONEYPY) contributes to appliance energy consumption. Households 635 

with an annual gross income of $140,000 or more consume the most energy for appliances. Also, a 636 

household with a larger family size consumes more energy, but when the family members are greater than 637 

or equal to 7, there is no significant difference in the appliance energy consumption.  638 
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 639 

Figure 14 Variable Importance Scores of Appliance Energy Consumption 640 
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Figure 15 Marginal Effects of Important Factors on Appliance Energy Consumption  641 
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4.3.5 Total Energy Consumption 642 

There are 19 important variables included in the fitted model of total energy consumption, which has 643 

good interpretability in total energy consumption, with an R-square of 0.542. Figure 16 and Figure 17 644 

show these important variables’ VI scores and marginal effects. 645 

Climate factors (i.e., HDD65 and CDD65) are dominant for total energy consumption, with VI 646 

scores of 20.6% and 6.2%, respectively. The two climate factors positively correlate with total energy 647 

consumption. The higher the CDD65 or HDD65 of the area where the house is located, the more energy is 648 

consumed by the households. Total housing area (TOTHOUSING) is the second most important driving 649 

factor for total energy consumption. There is an upward trend in total energy consumption with the 650 

increase of TOTHOUSING. In particular, when TOTHOUSING is larger than 200 m2, the total energy 651 

consumption rockets. The numbers of windows and total rooms are two other additional housing 652 

characteristics driving the total energy consumption. The more windows or rooms a residential building 653 

has, the more energy the household consumes. Moreover, the number of appliances (NUMAP) and their 654 

conditions, including fuel type, size, vintage, and use frequency, highly affect total energy consumption. 655 

Specifically, the VI score of NUMAP is 11.72%, with an impact change range of over 9 kWh. With the 656 

increase of NUMAP, total energy consumption goes up accordingly, while the energy consumption 657 

remains stable after NUMAP is larger than 50. For fuel types of end-uses, households using electricity for 658 

space heating (FUELHEAT_5) or water heating (FUELH2O_5) consume less energy than those using 659 

natural gas (FUELHEAT_1). The size of the second most-used TV (TVSIZE2) and refrigerator 660 

(SIZERFRI2), as well as the vintage of the second most-used refrigerator (AGERFRI2) contribute to total 661 

energy consumption. The higher frequency of using clothes dryer (DRYRUSE), dishwasher 662 

(DWASHUSE), and clothes washer (WASHLOAD) increase energy consumption. Additionally, 663 

household demographics are another aspect driving energy consumption. The total energy consumption 664 

increases with the family size (NHSLDMEM) and household income (MONEYPY).  665 

 666 

Figure 16 Variable Importance Scores of Total Energy Consumption 667 
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Figure 17 Marginal Effects of Important Factors on Total Energy Consumption  668 

5 Discussions 669 

The developed RFR models for energy consumption perform well in explaining the variability of 670 

residential end-use energy consumption, with R-square ranging from 0.481 (appliance) to 0.885 (space 671 

cooling). These fitted models reveal not only the importance of the driving factors using VI scores, but 672 

also the influences of corresponding variables on energy consumption by partial dependency plots. 673 

5.1 Comparison of Influencing Factors across Different Energy End-Uses 674 

The driving factors of residential energy consumption are multidimensional, including housing 675 

characteristics, household demographics, climate, and appliance characteristics, and vary by end-use. 676 

These end-uses correspond to the diversity in household energy service needs, which vary across 677 

households based on environmental, structural, as well as demographic factors. Specifically, the impacts 678 

of climate and housing size on HVAC energy consumption are more important than demographic and 679 

HVAC equipment characteristics. This finding is consistent with existing studies (Huo et al., 2021; 680 

Iraganaboina and Eluru, 2021; Zhu et al., 2023). In contrast, water heating energy consumption is less 681 

affected by climate factors and housing size. Instead, family size is the most important predictor of the 682 

energy use of water heating, which is relevant to the finding of Lee and Song (2022), which were based 683 

on the metering methods to collect water heating energy usage data and concluded that households with 684 

larger family size consume more energy for water heating services.  685 

Additionally, we found that the fuel type affects the energy consumption of space heating and water 686 

heating. Using electricity consumes less energy than other energy sources, mainly natural gas, which is 687 

neglected by most studies related to residential energy consumption. This finding verifies that end-use 688 

electrification is more energy-efficient (González-Torres et al., 2022). Overall, end-use electrification is 689 

beneficial to decarbonization, especially using the electricity generated by clean energy (Ebrahimi et al., 690 

2018). The efficiency of using heat pumps for space heating and water heating is 2-3 times higher than 691 

using fossil fuels (Dennis, 2015). RECS 2015 shows that space heating and water heating are more 692 

commonly accomplished with natural gas than electricity, with the corresponding gas-to-electricity ratios 693 

of approximately 54 to 28 and 50 to 42. Also, only 14.5% of studied houses use heat pumps (n=538), and 694 

65.7% use central furnaces (n=2431) for space heating, among which 89% of heat pumps and 16% of 695 

central furnaces consume electricity. Hence, there is still a gap in residential end-use electrification. 696 

However, in the residential sector, the use of heat pumps for space heating and electric water heater is 697 
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increasing (Schwartz et al., 2017), which indicates a further improvement trend of residential energy 698 

efficiency in the future. 699 

Of the four end-uses studied here, which correspond to particular energy service needs within a 700 

home, every house has appliance energy usage, which accounts for around 30% of total energy use. On 701 

average, there are around 26 appliances in each single-family house. The total number of appliances is the 702 

most influential factor affecting appliance energy consumption, followed by appliance characteristics, 703 

including use frequency, vintage, and size, of common appliances (e.g., washers and driers, dishwashers, 704 

TVs, and refrigerators, existing in over 96% of single-family homes). Similarly, our analysis found that 705 

the total number of appliances and these appliance characteristics contribute to total energy consumption, 706 

as identified by former studies (Jones et al., 2015; Xie and Noor, 2022). However, fewer studies involve 707 

the appliance characteristics comprehensively, especially the vintage of appliances. We found that the 708 

ages of the second most-used refrigerator and freezer are vital for energy consumption. Appliances’ 709 

vintage affects their performance, which further affects energy consumption (Wang, 2017). Besides, 710 

climate factors (the determinants of space heating and cooling) and some characteristics of space heating 711 

(e.g., fuel types) drive total energy use as well, since space heating/cooling are major end-uses in 712 

households. 713 

Figure 18 compares the influence of each major category of factors on end uses. In general, the 714 

energy consumption of space heating and space cooling is affected most by housing characteristics, 715 

whereas demographics and appliance characteristics determine the energy consumption of water heating 716 

and appliance, respectively. In terms of total energy consumption, the impact of appliances is the most 717 

obvious, followed by structural housing characteristics and climate. These differences in influences across 718 

factors could be implicit if only total energy use is analyzed in existing studies. Also, we verified that the 719 

impacts of most driving factors on energy consumption are nonlinear through partial dependency plots, 720 

e.g., the impact of housing size, climate factors, and family size. However, currently, linear regression is 721 

still commonly used to predict energy consumption (Debs and Metzinger, 2022; Fumo and Rafe Biswas, 722 

2015). 723 

 724 

Figure 18 Comparison Influencing Factors of End-Use and Total Energy Consumption 725 
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5.2 Impacts of Housing Characteristics and Household Demographics 726 

Compared with the above important variables, some housing characteristics and household 727 

demographics, especially housing vintage and household income, have smaller VI scores and are not 728 

reflected in most RFR models. However, numerous studies have revealed that household income 729 

positively affects residential energy consumption (Huo et al., 2021). One of the potential reasons for the 730 

differences is that the major impact of household income on energy consumption is indirect, for example, 731 

by affecting the ownership of appliances (Matsumoto, 2016) or determining the housing size (Debs and 732 

Metzinger, 2022; Karatasou and Santamouris, 2019). Our correlation analysis (see Table 3) shows that 733 

household income positively correlates (r around 0.4) with housing size and the number of total rooms 734 

and appliances, as determinant factors on energy consumption of space heating/cooling and appliances. 735 

However, considering the importance of housing and appliance characteristics in regression and the 736 

limited capacity of the regression model to capture these indirect impacts (Estiri, 2014; Kim et al., 2020; 737 

Sanquist et al., 2012), the influences of household income on energy end-use could be moderated in the 738 

derived regression models. In the former analysis, the structural equation model of total energy 739 

consumption developed by Estiri (2014) confirms that the indirect impact of household demographics 740 

intermediated by building characteristics (e.g., housing size, number of total rooms) is four times larger 741 

than the direct impact. Similarly, the indirect impact of socioeconomic status on energy consumption is 742 

also larger than its direct impact (Karatasou and Santamouris, 2019). Also, it is likely that the property of 743 

variables, i.e., household income and housing vintage are categorical variables of 8 categories while 744 

housing size and climate factors (i.e., HDD65 and CDD65) are continuous variables, will affect the 745 

variable importance in regression. As categorical variables are less informative than continuous variables 746 

due to the insufficient divergences and details within the same category (Lazic, 2008), the implications 747 

may be implicit in regression models.  748 

To further evaluate the implications of housing characteristics and household demographics on 749 

energy end-use, we performed a one-way ANOVA analysis and found that there are significant 750 

differences in energy consumption for all end-use and total energy consumption across different income 751 

groups (p <0.001, α=0.95) and among different housing vintage groups (p <0.001, α=0.95). The F values 752 

of each energy consumption and mean differences between different groups are shown in Figure 19. By 753 

comparing end-use energy consumption across different household income groups, energy consumption 754 

increases steadily with the rise of household income. The results are similar to (Chen et al., 2022; Debs 755 

and Metzinger, 2022). For housing vintage, the newer houses generally consume less energy in total than 756 

older houses. Brounen et al. (2012) also found that total energy consumption decreases in newly built 757 

houses. However, the impacts of housing vintage vary with different end-uses. In newer houses, the 758 

energy consumed for space heating decreases, while households of newer vintage consume more energy 759 

in other end-uses, i.e., space cooling, water heating, and appliances, but with varying impacts. The 760 

increase of space cooling energy consumption in newer houses is most likely due to higher penetration of 761 

central air conditioners in newer buildings, with around 87% in the houses built between 2010 and 2015 762 

and 47% in houses before 1950. Similarly, new buildings have more appliances than old buildings 763 

(correlation coefficient between vintage and number of appliances = 0.224), which contributes to the 764 

higher appliance energy usage in newer houses. Therefore, future work could further explore and compare 765 

the impact of housing vintage and household income on the energy consumption of different end-uses. 766 

Further, demographics beyond income and number of household members, such as age composition of 767 

residents, occupation and structure of work life (i.e., working from home), political party affiliation of 768 
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adult residents, and resident values and beliefs, may all provide additional insight into consumption of 769 

end-use energy services at the residential scale, although these datapoints are not collected within the 770 

RECS 2015 survey.  771 

  
(a) Mean differences in energy use between household income 

groups 
(b) Mean differences in energy use between housing vintage 

groups 

Figure 19 Energy Consumption Differences Between Household Income/ Housing Vintage Groups 772 

Finally, in disagreement with previous studies, it is noticeable that we did not find a correlation 773 

between the urban type of houses and energy consumption (-0.2 < r < 0.2). Although this finding is 774 

inconsistent with the studies of Zheng et al. (2014) and Zhang et al. (2016), it concurs with the 775 

explanation that the impacts of urban type (urban vs. rural) are weakened with regional economic 776 

development (Zhang and Bai, 2018) and are not significant in developed countries (Wang et al., 2020). 777 

Additionally, the influence of age on energy consumption is not reflected in our RFR models, which 778 

contradicts Brounen et al. (2012) and Zhu et al. (2023), which found that older occupants consume less 779 

energy. Considering that RECS 2015 only recorded the age of respondents instead of all household 780 

members, the analysis results could be biased. It is worth mentioning that RECS 2020 is more detailed in 781 

collecting the number of occupants below 18, 18-64, and over 65 separately. This would lead to more 782 

insights for future analysis on how occupants’ age will influence end-use.  783 

6 Conclusions 784 

This nationwide study comprehensively analyzes the influencing factors on residential end-use 785 

energy consumption in US single-family detached houses and quantifies their impacts by zooming into 786 

different end-uses, corresponding to particular energy services, i.e., space heating/cooling, water heating, 787 

and appliances. Multiple driving factors contribute to energy consumption, including housing 788 

characteristics, household demographics, climate, and appliance characteristics. Also, we compare the 789 

influencing factors of energy consumption across different end-uses, thereby elucidating differences and 790 

the potential driving factors that were left out in previous studies when only total energy consumption 791 

was analyzed.  792 

First, the influencing factors vary by end-use. The housing size and climate factors (i.e., HDD65 and 793 

CDD65) are the key contributors to space heating and space cooling energy usage, while the family size 794 

and the number of total appliances determine the energy consumption of water heating and appliances, 795 

respectively. Specifically, climate factors (HDD65 and CDD65) and home size positively influence the 796 
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energy use of space heating and cooling. On the contrary, water heating energy consumption decreases 797 

with the increase of CDD 65 while positively correlating with the family size. Also, this study confirms 798 

that the application of electrified end-uses could lead to reduced energy use. As with space heating, using 799 

electricity for water heating consumes less energy. In terms of appliances, besides the total number of 800 

appliances, certain characteristics (e.g., use frequency, size, and vintage) of common appliances (e.g., 801 

refrigerators, televisions, and cloth washers and driers) also demonstrate important implications on the 802 

energy use of appliances.  803 

Second, these impacts on energy consumption are nonlinear and are further compounded by the 804 

correlations among independent variables. The fitted RFR models verify these nonlinear effects, e.g., the 805 

housing size, total number of appliances, and family size, on energy services. Moreover, the correlations 806 

between demographics and characteristics of houses and appliances are non-negligible, especially 807 

considering the strong correlations between household income with housing size and the total number of 808 

appliances. 809 

However, there are some limitations in this study. First, due to these correlations between 810 

independent variables, the indirect impacts of demographics may exist but not be captured sufficiently in 811 

our models. Therefore, future work can further examine the indirect effect of demographics on each type 812 

of end-use energy service. Also, this study only focuses on single-family detached houses. Other housing 813 

types could be further explored. Besides, the end-use energy consumption data in RECS 2015 was 814 

decomposed based on engineering models. Although these energy end-use data were calibrated and 815 

validated, the data quality is still subject to the validity of engineering models and detailed calibration and 816 

validation methods. Even if RECS 2015 is already a trustworthy data source, additional national-scale 817 

efforts with direct sub-metering data collection are expected to further improve the data quality and 818 

analysis as resources allow.  Nevertheless, this study has important implications for the conservation of 819 

residential energy. The identified influencing factors on different end-uses can provide references for 820 

developing energy efficiency programs, especially targeting specific residential end-use services or 821 

occupant groups based on consumption across different end-use services. 822 
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