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Abstract

Decarbonizing the residential buildings sector is important to realize a net-zero future. However,
little research comprehensively explores how residential energy by end-uses, i.e., space heating, space
cooling, water heating, and appliances, vary across different climate, building, and occupant
characteristics. Therefore, based on Residential Energy Consumption Survey 2015, this study investigates
how these energy end-uses correlated with different influential factors, i.e., climate, demographics,
housing and appliance features. Recursively random forest regression and partial dependency plots were
employed to analyze and quantify the impact of influencing factors on end-use energy usage. The
developed models illustrate nonlinear and varying impacts of influential factors on different end-uses,
with R-square from 0.481 (appliance) to 0.885 (space cooling). Specifically, housing size and climate are
determinant factors of space heating/cooling, while family size and total appliance number determine
water heating and appliance usage, respectively. Use frequency, size, and vintage of appliances (e.g.,
refrigerator, laundry) affect appliance energy consumption. Furthermore, one-way ANOVA confirms the
statistically significant differences in energy consumption across varying household income groups, i.e.,
households with higher incomes consume more energy. Houses with older vintages use more total energy,
especially in space heating, while less in cooling due to lower penetration of air conditioners. Finally, the
analysis proves that residential end-use electrification, mainly space heating and water heating, is
beneficial for energy efficiency. The findings contribute to understanding influential factors on different
end-uses in households, which from a holistic level informs the potential pathway for building
decarbonization, especially targeting at specific end-uses or occupant groups.
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1 Introduction

Multiple initiatives (e.g., zero-carbon buildings) have been implemented to reduce buildings’ carbon
emissions in the past few years (Aydin & Brounen, 2019; Duzgun et al., 2022), although the building
sector still contributes to around 40% of total global energy consumption (Khalil et al., 2022). In the
United States (US), the share of energy consumed by residential buildings has increased gradually,
reaching 21% of total energy usage in 2021 (US EIA, 2022). US residential energy consumption accounts
for 17% of global residential energy consumption (Fumo and Rafe Biswas, 2015). Consequently, US
residential buildings show great energy saving and carbon reduction potential.

Residential buildings consume electricity, natural gas, and other end-use energy sources to provide
various services, i.e., space heating, air conditioning (space cooling), water heating, and appliances (Fell,
2017; Swan and Ugursal, 2009). Analyzing these energy end-uses is crucial for the design of specific
energy-conservation programs and system resiliency for the security of energy services (Tiwari et al.,
2022). Compared with the research on total energy consumption, the main obstacle to analyzing energy
end-use, which corresponds to the range of energy services utilized in residential homes, is the
disaggregation of total energy usage at the end-use level due to measuring difficulty of utility meters
(Gonzalez-Torres et al., 2022).

Generally, several techniques can be used to break down total energy consumption for different
energy service use. The first is the sensor-based disaggregation method. Although this method has high
accuracy based on distributed direct sensors, the installation and maintenance cost is non-negligible
(Larsen and Nesbakken, 2004), which impedes its application on a large scale. Another approach is
statistical modeling (i.e., data-based method), e.g., conditional demand analysis (CDA) and regression
methods. However, CDA has limited capability in modeling end-use energy consumption, in that only a
few variables are allowed to adjust in the model (Aydinalp-Koksal and Ugursal, 2008). Regression,
especially linear regression, is widely applied due to its straightforward interpretation but has poor
performance in explaining the nonlinear impacts (Kim et al., 2020). Additionally, engineering models (i.e.,
model-based analyses) are commonly used to decompose total energy consumption. This method does not
rely on historical consumption data but is based on occupant behaviors, appliance ratings, building
characteristics, etc. (Swan and Ugursal, 2009). The energy consumption simulated by engineering models
can precisely match the actual energy by obtaining the details of the building and occupants (Zhao, 2012).
Since 2015, Residential Energy Consumption Survey (RECS), a national survey administered by US
Environment Information Administration (EIA), started adopting engineering models to disaggregate total
energy use. Furthermore, RECS 2015 was conducted and validated through a cross-sectional household
survey and an energy supplier survey to ensure the quality of energy disaggregation (US EIA, 2015a).
Hence, RECS is reliable for a detailed analysis of residential energy end-uses.

Numerous studies have been conducted on building total energy use and corresponding influencing
factors based on various datasets, including RECS, but few studies focus on energy services differentiated
by energy end-use. Estiri (2014) examined the direct and indirect impacts of building and household
characteristics on residential total energy consumption based on RECS 2015. Likewise, Karatasou &
Santamouris (2019) used RECS 2015 to model the relationship between socioeconomic status (e.g.,
income, housing size, and the number of rooms) and total energy consumption. Debs & Metzinger (2022)
also analyzed RECS 2015 but compared the energy consumption and the influencing factors in different
climate zones. Furthermore, a few studies are based on particular energy fuels, mainly electricity.
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Sanquist et al. (2012) analyzed how household demographics and energy consumption behavior affect
residential electricity consumption using multiple regression modeling based on RECS 2005.
Iraganaboina & Eluru (2021) compared influencing factors on residential energy use from the perspective
of different energy sources, including electricity, natural gas, and fuel oil. In contrast, fewer studies
analyzed end-use energy consumption. Matsumoto (2016) only explored the impacts of household
characteristics on electrical appliance energy consumption in Japan. Similarly, in a recent study, Zhu et al.
(2023) focused on the contributors to space cooling energy use in China. RECS can be applied to analyze
end-use consumption as well. Min et al. (2010) and Li (2014) adopted RECS 2005 and RECS 2009 to
model end-use energy consumption using linear regression; however, the influencing factors considered
are incomprehensive, mainly household and housing characteristics.

Understanding the differences in energy end-uses (i.e., space heating/cooling, water heating, and
appliances, which provide different energy services needed at home) and their driving factors is the
prerequisite to developing energy efficiency programs for residential buildings and, ultimately,
conserving energy consumption. However, the research on energy end-uses is limited. Although it has
been revealed that household demographics, housing characteristics, home appliances, and climate affect
residential energy consumption (Estiri, 2014), most former studies are from the perspective of total
household energy consumption, and the incorporated factors are incomprehensive. How these factors
affect each end-use energy consumption remains unclear. Hence, comprehensive investigations and
comparisons of the influencing factors across various residential energy end-uses are required.

Therefore, this study aims to explore and compare the driving factors of residential energy
consumption from the perspective of end-uses based on RECS 2015. The remainder of this paper is
organized as follows: section 2 reviews existing studies on the influencing factors of energy consumption.
Section 3 describes the data screening and processing and introduces the used methods. In section 4, the
results of descriptive analysis and fitted regression models are presented. Then, section 5 discusses and
compares the driving factors and their impacts across different end-uses. Finally, section 6 draws up
conclusions.

2 Literature Review

2.1 Influencing Factors of Total Residential Energy Use

Various factors contribute to residential energy consumption, including climate and geography,
household demographics, housing and appliance characteristics. One of the most studied areas is the
influence of occupant demographics on energy use. Household income and family size are generally
identified as the determining factors that drive energy consumption, although the findings on the impacts
of demographics are inconsistent among existing studies (Frederiks et al., 2015; Mohr, 2018; Wang et al.,
2020). Age is considered another contributor to energy consumption due to elderly residents’ frugal
energy consumption behaviors (Chen et al., 2013). Besides these, household members’ education levels
and employment status are recognized as potential factors (Jones and Lomas, 2015; Karatasou and
Santamouris, 2019; Kumar et al., 2022; Tiwari et al., 2022). In particular, these demographics reflect the
socio-economic status of households (Chen et al., 2013). A few studies demonstrated that socio-economic
status indirectly affects energy consumption by influencing housing choice, e.g., housing type, number of
appliances, and housing size (Estiri, 2014; Tso and Guan, 2014).
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Another key driving factor to energy consumption is housing, which can be classified into housing
and appliance characteristics (Jones et al., 2015). Housing size, measured by total square footage or
heated/cooled area, significantly contributes to energy consumption (Karatasou and Santamouris, 2019).
Generally, larger housing sizes are associated with higher energy usage. The total number of rooms is
related to housing size and positively affects energy consumption (Iraganaboina and Eluru, 2021; Wang et
al., 2021). Besides, housing vintage (i.e., the built year of the house) is another influencing factor;
however, its impact is inconsistent across existing studies. The housing of old vintage has less electricity
usage in Bedir et al. (2013), while Bartusch et al. (2012) found that newly constructed houses consume
less electricity. Also, the impacts of housing vintage on different energy fuels (e.g., electricity and natural
gas) are different (Brounen et al., 2012). Additionally, energy consumption varies by housing type
(Brounen et al., 2012; Kaza, 2010).

Compared with other factors, fewer studies have included appliance characteristics in their
investigation (Jones et al., 2015). Bartusch et al. (2012) proposed that energy consumption cannot be fully
explained by household and housing characteristics alone. For appliance characteristics, the number of
appliances effectively predicts energy consumption (Mo and Zhao, 2021). Iraganaboina & Eluru (2021)
analyzed the number of some specific appliances, e.g., desktops, clothes dryers, refrigerators, etc.
Similarly, Karatasou & Santamouris, (2019) found that the number of appliances, measured as the sum of
the number of refrigerators, freezers, dishwashers, clothes washers, dryers, TVs, personal computers, and
ACs, has a positive correlation with energy consumption. Use frequency and size of common appliances,
e.g., AC, laundry, personal computer, and TV, also greatly impact energy consumption (Sanquist et al.,
2012; Genjo et al., 2005). Similarly, Steemers and Yun (2009) and Ruan et al. (2017) concluded that
appliance usage behavior, mainly AC, contributes to energy consumption. Additionally, appliance energy
consumption is increased with aging (Paul et al., 2022); however, the impacts of appliances’ vintage are
not fully explored (Wang, 2017). Durisi¢ et al. (2020) only considered the average age of kitchen
appliances, laundry, and HVAC. Chen et al. (2022) incorporated the age of appliances but only focused
on the AC when analyzing the influencing factors among different income groups.

In addition, the climate and location of houses are recognized to affect residential energy
consumption. It is proven that outdoor temperature affects residential energy consumption (Fumo and
Rafe Biswas, 2015). Some studies adopted heating or cooling degree days (HDD/ CDD) to measure the
climate of the areas. Strong correlations between energy consumption and HDD exist in the European
Union (Tsemekidi et al., 2019) and the US (Li et al., 2022); that is, the colder the region, the higher the
energy consumption. Besides HDD and CDD, climate zones are also used to classify regional climates.
Differences in climate zones contribute to energy consumption gaps in total energy consumption (Mo and
Zhao, 2021). Debs and Metzinger (2022) asserted that energy consumption’s driving factors have varying
effects in different climate zones. Furthermore, the effects of the housing location, usually classified into
rural and urban, are identified in a few studies. There are some differences in energy consumption
between urban and rural households (Chun-sheng et al., 2012). Zheng et al. (2014) found the urban-rural
variance in energy consumption as well.

2.2 Residential End-use Consumption and Influencing Factors

The residential sector consumes energy for various end-uses or services, e.g., space heating, space
cooling, domestic hot water, and appliances, for occupant living (Swan and Ugursal, 2009). These energy
end-uses can be referred as energy services (Fell, 2017; Gonzdlez-Torres et al., 2022). Some studies
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reported end-use energy consumption; however, they still studied the total energy consumption. For
instance, Aydinalp et al. (2002) studied the total energy usage of appliances, lighting, and space cooling,
which are major sectors of building energy use. Hence, this research still focuses on aggregated energy
consumption. Moreover, although Wang et al. (2021) used “residential energy end-use” as their research
topic, unfortunately, they mixed the concepts of energy end-use and total energy consumption. In this
case, they have not disaggregated the total energy consumed to end-use level nor analyzed the influencing
factors of each energy end-use.

Generally, total energy consumption can be obtained directly by energy meters or billings (Swan and
Ugursal, 2009), while it is challenging to obtain the energy consumed by specific categories of end uses
(Gonzdlez-Torres et al., 2022). Small-scale research always uses direct measurement to obtain end-use
data. Lee et al. (2019) adopted gas or electricity meters to measure the annual end-use energy
consumption data, i.e., heating, cooling, water heating, ventilation, electric appliances, and cooking. This
study covered 71 households with less than 40 valid samples for most end-uses. In a similar manner, Xie
& Noor (2022) collected 66 households’ annual residential end-use energy consumption data using an
installed measurement system. Nevertheless, direct measurement is not feasible on large scales, and some
statistical or engineering models are needed to disaggregate energy consumption (Gonzalez-Torres et al.,
2022). Among earlier studies, large-scale end-use energy consumption data were roughly estimated.
Farahbakhsh et al. (1998) divided the total energy consumption into end uses by constant percentages of
each end-use. Similarly, the cooling energy consumption in Aydinalp et al. (2002) was approximately
estimated by a reported general frequency of AC usage. Afterward, more information, including housing
characteristics, household demographics, and occupant behaviors, has been collected to disaggregate
energy consumption, e.g., RECS 2015; hence, data quality is improved correspondingly (Jin et al., 2023).

Compared with the total energy consumption, less research is conducted on residential energy end-
uses, and the factors considered when analyzing end-use energy consumption are incomplete. The end-
use models developed by Ren et al. (2013) are based on occupancy patterns, requiring many details about
occupants and their behaviors to predict energy consumption; however, this information is difficult to
obtain in most cases (Wang, 2017). Min et al. (2010) and Li (2014) modeled the residential energy end-
uses using RECS 2005 and RECS 2009, respectively. However, both studies’ influencing factors are
incomplete, e.g., lacking housing appliances. Karatasou et al. (2018) only compared the impacts of
housing and family size on the energy consumption of electric appliances, space heating, and water heater
of 244 dwellings. Lee & Song (2022) analyzed the determinants of housing, socio-demographics, and
appliance on end-use energy consumption based on 71 apartment households in South Korea. However,
these studies are small-scale with insufficient variables under consideration.

Furthermore, a few studies focus on certain specific end-uses. Matsumoto (2016) examined the
effects of households’ socioeconomic characteristics on the electric usage of 19 residential appliances in
Japan. Huo et al. (2021) only studied space heating in Chongqing, China, and viewed electricity as the
sole energy source. Other fuel types providing space heating and appliance characteristics are ignored in
these two studies. Guerra Santin et al. (2009) investigated the influence of occupancy and building on the
total energy consumption of space and water heating. Liu et al. (2021) considered multiple fuels to
explore the main driving factors of space heating in China, including types of energy consumed, heating
area, and climate, but used a small dataset (only around 200). Feng et al. (2016) pointed out the
determinant impact of occupant behavior on space cooling usage based on survey and energy bills.
However, the behavior involved is incomplete, with only a general cooling setpoint. Yun and Steemers
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(2011) adopted RECS 2001 to analyze the impacts of behavior, physical, and socio-economic factors on
residential energy consumption, but only space cooling usage was considered. Hence, the comprehensive
analysis and comparisons of the influencing factors of each end-use energy consumption are limited and
need further exploration.

Overall, climate, household demographics, housing characteristics, and appliance characteristics
contribute to residential energy consumption. Existing studies on the influencing factors of energy
consumption are mainly from the perspective of total energy consumption. Although a few studies have
been conducted at the end-use level, they are not nationwide, and the influencing factors considered are
incomprehensive.

3 Data and Methods

3.1 Data and Data Screening

RECS is a national survey conducted every five years by US EIA to collect detailed information on
household energy-related data. RECS 2015, the most recently available energy consumption survey data,
is adopted for this study (US EIA, 2015b). The housing characteristics (including physical housing
characteristics, household demographics, energy-related behavior, and home appliance) of RECS 2015
were collected between August 2015 and April 2016, with 5686 households involved representing 118.2
million US households. Besides this, to collect the energy consumption and expenditures of the surveyed
houses, EIA uses the energy supplier survey to gather household energy billing data from energy
suppliers directly, including electricity, gas, and fuel oil (US EIA, 2015a). The energy billings cover the
energy usage from September 2014 to April 2016.

Due to the cost and difficulty of large scale submetering of end-uses, the end-use energy
consumption is decomposed from metering data of total household energy usage with calibration and
validation based on the engineering model-based method, as commonly adopted method in large-scale
building surveys (Gonzalez-Torres et al., 2022; Swan and Ugursal, 2009). Specifically, building
characteristics, demographics, climate, owned appliances, and occupant behavior were first collected in
RECS 2015 (US EIA, 2015a). Based on this information, physics-based engineering models use
published values of building and appliance parameters (e.g., Unit Energy Consumption [UEC], space
heating/cooling load) and consider occupant behaviors, building characteristics, and equipment efficiency
to derive energy usage for each category of end-uses. For example, coffee maker energy consumption is
based on the average UEC value from published sources, the presence of coffee makers, and the use
frequency of surveyed occupants. Space heating energy usage is modeled based on the equipment
characteristics, reported usage behaviors, and required space heating load. After model-based
decomposition, the end-use energy consumption is further calibrated and validated using the collected
total energy bills of each fuel for the surveyed household, considering the uncertainties of end-use
estimate and correlations between energy end-uses (e.g., clothes washers and cloth dryers). The detailed
information can be found in (US EIA, 2015a).

The housing unit in the RECS was classified into 5 types, including mobile home, single-family
detached house, and single-family attached house, among which single-family detached houses occupy
the most part, with around 62%. To reduce the impact of different housing units (Estiri, 2014; Kaza,
2010), this study focuses on the single-family detached house. Also, considering the impact of bill
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payment responsibilities (Best et al., 2021), this study further delimits the research samples only to
consider the households responsible for paying all used energy bills, i.e., electricity, natural gas, propane,
and fuel oil. Therefore, the final sample size is 3702.

3.2 Factors Selection Overview

Figure 1 shows the flowchart of factor selection. First, based on the literature review and the
available factors in the RECS dataset, we preselect explainable variables for each end-use. These factors
are processed and recoded for further analysis. Then, Spearman rank correlation analysis is employed to
find the correlated factors with each end-use and total energy consumption, where the threshold is set as
0.2 (Akoglu, 2018). Next, these correlated factors are fed into random forest regression models, from
which the variable importance (VI) scores are calculated, followed by a recursive feature elimination
process (Darst et al., 2018). In this iterative step, we keep tuning the model and eliminating the variables
with a VI score less than 0.01 until the VI scores of all factors in the regression model are larger than or
equal to 0.01. Based on the final model, we obtain the determinants and corresponding VI scores.

Figure 1 Variables Selection Process
3.3 Factors and Measurements

The preselected variables in the RECS can be classified into four types: climate and location,
occupant demographics, building characteristics, and appliance characteristics (Rafsanjani, 2016),
including categorical and numerical variables. The factors and descriptions are shown in Appendix Table
1. Some categorical variables are processed into ordinal or dummy variables.

Climate and Location We select the urban type of housing (Zhang et al., 2016), climate zones
(Debs and Metzinger, 2022), and heating/cooling degree days (Nie et al., 2018) to describe the climate

and location of the surveyed houses. Urban types and climate zones are converted into dummy variables.
Specifically, UATYP10 is converted into UATYP10_R and UATYP10_U, among which each value of
the two dummy variables equal to 1 means the house is in rural or urban areas, respectively; if both values
equal O, the house is in the urban cluster. Moreover, we use the Building American Climate Zone to
classify the climate zones. The original variable (i.e., CLIMATE_REGION) is one-hot coded using
“Cold/Very Cold”, “Hot-Dry/Mixed-Dry”, “Hot-Humid”, “Marine”, and “Mixed-Humid” to represent the
five climate zones. Additionally, HDD65 and CDD65 are continuous numerical variables, measuring how
cold/hot the temperature was in the area during 2015 based on 65F.
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Household Demographics RECS 2015 did not collect the age, education levels, and employment
status of all occupants in the household; therefore, the three variables are represented by the respondents’
age (HHAGE), education (EDUCATION), and employment status (EMPLOYHH) (Estiri, 2014;
Karatasou and Santamouris, 2019). Family size (NHSLDMEM), household income (MONEYPY), and
the number of weekdays someone is at home (ATHOME) are driving factors commonly identified in
existing studies as well (Debs and Metzinger, 2022; Tso and Guan, 2014). We recode the employment
status with O representing not employed/retired, 0.5 representing employed part-time, and 1 representing

employed full-time. In this way, household income, education, and employment status are ordinal
variables. Family size, age, and the number of weekdays someone is at home are continuous variables.

Housing Characteristics Various housing characteristics, e.g., vintage, housing area, and the
number of total rooms, influence residential energy consumption (Li et al., 2022; Wang, 2017; Wang et
al., 2021). RECS uses square footage to measure the housing size, which is converted to square meters. In
this study, three types of housing size variables, i.e., total cooled area in square meters (TOTCM?2), total
heated area in square meters (TOTHM?2), and total housing area in square meters (TOTHOUSING), are
used to model the space cooling, space heating, and other end-use energy consumption. Total number of
rooms (TOTROOMS) in the housing unit is a numerical variable. Vintage (YEARMADERANGE), the
number of stories (STORIES) and windows (WINDOWS), level of insulation (ADQINSUL), and
frequency of drafty (DRAFTY) are ordinal variables, which we viewed as continual variables. ATTIC
and CELLAR are dummy variables to show if the house has a basement or attic.

Appliance Characteristics Some characteristics of essential appliances, e.g., equipment type (Debs
and Metzinger, 2022), vintage (Jones et al., 2015), usage frequency and behavior (Iraganaboina and Eluru,
2021; Tso and Guan, 2014), and fuel type (Mo and Zhao, 2021), are selected and encoded. Specifically,
the ages of vital appliances (e.g., refrigerator, freezer, space heating, and air conditioner) are recoded by
using 0-6 to indicate not appliable, less than 2 years old, 2-4 years old, 5-9 years old, 10-14 years old, 15-
19 years old, and over 20 years old, respectively. Then, we use “0” to replace “-2” in the RECS’s original
codes of size and use frequency of appliance to represent not applicable. In this way, the size of
refrigerators, freezers, TVs, and water heaters are ordinal variables. Larger values of these variables mean
a larger size of the appliance. The use frequency of the cooktop and oven part of the stove, separate
cooktop and oven, microwave, and TV are numerical variables. Furthermore, HVAC usage behavior, type
of fuels used by appliances, and equipment type of appliances (e.g., stove, clothes dryer, main and
secondary space heating, and water heating) are also dummy coded. Finally, we add another variable,
“NUMAP”, to represent the total number of appliances owned (Karatasou and Santamouris, 2019). It is
measured by the total number of refrigerators, separate freezers, stoves, separate cooktops, separate ovens,

microwaves, outdoor grills, toasters, toaster ovens, coffee makers, crockpots, food processors, rice
cookers, blenders or juicers, dishwashers, laundry (i.e., clothes washers and dryers), televisions,
computers (desktop, laptop, and tablet), printers, fans, humidifiers, and light bulbs.

End-use Energy Consumption This study uses kilowatt hours (kWh) as the energy unit to combine
different fuels or energy sources on an equal basis. Except for electricity, RECS uses British thermal units
(Btu) to quantify other consumed fuels, e.g., natural gas and propane, which are correspondingly
converted to kWh'. The calculations for the end-use energy consumption are shown in equations (1)-(4).

71 kWh =3412.14 Btu
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Space cooling (SPCKWH) only consumes electricity, consisting of air conditioning, air handlers used for
cooling, and evaporative coolers. In contrast, space heating (SPHKWH) can be provided by electricity,
natural gas, propane, and fuel oil/kerosene. The electricity consumed by air handlers and boiler pumps for
heating is incorporated into space heating. Water heating (WTHKWH) also consumes electricity, natural
gas, and fuel oil. The remaining energy consumption is by appliances (APKWH). Some appliances only
consume electricity, e.g., refrigerators, freezers, microwaves, clothes washers, and dishwashers, while
other applications support multiple energy sources, e.g., cooking, clothes dryers, and swimming pool
pumps and heaters. The total energy consumption is summed by RECS and called “TOTALBTU”,
converted to kWh and named “TOTALKWH”. Finally, after testing, we transform the energy
consumption of space heating, space cooling, appliance, and total energy consumption to log and use Btu
for better fitting the model (Debs and Metzinger, 2022), while the results are reported in kWh for easier
interpretations.

SPCKWH = KWHCOL + KWHAHUCOL + KWHEVAPCOL €))
SPCKWH: Total energy consumption by space cooling, in kWh
KWHCOL: Electricity usage for air conditioning (central systems and individual units), in kWh
KWHELAHUCOL: Electricity usage for air handlers used for cooling, in kWh
KWHELEVAPCOL: Electricity usage for evaporative coolers, in kWh
SPHKWH = KWHSPH + KWHELAHUHEAT + KWHNGSPH + KWHLPSPH + KWHFOSPH 2)
SPHKWH: Total energy consumption by space heating, in kWh
KWHELSPH: Electricity usage for main and secondary space heating, in kWh
KWHELAHUHEAT: Electricity usage for air handlers and boiler pumps used for heating, in kWh
KWHNGSPH: Natural gas usage for main and secondary space heating, in kWh
KWHLPSPH: Propane usage for main and secondary space heating, in kWh
KWHFOSPH: Fuel oil/kerosene usage for main and secondary space heating, in kWh
WTHKWH = KWHWTH + KWHNGWTH + KWHFOWTH 3)
WTHKWH: Total energy consumption by water heating, in kWh
KWHELWTH: Electricity usage for main and secondary water heating, in kWh
KWHNGWTH: Natural gas usage for main and secondary water heating, in kWh
KWHFOWTH: Fuel oil/kerosene usage for main and secondary water heating, in kWh
TOTALKWHWTH: Total usage for main and secondary water heating, in kWh

APKWH = KWHELRFG + KWHELFRZ + KWHELMICRO + KWHELCW + KWHELDWH + KWHELLGT + KWHELTVREL +
KWHELCFAN + KWHELDHUM + KWHELHUM + TOTALKWHCOK + TOTALKWHCDR + TOTALKWHPL +
TOTALKWHHTB + TOTALKWHNEC 4)

APKWH: Total energy consumption by appliances, in kWh
KWHELRFG: Electricity usage for all refrigerators, in kWh
KWHELFRZ: Electricity usage for freezers, in kWh
KWHELMICRO: Electricity usage for microwaves, in kWh

KWHELCW: Electricity usage for clothes washers, in kWh
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KWHELDWH: Electricity usage for dishwashers, in kWh

KWHELLGT: Electricity usage for indoor and outdoor lighting, in kWh
KWHELTVREL: Electricity usage for all televisions and related peripherals, in kWh
KWHELCFAN: Electricity usage for ceiling fans, in kWh

KWHELDHUM: Electricity usage for dehumidifiers, in kWh

KWHELHUM: Electricity usage for humidifiers, in kWh

TOTALKWHCOK: Total usage for cooking (stoves, cooktops, and ovens), in kWh
TOTALKWHCDR: Total usage for clothes dryers, in kWh

TOTALKWHPL: Total usage for swimming pool pumps and heaters, in kWh

TOTALKWHNEC: Total usage for other devices and purposes not elsewhere classified, in kWh
3.4 Spearman Rank Correlation

Spearman rank correlation measures the degree of correlation between two variables by calculating
the Pearson correlation coefficient between the ranked variables (see equation (5)). The Spearman
correlation coefficient is denoted by r, whose value is between -1 and +1. Spearman correlation works
well with nonlinear monotonic and ordinal data, as well as data with outliers (Schober et al., 2018).
Correlation analysis can be used to select features before developing models by selecting correlated
variables to reduce the risk of model retrofitting (Marques Ramos et al., 2020; Zhang et al., 2018). The
larger the absolute coefficient, the stronger the correlation between the two variables. Generally, the
absolute value of r greater than 0.2, 0.4, and 0.6 means that the correlation between the two variables is
weak, moderate, and strong, respectively (Akoglu, 2018). To incorporate more variables into our models,
we selected 0.2 as the threshold of correlation analysis. Variables with an absolute correlation coefficient
value with end-use or total energy consumption larger than 0.2 are selected.

Cov(R(X), R(Y))
Jvar(R(X))var(R(Y))

r(X,Y) = )
Where R(X) and R(Y) are ranked variables X and Y; Cov (X, Y) is the covariance of ranked X and
Y; Var (X, Y) is the variance between the ranked variables.

3.5 Radom Forest Regression

Random forest (RF) is an ensemble learning method based on the decision tree (Breiman, 2001).
Ensemble learning is a technique to combine predictions from multiple machine learning algorithms for
higher predictive performance than a single model (Sagi and Rokach, 2018). Random forest uses the
Bagging (short for Bootstrap aggregating) sampling method to randomly extract k different sample
datasets, as the sub-training sets of each decision tree (i.e., the single weak learner), from the original
dataset with replacement. The size of each sample set is the same as that of the original dataset (denoted
as m). With the increase of dataset size (m), around 37% of samples will not be selected for training due
to sampling with replacement, see equation (6). The unselected sample of each Bagging sampling is
called Out-of-Bag (OOB), which can be used to evaluate the performance of RF models, i.e., OOB score,
measuring the model’s R-squared in the out-of-bag samples (37% of the training dataset). Then, k sub-
training sets are used to generate k decision trees correspondingly based on partial features randomly
selected from total features. The training process is repeated until the random forest is generated by trees.

10
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For regression task, the predicted result of the algorithm is the averaging predictions of individual trees.
Therefore, four parameters are generally selected to tune the model using grid search method to obtain an
optimal model:

e n_estimators: the number of trees in the forest.

¢ max_depth: the maximum depth of the tree.

¢ min_samples_split: the minimum number of samples required to split an internal node.
¢ min_samples_leaf: the minimum number of samples required at a leaf node.

Lim (1- i)m -1~ 0368 (6)

m-—co

Where m is the size of the original training dataset.

RF can solve classification and regression and allow for nonlinear relationships between explanatory
and response variables, especially working well with high-dimensional problems (Darst et al., 2018). Also,
random forest reduces the risk of overfitting due to the Bagging sampling method and only a small set of
features selected to grow each tree (Ziegler and Konig, 2014). Besides, the random forest has the ability
to assess variable importance (VI) scores. The VI score is calculated by comparing the prediction
accuracy between a tree with and without the presence of this predictor variable (Chehreh Chelgani et al.,
2016). In particular, some variables with small VI scores can be eliminated to improve the model’s
interpretability and reduce the risk of overfitting (Gregorutti et al., 2017). To ensure only important
variables are incorporated in the random forest model, a recursive feature elimination is commonly
employed in existing studies by tuning the model recursively and excluding variables with VI scores less
than a threshold (Darst et al., 2018; Zhou et al., 2014). Random forest, like other machine learning
methods, can also employ partial dependence (PD) plots to interpret the effects of independent variables
in the fitted model on the predicted variable (Molnar et al., 2021). PD plots show the functional
relationship between partial independent variables and predictions. The PD function is the marginal effect
of the variable by calculating the average of the predictions for all combinations of other variables in the
dataset (Jiang et al., 2022).

Based on these advantages, we selected RFR to build the energy consumption models for each end-
use and total energy consumption. The screened dataset is randomly split into training and test datasets
using the “train_test_split” Python package, where the training-test ratio is 0.3. Then, the
“RandomForestRegressor” package is used to develop random forest regression models and calculate the
variable importance (VI) scores. During the data split and training process, the random state is specified
as 0. To improve the generalization ability of the fitted model, 10-fold cross-validation is used to train and
tune the regression model for each energy consumption model (Shi et al., 2021). The cross-validation
score is measured as the average of the R-squared of 10-fold training. The variables are selected
recursively until the VI scores of all variables in the final model are larger than 0.01. Finally, we adopt the
“pdpbox™ package to plot the partial dependence of important variables in the fitted model to interpret
their impact on energy consumption.

In addition to the Cross-validation score and OOB score, three additional metrics are adopted to
evaluate the performance of the model: R-squared (R?), root mean square error (RMSE), and mean
average error (MAE). Their calculation formulas are shown in equations (7)-(9). R? score shows how well
the developed model is fitted to the data by comparing it to the average line of the dependent variable. R*
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is upper bound by 1, representing perfect fit; a higher R? is considered desirable (Chicco et al., 2021).
Similarly, the higher value of cross-validation score and OOB means better model fitness. MAE and
RMSE measure the difference between predicted and true values; therefore, a lower value of MAE and
RMSE implies higher model accuracy.

2 _ 1 _ ZinOoy)?
R*=1 L i-T)? )
1 -~
MAE = = Y1115 — yil (8)
RMSE = \/ YO —vi)? )

Where ¥, y;, and y, represent the predicted values, true values, and mean values of the true values of
energy consumption.

4 Results

4.1 Descriptive Analysis

4.1.1 Household Demographics

The distributions of household demographic indicators are shown in Figure 2. Among 3702 surveyed
households, around 40% of single-family households have 2 persons, followed by 3 persons and 1 person
with around 17% and 16%. In terms of annual gross income, about half of the households have an annual
gross household income of less than $60,000, among which 20% of respondents earned $20,000 -
$39,999 (the largest part). The youngest respondent is 18 years old, and the oldest is 85 years old, with an
average age of 54.5 years old. Over 60% of respondents are between 40-70 years old.
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Figure 2 Distribution of Household Demographics

4.1.2 Housing Characteristics

Figure 3 shows the distributions of housing characteristics of all surveyed households. The numbers
of houses built before 1950 and between 2000 and 2009 are almost the same, at about 610 (17%),
followed by 1970-1979, 1990-1999, and 1980-1989. Over 72% of houses have 5-8 rooms, excluding
bathrooms in the unit. The total housing area of the housing unit is a continuous variable. The minimum
and maximum areas for single-family houses are 29.45 square meters (m”) and 789.77 m?, respectively,
with a mean value of around 238.77 m’ and a standard deviation of 118.28 m”. The distribution of
housing area shows that 21% of houses’ areas are between 150-200 m?, followed by 100-150 m* and 200-
250 m?. 61% of houses have only 1 story, and only 4% have 3 or more stories. 40% of houses have 10-15
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windows, two times larger than those with 6-9 windows. Also, 86% of houses are well or adequately
insulated. There are 56% of houses with an attic, 42% of houses with a basement, and only 1% of
households use solar.
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Figure 3 Distribution of Housing Characteristics

4.1.3 Appliance Characteristics

The total number of appliances owned is 25.8 on average, with a minimum of 3 and a maximum of
107. We analyzed the ownership of common appliances (see Figure 4), including freezers, dishwashers,
and televisions. Among surveyed single-family households, almost all households have one or more
refrigerators and televisions. 87% and 77% of households have at least 1 stove and 1 dishwasher,
respectively. The proportion of households with clothes washers, clothes dryers, or microwaves at home
is over 95%. Around 70% of households have outdoor grills, toasters, coffee makers, or laptops.
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(a) The number of total appliances owned (b) Percentage of Household Using Appliances

Figure 4 Distribution of Housing A ppliances

(Fri: refrigerators; Fre: separate freezers; St: stoven; Ct: separate cooktops; Ov: separate ovens; Mic: microwave; Tv: television;
Pc: desktop computers; Lp: laptop computers; Dw: dishwasher; Cw: clothes washer; Dry: clothes dryer; Gri: outdoor grill; To:
toaster; Cof: coffee maker; Cp: crockpot or slow cooker; Fp: food processor; Rc: rice cooker; Ble: blender or juicer; Oth: other
small appliance.)

In terms of HVAC (see Figure 5), most houses (68%+5%=73%) have a central conditioner, and 20%
(15%+5%) have an individual wall/window or portable unit, while 12% of houses do not have an air
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conditioner at home. In contrast, 97% of houses have space heating equipment, among which a central
furnace is the most common (66%), four times larger than houses with a heat pump (15%). Also, around
46% of houses have secondary space heating, with 18% having a portable electric heater.
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(a) Type of air conditioning equipment  (b) Main space heating equipment type
Figure 5 Type of Air Condition and Space Heating

(Figure (b-c): 2 Steam/hot water system with radiators or pipes; 3 Central furnace; 4 Heat pump; 5 Built-in electric units installed
in walls, ceilings, baseboards, or floors; 6 Built-in floor/wall pipeless furnace; 7 Built-in room heater burning gas, oil, or kerosene;
8 Wood-burning stove (cordwood or pellets); 9 Fireplace; 10 Portable electric heaters; 21 Some other equipment.)

4.1.4 Climate and Location

The distribution of climate factors (Figure 6) shows that 36% of houses are in cold/very cold zones,
which is three times more than the hot-dry/mixed-dry zone and twice larger than the hot-humid zone. The
mean and median of CDDG65 are 1686 and 1343, respectively, with 60% of houses’ CDD65 between 500
and 2000. On the other hand, the mean and median of HDD65 are 3775 and 3922, respectively, with over
60% of houses’ HDD65 above 3000. Additionally, we analyzed the urban type of houses: 64% in urban
areas, compared with 25% in rural areas. The remaining 11% of houses are in the urban cluster.
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Figure 6 Distribution of Climate Factors

4.1.5 Energy Consumption

The distributions of end-use energy usage and corresponding share to total energy consumption are
shown in Figure 7 and Table 1. The total energy consumption has the highest of 143.66 kWh and the
lowest of 0.64 kWh, with an average of 27.38 kWh and a median of 25.09 kWh. There are 134, 374, and
7 households not consuming energy for space heating, space cooling, and water heating, respectively,
while appliance usage is necessary for each household, with a minimum of 0.35 kWh. Generally, space
heating consumes the largest part of the energy, with around 40% of total energy consumption, followed
by appliance and water heating, while space cooling only consumes 10% of total energy.
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Figure 7 Distribution of End-Use and Total Energy Consumption with Outlier Excluded

Table 1 Descriptive Analysis of Energy Usage (KWH) and Percentage of Each End-Use

Min. Quartile Median 3 Quartiles Max. Mean STD.
Usage Share Usage Share Usage Share Usage Share Usage Share Usage Share Usage Share
Space heating 0 0 420 23% 10.04 41% 1849 58% 80.04 94% 1248 40% 10.56 0.22
Space cooling 0 0 065 2% 161 6% 339 15% 2178 82% 246 10% 263 0.12
Water heating 0 0 277 12% 434 17% 6.12 24% 2165 80% 474 19% 270 0.10

Appliance 035 3% 460 20% 639 28% 922 39% 10535 91% 771 30% 5.36 0.14

Total 0.64 17.53 25.09 34.63 143.66 27.38 13.67

End Use

4.2 Correlation Analysis

Correlation analysis is conducted to select the variables for further regression modeling. The factors
with an absolute value of correlation coefficient with end-use energy consumption or total energy
consumption over (.2 are selected, summarized in Table 2. We only consider the explainable factors. For
example, although FUELH20O_1 and FUELH2O_5 (using natural gas and electricity for the main water
heater) have coefficients of correlation with space heating over 0.2, they are not able to explain the energy
consumption of space heating. Hence, both factors are excluded from the regression model for space
heating. In a similar manner, TOTHM2, TOTCM2, and TOTHOUSING are used to model space heating,
space cooling, and other end-uses, respectively. Space heating and cooling models are established with
HDD65 and CDD65, respectively.

Correlation results demonstrate that the energy consumption of space heating positively correlates
with the Cold/Very Cold climate zone and HDD65, while space cooling has positive correlations with the
Hot-Humid climate zone and CDD65. The colder the area where the house is located, the higher the
energy consumption of space heating. The hotter the area where the house is located, the higher the
energy consumption of space cooling. In contrast, the correlations between appliance energy consumption
and climate factors are poor, with coefficients less than 0.2. Also, the correlation coefficients between
housing urban type and end-use and total energy consumption are small, with an absolute value of less
than 0.2. Regarding household demographics, water heating energy consumption strongly correlates with
family size (NHSLDMEM, r=0.684). Household income weakly correlates with water heating, appliance,
and total energy consumption (r=0.3). However, the correlations of space heating/ space cooling with
demographics are negligible. Various housing characteristics, e.g., housing size and the number of total
rooms and windows, have different degrees of correlation with energy consumption. In terms of the
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appliance, although the appliances vary by end-use, in general, the age, fuel type, equipment type, and

size of appliances correlate with the corresponding energy consumption.

Table 2 Correlated Factors with Each End-Use and Total Energy Consumption*

Use Climate Household Housing Appliance
SPH | Cold/Very Cold None CELLAR (0.524), EQUIPM_2 (0.201), EQUIPM_3 (0.364),
(15) (0.496), Hot/Mixed- STORIES (0.292), EQUIPM_4 (-0.297), FUELHEAT_1
Dry (-0.296), Hot- TOTROOMS (0.257), (0.436), FUELHEAT_3 (0.253),
Humid (-0.402), WINDOWS (0.304), FUELHEAT_S (-0.450)
HDD65 (0.649) TOTHM2 (0.364)
SPC Cold/Very Cold (- None CELLAR (-0.259), AGECENAC (0.418), COOLTYPE_1
) 0.449), TOTCM2 (0.506) (0.531), USECENAC_1 (0.259)
Hot-Humid (0.488),
Mixed-Humid
(0.220),
CDD65 (0.742)
WTH | Hot-Humid (-0.243), | MONEYPY TOTROOMS (0.211) DWASHUSE (0.230), WASHLOAD
(12) CDD65 (-0.211), (0.244), (0.332), DRYRUSE (0.321), FUELH20_1
HDD®65 (0.223) NHSLDMEM (0.405),
(0.684), FUELH20_5 (-0.445)
HHAGE (-
0.324)
AP None MONEYPY YEARMADERANGE NUMAP (0.623), AGERFRI2 (0.381),
(22) (0.356), (0.213), TOTROOMS AGEFRZR (0.224), DWASHUSE (0.414),
NHSLDMEM (0.367), WINDOWS WASHLOAD (0.420), DRYRUSE (0.436),
(0.326) (0.291), SEPOVENUSE (0.229), AMTMICRO
TOTHOUSING (0.296) | (0.223), SIZRFRII1 (0.300), SIZRFRI2
(0.397), TVSIZE1 (0.247), TVSIZE2
(0.323), TVONWD?2 (0.264), TVONWE2
(0.276), DWCYCLE_2 (0.258), SIZFREEZ
(0.249)
Total | Cold/Very Cold MONEYPY CELLAR (0.413), NUMAP (0.372), AGERFRI2 (0.261),
(26) (0.353), Hot- (0.266), STORIES (0.332), DWASHUSE (0.272), WASHLOAD
Dry/Mixed-Dry (- NHSLDMEM TOTROOMS (0.391), | (0.227), DRYRUSE (0.248), SIZRFRI2
0.200), Hot-Humid (0.230) WINDOWS (0.401), (0.266), TVSIZE2 (0.205),
(-0.242), HDD65 TOTHOUSING (0.454) | STOVENFUEL_S (-0.203), EQUIPM_3
(0.434), CDD65 (- (0.303), EQUIPM_4 (-0.215),
0.237) FUELHEAT_1 (0.391), FUELHEAT_S (-
0.412), FUELH20_1 (0.296), FUELH20_5
(-0.359)

Note: *All correlations are significant at the 0.01 level (2-tailed).
Abbreviation: SPH: space heating, SPC, space cooling, WTH: water heating, AP: appliance (the same below).
MONEYPY: Annual gross household income, NHSLDMEM: number of household members, HHAGE: household age.

CELLAR: with cellar, STORIES: number of stories, TOTROOMS: total number of rooms, WINDOWS: number of windows,

TOTHM2: total heated area, TOTCM2: total cooled area, TOTHOUSING: total housing area.

EQUIPM_2: steam/hot water system with radiators or pipes for main space heating, EQUIPM_3: central furnace for main space
heating, EQUIPM_4: heat pump for main space heating, FUELHEAT _1: natural gas from underground pipes as main space
heating fuel, FUELHEAT_3: fuel oil as main space heating fuel, FUELHEAT_5: electricity as main space heating fuel,
AGECENAC: age of central air conditioner, COOLTYPE_1: central air conditioning system, USECENAC_I: set one
temperature and leave it there most of the time, DWASHUSE: frequency of dishwasher use, WASHLOAD: frequency of clothes
washer use, FUELH2O_1: natural gas for water heater, FUELH2O_1: electricity for water heater, NUMAP: total number of
owned appliances, AGERFRI2: age of second most-used refrigerator, AGEFRZR: age of most-used freezer, SEPOVENUSE:
frequency of separate oven use, AMTMICRO: frequency of microwave use, SIZRFRI1: size of most-used refrigerator,
SIZRFRI2: size of second most-used refrigerator, TVSIZE1: size of most-used TV, TVSIZE2: size of second most-used TV,
TVONWD?2: second most-used TV usage on weekdays, TVONWE2: second most-used TV usage on weekends, DWCYCLE_2:
normal or default cycle with heated dry using dishwasher, SIZFREEZ: size of most-used freezer, STOVENFUEL_S: electricity
for stove.
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Furthermore, the correlations between demographics and housing characteristics are analyzed, as
shown in Table 3. Household annual income positively correlates with housing size and the number of
appliances, with r around 0.4. Housing vintage has slight correlations with housing size (r=0.2). Also, a
correlation between family size and the number of total appliances owned can be found. The number of
total rooms strongly correlates with housing size as well, with a coefficient over 0.5.

Table 3 Correlations between Housing Characteristics and Household Demographics**

Variables 1 2 3 4 5 6 7 8 9
1. Housing income (MONEYPY) -

2. Family size (NHSLDMEM) 0.262 |-

3. Education level (EDUCATION) 0.494 10.051 |-

4. Housing vintage (YEARMADERANGE) 0.221 ]0.131 [0.176 |-

5. Number of rooms (TOTROOMS) 0.398 10.201 ]0.285 |0.174 |-

6. Total cooled area-square meters (TOTCM?2) 0.379 (0.130 [0.267 [0.350 |0.481 |-

7. Total heated area-square meters (TOTHM?2) 0.384 [0.125 ]0.263 ]0.231 ]0.602 |0.668 |-

8. Total housing area-square meters (TOTHOUSING) |0.366 [0.131 [0.252 |0.178 [0.592 |0.608 |0.863 |-

9. Number of appliances NUMAP) 0468 10.379 [0.330 |0.224 |0.450 [0.372 |0.402 ]0.387 |-
sk

* All correlations are significant at the 0.01 level (2-tailed).
4.3 Determinants of End-Use and Total Energy Consumption

Based on correlation results, correlated variables are selected to train preliminary models using
default parameters for each energy consumption model. Then, the models are tuned recursively using grid
search methods and eliminating unimportant variables. The parameters and final model performance (e.g.,
obb score and R squared) for the end-use and total energy consumption are shown in Table 4.

Table 4 Parameter Setting and Model Performance for Energy Consumption Models

Model Log SPH | Log SPC | WTH | Log AP | Log Total
Number of factors included 7 2 4 21 19
n_estimators 92 40 257 273 93
Parameter max_depth 7 5 5 11 12
min_samples_split 6 7 19 19 14
min_samples_leaf 1 3 19 3 5
Cross-validation score 0.760 0.876 0.650 0.478 0.538
Obb Score 0.741 0.862 0.655 0.471 0.520
Model Performance R squared 0.761 0.885 0.643 | 0481 0.542
RMSE 6.577 2.782 1.625 3.924 8.832
MAE 4.472 0.953 1.019 | 2.284 6.589

4.3.1 Space Heating

7 important variables are incorporated in the energy consumption model of space heating. The R-
square is 0.761, demonstrating that the developed regression model can explain around 76% of the
variability in space heating energy consumption. Combined with other metrics, the developed model for
predicting space heating energy consumption is reliable.

The VI scores of these variables are shown in Figure 8. We plot the partial dependence of the
important variables to visualize their marginal effects on space heating energy consumption, see Figure 9.
Since the model is the logarithm of space heating energy consumption in Btu, the partial dependence plots
are converted to the true energy consumption value in kWh by exponent arithmetic. Among these
influencing factors, total heated area (TOTHM2) is the most important for predicting the energy
consumption of space heating, followed by heating degree days based on 65F (HDD65), with 66.45% and
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13.60% of VI scores, respectively. Both factors positively affect the energy consumption of space heating,
and their corresponding impact ranges on energy consumption are around 9 kWh. The energy consumed
for space heating grows sharply when TOTHM2 changes from 50 to 150 m?. Then, the increasing trend
gradually slows down and reaches the minimum when the TOTHM? is larger than 400 m?, after which
the energy consumption almost keeps unchanged. Likewise, as HDDG65 increases from 1000 to 5000, the
energy consumption goes up dramatically from 0.5 to 8.5 kWh. After that, HDD65 has little effect on
energy consumption. Furthermore, some characteristics related to space heating equipment affect energy
consumption. If the main space heating equipment is EQUIPM_3 (central furnace), the energy
consumption of space heating will increase by 2.6 KWH. The fuel type of main space heating also
determines the space heating energy consumption. The households using FUELHEAT_1 (natural gas) or
FUELHEAT_3 (fuel oil) as the space heating fuel type consumes more energy than those using
FUELHEAT_5 (electricity). Additionally, more windows contribute to higher energy consumption for
space heating, especially when the number of windows increases from 10-15 to 16-19.

Variable Importance Scores of Space Heating Energy Consumption
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Figure 8 Rank of Variable Importance of Space Heating
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Figure 9 Marginal effects of important factors on space heating energy consumption

4.3.2 Space Cooling

Total cooled area (TOTCM?2) and cooling degree days based on 65F (CDD65) are determinants for
space cooling energy consumption. The percentage of variance explained by this model on energy
consumption for space cooling is 88.5%, which is the highest among the four end-uses.

Figure 10 and Figure 11 show the VI scores and partial dependency of the two variables. TOTCM2
determines the energy consumption of space cooling, with a VI score of 87.10%. The energy consumed
increases dramatically from 0 to 2 kWh with the changes of TOTCM2 from 0 to 200 m?. For residential
buildings with TOTCM2 larger than 250 m? the impact of TOTCM2 on space cooling becomes
insignificant. CDD65 has a positive impact on space cooling energy consumption as well. When the
CDD65 is less than 3000, the energy consumption of space cooling rises considerably, although there are

some fluctuations. The impact range on the energy consumption of space cooling caused by CDDG65 is
1.83 kWh.

Variable Importance Scores of Space Cooling Energy C
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Figure 10 Variable importance scores of space cooling energy consumption
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Figure 11 Marginal Effects of Important Factors on Space Cooling Energy Consumption

4.3.3 Water Heating

There are 4 important variables included in the final regression model of water heating energy
consumption, i.e., family size (NHSLDMEM), electricity used for the main water heater (FUELH20_5),
and heating and cooling degree day (HDD65 and CDD65). Around 64% of the variability in water
heating energy consumption can be explained by the fitted model.

The VI scores and partial dependency plots of three variables (see Figure 12 and Figure 13) illustrate
that NHSLDMEM is a determinant of water heating energy consumption, with a VI score of 66.45% and
an impact range of 5.94 kWh. The energy consumed for water heating increases gradually with the family
size between 1 and 4. Then, the upward trend of energy consumption slows down until the difference in
energy consumed between households with 7 persons or more becomes not obvious. The increase in
HDDG65 is also associated with rising water heating energy use, especially when HDD65 changes from
500 to 4000. Contrarily, FUELH20_5 and CDD65 have negative impacts on water heating energy
consumption. Households using electricity for water heating consume 2.17 kWh less than those using
other energy sources, e.g., natural gas. The higher CDDG65 is associated with less energy consumed for
water heating, which decreases by around 0.44 kWh, with CDD65 increasing from 500 to 3500.

Variable Importance Scores of Water Heating Energy Consumption
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Figure 12 Variable importance scores of Water Heating energy consumption
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Figure 13 Marginal effects of important factors on water heating energy consumption

4.3.4 Appliance

The RFR model for appliance energy consumption has 21 factors, with an R squared of 0.481. These
variables are sorted based on the VI scores (see Figure 14), and corresponding partial dependency plots
are shown in Figure 15.

Among the 21 variables, the number of total appliances (NUMAP) is the most determinant, with a
VI score of over 50%. The energy consumed by appliances rises significantly from 3 to 13 kWh, with the
number of total appliances changing from 5 to 60. Some other characteristics of appliances affect energy
consumption as well, such as the frequency of using appliances (e.g., clothes dryer [DRYRUSE], clothes
washer [WASHLOAD], dishwasher [DWASHUSE], microwave [AMTMICRO], and second most-used
television [TVONWD?2 and TVONWE?2]), the vintage of appliances (e.g., second most-used refrigerator
[AGERFRI2] and freezer [AGEFRZR]), and the size of appliances (e.g., the most and second most-used
refrigerator [SIZRFRI1 and SIZRFRI2] and TV [TVSIZE1 and TVSIZE2]). Generally, the more
frequently these appliances are used, or the older the appliances are, or the larger the size of the
appliances is, the more energy these appliances consume. Among these appliances’ characteristics,
DRYRUSE is the most important, with a VI score of 5.62% and an impact range of around 2 kWh.
Additionally, some housing characteristics, e.g., total housing area (TOTHOUSING), vintage
(YEARMADERANGE), and the number of total rooms and windows (TOTROOMS and WINDOWS),
positively affect appliance energy consumption. The impact of TOTHOUSING on appliance energy
consumption is small when TOTHOUSING is less than 600 m? while the energy consumption goes up
sharply when TOTHOUSING increases to 700 m?. Furthermore, in terms of the impacts of demographics,
annual gross household income (MONEYPY) contributes to appliance energy consumption. Households
with an annual gross income of $140,000 or more consume the most energy for appliances. Also, a
household with a larger family size consumes more energy, but when the family members are greater than
or equal to 7, there is no significant difference in the appliance energy consumption.
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Figure 15 Marginal Effects of Important Factors on Appliance Energy Consumption
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4.3.5 Total Energy Consumption

There are 19 important variables included in the fitted model of total energy consumption, which has
good interpretability in total energy consumption, with an R-square of 0.542. Figure 16 and Figure 17
show these important variables’ VI scores and marginal effects.

Climate factors (i.e., HDD65 and CDD65) are dominant for total energy consumption, with VI
scores of 20.6% and 6.2%, respectively. The two climate factors positively correlate with total energy
consumption. The higher the CDD65 or HDD65 of the area where the house is located, the more energy is
consumed by the households. Total housing area (TOTHOUSING) is the second most important driving
factor for total energy consumption. There is an upward trend in total energy consumption with the
increase of TOTHOUSING. In particular, when TOTHOUSING is larger than 200 m?, the total energy
consumption rockets. The numbers of windows and total rooms are two other additional housing
characteristics driving the total energy consumption. The more windows or rooms a residential building
has, the more energy the household consumes. Moreover, the number of appliances (NUMAP) and their
conditions, including fuel type, size, vintage, and use frequency, highly affect total energy consumption.
Specifically, the VI score of NUMAP is 11.72%, with an impact change range of over 9 kWh. With the
increase of NUMAP, total energy consumption goes up accordingly, while the energy consumption
remains stable after NUMAP is larger than 50. For fuel types of end-uses, households using electricity for
space heating (FUELHEAT_S) or water heating (FUELH20_5) consume less energy than those using
natural gas (FUELHEAT_1). The size of the second most-used TV (TVSIZE2) and refrigerator
(SIZERFRI2), as well as the vintage of the second most-used refrigerator (AGERFRI2) contribute to total
energy consumption. The higher frequency of using clothes dryer (DRYRUSE), dishwasher
(DWASHUSE), and clothes washer (WASHLOAD) increase energy consumption. Additionally,
household demographics are another aspect driving energy consumption. The total energy consumption
increases with the family size (NHSLDMEM) and household income (MONEYPY).

Variable Importance Scores of Total Energy Consumption
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Figure 16 Variable Importance Scores of Total Energy Consumption
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Figure 17 Marginal Effects of Important Factors on Total Energy Consumption

5 Discussions

The developed RFR models for energy consumption perform well in explaining the variability of
residential end-use energy consumption, with R-square ranging from 0.481 (appliance) to 0.885 (space
cooling). These fitted models reveal not only the importance of the driving factors using VI scores, but
also the influences of corresponding variables on energy consumption by partial dependency plots.

5.1 Comparison of Influencing Factors across Different Energy End-Uses

The driving factors of residential energy consumption are multidimensional, including housing
characteristics, household demographics, climate, and appliance characteristics, and vary by end-use.
These end-uses correspond to the diversity in household energy service needs, which vary across
households based on environmental, structural, as well as demographic factors. Specifically, the impacts
of climate and housing size on HVAC energy consumption are more important than demographic and
HVAC equipment characteristics. This finding is consistent with existing studies (Huo et al., 2021;
Iraganaboina and Eluru, 2021; Zhu et al., 2023). In contrast, water heating energy consumption is less
affected by climate factors and housing size. Instead, family size is the most important predictor of the
energy use of water heating, which is relevant to the finding of Lee and Song (2022), which were based
on the metering methods to collect water heating energy usage data and concluded that households with
larger family size consume more energy for water heating services.

Additionally, we found that the fuel type affects the energy consumption of space heating and water
heating. Using electricity consumes less energy than other energy sources, mainly natural gas, which is
neglected by most studies related to residential energy consumption. This finding verifies that end-use
electrification is more energy-efficient (Gonzalez-Torres et al., 2022). Overall, end-use electrification is
beneficial to decarbonization, especially using the electricity generated by clean energy (Ebrahimi et al.,
2018). The efficiency of using heat pumps for space heating and water heating is 2-3 times higher than
using fossil fuels (Dennis, 2015). RECS 2015 shows that space heating and water heating are more
commonly accomplished with natural gas than electricity, with the corresponding gas-to-electricity ratios
of approximately 54 to 28 and 50 to 42. Also, only 14.5% of studied houses use heat pumps (n=538), and
65.7% use central furnaces (n=2431) for space heating, among which 89% of heat pumps and 16% of
central furnaces consume electricity. Hence, there is still a gap in residential end-use electrification.
However, in the residential sector, the use of heat pumps for space heating and electric water heater is
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increasing (Schwartz et al., 2017), which indicates a further improvement trend of residential energy
efficiency in the future.

Of the four end-uses studied here, which correspond to particular energy service needs within a
home, every house has appliance energy usage, which accounts for around 30% of total energy use. On
average, there are around 26 appliances in each single-family house. The total number of appliances is the
most influential factor affecting appliance energy consumption, followed by appliance characteristics,
including use frequency, vintage, and size, of common appliances (e.g., washers and driers, dishwashers,
TVs, and refrigerators, existing in over 96% of single-family homes). Similarly, our analysis found that
the total number of appliances and these appliance characteristics contribute to total energy consumption,
as identified by former studies (Jones et al., 2015; Xie and Noor, 2022). However, fewer studies involve
the appliance characteristics comprehensively, especially the vintage of appliances. We found that the
ages of the second most-used refrigerator and freezer are vital for energy consumption. Appliances’
vintage affects their performance, which further affects energy consumption (Wang, 2017). Besides,
climate factors (the determinants of space heating and cooling) and some characteristics of space heating

(e.g., fuel types) drive total energy use as well, since space heating/cooling are major end-uses in
households.

Figure 18 compares the influence of each major category of factors on end uses. In general, the
energy consumption of space heating and space cooling is affected most by housing characteristics,
whereas demographics and appliance characteristics determine the energy consumption of water heating
and appliance, respectively. In terms of total energy consumption, the impact of appliances is the most
obvious, followed by structural housing characteristics and climate. These differences in influences across
factors could be implicit if only total energy use is analyzed in existing studies. Also, we verified that the
impacts of most driving factors on energy consumption are nonlinear through partial dependency plots,
e.g., the impact of housing size, climate factors, and family size. However, currently, linear regression is
still commonly used to predict energy consumption (Debs and Metzinger, 2022; Fumo and Rafe Biswas,
2015).
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Figure 18 Comparison Influencing Factors of End-Use and Total Energy Consumption
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5.2 Impacts of Housing Characteristics and Household Demographics

Compared with the above important variables, some housing characteristics and household
demographics, especially housing vintage and household income, have smaller VI scores and are not
reflected in most RFR models. However, numerous studies have revealed that household income
positively affects residential energy consumption (Huo et al., 2021). One of the potential reasons for the
differences is that the major impact of household income on energy consumption is indirect, for example,
by affecting the ownership of appliances (Matsumoto, 2016) or determining the housing size (Debs and
Metzinger, 2022; Karatasou and Santamouris, 2019). Our correlation analysis (see Table 3) shows that
household income positively correlates (r around 0.4) with housing size and the number of total rooms
and appliances, as determinant factors on energy consumption of space heating/cooling and appliances.
However, considering the importance of housing and appliance characteristics in regression and the
limited capacity of the regression model to capture these indirect impacts (Estiri, 2014; Kim et al., 2020;
Sanquist et al., 2012), the influences of household income on energy end-use could be moderated in the
derived regression models. In the former analysis, the structural equation model of total energy
consumption developed by Estiri (2014) confirms that the indirect impact of household demographics
intermediated by building characteristics (e.g., housing size, number of total rooms) is four times larger
than the direct impact. Similarly, the indirect impact of socioeconomic status on energy consumption is
also larger than its direct impact (Karatasou and Santamouris, 2019). Also, it is likely that the property of
variables, i.e., household income and housing vintage are categorical variables of 8 categories while
housing size and climate factors (i.e., HDD65 and CDD65) are continuous variables, will affect the
variable importance in regression. As categorical variables are less informative than continuous variables
due to the insufficient divergences and details within the same category (Lazic, 2008), the implications
may be implicit in regression models.

To further evaluate the implications of housing characteristics and household demographics on
energy end-use, we performed a one-way ANOVA analysis and found that there are significant
differences in energy consumption for all end-use and total energy consumption across different income
groups (p <0.001, a=0.95) and among different housing vintage groups (p <0.001, a=0.95). The F values
of each energy consumption and mean differences between different groups are shown in Figure 19. By
comparing end-use energy consumption across different household income groups, energy consumption
increases steadily with the rise of household income. The results are similar to (Chen et al., 2022; Debs
and Metzinger, 2022). For housing vintage, the newer houses generally consume less energy in total than
older houses. Brounen et al. (2012) also found that total energy consumption decreases in newly built
houses. However, the impacts of housing vintage vary with different end-uses. In newer houses, the
energy consumed for space heating decreases, while households of newer vintage consume more energy
in other end-uses, i.e., space cooling, water heating, and appliances, but with varying impacts. The
increase of space cooling energy consumption in newer houses is most likely due to higher penetration of
central air conditioners in newer buildings, with around 87% in the houses built between 2010 and 2015
and 47% in houses before 1950. Similarly, new buildings have more appliances than old buildings
(correlation coefficient between vintage and number of appliances = 0.224), which contributes to the
higher appliance energy usage in newer houses. Therefore, future work could further explore and compare
the impact of housing vintage and household income on the energy consumption of different end-uses.
Further, demographics beyond income and number of household members, such as age composition of
residents, occupation and structure of work life (i.e., working from home), political party affiliation of
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adult residents, and resident values and beliefs, may all provide additional insight into consumption of
end-use energy services at the residential scale, although these datapoints are not collected within the
RECS 2015 survey.
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Figure 19 Energy Consumption Differences Between Household Income/ Housing Vintage Groups

Finally, in disagreement with previous studies, it is noticeable that we did not find a correlation
between the urban type of houses and energy consumption (-0.2 < r < 0.2). Although this finding is
inconsistent with the studies of Zheng et al. (2014) and Zhang et al. (2016), it concurs with the
explanation that the impacts of urban type (urban vs. rural) are weakened with regional economic
development (Zhang and Bai, 2018) and are not significant in developed countries (Wang et al., 2020).
Additionally, the influence of age on energy consumption is not reflected in our RFR models, which
contradicts Brounen et al. (2012) and Zhu et al. (2023), which found that older occupants consume less
energy. Considering that RECS 2015 only recorded the age of respondents instead of all household
members, the analysis results could be biased. It is worth mentioning that RECS 2020 is more detailed in
collecting the number of occupants below 18, 18-64, and over 65 separately. This would lead to more
insights for future analysis on how occupants’ age will influence end-use.

6 Conclusions

This nationwide study comprehensively analyzes the influencing factors on residential end-use
energy consumption in US single-family detached houses and quantifies their impacts by zooming into
different end-uses, corresponding to particular energy services, i.e., space heating/cooling, water heating,
and appliances. Multiple driving factors contribute to energy consumption, including housing
characteristics, household demographics, climate, and appliance characteristics. Also, we compare the
influencing factors of energy consumption across different end-uses, thereby elucidating differences and
the potential driving factors that were left out in previous studies when only total energy consumption
was analyzed.

First, the influencing factors vary by end-use. The housing size and climate factors (i.e., HDD65 and
CDD65) are the key contributors to space heating and space cooling energy usage, while the family size
and the number of total appliances determine the energy consumption of water heating and appliances,
respectively. Specifically, climate factors (HDD65 and CDD65) and home size positively influence the
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energy use of space heating and cooling. On the contrary, water heating energy consumption decreases
with the increase of CDD 65 while positively correlating with the family size. Also, this study confirms
that the application of electrified end-uses could lead to reduced energy use. As with space heating, using
electricity for water heating consumes less energy. In terms of appliances, besides the total number of
appliances, certain characteristics (e.g., use frequency, size, and vintage) of common appliances (e.g.,
refrigerators, televisions, and cloth washers and driers) also demonstrate important implications on the
energy use of appliances.

Second, these impacts on energy consumption are nonlinear and are further compounded by the
correlations among independent variables. The fitted RFR models verify these nonlinear effects, e.g., the
housing size, total number of appliances, and family size, on energy services. Moreover, the correlations
between demographics and characteristics of houses and appliances are non-negligible, especially
considering the strong correlations between household income with housing size and the total number of
appliances.

However, there are some limitations in this study. First, due to these correlations between
independent variables, the indirect impacts of demographics may exist but not be captured sufficiently in
our models. Therefore, future work can further examine the indirect effect of demographics on each type
of end-use energy service. Also, this study only focuses on single-family detached houses. Other housing
types could be further explored. Besides, the end-use energy consumption data in RECS 2015 was
decomposed based on engineering models. Although these energy end-use data were calibrated and
validated, the data quality is still subject to the validity of engineering models and detailed calibration and
validation methods. Even if RECS 2015 is already a trustworthy data source, additional national-scale
efforts with direct sub-metering data collection are expected to further improve the data quality and
analysis as resources allow. Nevertheless, this study has important implications for the conservation of
residential energy. The identified influencing factors on different end-uses can provide references for
developing energy efficiency programs, especially targeting specific residential end-use services or
occupant groups based on consumption across different end-use services.
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