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Abstract—Graph algorithms are fundamental tools for deriving
valuable insights from complex network structures. As network
data grows in scale, and hardware architecture becomes more
diverse than ever, the demand for efficient and portable graph
algorithms has surged. The Kokkos framework has emerged as
a promising solution for achieving high performance and porta-
bility in parallel computing applications. This paper presents a
thorough evaluation of Kokkos-implemented triangle counting,
an important graph kernel. Employing diverse algorithmic and
implementation methods, we benchmark Kokkos-enabled graph
algorithms targeting CPUs and GPUs. We explore the impact of
both graph properties and Kokkos’ parallel execution model on
algorithmic efficiency. Our results indicate that thread scheduling
can improve performance by up to 10x, data structure choice by
6x, and configuring the parallel hierarchy based on degree prop-
erties can result in a remarkable 300x difference in performance
over untuned implementations on Kokkos.

Index Terms—Graph algorithms, performance, portability,
linear algebra, large graphs, sparse graphs, GPU

I. INTRODUCTION

Graph algorithms play a critical role in analyzing complex
network data, finding applications in various fields such as
social network analysis, recommendation systems, and bioin-
formatics [8], [9], [18], [19]. As the size and complexity of
graphs continue to grow exponentially, there is a pressing
need for efficient parallel processing techniques to handle
these massive datasets [6], [16], [19]. The Kokkos frame-
work [18] has emerged as a promising solution for achiev-
ing performance portability across different high-performance
computing architectures. This paper aims to investigate the
performance and portability of graph analytic kernels using
vertex-iterative [10] and linear algebra-based [12] methods on
the Kokkos framework. We focus on triangle counting [7].
The Kokkos framework [18] is specifically designed to
facilitate performance portability across diverse parallel archi-
tectures, including CPUs, GPUs, and accelerators [11], [14].
It provides a programming model that enables developers
to write code once and target multiple architectures without
extensive modifications. By harnessing the capabilities of
Kokkos, graph algorithm implementations have the potential
to exploit the computational power of various hardware plat-
forms. However, the performance and portability of diverse
graph algorithms with a range of data structure choices and
varied graph properties on the Kokkos framework have not
been thoroughly explored, to the best of our knowledge,
highlighting the need for this research.
The Challenges for Performance Portability. Developing

performance portable codes for modern heterogeneous archi-
tectures is a complex and challenging undertaking [15]. The
task of achieving performance on a CPU is already cumber-
some. Porting algorithms to GPUs becomes even more compli-
cated due to the high number of threads that work in parallel.
Consequently, it is highly desirable for programmers and prac-
titioners to strive for performance portability through a single-
source implementation or a multi-variant single programming
model. Several programming models, such as OpenMP [4],
Kokkos [18], Raja [17], and OpenCL, offer portability across
diverse architectures. The achievement of performance porta-
bility through a programming model depends on the capacity
to express algorithmic variants, scheduling, and optimization
strategies. The work in this paper aims to investigate the trade-
offs between the flexibility of a the programming model and
the different design choices.

Our Specific Aims. We comprehensively evaluate the per-
formance and portability of vertex-iterative and linear al-
gebra based graph algorithms on the Kokkos framework.
The primary objective is to analyze the impact of different
architectural features and programming choices on the per-
formance of these algorithms. The findings of this research
have broad implications for unlocking the potential of the
Kokkos framework as a high-performance and portable graph
analytics tool. Moreover, the outcomes of this study can guide
the development of optimized implementations and algorithms
that fully exploit the features and capabilities of a particular
framework (e.g., Kokkos). This can also guide the design of a
framework considering all the performance characteristics of
a particular application domain that it targets.
Contributions. Our contributions in this paper are as follows.
Firstly, we evaluate the portability of triangle counting imple-
mented using the Kokkos framework. Secondly, we provide
a thorough analysis of the different design choices, e.g, data
layout, level of parallelism, load balancing. Lastly, we draw
preliminary conclusions based on the different design choices.

II. BACKGROUND
A. Triangle Counting in Graphs

Triangle counting [6], [8] is a popular graph analysis
kernel used for assessing the quality of network structure in
social networks, computing clustering coefficients, identifying
communities in graphs, detecting anomalies, and so on.

General overview. The provided network is represented as
G(V, E), where V and E denote the sets of vertices and edges,
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TABLE I: Naming of different Triangle Counting algorithmic implementations we used for experiment

Name Execution Domain  Description

TC-Bin-aln CPU
TC-Hash-aln CPU

TC-Bin-kok CPU, GPU
TC-Hash-kok ~ CPU
TC-gapbs CPU

TC-kkernel CPU
TC-lagraph CPU

Our vertex-centric, standalone implementation using binary search; based on [8]
Our vertex-centric, standalone implementation using hash map; based on [8]
Our vertex-centric, Kokkos implementation using binary search; based on [8]
Our vertex-centric, Kokkos implementation using hash map; based on [8]
Vertex-centric implementation provided in GAP benchmark suite [10]

Linear Algebra-based, Kokkos implementation based on Wolf et al. [19]

Linear Algebra-based implementation based on Davis et al. [12]

respectively. We consider the input graph undirected, meaning
that if (u,v) € E, we say that both u and v are neighbors of
each other. A triangle is a set of three nodes u, v, w € V such
that there is an edge between each pair of these three nodes,
ie., (u,v),(v,w), (w,u) € E.

Vertex-centric Approach to Triangle Counting. The
vertex-centric method for triangle counting involves iterating
through each node v € V and determining the number of
edges among its neighbors, essentially counting the pairs
of neighbors that form a triangle with vertex v. Most such
algorithms use a total ordering < of the nodes to avoid
duplicate counts of the same triangle. For instance, in [6],
[8], a degree based ordering is used as defined below:

u=<v < d, <d,or (d, =d, and u <wv). (1)

Linear Algebra Approach to Triangle Counting. In a
linear algebra formulation, let A be the adjacency matrix of
the graph, where A[i][j] = 1 if there is an edge between nodes
i and j, and A[é][j] = 0 otherwise. The number of triangles in
the graph can be calculated using matrix multiplication as fol-
lows: T = étrace(AB). In [19], Wolf et al. use a Kokkos-based
SpGEMM method, KKMEM. Triangles are counted using the
sparse matrix-matrix multiplication: D = (L x L). x L. They
also add a constraint such that C'(vy, ve) (resulting from L x L)
is nonzero if and only if v; > wvo, which reduces the wedges
stored in C' leading to a reduction in operations and runtime.

B. Kokkos Overview

Kokkos [18] is an open-source C++ template and metapro-
gramming library focused on performance portability. Its
goal is to be architecture-agnostic, allowing programmers to
abstract away low-level details of different hardware archi-
tectures and programming models. It is implemented as a
template library on top of various high-performance computing
programming models, such as CUDA and OpenMP. The
parallel Kokkos constructs consist of four main components: a
string for debugging and profiling, the number of iterations for
a for-loop related to the size of arrays, a C++ lambda for loop
indexing, and a functor C++ object acting as a function and
holding information about the computation for each iteration
on Kokkos arrays (example in [2]). The fundamental data
structure used in Kokkos programming is the view construct,
representing an array of zero or more dimensions. The view
provides abstractions for three core concepts in the Kokkos
memory model: memory space, memory layout, and memory
trait. Kokkos provides two primary data-parallel constructs:
parallel for and parallel reduce, which can be executed using

Kokkos::parallel_reduce ("Triangle-Count",
team_policy (vertices -1, 1024), KOKKOS_LAMBDA (
const member_type& team, int &outer_reduction) {
int inner_reduction_result = 0O;
int a = team.league_rank();
int i = indexPointerView(a);
int limit = indexPointerView(a + 1);
Kokkos::parallel_ reduce (Kokkos::
TeamThreadRange (team, i, limit), [=] (int b,
int& inner_reduction) {
int ngbr indicesView (b) ;
int j = indexPointerView (ngbr);
int 1limit2 = indexPointerView (ngbr+l);
int k = b;
while(k < limit && j < 1limit2) {
if (indicesView (k) > indicesView(j)) {
Jt+i
} else if(indicesView(Jj) > indicesView(k)) {
k++;
} else {
j++; k++; inner_reduction++;
}
}
}, dinner_reduction_result);
Kokkos::single (Kokkos: :PerTeam(team), [&] () {
outer_reduction += inner_reduction_result;
})i }, result);

Fig. 1: Example of hierarchical parallelism (HR) on GPU
using the Kokkos framework, enabling fine grain parallelism.

different policies: single range (SR), multidimensional range
(MD), and hierarchical parallelism (HR) (more details in [1]).

ITII. EVALUATION
A. Experimental Settings

We implemented our algorithms using C++ programming
language, OpenMP frameworks for multi-threading, and GNU
g++ compiler for building the code. We used Perlmutter CPU
and GPU compute nodes from National Energy Research
Scientific Computing Center [5]. We use network datasets,
both real-world and synthetic, representing diverse domains,
e.g., social, road networks, kronecker graphs, etc. The datasets
are collected from SNAP [16] and SuiteSparse [13].

B. Evaluating Triangle Counting (TC) Kernel

Framework Overhead for Multicore Execution. Frame-
works like Kokkos provide performance portability by en-
capsulating high-performance programming models such as
CUDA and OpenMP, albeit with some overhead. Our triangle
count implementations in Kokkos, both hash and binary, are
comparable to OpenMP-only implementations (Figure 2(a)),
with expected slight overhead, which is deemed acceptable
considering Kokkos’ flexibility across CPUs and GPUs.
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Fig. 2: Performance evaluation of triangle counting kernels across various data structures, thread schedules, implementation
methods, GPU thread hierarchies, and graph properties. We also compared Kokkos with OpenMP-only implementations.

Effects of Scheduling the Computation. Graph properties
like sparsity and skewness affect performance. Hence, schedul-
ing the computation is extremely important. For example,
Orkut is a social network that has a few nodes with a
large number of neighbors, and most with fewer connections.
We experiment with static and dynamic scheduling on both
CPUs and GPUs. Static scheduling distributes a fixed amount
of iterations, which creates imbalance. Dynamic scheduling
allows work stealing to provide better balance of the compu-
tation. Figure 2(a) shows that dynamic scheduling provides a
performance improvement by almost 3x. On GPUs, dynamic
scheduling degrades performance, because GPUs already have
a dynamic scheduling heuristic when launching the warps.

Effect of Data Structures. In our vertex-centric triangle
counting implementation, we evaluated two data structures and
search techniques—binary search and the hash-based methods.
We observe that binary search is significantly faster than
the hash-based method as outlined in Figure 2(b) when the
neighbor lists are sorted. We used the C++ unordered set as
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the hash-based data structure. Hash operations like insertion
or look-up may suffer from branch misprediction and collision
chaining, degrading performance as dataset grows.

Vertex-centric and Linear Algebra Approaches. Figure 2(c
and d) illustrate scalability for vertex-centric (gapbs) and
Linear Algebra-based triangle counting methods (kkernel and
LAGraph). In a sequential setting, gapbs initially has longer
runtimes due to vertex numeric ordering, but eventually
catches up with kkernel as thread count increases. Despite
employing an (L x L). x L approach, LAGraph exhibits higher
runtimes than both gapbs and kkernel, indicating potentially
inefficient GraphBLAS implementation compared to kkernel’s
algorithm. In parallel efficiency (Figure 2(d)), LAGraph’s
implementation displays a steeper decline (from 61.92% to
6.77% in 128 threads) compared to kkernel (from 73.79% to
18.89% in 128 threads).

Effects of Graph Properties for Kokkos-GPU. We examine
hierarchical parallelism’s impact on networks with varying
degree distributions in GPU execution. The degree distribution
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influences runtime based on the number of threads within
a team, analogous to CUDA thread blocks [3]. We observe
that for networks with higher degree skewness (Orkut and
Livejournal), increasing team thread sizes beyond 256 leads to
runtime degradation due to thread contention for limited thread
block registers. Conversely, networks with lower skewness
(YouTube or Skitter) benefit from increasing thread sizes to
512 and 1024, as it helps mask latency and saturate bandwidth
without significant contention for registers.

Effects of Using Hierarchical Threads. In CPU executions,
introducing thread hierarchy does not improve performance
compared to single-level parallelism. However, in GPU com-
putations, thread hierarchy significantly impacts performance.
Simply parallelizing the outermost loop is not sufficient for
fine granularity and full thread utilization on the GPU. To
address this in Kokkos, we implement a league structure,
associating it with the outer loop’s total indices. We then
use the TeamThreadRange construct with various team
sizes to saturate a CUDA block, which can have a maximum
of 1024 threads. Optimal team sizes vary across networks:
256 for large social networks like Orkut and Live Journal,
1024 for YouTube and Skitter, and 128 for road networks.
Kokkos::AUTO, which automatically selects team size, yields
similar results to a team size of 128. Table II compares non-
hierarchical and hierarchical executions. Our findings indicate
that social networks, with some high-degree nodes, gain from
hierarchical parallelism. Conversely, bounded-degree graphs
like road networks do not benefit from hierarchical parallelism
due to insufficient work to offset the added thread layer
overhead.

TABLE II: Effect of thread hierarchy in GPU computations
using diverse domains of graph networks. (Hierarchical im-
plementation uses Kokkos:: AUTO as team thread size). Better
speedups are highlighted.

Network Non-Hierarchical (sec)  Hierarchical (sec)
Facebook 0.058755 0.000973
DBLP 0.008681 0.001244
YouTube 34.442723 0.385194
Skitter 148.80952 0.591226
LiveJournal 14.065877 0.153994
Orkut 168.381133 0.802101
Road-CA 0.000196 0.00435
Road-PA 0.000131 0.002539
Road-TX 0.000146 0.00322
Road-USA 0.003106 0.046229
Road-EU 0.004185 0.097537

C. Major Takeaways

Our findings recommend employing binary search over
hash-based methods for triangle counting, showing up to a
2.66x performance enhancement between sequential algo-
rithms and up to 5.06x between parallel algorithms. Addi-
tionally, dynamic scheduling outperforms static scheduling,
yielding up to a 9.80x improvement in CPU implementations.
Utilizing GPUs with recommended configurations exhibits up
to a 6.18 x performance boost compared to CPUs. Hierarchical

parallelism proves superior to non-hierarchical parallelism in
GPUs for power-law graphs, with up to a 306 x performance
improvement observed. Optimal team size selection is also
crucial for GPU implementations, showing up to a 6.66x
performance enhancement when the appropriate team size is
utilized.
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