
Unlocking the Potential: Performance Portability of
Graph Algorithms on Kokkos Framework

Shaikh Arifuzzaman∗, Hasan S. Arikan∗, M.A.M. Faysal∗, Maximilian Bremer†, John Shalf†, Doru Popovici†
∗University of Nevada, Las Vegas (UNLV), USA. †Lawrence Berkeley National Laboratory, USA.

Emails: shaikh.arifuzzaman@unlv.edu, {arikan, faysal}@unlv.nevada.edu, {mb2010, jshalf, dtpopovici}@lbl.gov

Abstract—Graph algorithms are fundamental tools for deriving
valuable insights from complex network structures. As network
data grows in scale, and hardware architecture becomes more
diverse than ever, the demand for efficient and portable graph
algorithms has surged. The Kokkos framework has emerged as
a promising solution for achieving high performance and porta-
bility in parallel computing applications. This paper presents a
thorough evaluation of Kokkos-implemented triangle counting,
an important graph kernel. Employing diverse algorithmic and
implementation methods, we benchmark Kokkos-enabled graph
algorithms targeting CPUs and GPUs. We explore the impact of
both graph properties and Kokkos’ parallel execution model on
algorithmic efficiency. Our results indicate that thread scheduling
can improve performance by up to 10×, data structure choice by
6×, and configuring the parallel hierarchy based on degree prop-
erties can result in a remarkable 300× difference in performance
over untuned implementations on Kokkos.

Index Terms—Graph algorithms, performance, portability,
linear algebra, large graphs, sparse graphs, GPU

I. INTRODUCTION

Graph algorithms play a critical role in analyzing complex

network data, finding applications in various fields such as

social network analysis, recommendation systems, and bioin-

formatics [8], [9], [18], [19]. As the size and complexity of

graphs continue to grow exponentially, there is a pressing

need for efficient parallel processing techniques to handle

these massive datasets [6], [16], [19]. The Kokkos frame-

work [18] has emerged as a promising solution for achiev-

ing performance portability across different high-performance

computing architectures. This paper aims to investigate the

performance and portability of graph analytic kernels using

vertex-iterative [10] and linear algebra-based [12] methods on

the Kokkos framework. We focus on triangle counting [7].

The Kokkos framework [18] is specifically designed to

facilitate performance portability across diverse parallel archi-

tectures, including CPUs, GPUs, and accelerators [11], [14].

It provides a programming model that enables developers

to write code once and target multiple architectures without

extensive modifications. By harnessing the capabilities of

Kokkos, graph algorithm implementations have the potential

to exploit the computational power of various hardware plat-

forms. However, the performance and portability of diverse

graph algorithms with a range of data structure choices and

varied graph properties on the Kokkos framework have not

been thoroughly explored, to the best of our knowledge,

highlighting the need for this research.

The Challenges for Performance Portability. Developing

performance portable codes for modern heterogeneous archi-

tectures is a complex and challenging undertaking [15]. The

task of achieving performance on a CPU is already cumber-

some. Porting algorithms to GPUs becomes even more compli-

cated due to the high number of threads that work in parallel.

Consequently, it is highly desirable for programmers and prac-

titioners to strive for performance portability through a single-

source implementation or a multi-variant single programming

model. Several programming models, such as OpenMP [4],

Kokkos [18], Raja [17], and OpenCL, offer portability across

diverse architectures. The achievement of performance porta-

bility through a programming model depends on the capacity

to express algorithmic variants, scheduling, and optimization

strategies. The work in this paper aims to investigate the trade-

offs between the flexibility of a the programming model and

the different design choices.

Our Specific Aims. We comprehensively evaluate the per-

formance and portability of vertex-iterative and linear al-

gebra based graph algorithms on the Kokkos framework.

The primary objective is to analyze the impact of different

architectural features and programming choices on the per-

formance of these algorithms. The findings of this research

have broad implications for unlocking the potential of the

Kokkos framework as a high-performance and portable graph

analytics tool. Moreover, the outcomes of this study can guide

the development of optimized implementations and algorithms

that fully exploit the features and capabilities of a particular

framework (e.g., Kokkos). This can also guide the design of a

framework considering all the performance characteristics of

a particular application domain that it targets.

Contributions. Our contributions in this paper are as follows.

Firstly, we evaluate the portability of triangle counting imple-

mented using the Kokkos framework. Secondly, we provide

a thorough analysis of the different design choices, e.g, data

layout, level of parallelism, load balancing. Lastly, we draw

preliminary conclusions based on the different design choices.

II. BACKGROUND

A. Triangle Counting in Graphs

Triangle counting [6], [8] is a popular graph analysis

kernel used for assessing the quality of network structure in

social networks, computing clustering coefficients, identifying

communities in graphs, detecting anomalies, and so on.

General overview. The provided network is represented as

G(V,E), where V and E denote the sets of vertices and edges,

526

2024 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

979-8-3503-6460-6/24/$31.00 ©2024 IEEE
DOI 10.1109/IPDPSW63119.2024.00106

20
24

 IE
EE

 In
te

rn
at

io
na

l P
ar

al
le

l a
nd

 D
ist

rib
ut

ed
 P

ro
ce

ss
in

g
Sy

m
po

siu
m

 W
or

ks
ho

ps
 (I

PD
PS

W
) |

 9
79

-8
-3

50
3-

64
60

-6
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IP

DP
SW

63
11

9.
20

24
.0

01
06

Authorized licensed use limited to: University of Nevada Las Vegas. Downloaded on September 30,2024 at 23:57:30 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Naming of different Triangle Counting algorithmic implementations we used for experiment

Name Execution Domain Description

TC-Bin-aln CPU Our vertex-centric, standalone implementation using binary search; based on [8]
TC-Hash-aln CPU Our vertex-centric, standalone implementation using hash map; based on [8]
TC-Bin-kok CPU, GPU Our vertex-centric, Kokkos implementation using binary search; based on [8]
TC-Hash-kok CPU Our vertex-centric, Kokkos implementation using hash map; based on [8]
TC-gapbs CPU Vertex-centric implementation provided in GAP benchmark suite [10]
TC-kkernel CPU Linear Algebra-based, Kokkos implementation based on Wolf et al. [19]
TC-lagraph CPU Linear Algebra-based implementation based on Davis et al. [12]

respectively. We consider the input graph undirected, meaning

that if (u, v) ∈ E, we say that both u and v are neighbors of

each other. A triangle is a set of three nodes u, v, w ∈ V such

that there is an edge between each pair of these three nodes,

i.e., (u, v), (v, w), (w, u) ∈ E.

Vertex-centric Approach to Triangle Counting. The

vertex-centric method for triangle counting involves iterating

through each node v ∈ V and determining the number of

edges among its neighbors, essentially counting the pairs

of neighbors that form a triangle with vertex v. Most such

algorithms use a total ordering ≺ of the nodes to avoid

duplicate counts of the same triangle. For instance, in [6],

[8], a degree based ordering is used as defined below:

u ≺ v ⇐⇒ du < dv or (du = dv and u < v). (1)

Linear Algebra Approach to Triangle Counting. In a

linear algebra formulation, let A be the adjacency matrix of

the graph, where A[i][j] = 1 if there is an edge between nodes

i and j, and A[i][j] = 0 otherwise. The number of triangles in

the graph can be calculated using matrix multiplication as fol-

lows: T = 1
6 trace(A3). In [19], Wolf et al. use a Kokkos-based

SpGEMM method, KKMEM. Triangles are counted using the

sparse matrix-matrix multiplication: D = (L×L).×L. They

also add a constraint such that C(v1, v2) (resulting from L×L)

is nonzero if and only if v1 > v2, which reduces the wedges

stored in C leading to a reduction in operations and runtime.

B. Kokkos Overview

Kokkos [18] is an open-source C++ template and metapro-

gramming library focused on performance portability. Its

goal is to be architecture-agnostic, allowing programmers to

abstract away low-level details of different hardware archi-

tectures and programming models. It is implemented as a

template library on top of various high-performance computing

programming models, such as CUDA and OpenMP. The

parallel Kokkos constructs consist of four main components: a

string for debugging and profiling, the number of iterations for

a for-loop related to the size of arrays, a C++ lambda for loop

indexing, and a functor C++ object acting as a function and

holding information about the computation for each iteration

on Kokkos arrays (example in [2]). The fundamental data

structure used in Kokkos programming is the view construct,

representing an array of zero or more dimensions. The view
provides abstractions for three core concepts in the Kokkos

memory model: memory space, memory layout, and memory

trait. Kokkos provides two primary data-parallel constructs:

parallel for and parallel reduce, which can be executed using

Kokkos::parallel_reduce("Triangle-Count",
team_policy(vertices -1, 1024), KOKKOS_LAMBDA(
const member_type& team, int &outer_reduction){

int inner_reduction_result = 0;
int a = team.league_rank();
int i = indexPointerView(a);
int limit = indexPointerView(a + 1);
Kokkos::parallel_reduce(Kokkos::
TeamThreadRange (team, i, limit), [=] (int b,
int& inner_reduction){

int ngbr = indicesView(b);
int j = indexPointerView(ngbr);
int limit2 = indexPointerView(ngbr+1);
int k = b;
while(k < limit && j < limit2){

if(indicesView(k) > indicesView(j)) {
j++;

} else if(indicesView(j) > indicesView(k)){
k++;

} else {
j++; k++; inner_reduction++;

}
}

}, inner_reduction_result);
Kokkos::single(Kokkos::PerTeam(team), [&] (){

outer_reduction += inner_reduction_result;
}); }, result);

Fig. 1: Example of hierarchical parallelism (HR) on GPU

using the Kokkos framework, enabling fine grain parallelism.

different policies: single range (SR), multidimensional range

(MD), and hierarchical parallelism (HR) (more details in [1]).

III. EVALUATION

A. Experimental Settings

We implemented our algorithms using C++ programming

language, OpenMP frameworks for multi-threading, and GNU

g++ compiler for building the code. We used Perlmutter CPU

and GPU compute nodes from National Energy Research

Scientific Computing Center [5]. We use network datasets,

both real-world and synthetic, representing diverse domains,

e.g., social, road networks, kronecker graphs, etc. The datasets

are collected from SNAP [16] and SuiteSparse [13].

B. Evaluating Triangle Counting (TC) Kernel

Framework Overhead for Multicore Execution. Frame-

works like Kokkos provide performance portability by en-

capsulating high-performance programming models such as

CUDA and OpenMP, albeit with some overhead. Our triangle

count implementations in Kokkos, both hash and binary, are

comparable to OpenMP-only implementations (Figure 2(a)),

with expected slight overhead, which is deemed acceptable

considering Kokkos’ flexibility across CPUs and GPUs.

527

Authorized licensed use limited to: University of Nevada Las Vegas. Downloaded on September 30,2024 at 23:57:30 UTC from IEEE Xplore. Restrictions apply.

(a) Kokkos versus OMP-only Implementations on CPU (b) Hash versus Binary Implementations in Kokkos on CPU

(c) Scalability of TC on CPUs (d) Parallel Efficiency on CPUs

(e) GPU Policies for TC for Social Networks (f) GPU Policies for TC for Road Networks

Fig. 2: Performance evaluation of triangle counting kernels across various data structures, thread schedules, implementation

methods, GPU thread hierarchies, and graph properties. We also compared Kokkos with OpenMP-only implementations.

Effects of Scheduling the Computation. Graph properties

like sparsity and skewness affect performance. Hence, schedul-

ing the computation is extremely important. For example,

Orkut is a social network that has a few nodes with a

large number of neighbors, and most with fewer connections.

We experiment with static and dynamic scheduling on both

CPUs and GPUs. Static scheduling distributes a fixed amount

of iterations, which creates imbalance. Dynamic scheduling

allows work stealing to provide better balance of the compu-

tation. Figure 2(a) shows that dynamic scheduling provides a

performance improvement by almost 3x. On GPUs, dynamic

scheduling degrades performance, because GPUs already have

a dynamic scheduling heuristic when launching the warps.

Effect of Data Structures. In our vertex-centric triangle

counting implementation, we evaluated two data structures and

search techniques–binary search and the hash-based methods.

We observe that binary search is significantly faster than

the hash-based method as outlined in Figure 2(b) when the

neighbor lists are sorted. We used the C++ unordered set as

the hash-based data structure. Hash operations like insertion

or look-up may suffer from branch misprediction and collision

chaining, degrading performance as dataset grows.

Vertex-centric and Linear Algebra Approaches. Figure 2(c
and d) illustrate scalability for vertex-centric (gapbs) and

Linear Algebra-based triangle counting methods (kkernel and

LAGraph). In a sequential setting, gapbs initially has longer

runtimes due to vertex numeric ordering, but eventually

catches up with kkernel as thread count increases. Despite

employing an (L×L).×L approach, LAGraph exhibits higher

runtimes than both gapbs and kkernel, indicating potentially

inefficient GraphBLAS implementation compared to kkernel’s

algorithm. In parallel efficiency (Figure 2(d)), LAGraph’s

implementation displays a steeper decline (from 61.92% to

6.77% in 128 threads) compared to kkernel (from 73.79% to

18.89% in 128 threads).

Effects of Graph Properties for Kokkos-GPU. We examine

hierarchical parallelism’s impact on networks with varying

degree distributions in GPU execution. The degree distribution

528

Authorized licensed use limited to: University of Nevada Las Vegas. Downloaded on September 30,2024 at 23:57:30 UTC from IEEE Xplore. Restrictions apply.

influences runtime based on the number of threads within

a team, analogous to CUDA thread blocks [3]. We observe

that for networks with higher degree skewness (Orkut and

Livejournal), increasing team thread sizes beyond 256 leads to

runtime degradation due to thread contention for limited thread

block registers. Conversely, networks with lower skewness

(YouTube or Skitter) benefit from increasing thread sizes to

512 and 1024, as it helps mask latency and saturate bandwidth

without significant contention for registers.

Effects of Using Hierarchical Threads. In CPU executions,

introducing thread hierarchy does not improve performance

compared to single-level parallelism. However, in GPU com-

putations, thread hierarchy significantly impacts performance.

Simply parallelizing the outermost loop is not sufficient for

fine granularity and full thread utilization on the GPU. To

address this in Kokkos, we implement a league structure,

associating it with the outer loop’s total indices. We then

use the TeamThreadRange construct with various team

sizes to saturate a CUDA block, which can have a maximum

of 1024 threads. Optimal team sizes vary across networks:

256 for large social networks like Orkut and Live Journal,

1024 for YouTube and Skitter, and 128 for road networks.

Kokkos::AUTO, which automatically selects team size, yields

similar results to a team size of 128. Table II compares non-

hierarchical and hierarchical executions. Our findings indicate

that social networks, with some high-degree nodes, gain from

hierarchical parallelism. Conversely, bounded-degree graphs

like road networks do not benefit from hierarchical parallelism

due to insufficient work to offset the added thread layer

overhead.

TABLE II: Effect of thread hierarchy in GPU computations

using diverse domains of graph networks. (Hierarchical im-

plementation uses Kokkos::AUTO as team thread size). Better

speedups are highlighted.

Network Non-Hierarchical (sec) Hierarchical (sec)

Facebook 0.058755 0.000973
DBLP 0.008681 0.001244
YouTube 34.442723 0.385194
Skitter 148.80952 0.591226
LiveJournal 14.065877 0.153994
Orkut 168.381133 0.802101
Road-CA 0.000196 0.00435
Road-PA 0.000131 0.002539
Road-TX 0.000146 0.00322
Road-USA 0.003106 0.046229
Road-EU 0.004185 0.097537

C. Major Takeaways

Our findings recommend employing binary search over

hash-based methods for triangle counting, showing up to a

2.66× performance enhancement between sequential algo-

rithms and up to 5.06× between parallel algorithms. Addi-

tionally, dynamic scheduling outperforms static scheduling,

yielding up to a 9.80× improvement in CPU implementations.

Utilizing GPUs with recommended configurations exhibits up

to a 6.18× performance boost compared to CPUs. Hierarchical

parallelism proves superior to non-hierarchical parallelism in

GPUs for power-law graphs, with up to a 306× performance

improvement observed. Optimal team size selection is also

crucial for GPU implementations, showing up to a 6.66×
performance enhancement when the appropriate team size is

utilized.

Acknowledgments. This work has been partially supported

by National Science Foundation (NSF) under Award Number

2323533 and 2023 Sustainable Research Pathways (SRP)

summer program at Berkeley Lab.

REFERENCES

[1] “Execution policies.” [Online]. Available: https://kokkos.org/kokkos-
core-wiki/API/core/Execution-Policies.html

[2] “Parallel kokkos construct.” [Online]. Avail-
able: https://kokkos.org/kokkos-core-wiki/API/core/parallel-
dispatch/parallel for.htmlexamples

[3] “Teampolicy.” [Online]. Available: https://kokkos.github.io/kokkos-core-
wiki/API/core/policies/TeamPolicy.html

[4] “OpenMP sepcification,” https://www.openmp.org/, 2023.
[5] “National energy research scientific computing center (nersc),”

https://www.nersc.gov/, 2024.
[6] S. Arifuzzaman, M. Khan, and M. Marathe, “Patric: a parallel algorithm

for counting triangles in massive networks,” in Proceedings of the 22nd
ACM international conference on Information & Knowledge Manage-
ment, 2013, pp. 529–538.

[7] ——, “A fast parallel algorithm for counting triangles in graphs using
dynamic load balancing,” in 2015 IEEE International Conference on Big
Data (Big Data). IEEE, 2015, pp. 1839–1847.

[8] ——, “Fast parallel algorithms for counting and listing triangles in
big graphs,” ACM Transactions on Knowledge Discovery from Data
(TKDD), vol. 14, no. 1, pp. 1–34, 2019.

[9] A. Azad, M. M. Aznaveh, S. Beamer, M. Blanco, J. Chen,
L. D’Alessandro, R. Dathathri, T. Davis, K. Deweese, J. Firoz et al.,
“Evaluation of graph analytics frameworks using the gap benchmark
suite,” in 2020 IEEE International Symposium on Workload Character-
ization (IISWC). IEEE, 2020, pp. 216–227.

[10] S. Beamer, K. Asanović, and D. Patterson, “The gap benchmark suite.”
[11] G. Daiß, S. Y. Singanaboina, P. Diehl, H. Kaiser, and D. Pflüger, “From

merging frameworks to merging stars: Experiences using hpx, kokkos
and simd types,” in 2022 IEEE/ACM 7th International Workshop on
Extreme Scale Programming Models and Middleware (ESPM2). IEEE,
2022, pp. 10–19.

[12] T. A. Davis, “Graph algorithms via suitesparse: Graphblas: triangle
counting and k-truss,” in 2018 IEEE High Performance extreme Com-
puting Conference (HPEC). IEEE, 2018, pp. 1–6.

[13] T. A. Davis and Y. Hu, “The university of florida sparse matrix
collection,” ACM Trans. Math. Softw., vol. 38, no. 1, dec 2011.
[Online]. Available: https://doi.org/10.1145/2049662.2049663

[14] A. S. Dufek, R. Gayatri, N. Mehta, D. Doerfler, B. Cook, Y. Ghadar,
and C. DeTar, “Case study of using kokkos and sycl as performance-
portable frameworks for milc-dslash benchmark on nvidia, amd and intel
gpus,” in 2021 International Workshop on Performance, Portability and
Productivity in HPC (P3HPC). IEEE, 2021, pp. 57–67.

[15] K. Z. Ibrahim, C. Yang, and P. Maris, “Performance portability of
sparse block diagonal matrix multiple vector multiplications on gpus,”
in 2022 IEEE/ACM International Workshop on Performance, Portability
and Productivity in HPC (P3HPC). IEEE, 2022, pp. 58–67.

[16] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

[17] P. Pindl, “Performance portability for hpc applications through the raja
abstraction layer,” 2022.

[18] C. Trott, L. Berger-Vergiat, D. Poliakoff, S. Rajamanickam, D. Lebrun-
Grandie, J. Madsen, N. Al Awar, M. Gligoric, G. Shipman, and G. Wom-
eldorff, “The kokkos ecosystem: Comprehensive performance portability
for high performance computing,” Computing in Science & Engineering,
vol. 23, no. 5, pp. 10–18, 2021.

[19] M. M. Wolf, M. Deveci, J. W. Berry, S. D. Hammond, and S. Raja-
manickam, “Fast linear algebra-based triangle counting with kokkosker-
nels,” in 2017 IEEE High Performance Extreme Computing Conference
(HPEC). IEEE, 2017, pp. 1–7.

529

Authorized licensed use limited to: University of Nevada Las Vegas. Downloaded on September 30,2024 at 23:57:30 UTC from IEEE Xplore. Restrictions apply.

