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hydrogeochemical tracer studies. 19 

Abstract 20 

In many regions globally, snowmelt-recharged mountainous karst aquifers serve as crucial 21 

sources for municipal and agricultural water supplies. In these watersheds, complex interplay of 22 

meteorological, topographical, and hydrogeological factors leads to intricate recharge-discharge 23 

pathways. This study introduces a spatially distributed deep learning precipitation-runoff model 24 

that combines Convolutional Long Short-Term Memory (ConvLSTM) with a spatial attention 25 

mechanism. The effectiveness of the deep learning model was evaluated using data from the 26 

Logan River watershed and subwatersheds, a characteristically karst-dominated hydrological 27 

system in northern Utah. Compared to the ConvLSTM baseline, the inclusion of a spatial 28 

attention mechanism improved performance for simulating discharge at the watershed outlet. 29 

Analysis of attention weights in the trained model unveiled distinct areas contributing the most to 30 

discharge under snowmelt and recession conditions. Furthermore, fine-tuning the model at 31 

subwatershed scales provided insights into cross-subwatershed subsurface connectivity. These 32 

findings align with results obtained from detailed hydrogeochemical tracer studies. Results 33 

highlight the potential of the proposed deep learning approach to unravel the complexities of 34 

karst aquifer systems, offering valuable insights for water resource management under future 35 

climate conditions. Furthermore, results suggest that the proposed explainable, spatially 36 

distributed, deep learning approach to hydrologic modeling holds promise for non-karstic 37 

watersheds.  38 

1 Introduction 39 

Globally, and in many regions of the western U.S., karst watersheds serve as crucial 40 
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sources for municipal and agricultural water supplies. Some of these watersheds are in 41 

mountainous regions with snow-dominated hydrography, and the snowpack in these systems in 42 

the western U.S. are predicted to be adversely impacted by changing precipitation patterns due to 43 

climate change (Gergel et al., 2017; Li et al., 2017). Planning for these likely changes and 44 

effective water resource management requires accurate prediction of streamflow, which, 45 

however, is challenging for these watersheds, due to highly spatially variable snow processes and 46 

surface/subsurface heterogeneity of karst hydrogeology. Complex mountain terrain and its effect 47 

on microclimate, together, result in spatially varying snow accumulation and melt (López-48 

Moreno et al., 2013; Sexstone and Fassnacht, 2014; Miller et al., 2022). In addition, karst 49 

systems possess intricate subsurface connectivity via sinkholes, caves, and conduits that can 50 

allow groundwater to cross basin boundaries (White, 2002; Bakalowicz, 2005). A detailed 51 

investigation of the resulting recharge-discharge pathways requires extensive field surveys that 52 

are not feasible at meso- and regional scales. As a result of their subsurface connectivity, karst 53 

watersheds are challenging for general-purpose spatially distribute hydrologic modeling 54 

frameworks such as the NOAA U.S. National Water Model (Cosgrove et al., 2024). These 55 

modeling frameworks route surface runoff (typically calculated by a land surface model) within 56 

topographically delineated watershed boundaries, and are thus unable to capture lateral 57 

groundwater flow occurring across basin boundaries typical in karst terrain.      58 

In recent years, deep learning algorithms have emerged as an alternative approach to 59 

hydrologic modeling. Long Short-Term Memory (LSTM) networks (Hochreiter and 60 

Schmidhuber, 1997) are capable of learning temporal dynamics and have been successful for 61 

tasks such as rainfall-runoff modeling and soil moisture estimation (e.g., Fang et al., 2018; 62 

Kratzert et al., 2018). Another popular type of architecture, convolutional neural networks 63 
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(CNN), commonly used for extraction of spatial information (Fukushima, 1980; LeCun et al., 64 

1998), has also been shown to perform well in hydrologic applications where spatial patterns are 65 

of interest (Sun et al., 2019; Pan et al., 2019; Mo et al., 2019; Anderson and Radić, 2022). More 66 

recently, the Convolutional LSTM (ConvLSTM) architecture was proposed to combine LSTM 67 

and CNN to capture spatiotemporal processes similar to movement of an object in a video (Shi et 68 

al., 2015). ConvLSTM has achieved state-of-the-art performance in tasks such as precipitation 69 

nowcasting (Shi et al., 2015), rainfall-runoff modeling (Xu et al., 2022), and streamflow 70 

forecasting (Dehghani et al., 2023; Zhu et al., 2023; Oddo et al., 2024). Unlike LSTM-based 71 

lumped rainfall-runoff models, ConvLSTM takes a spatially distributed approach and receives 72 

“image”-like inputs (e.g., gridded snowmelt, temperature). For each model grid, ConvLSTM 73 

uses the inputs (analogous to inflow) and current states at a grid and its neighbors to calculate the 74 

future state (analogous to water storage) of this grid. Although simplified, the information flow 75 

from neighbors to a given grid mimics the routing process in process-based distributed 76 

hydrologic models. 77 

However, convolution operations use a local receptive field, thus limiting the capability 78 

of ConvLSTM to perceive long-range spatial dependencies (Lin et al., 2020). Although several 79 

ConvLSTM layers can be stacked together to represent more complex spatiotemporal dynamics 80 

occurring over long distances, using ConvLSTM alone may be insufficient to capture complex 81 

recharge-discharge pathways induced by karst geology (Xu et al., 2022). More specifically, 82 

hydrology of karst watersheds is characterized by a juxtaposition of surface runoff, slow matrix 83 

flow, and fast conduit flow. In particular, karst conduits form subsurface connectivity over long 84 

ranges and sometimes across topographically delineated basin boundaries. Therefore, in karst 85 

watersheds the performance of ConvLSTM can potentially be improved by adding global 86 
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features from the entire study area as opposed to being restricted to a small neighborhood when 87 

using convolution alone.  88 

In parallel to the pursuit of higher prediction accuracy, there has been a long-standing 89 

interest in the hydrology community in machine learning models that are physically 90 

interpretable. A key advantage of LSTM and ConvLSTM architectures lies in their resemblance 91 

to the watershed storage, inflow and outflow dynamics (LSTM, Kratzert et al., 2019) and 92 

spatiotemporal water flow (ConvLSTM). Nevertheless, whether and how these models can 93 

reveal new insights into watershed hydrologic processes remain unclear. Several ad hoc methods 94 

are available to interpret already-trained deep learning models, such as Integrated Gradient (IG, 95 

Sundararajan et al., 2017) and Shapley Additive exPlanations (SHAP, Lundberg and Lee, 2017). 96 

However, IG tends to be sensitive to the choice of baseline, while SHAP can be computationally 97 

expensive for high dimensional problems.  98 

In recent years, spatial attention mechanisms have attracted wide interest for improving 99 

both performance and interpretability of deep learning models. Attention is a selective cognitive 100 

process where human focuses on specific parts of information as needed, rather than processing 101 

all available information at once (Corbetta and Shulman, 2002). Selective attention allows 102 

humans to efficiently identify and concentrate on high-value information from a vast array of 103 

stimuli (Niu et al., 2021). To emulate the selective focus seen in human perception, spatial 104 

attention seeks to dynamically adjust the weights assigned to image features output by preceding 105 

layers (Guo et al., 2022). Experiments on multiple benchmark datasets showed that spatial 106 

attention was able to identify where the model should focus and improve the learned 107 

representations by promoting important features and suppressing unimportant features (Woo et 108 

al., 2018). Attention mechanisms have also been employed in hydrologic modeling, though prior 109 
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studies have predominantly focused on spatially lumped (Han et al., 2023; Wang et al., 2024) or 110 

semi-distributed modeling approaches (Feng et al., 2019; Ding et al., 2020; Feng et al., 2021). 111 

Application of attention mechanisms in fully distributed hydrologic modeling remain limited and 112 

are aimed at enhancing streamflow forecasting, relying on past streamflow data as inputs 113 

(Ghobadi and Kang, 2022). However, the potential of spatial attention as an explainable tool for 114 

understanding watershed dynamics has yet to be explored. 115 

This study aims to present an explainable deep learning-based spatially distributed 116 

hydrologic modeling approach tailored for snow-dominated karst watersheds, while also holding 117 

promises for non-karstic counterparts. The modeling approach is demonstrated using the Logan 118 

River watershed on the Utah-Idaho border. Through a multi-scale experiment, we train an 119 

integrated ConvLSTM and spatial attention (ConvLSTM-SA) model with streamflow at 120 

watershed outlet and use it to predict discharge from subwatersheds. We further assess the 121 

capability of such a model to identify physically sensible recharge-discharge pathways within the 122 

watershed, by comparing results from interpretative analysis with hydrogeochemical analyses 123 

performed in the study watershed. We show that the spatial attention is suitable for learning karst 124 

subsurface connectivity occurring over long distances, making ConvLSTM-SA well adept at 125 

learning spatiotemporal hydrologic dynamics and potentially extendable to non-karstic 126 

watersheds. In addition, the modeling approach can serve as a screening tool to identify 127 

recharge-discharge pathways.   128 

2 Study Area and Data 129 

This study focuses on the canyon region of the Logan River watershed situated in the 130 

Bear River mountain range and spanning across northeastern Utah and headwaters in 131 
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southeastern Idaho, USA (Fig. 1). Covering an expanse of 552 km2, the study area is 132 

predominantly covered by natural land (forest, rangeland) with minimal development, and 133 

through most of the study area, the Logan River is free flowing with no diversions. Over the 134 

study period (1980-2022), the area experienced an average basin precipitation of approximately 135 

822 mm, mostly occurring as snowfall during the winter and early spring. The watershed is 136 

underlain by variably karstified carbonate formations, with the Ordovician Garden City 137 

Formation and Silurian Laketown and Fish Haven dolomites as primary hosts for karst aquifer 138 

development (Dover, 1995; Evans et al., 1996). Stratigraphically between the Garden City 139 

Formation and Fish Haven Dolomite lies the Ordovician Swan Peak Formation, hosting shales 140 

and orthoquartzites, which acts as an important aquitard influencing groundwater movement. 141 

Groundwater movement is also strongly influenced by the structural geology, which is 142 

dominated by the southward plunging Logan Peak syncline as well as other parallel folds and 143 

numerous faults (Dover, 1995; Evans and Oaks, 1996). Rainfall and snowmelt recharge occur 144 

through sinkholes, seepage along losing reaches, and diffuse infiltration into ridge slopes 145 

(Spangler, 2001). Karst aquifer discharge occurs through major and minor springs within the 146 

watershed, as well as direct to gaining reaches of the Logan River (Neilson et al., 2018; Lachmar 147 

et al., 2021). The river primarily flows from the north and east to the south and west of the 148 

watershed. However, the presence of developed karst conduits and sinkholes introduces 149 

complexity to subsurface water flow direction. Previous tracer studies carried out in the western 150 

portion of the watershed suggests karst piracy contributing to flow paths across topographic 151 

watershed boundaries (Spangler, 2001, 2011). To accommodate this complexity, our study area 152 

extends beyond the topographically delineated watershed boundary (Fig. 1).  153 

Streamflow records are obtained from USGS station 10109000 located at the watershed 154 
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outlet (Fig. 1) and aggregated to daily time scale. Upstream of the USGS station, water is 155 

diverted for agricultural and municipal water uses via the Highline Canal and Dewitt Springs 156 

(Fig. 1). Daily diversion rates through the Highline Canal were acquired from USGS station 157 

10108400. Diversion rates at Dewitt Springs were obtained from Logan City at a monthly 158 

resolution before 2020 and daily resolution since 2020. The diversion rates (monthly rates were 159 

evenly distributed to daily) were added to observed streamflow at station 10109000 to derive 160 

target data for training and validation of the deep learning model. 161 

 162 

 163 
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Figure 1. The Logan River watershed and its location (inset). Karst subsurface connectivity 164 

identified from previous tracer studies (Spangler, 2001, 2011) are shown by lines connecting 165 

dye-injection sites (small orange dots) and springs (large red dots). Squares show locations of 166 

streamflow gages operated by USGS (orange) and Logan River Observatory (LRO, yellow). 167 

Snow accumulation and melt within the study area were simulated using the Utah Energy 168 

Balance (UEB) snow model based on mass and energy balances of on-land and canopy-169 

intercepted snowpack (Mahat and Tarboton, 2012; Tarboton and Luce, 1996). We ran the UEB 170 

model using parameters described in Tyson et al. (2023) at 100 m spatial resolution and 2-hour 171 

time steps during Water Year (WY) 1981-2022. A fine spatial resolution is used to capture the 172 

spatial heterogeneity in snow accumulation and ablation processes in a mountainous terrain. The 173 

UEB model was driven by downscaled (Xu et al., 2022; Tyson et al., 2023) North American 174 

Land Data Assimilation System (NLDAS-2) Forcing dataset (Xia et al., 2012). Substantial 175 

underestimation bias was found for almost all years when comparing downscaled precipitation 176 

with observations at SNOTEL (SNOwpack TELemetry) stations, while temperature did not 177 

exhibit consistent bias patterns across years. Therefore, bias correction was applied to 178 

precipitation only (Xu et al., 2022; Tyson et al., 2023). Simulated snowmelt plus rainfall rates 179 

were then aggregated to 1.6 km-by-1.6 km resolution and daily time steps to be fed into the deep 180 

learning model. Our previous results found that this procedure was able to capture the spatial 181 

variability in snowmelt timing and rates within a 1.6 km-by-1.6 km grid, which is important for a 182 

karst watershed, at a reasonable computational expense (Xu et al., 2022).  183 

Discharge data for Logan River Observatory (LRO) stream gages (Fig. 1) at Franklin 184 

Basin, Beaver Creek, Tony Grove, Temple Fork, Wood Camp Bridge, and Right Hand Fork 185 

were resampled from 15-minute to mean daily values (Logan River Observatory, 2024c, 2024a, 186 
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2024d, 2024f, 2024b, 2024e). The Tony Grove station has the longest period of discharge 187 

records since May 30, 2014, while other stations were installed later and have varying lengths of 188 

record. Gaps are present in the winter observations at these gages due to ice damming at the 189 

gaged cross sections, which prevents accurate reporting of streamflow.  190 

3 Methods 191 

3.1 Convolutional Long Short-Term Memory  192 

The key idea of ConvLSTM is to replace the fully connected input-to-state and state-to-193 

state transitions in classical LSTM (Hochreiter and Schmidhuber, 1997) with convolutional 194 

layers (Shi et al., 2015). This enables ConvLSTM to model dynamics that contain spatial 195 

structures. Formally, one layer of ConvLSTM can be written as:  196 

𝑖𝑡 = 𝜎(𝑊𝑥𝑖 ∗ 𝑋𝑡  + 𝑊ℎ𝑖 ∗ ℎ𝑡−1 + 𝑏𝑖) 197 

 𝑓𝑡 = 𝜎(𝑊𝑥𝑓 ∗ 𝑋𝑡 + 𝑊ℎ𝑓 ∗ ℎ𝑡−1 + 𝑏𝑓) 198 

 𝑔𝑡 = 𝑡𝑎𝑛ℎ (𝑊𝑥𝑔 ∗ 𝑋𝑡 + 𝑊ℎ𝑔 ∗ ℎ𝑡−1 + 𝑏𝑔)   (1) 199 

 𝑜𝑡 = 𝜎(𝑊𝑥𝑜 ∗ 𝑋𝑡 + 𝑊ℎ𝑜 ∗ 𝑋𝑡−1 + 𝑏𝑜) 200 

 𝑐𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ 𝑔𝑡 201 

 ℎ𝑡 = 𝑜𝑡 ⊙𝑡𝑎𝑛ℎ (𝐶𝑡) 202 

In Eqn. (1), 𝑋𝑡 ∈ ℝ𝐻×𝑊 denotes the input on time step 𝑡,  𝐶𝑡, 𝐻𝑡 ∈ ℝ𝐶×𝐻×𝑊 denote cell memory 203 

and hidden state, where 𝐻 × 𝑊 is the spatial dimension of the study area represented by grids 204 

and 𝐶 is number of channels. The hidden state and cell memory are dynamically updated 205 
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according to the input (𝑖𝑡), forget (𝑓𝑡), and output (𝑜𝑡) gates with 206 

𝑊𝑥𝑖, 𝑊ℎ𝑖, 𝑊𝑥𝑓 , 𝑊ℎ𝑓 , 𝑊𝑥𝑔, 𝑊ℎ𝑔, 𝑊𝑥𝑜, 𝑊ℎ𝑜 , 𝑏𝑖, 𝑏𝑓 , 𝑏𝑔, 𝑏𝑜 as learnable parameters. Convolutional 207 

operations are denoted as ∗,  and element-wise multiplication is denoted as ⨀. Given the 208 

relatively low amount of data from one watershed, we constrained the model complexity by 209 

using only one layer of ConvLSTM with hidden state dimension set to 20. Convolution 210 

operations are performed using 3 × 3 kernels and padding. In the baseline ConvLSTM-FC 211 

model, the hidden state and cell memory from the ConvLSTM layer pass through a fully 212 

connected (FC) layer, the weights and biases of which are all learnable parameters (Fig. 2a).  213 

3.2 Spatial Attention Mechanism 214 

We develop a ConvLSTM-SA model that combines the ConvLSTM architecture with 215 

spatial attention mechanism (Fig. 2b). Same as the ConvLSTM-FC model, the ConvLSTM-SA 216 

model has a single layer of ConvLSTM cells with 20 channels. Instead of a FC layer, 217 

ConvLSTM hidden state is processed by a spatial attention layer implemented as a modification 218 

from the Convolutional Block Attention Module (CBAM, Woo et al., 2018). CBAM was 219 

designed as an add-on module to CNNs to enhance their representation power. Let 𝐹 ∈ ℝ𝐶×𝐻×𝑊 220 

denote the feature map (i.e., output) generated by CNN, with 𝐶 channels on a 𝐻 × 𝑊 grid, the 221 

spatial attention submodule of CBAM can be thought of as a postprocessor on 𝐹 (Woo et al., 222 

2018): 223 

𝐹′ = 𝑀𝑠(𝐹) ⨀ 𝐹,                                                             (2) 224 

where 𝐹′ ∈ ℝ𝐶×𝐻×𝑊 is the feature map after CBAM processing, 𝑀𝑠 ∈ ℝ𝐻×𝑊 is the spatial 225 

attention map, and ⨀ denotes element-wise multiplication with 𝑀𝑠 broadcasted along channels. 226 
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The feature map can be a concatenation of the input, cell memory, and hidden state calculated by 227 

ConvLSTM (Fig. 2), i.e., 𝐹 = [𝑋𝑡; 𝐶𝑡; 𝐻𝑡]. The spatial attention map specifies “where” (within 228 

the 𝐻 × 𝑊 grids) to amplify or suppress and is calculated by: 229 

𝑀𝑠(𝐹) = 𝜎(𝑓7×7([𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹); 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐹)]),                               (3) 230 

where 𝜎 is the sigmoid function, 𝑓7×7 represents a convolutional layer with a 7 × 7 filter for 231 

each channel, and 𝐴𝑣𝑔𝑃𝑜𝑜𝑙 and 𝑀𝑎𝑥𝑃𝑜𝑜𝑙 denote average and max, respectively, pooling 232 

operation of the feature map 𝐹 across the channels.  233 

In this study, two modifications were made to the original spatial attention mechanism as 234 

implemented in CBAM. First, we replaced the sigmoid function in Eqn. (3) with softmax 235 

function. This change ensures that the attention weights are always positive, and the sum of all 236 

weights across the entire space equals 1, providing a more physically meaningful interpretation. 237 

Essentially, this allows the original hidden state 𝐻𝑡 to be spatially adjusted according to the 238 

attention map. Second, the spatial attention matrix was only applied to 𝐻𝑡, hidden state of the 239 

ConvLSTM layer: 240 

𝐻𝑡
′ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑓7×7([𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹); 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐹)]) ⨀ 𝐻𝑡 .                          (4)  241 
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 242 

Figure 2. (a) In the baseline ConvLSTM-FC model, the hidden state from ConvLSTM layer 243 

passes through a fully connected (FC) layer before being aggregated to predict discharge at 244 

watershed outlet; (b) In the new ConvLSTM-SA model, the hidden state from the ConvLSTM 245 

layer passes through a spatial attention (SA) layer before aggregation.  246 

3.3 A Deep Learning Approach to Spatially Distributed Hydrologic Modeling 247 

The distributed hydrologic modeling is formulated as a sequence-to-sequence learning 248 

task. Let 𝑋𝑡 ∈ ℝ𝐻×𝑊 denote the spatial distribution of snowmelt plus rainfall (simulated by 249 

UEB) over a spatial raster with a dimension of 𝐻 × 𝑊 at day 𝑡, and 𝑦𝑡 denote streamflow of the 250 

following day, the task is to predict discharge (at the watershed outlet or another location along 251 

the main stem of river or its tributaries) sequence 𝑄 = {𝑄2, 𝑄3 … , 𝑄𝑡+1}, given the snowmelt plus 252 

rainfall sequence 𝒳 = {𝑋1, 𝑋2, … , 𝑋𝑡}. The task is completed in two steps. First, the ConvLSTM-253 

SA model calculates discharge for every grid in the model domain. More specifically, 𝐻𝑡, the 254 
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hidden state of the ConvLSTM layer (Eqn. 1), is processed by spatial attention layer (Eqn. 4), 255 

and then aggregated across the channels to calculate grid-wise discharge, denoted as 𝑞𝑖,𝑗, 𝑖 =256 

1, … , 𝐻, 𝑗 = 1, … , 𝑊. The baseline ConvLSTM-FC model calculates grid-wise discharge 257 

similarly, except replacing SA with a FC layer. For both models, the grid-wise discharge is 258 

defined as the combined surface runoff and subsurface lateral flow (via karst conduit and/or 259 

matrix) contributed by each grid to streamflow discharge on any specific time step.  260 

In the second step, to calculate discharge at a specified location, discharge from grids 261 

within contributing area are aggregated (summed) (Fig. 3). This process is designed to mimic a 262 

fully distributed hydrologic model. For a physically based model, gridded runoff is often routed 263 

along a river network delineated based on topography to gaging stations along the main stem 264 

river and tributaries to be comparable to observed streamflow at the gaging stations. However, in 265 

this study we chose not to perform explicit routing due to unknown subsurface connectivity. By 266 

doing so, we assume that the LSTM component in ConvLSTM-FC and ConvLSTM-SA models 267 

already capture the lag between recharge and discharge to stream, and so grid-wise discharge 268 

calculated by ConvLSTM-FC or ConvLSTM-SA represents the volume of water that would have 269 

reached the stream outlet, even though it originated from a grid at an earlier time.    270 

For non-karst watersheds, contributing areas (watersheds and subwatersheds) are 271 

typically delineated based on topography. In karst watersheds, however, subsurface connection 272 

may result in “karst piracy”, where some groundwater flowpaths cross the surface topographic 273 

divides (White, 2002). At the watershed scale, the model domain is extended from the 274 

topographically delineated watershed boundary to account for known karst piracy identified from 275 

previous tracer studies (Spangler, 2001, 2011; Fig. 1). The ConvLSTM-FC and ConvLSTM-SA 276 

models sum up discharge from all active model grids to compute discharge at the watershed 277 
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outlet (USGS gage 10109000). This “watershed-scale” model is trained using data during WY 278 

1981–2007 and tested for WY 2008–2022. The training configuration is detailed in Text S1, 279 

Supporting Information. The trained watershed-scale model computes 𝑞𝑖,𝑗,𝑡, grid-wise discharge 280 

at time step 𝑡, which are passed on to the subwatershed scale module.  281 

At the subwatershed scale, subsurface connections may transfer water between adjacent 282 

subbasins. Therefore, we implemented two methods for aggregating ConvLSTM-FC or 283 

ConvLSTM-SA grid-wise discharge at the subwatershed scale. The first method creates a binary 284 

(0 and 1) mask based on topographically delineated boundary for each subwatershed; the binary 285 

masks for all subwatersheds are non-overlapping and collectively cover the entire Logan River 286 

watershed. We then use the binary masks to crop grid-wise discharge: 287 

𝑄̂𝑘,𝑡 = ∑ 𝑞𝑖,𝑗,𝑡

𝑖,𝑗∈Ω𝑘

 288 

where 𝑄̂𝑘,𝑡 denotes computed discharge for subwatershed 𝑘 at time step 𝑡,  Ω𝑘 is topographically 289 

delineated spatial extent of this subwatershed, and 𝑞𝑖,𝑗,𝑡 is ConvLSTM-FC or ConvLSTM-SA 290 

discharge for 𝑖𝑗-th grid at time step 𝑡. We expect this method to perform well for non-karst 291 

watersheds, but will likely over- or under-estimate for a subwatershed, depending on whether it 292 

imports or exports water to neighbors. Therefore, the second method aims to inversely estimate 293 

contributing area by adding a fully-connected (FC) layer to calculate discharge for subwatershed 294 

𝑘 based on grid-wise discharge: 295 

𝑄̂𝑘,𝑡 = ∑ 𝑤𝑖,𝑗,𝑘𝑞𝑖,𝑗,𝑡

𝑖,𝑗

, 296 
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where 𝑤𝑖,𝑗,𝑘, 𝑖 = 1, … , 𝐻, 𝑗 = 1, … , 𝑊 are coefficients estimated using non-negative ridge 297 

regression. Let 𝑄𝑘,𝑡 denote observed discharge at time step 𝑡, we estimate 𝒘𝒌 =298 

[𝑤1,1,𝑘, 𝑤1,2,𝑘, … , 𝑤𝑖,𝑗,𝑘, … , 𝑤𝐻,𝑊,𝑘]
𝑇
 as 299 

argmin
𝒘𝒌

[∑(𝑄𝑘,𝑡 − 𝑄̂𝑘,𝑡)
2

𝑡

+ 𝛼‖𝒘𝒌‖𝟐] , 300 

subject to 𝑤𝑖,𝑗,𝑘 ≥ 0, ∀𝑖, 𝑗. 301 

In the above equation, 𝛼 is a hyperparameter that controls the tradeoff between model 302 

goodness-of-fit to data and model complexity as represented by the 𝐿2 regularization (also 303 

known as weight decay in machine learning context) term. The use of 𝐿2 regularization mitigates 304 

collinearity issue (Hastie et al., 2009). In this study, collinearity exists between grid-wise 305 

discharge time series, because snowmelt plus rain time series of grids that are nearby or have 306 

similar meteorological forcing, topography, and vegetation cover are likely correlated. When 307 

discharge time series are highly correlated between two or more grids, Ridge regression tends to 308 

give similar coefficients to these time series. In contrast, Lasso, another commonly used 309 

regularized linear regression method, imposes 𝐿1 regularization and tends to assign a high 310 

coefficient to one of the grids while zero to other grids with correlated time series; which one to 311 

receive nonzero coefficient is prone to uncertainties induced by the optimization algorithm and 312 

noise in data (Hastie et al., 2009; Zou and Hastie, 2005). Ridge regression is selected in this 313 

study to avoid false negatives, i.e., assigning a zero weight to a grid that may be contributing to 314 

discharge for a subwatershed. 315 

The non-negative Ridge regression problem is solved using a python implementation 316 
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(Allen Institute, 2021) of the L-BFGS-B solver (Byrd et al., 1995; Zhu et al., 1997). To 317 

determine optimal hyperparameter 𝛼, we performed Ridge regression using 𝛼 ranging from 318 

0.001 to 0.5. For each value of 𝛼, regression coefficients are estimated using observed discharge 319 

at LRO gage stations (Fig. 1) during WY 2019-2022. We used data during WY 2019-2022 for 320 

training because discharge records are relatively complete during this period except gaps due to 321 

ice damming. The value of 𝛼 that yielded the lowest mean square error in WY 2018 was selected 322 

as the optimal value. The performance of the final model was assessed using observed discharge 323 

during a test period of WY 2014-2017. During this test period, discharge record length varies 324 

among the LRO stations (section 2).   325 

 326 

Figure 3. For a given subwatershed 𝑘, grid-wise discharge (𝑞𝑖,𝑗,𝑡) computed by the ConvLSTM-327 

SA model is element-wise multiplied with a binary mask based on topographic delineation (top), 328 

or coefficients determined by Ridge regression (bottom), before aggregating to calculate 329 

discharge 𝑄̂𝑘,𝑡. 330 

4 Results and Discussion 331 
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4.1 Simulating Discharge at Watershed Outlet 332 

The performance of ConvLSTM-FC and ConvLSTM-SA models are assessed using four 333 

metrics (Table 1): percent bias (PBIAS, Gupta et al., 1999), root-mean-square error (RMSE), 334 

Nash-Sutcliff efficiency (NSE) and Kling-Gupta efficiency (KGE, Gupta et al., 2009). Compared 335 

to FC baseline, the spatial attention module improved test accuracy for all performance metrics. 336 

In addition, ConvLSTM-SA predicted hydrograph fit the observations better than FC baseline 337 

(Fig. 4). During the test period (WY2008-2022), ConvLSTM-SA achieved a KGE of 0.92, 0.96, 338 

and 0.60, respectively, during runoff (Mar. – Jun.), recession (Jul. – Oct.), and low flow (Nov. – 339 

Feb.) periods. The KGEs were all higher than KGE yielded by ConvLSTM-FC (0.86, 0.78, 340 

0.21). Given the importance of streamflow during the recession and low flow periods for local 341 

agricultural and municipal water supply, the substantial accuracy improvement from using 342 

spatial attention is promising.    343 

Table 1. Performance Metrics of the ConvLSTM-SA and ConvLSTM-FC Models at the 344 

Watershed Scale During Training and Test Periods. PBIAS: percent bias; RMSE: root-mean-345 

square error; NSE: Nash-Sutcliff efficiency; KGE: Kling-Gupta efficiency. 346 

Model 

Train / Calibrate (1981-2007)  Test (2008-2022) 

PBIAS 

(%) 

RMSE 

(mm/day) 

NSE KGE  PBIAS 

(%) 

RMSE 

(mm/day) 

NSE KGE 

          

ConvLSTM-FC 0.609 0.357 0.900 0.914  2.831 0.352 0.869 0.866 

ConvLSTM-SA -3.201 0.337 0.911 0.931  0.199 0.290 0.911 0.945 

 347 
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 348 

Figure 4. Spatially averaged snow plus rainfall simulated by UEB (left axes), and observed and 349 

simulated streamflow of ConvLSTM-SA and ConvLSTM-FC models (right axes) for a normal (a) 350 

and a wet (b) year. Hydrograph of the entire test period (WY2008-2022) is shown in Fig. S1, 351 

Supporting Information.  352 

4.2 Simulating Discharge at Subwatershed Scales 353 

At subwatershed scales, aggregating grid-wise discharge using binary masks tends to 354 

produce systematic error especially for tributaries (Table 2, Fig. 5). It also tends to yield small 355 

discharge peaks occurring in late summer (August through early October). Such peaks are 356 

learned from streamflow at the watershed outlet and are induced by summer storms. This may 357 

indicate difficulties in “deconvoluting” grid-wise discharge when recharge from rainfall does not 358 

show as much spatial variability as recharge from snowmelt. The binary mask method assumes 359 

that grids (and only these grids) within the topographic subwatershed boundary that have 360 
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contributed to discharge at the watershed outlet for a given day would contribute to discharge of 361 

this subwatershed on the same day. Thus, the difference between observed and binary mask-362 

estimated discharge suggests the overall importing/exporting status of a subwatershed. For 363 

example, the binary mask method overestimated Beaver Creek discharge by over 300%, while 364 

underestimating Temple Fork discharge (Table 2, Fig. 5). This is consistent with findings from 365 

previous tracer studies showing karst conduit connections between large, closed basins within 366 

the Beaver Creek subwatershed to adjacent watersheds to the northwest and northeast (Figure S5, 367 

Supporting Information).  Large overestimation bias is found in Logan River discharge at the 368 

Tony Grove station as the bias from Beaver Creek accumulated. The water exporting condition is 369 

also supported by tracer studies which revealed recharge-discharge pathways from high elevation 370 

areas to downstream springs (Ricks and Wood Camp Hollow, Fig. 1, Spangler, 2001; 2011); 371 

these springs contribute to a substantial portion of Logan River streamflow (Wilson, 1976). 372 

Further downstream at Wood Camp Bridge, the overestimation bias is reduced as the 373 

subwatershed area encompasses springs recharged in high elevation areas, as well as Temple 374 

Fork, that imports water from areas outside of the Logan River watershed (Figure S5, Supporting 375 

Information).  376 

Despite the inability of the mask method to account for inter-basin karst connections, 377 

results suggest that ConvLSTM-SA with binary masks can be a promising approach to spatially 378 

distributed hydrologic modeling for non-karstic watersheds. For those watersheds, we anticipate 379 

that once trained using a downstream gage with sufficiently long streamflow records, the 380 

ConvLSTM-SA with binary masks may be able to predict streamflow at ungaged upstream 381 

locations reasonably well without the need for recalibration, especially for mesoscale 382 

watersheds. However, the accuracy of the binary mask method may deteriorate as watershed area 383 
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increases and the timing and shape of hydrograph substantially differ among subwatersheds. In 384 

such cases, it is anticipated that the deep learning model would need more training data covering 385 

a longer period to learn the “deconvoluted” grid-wise discharge using streamflow at outlet alone.   386 

Table 2. Performance Metrics of the ConvLSTM-SA Model for Subwatersheds During 387 

WY2014-2018 (test period) Using Binary Mask and Ridge Regression Methods. 388 

Subwatershed 

Mask   Ridge Regression 

PBIAS RMSE 

(mm/day) 

NSE KGE 

  PBIAS RMSE 

(mm/day) 

NSE KGE 

(%)   (%) 

LR Franklin 

Basin 

69.421 0.176 0.460 0.219  -1.660 0.090 0.860 0.921 

Beaver Creek 
-337.288 0.422 -16.861 -3.412  32.956 0.073 0.462 0.409 

LR Tony 

Grove 

-26.923 0.351 0.346 0.377  14.619 0.178 0.831 0.709 

Temple Fork 
39.389 0.073 0.023 0.383  10.960 0.045 0.628 0.782 

LR Wood 

Camp Bridge 

34.925 0.868 0.180 0.498  29.660 0.814 0.279 0.558 

Right Hand 

Fork 

-9.586 0.085 0.154 0.355  25.033 0.078 0.288 0.291 

On the other hand, Ridge regression substantially improved discharge simulation 389 

accuracy across four metrics for five watersheds and improving RMSE, NSE while deteriorating 390 

PBIAS and KGE for Right Hand Fork (Table 2). The metrics for Right Hand Fork may be biased 391 

due to limited availability of discharge records during the test period (<1 year). Overall, the 392 

estimated discharge appears to match well with observed hydrograph during test period for all 393 

subwatersheds. One exception was found in 2017, during which time the model underestimated a 394 

series of streamflow spikes in early spring (Fig. 5) likely induced by snowmelt events not 395 
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captured by the UEB model. In this year, a low bias was found in downscaled NLDAS 396 

temperature, leading to subzero temperature at high elevation areas, while SNOTEL stations 397 

within those areas recorded above zero temperature averaged in March and April. Therefore, the 398 

UEB model substantially underestimated snowmelt rates in March and April. Given that only 399 

four years of data were used for calibration and that the test period contains a larger range of 400 

hydrologic conditions, the high accuracy observed here suggests ConvLSTM-SA and Ridge 401 

regression to be an effective distributed hydrologic modeling approach for karst watersheds with 402 

long-range subsurface connectivity. 403 

4.3 Interpretative Analyses  404 

4.3.1 Spatial attention map 405 

Tracking ConvLSTM cell memory and attention map change in time provides 406 

information about watershed dynamics in different parts of water-year hydrograph. Specifically, 407 

we focus on three snapshots during low flow, spring runoff, and recession periods averaged over 408 

WY 1980-2022 (Fig. 6). For the study area, the lowest streamflow occurs around February 1 of 409 

each year. At this time, snow is being accumulated for most of the watershed with scattered 410 

snowmelt/rain at lower elevations. Around Jun. 1, snowmelt drives streamflow to peak. By 411 

October 1, the snowpack has completely melted, and streamflow is sustained by groundwater, 412 

with a majority from karst conduit sources (Neilson et al., 2018).  413 

 414 
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 415 

Figure 5. Observed and model estimated discharge at LRO stations along the main stem 416 

(Franklin Basin, Tony Grove, Wood Camp Bridge) and tributaries (Beaver Creek, Temple Fork, 417 

Right Hand Fork). Locations of stations are shown in Fig. 1. Discharge is aggregated using 418 

binary subwatershed masks (blue) and Ridge regression coefficients (red), respectively. Data 419 

gaps exist in observations due to differences in sensor deployment, sensor malfunction and icing 420 

events.  421 

 422 
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The cell memory of the trained ConvLSTM-SA model captures the temporal trend of 423 

water storage, which is the highest during peak flow and lower during recession and low flow 424 

periods (Fig. 6b,e,h). Meanwhile, spatial attention weights, dependent on snowmelt plus rainfall 425 

(SWIT) and cell memory, reveal discharge-generating areas and how these areas change 426 

dynamically (Fig. 6c,f,i). During low flow periods, uniform weights are observed, likely because 427 

scattered snowmelt is not sufficient to replenish depleted watershed storage and generate 428 

discharge. During spring runoff, on the other hand, high elevation snowmelt and rainfall recharge 429 

the bulk of the watershed storage, making these areas responsible for generating most of the 430 

discharge. Despite high input (snowmelt plus rain) and high cell memory, the model learned low 431 

attention weights for areas to the east of the confluence of the Logan River and Beaver Creek. 432 

Although the subwatersheds in this area are topographically part of the Logan River basin, this 433 

area has extensive karst terrain, including Peter Sinks, which has been documented as 434 

discharging towards Bear Lake to the north of the study watershed (Figure S5, Supporting 435 

Information).  During the recession period, snowmelt plus rain and watershed storage exhibit 436 

different spatial patterns that together shape the spatial attention weight, which is high along the 437 

mountain ridges west of Logan River. In these areas, numerous faults and sinkholes have been 438 

found (Dover, 1995; Bahr, 2016), facilitating concentrated recharge and fast conduit flow 439 

discharging to springs along the Logan River (Fig. 1).   440 

The consistency between the learned attention weights and local hydrogeologic 441 

information suggests the utility of the spatial attention mechanism for improving interpretability 442 

of deep learning models when sufficient data is available for training these models. Unlike ad 443 

hoc methods, including sensitivities (e.g., Anderson and Radić, 2022), that interpret already-444 

trained deep learning models, the spatial attention module is learnable and trained 445 
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simultaneously with other components of the deep learning model. In addition, the spatial 446 

attention module can be customized to constrain the learned behavior. For example, Eqn. (4) 447 

uses the softmax function to ensure that the attention weights are positive, which also helps to 448 

constrain other learnable parameters. This led to more physically reasonable results than 449 

perturbation-based sensitivity analyses on a model without such constraints, which produced 450 

negative sensitivities of streamflow to snowmelt in our previous study (Xu et al., 2022). In this 451 

study, we inserted the spatial attention module to process hidden state. The module could also be 452 

inserted in other places within the deep neural network architecture (e.g., after the inputs), to add 453 

interpretability to desired places. However, adding the attention module at multiple places may 454 

increase data volume required to properly train the model.  455 
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 456 

Figure 6. Multi-year average snowmelt plus rainfall (SWIT) simulated by UEB (a,d,g), 457 

ConvLSTM cell memory (𝐶𝑡) averaged across channels (b,e,h), and spatial attention weights 458 

(c,f,i), on Feb. 1 (a,b,c), Jun. 1 (d,e,f), and Oct. 1 (g,h,i) of every year between WY1980-2022. 459 

Colorbar ranges differ among panels to adapt to large differences among variables shown.   460 
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4.3.2 Ridge regression coefficient map 461 

In addition to accurately simulating subwatershed discharge, we found that Ridge 462 

regression coefficients suggest recharge-discharge pathways across subwatershed boundaries, 463 

although they may be affected by similarities between grid-wise discharge time series at different 464 

grids. To visualize such similarity, we performed principal component analysis (PCA) on a 465 

𝑾𝑯 × 𝑻 matrix, where 𝑾, 𝑯 are the spatial dimensions and 𝑻 is number of time steps, which is 466 

the same as the length of streamflow records. Each line of the matrix corresponds to discharge 467 

time series of one grid. The leading three principal components (PCs) accounted for 74% of total 468 

variance (Fig. S2, Supporting Information). Next, a pseudo color image was generated for each 469 

gaging station (Fig. 7), such that the red, green, and blue bands of each grid are given by the 470 

contribution to discharge of this grid from the three leading PCs (Fig. S3, Supporting 471 

Information). Therefore, two grids having similar colors suggests they have similar grid-wise 472 

discharge time series, likely resulting from similar topography and climate. In the meantime, the 473 

degree of saturation (i.e., intensity) of any color in a grid in Fig. 7 is proportional to ridge 474 

regression weights of this grid, which quantifies its contribution to a given gaging station (Fig. 475 

S4, Supporting Information). Therefore, bright colors show a higher contribution than muted 476 

colors.  477 

A grid is expected to receive a higher weight when it is contributing to discharge 478 

corresponding to a subwatershed gaging station, but not vice versa, because Ridge regression 479 

tends to give similar coefficients to grids with correlated discharge time series (section 3.3). This 480 

behavior is more suitable than regularization techniques that enforce sparsity such as Lasso. 481 

Because actual subsurface connectivity would be unknown without detailed tracer studies, we 482 

would like to identify all areas that could be contributing to subwatershed discharge to the degree 483 
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supported by data without missing potential contributing areas.  484 

The Ridge regression weights of almost all grids are below 1 (Fig. S2, Supporting 485 

Information), which is physically reasonable. The three nested subwatersheds corresponding to 486 

main stem LRO stations show increasing weights from headwater to downstream stations. The 487 

tributary subwatersheds produced much lower streamflow than the main stem and thus receive 488 

smaller regression coefficients. Similar spatial patterns were found between Ridge coefficients of 489 

Logan River (LR) - Franklin Basin (Fig. 7a) and Beaver Creek (Fig. 7b). Hydrogeochemical data 490 

suggests a small portion of Franklin Basin discharge originates from Beaver Creek (Ashmead et 491 

al., 2023). However, a similarity is noticeable between grid-wise discharge time series of grids 492 

receiving high regression coefficients for the two subwatersheds, suggesting that at least some of 493 

the high weights may be a false positive. For Temple Fork and Right Hand Fork, the method 494 

assigns moderate coefficients to headwaters of the two subwatersheds, but also picks up areas 495 

west of the river and south of the study area, which are likely to be false positives due to 496 

collinearity. However, high coefficients assigned to the east bank from Beaver Creek to Temple 497 

Fork coincide with the Temple Ridge Fault and may suggest subsurface connectivity given the 498 

highly karstified terrain in that area (Dover, 1995).   499 

The above results underscore the potential of our modeling approach (ConvLSTM-SA 500 

complemented by Ridge regression and PCA) to serve as a screening tool for possible 501 

contributing areas that do not follow topographic subbasin boundaries or a method for 502 

anticipating locations of karst piracy. For areas with distinct grid-wise discharge signatures, as 503 

revealed by PCA, a high Ridge regression weight is a relatively strong indicator of contributing 504 

area, while false positives are possible for areas with correlated grid-wise discharge signature. 505 

Based on the screening results, field campaign and tracer studies can be designed to collect data 506 
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to rule out false positives and establish true recharge-discharge pathways.  507 

 508 

Figure 7. Pseudo color rendering of Ridge regression coefficients estimated using discharge at 509 

LRO stations along the main stem (Franklin Basin, Tony Grove, Wood Camp Bridge) and 510 

tributaries (Beaver Creek, Temple Fork, Right Hand Fork). Locations of stations are shown in 511 

Fig. 1. Regression weights are shown in Fig. S2, and pseudo color is determined by principal 512 

component analysis (Fig. S3, Supporting Information).    513 

5 Conclusions 514 

This study developed an explainable, spatially distributed, deep learning-based approach 515 

to hydrologic modeling in a snow-dominated mountainous karst watershed, leveraging the power 516 

of Convolutional Long Short-Term Memory (ConvLSTM) integrated with a spatial attention 517 
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mechanism. The efficacy of the approach was demonstrated through a case study focused on the 518 

Logan River watershed. Compared to the baseline ConvLSTM model, spatial attention improved 519 

simulation accuracy of discharge at the watershed outlet during the test period. In addition, the 520 

spatial attention weights computed by the trained model revealed key areas contributing to 521 

discharge under low flow, recession, and runoff periods, aligning well with known 522 

hydrogeological features and previous hydrogeochemical tracer studies. 523 

Next, the model trained using discharge at the watershed outlet was applied to 524 

subwatershed scales. When the model predicted grid-wise discharge was aggregated by 525 

topographically delineated contributing areas, bias was observed in aggregated discharge and 526 

suggests cross-basin water transfers. Simulation accuracy of subwatershed discharges is 527 

significantly enhanced by the use of Ridge regression. Comparison between Ridge regression 528 

weights and known hydrogeologic connections shows potential of Ridge regression as a 529 

screening tool for possible recharge-discharge pathways of karst watersheds. 530 

The presented approach proves adept at capturing the complex spatiotemporal dynamics 531 

of a mountainous karst watershed. This work not only enhances our ability to predict 532 

hydrological responses in these challenging environments, but also contributes to the broader 533 

field of hydrologic modeling, because the ConvLSTM-SA model can also be used as a spatially 534 

distributed hydrologic model for non-karst watersheds. Once trained on a downstream gage, the 535 

ConvLSTM-SA with binary masks can potentially predict streamflow at ungaged upstream 536 

locations. When upstream gages are available, observed subwatershed discharge can be utilized 537 

with Ridge regression to infer inter-basin connections. Future research should focus on extending 538 

this modeling approach to more diverse datasets of mountainous karst systems and testing the 539 

approach’s applicability to non-karstic watersheds and at larger scales. 540 
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