

1 **An Attention-based Explainable Deep Learning Approach to Spatially Distributed Hydrologic
2 Modeling of a Snow Dominated Mountainous Karst Watershed**

3 Qianqiu Longyang^{1,5}, Seohye Choi¹, Hyrum Tenant², Devon Hill², Nathan Ashmead³, Bethany
4 T. Neilson², Dennis L. Newell⁴, James McNamara³, Tianfang Xu^{1*}

5 ¹ School of Sustainable Engineering and the Built Environment, Arizona State University,
6 Tempe, AZ.

7 ² Department of Civil and Environmental Engineering, Utah Water Research Laboratory, Utah
8 State University, Logan, Utah.

9 ³ Department of Geoscience, Boise State University, Boise, Idaho.

10 ⁴ Department of Geoscience, Utah State University, Logan, Utah.

11 ⁵ Now at Kansas Geological Survey, University of Kansas, Lawrence, Kansas.

12 * Corresponding author: Tianfang Xu (tianfang.xu@asu.edu)

13 **Key Points:**

- 14 • An explainable spatially distributed deep learning hydrologic model is built using a
15 spatial attention mechanism.
- 16 • The model trained with streamflow at the watershed outlet simulates discharge at
17 subwatershed scales reasonably well.
- 18 • Recharge-discharge pathways suggested by attention weights are mostly consistent with

19 hydrogeochemical tracer studies.

20 **Abstract**

21 In many regions globally, snowmelt-recharged mountainous karst aquifers serve as crucial
22 sources for municipal and agricultural water supplies. In these watersheds, complex interplay of
23 meteorological, topographical, and hydrogeological factors leads to intricate recharge-discharge
24 pathways. This study introduces a spatially distributed deep learning precipitation-runoff model
25 that combines Convolutional Long Short-Term Memory (ConvLSTM) with a spatial attention
26 mechanism. The effectiveness of the deep learning model was evaluated using data from the
27 Logan River watershed and subwatersheds, a characteristically karst-dominated hydrological
28 system in northern Utah. Compared to the ConvLSTM baseline, the inclusion of a spatial
29 attention mechanism improved performance for simulating discharge at the watershed outlet.
30 Analysis of attention weights in the trained model unveiled distinct areas contributing the most to
31 discharge under snowmelt and recession conditions. Furthermore, fine-tuning the model at
32 subwatershed scales provided insights into cross-subwatershed subsurface connectivity. These
33 findings align with results obtained from detailed hydrogeochemical tracer studies. Results
34 highlight the potential of the proposed deep learning approach to unravel the complexities of
35 karst aquifer systems, offering valuable insights for water resource management under future
36 climate conditions. Furthermore, results suggest that the proposed explainable, spatially
37 distributed, deep learning approach to hydrologic modeling holds promise for non-karstic
38 watersheds.

39 **1 Introduction**

40 Globally, and in many regions of the western U.S., karst watersheds serve as crucial

41 sources for municipal and agricultural water supplies. Some of these watersheds are in
42 mountainous regions with snow-dominated hydrography, and the snowpack in these systems in
43 the western U.S. are predicted to be adversely impacted by changing precipitation patterns due to
44 climate change (Gergel et al., 2017; Li et al., 2017). Planning for these likely changes and
45 effective water resource management requires accurate prediction of streamflow, which,
46 however, is challenging for these watersheds, due to highly spatially variable snow processes and
47 surface/subsurface heterogeneity of karst hydrogeology. Complex mountain terrain and its effect
48 on microclimate, together, result in spatially varying snow accumulation and melt (López-
49 Moreno et al., 2013; Sexstone and Fassnacht, 2014; Miller et al., 2022). In addition, karst
50 systems possess intricate subsurface connectivity via sinkholes, caves, and conduits that can
51 allow groundwater to cross basin boundaries (White, 2002; Bakalowicz, 2005). A detailed
52 investigation of the resulting recharge-discharge pathways requires extensive field surveys that
53 are not feasible at meso- and regional scales. As a result of their subsurface connectivity, karst
54 watersheds are challenging for general-purpose spatially distributed hydrologic modeling
55 frameworks such as the NOAA U.S. National Water Model (Cosgrove et al., 2024). These
56 modeling frameworks route surface runoff (typically calculated by a land surface model) within
57 topographically delineated watershed boundaries, and are thus unable to capture lateral
58 groundwater flow occurring across basin boundaries typical in karst terrain.

59 In recent years, deep learning algorithms have emerged as an alternative approach to
60 hydrologic modeling. Long Short-Term Memory (LSTM) networks (Hochreiter and
61 Schmidhuber, 1997) are capable of learning temporal dynamics and have been successful for
62 tasks such as rainfall-runoff modeling and soil moisture estimation (e.g., Fang et al., 2018;
63 Kratzert et al., 2018). Another popular type of architecture, convolutional neural networks

64 (CNN), commonly used for extraction of spatial information (Fukushima, 1980; LeCun et al.,
65 1998), has also been shown to perform well in hydrologic applications where spatial patterns are
66 of interest (Sun et al., 2019; Pan et al., 2019; Mo et al., 2019; Anderson and Radić, 2022). More
67 recently, the Convolutional LSTM (ConvLSTM) architecture was proposed to combine LSTM
68 and CNN to capture spatiotemporal processes similar to movement of an object in a video (Shi et
69 al., 2015). ConvLSTM has achieved state-of-the-art performance in tasks such as precipitation
70 nowcasting (Shi et al., 2015), rainfall-runoff modeling (Xu et al., 2022), and streamflow
71 forecasting (Dehghani et al., 2023; Zhu et al., 2023; Oddo et al., 2024). Unlike LSTM-based
72 lumped rainfall-runoff models, ConvLSTM takes a spatially distributed approach and receives
73 “image”-like inputs (e.g., gridded snowmelt, temperature). For each model grid, ConvLSTM
74 uses the inputs (analogous to inflow) and current states at a grid and its neighbors to calculate the
75 future state (analogous to water storage) of this grid. Although simplified, the information flow
76 from neighbors to a given grid mimics the routing process in process-based distributed
77 hydrologic models.

78 However, convolution operations use a local receptive field, thus limiting the capability
79 of ConvLSTM to perceive long-range spatial dependencies (Lin et al., 2020). Although several
80 ConvLSTM layers can be stacked together to represent more complex spatiotemporal dynamics
81 occurring over long distances, using ConvLSTM alone may be insufficient to capture complex
82 recharge-discharge pathways induced by karst geology (Xu et al., 2022). More specifically,
83 hydrology of karst watersheds is characterized by a juxtaposition of surface runoff, slow matrix
84 flow, and fast conduit flow. In particular, karst conduits form subsurface connectivity over long
85 ranges and sometimes across topographically delineated basin boundaries. Therefore, in karst
86 watersheds the performance of ConvLSTM can potentially be improved by adding global

87 features from the entire study area as opposed to being restricted to a small neighborhood when
88 using convolution alone.

89 In parallel to the pursuit of higher prediction accuracy, there has been a long-standing
90 interest in the hydrology community in machine learning models that are physically
91 interpretable. A key advantage of LSTM and ConvLSTM architectures lies in their resemblance
92 to the watershed storage, inflow and outflow dynamics (LSTM, Kratzert et al., 2019) and
93 spatiotemporal water flow (ConvLSTM). Nevertheless, whether and how these models can
94 reveal new insights into watershed hydrologic processes remain unclear. Several ad hoc methods
95 are available to interpret already-trained deep learning models, such as Integrated Gradient (IG,
96 Sundararajan et al., 2017) and Shapley Additive exPlanations (SHAP, Lundberg and Lee, 2017).
97 However, IG tends to be sensitive to the choice of baseline, while SHAP can be computationally
98 expensive for high dimensional problems.

99 In recent years, spatial attention mechanisms have attracted wide interest for improving
100 both performance and interpretability of deep learning models. Attention is a selective cognitive
101 process where human focuses on specific parts of information as needed, rather than processing
102 all available information at once (Corbetta and Shulman, 2002). Selective attention allows
103 humans to efficiently identify and concentrate on high-value information from a vast array of
104 stimuli (Niu et al., 2021). To emulate the selective focus seen in human perception, spatial
105 attention seeks to dynamically adjust the weights assigned to image features output by preceding
106 layers (Guo et al., 2022). Experiments on multiple benchmark datasets showed that spatial
107 attention was able to identify where the model should focus and improve the learned
108 representations by promoting important features and suppressing unimportant features (Woo et
109 al., 2018). Attention mechanisms have also been employed in hydrologic modeling, though prior

110 studies have predominantly focused on spatially lumped (Han et al., 2023; Wang et al., 2024) or
111 semi-distributed modeling approaches (Feng et al., 2019; Ding et al., 2020; Feng et al., 2021).
112 Application of attention mechanisms in fully distributed hydrologic modeling remain limited and
113 are aimed at enhancing streamflow forecasting, relying on past streamflow data as inputs
114 (Ghobadi and Kang, 2022). However, the potential of spatial attention as an explainable tool for
115 understanding watershed dynamics has yet to be explored.

116 This study aims to present an explainable deep learning-based spatially distributed
117 hydrologic modeling approach tailored for snow-dominated karst watersheds, while also holding
118 promises for non-karstic counterparts. The modeling approach is demonstrated using the Logan
119 River watershed on the Utah-Idaho border. Through a multi-scale experiment, we train an
120 integrated ConvLSTM and spatial attention (ConvLSTM-SA) model with streamflow at
121 watershed outlet and use it to predict discharge from subwatersheds. We further assess the
122 capability of such a model to identify physically sensible recharge-discharge pathways within the
123 watershed, by comparing results from interpretative analysis with hydrogeochemical analyses
124 performed in the study watershed. We show that the spatial attention is suitable for learning karst
125 subsurface connectivity occurring over long distances, making ConvLSTM-SA well adept at
126 learning spatiotemporal hydrologic dynamics and potentially extendable to non-karstic
127 watersheds. In addition, the modeling approach can serve as a screening tool to identify
128 recharge-discharge pathways.

129 **2 Study Area and Data**

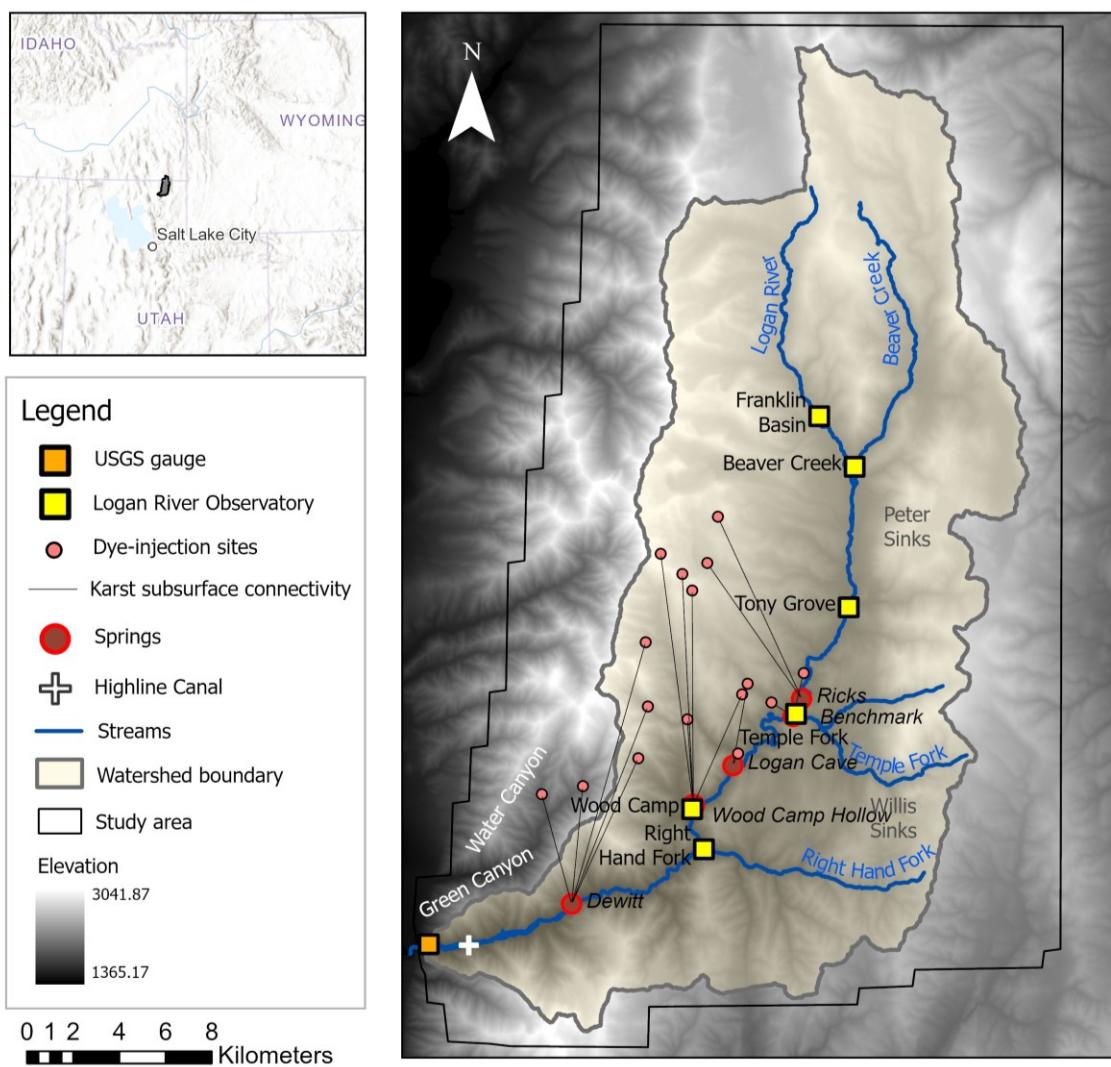
130 This study focuses on the canyon region of the Logan River watershed situated in the
131 Bear River mountain range and spanning across northeastern Utah and headwaters in

132 southeastern Idaho, USA (Fig. 1). Covering an expanse of 552 km², the study area is
133 predominantly covered by natural land (forest, rangeland) with minimal development, and
134 through most of the study area, the Logan River is free flowing with no diversions. Over the
135 study period (1980-2022), the area experienced an average basin precipitation of approximately
136 822 mm, mostly occurring as snowfall during the winter and early spring. The watershed is
137 underlain by variably karstified carbonate formations, with the Ordovician Garden City
138 Formation and Silurian Laketown and Fish Haven dolomites as primary hosts for karst aquifer
139 development (Dover, 1995; Evans et al., 1996). Stratigraphically between the Garden City
140 Formation and Fish Haven Dolomite lies the Ordovician Swan Peak Formation, hosting shales
141 and orthoquartzites, which acts as an important aquitard influencing groundwater movement.
142 Groundwater movement is also strongly influenced by the structural geology, which is
143 dominated by the southward plunging Logan Peak syncline as well as other parallel folds and
144 numerous faults (Dover, 1995; Evans and Oaks, 1996). Rainfall and snowmelt recharge occur
145 through sinkholes, seepage along losing reaches, and diffuse infiltration into ridge slopes
146 (Spangler, 2001). Karst aquifer discharge occurs through major and minor springs within the
147 watershed, as well as direct to gaining reaches of the Logan River (Neilson et al., 2018; Lachmar
148 et al., 2021). The river primarily flows from the north and east to the south and west of the
149 watershed. However, the presence of developed karst conduits and sinkholes introduces
150 complexity to subsurface water flow direction. Previous tracer studies carried out in the western
151 portion of the watershed suggests karst piracy contributing to flow paths across topographic
152 watershed boundaries (Spangler, 2001, 2011). To accommodate this complexity, our study area
153 extends beyond the topographically delineated watershed boundary (Fig. 1).

154 Streamflow records are obtained from USGS station 10109000 located at the watershed

155 outlet (Fig. 1) and aggregated to daily time scale. Upstream of the USGS station, water is
 156 diverted for agricultural and municipal water uses via the Highline Canal and Dewitt Springs
 157 (Fig. 1). Daily diversion rates through the Highline Canal were acquired from USGS station
 158 10108400. Diversion rates at Dewitt Springs were obtained from Logan City at a monthly
 159 resolution before 2020 and daily resolution since 2020. The diversion rates (monthly rates were
 160 evenly distributed to daily) were added to observed streamflow at station 10109000 to derive
 161 target data for training and validation of the deep learning model.

162



163

164 *Figure 1. The Logan River watershed and its location (inset). Karst subsurface connectivity*
165 *identified from previous tracer studies (Spangler, 2001, 2011) are shown by lines connecting*
166 *dye-injection sites (small orange dots) and springs (large red dots). Squares show locations of*
167 *streamflow gages operated by USGS (orange) and Logan River Observatory (LRO, yellow).*

168 Snow accumulation and melt within the study area were simulated using the Utah Energy
169 Balance (UEB) snow model based on mass and energy balances of on-land and canopy-
170 intercepted snowpack (Mahat and Tarboton, 2012; Tarboton and Luce, 1996). We ran the UEB
171 model using parameters described in Tyson et al. (2023) at 100 m spatial resolution and 2-hour
172 time steps during Water Year (WY) 1981-2022. A fine spatial resolution is used to capture the
173 spatial heterogeneity in snow accumulation and ablation processes in a mountainous terrain. The
174 UEB model was driven by downscaled (Xu et al., 2022; Tyson et al., 2023) North American
175 Land Data Assimilation System (NLDAS-2) Forcing dataset (Xia et al., 2012). Substantial
176 underestimation bias was found for almost all years when comparing downscaled precipitation
177 with observations at SNOTEL (SNOWpack TELEmetry) stations, while temperature did not
178 exhibit consistent bias patterns across years. Therefore, bias correction was applied to
179 precipitation only (Xu et al., 2022; Tyson et al., 2023). Simulated snowmelt plus rainfall rates
180 were then aggregated to 1.6 km-by-1.6 km resolution and daily time steps to be fed into the deep
181 learning model. Our previous results found that this procedure was able to capture the spatial
182 variability in snowmelt timing and rates within a 1.6 km-by-1.6 km grid, which is important for a
183 karst watershed, at a reasonable computational expense (Xu et al., 2022).

184 Discharge data for Logan River Observatory (LRO) stream gages (Fig. 1) at Franklin
185 Basin, Beaver Creek, Tony Grove, Temple Fork, Wood Camp Bridge, and Right Hand Fork
186 were resampled from 15-minute to mean daily values (Logan River Observatory, 2024c, 2024a,

187 2024d, 2024f, 2024b, 2024e). The Tony Grove station has the longest period of discharge
 188 records since May 30, 2014, while other stations were installed later and have varying lengths of
 189 record. Gaps are present in the winter observations at these gages due to ice damming at the
 190 gaged cross sections, which prevents accurate reporting of streamflow.

191 **3 Methods**

192 **3.1 Convolutional Long Short-Term Memory**

193 The key idea of ConvLSTM is to replace the fully connected input-to-state and state-to-
 194 state transitions in classical LSTM (Hochreiter and Schmidhuber, 1997) with convolutional
 195 layers (Shi et al., 2015). This enables ConvLSTM to model dynamics that contain spatial
 196 structures. Formally, one layer of ConvLSTM can be written as:

$$197 \quad i_t = \sigma(W_{xi} * X_t + W_{hi} * h_{t-1} + b_i)$$

$$198 \quad f_t = \sigma(W_{xf} * X_t + W_{hf} * h_{t-1} + b_f)$$

$$199 \quad g_t = \tanh (W_{xg} * X_t + W_{hg} * h_{t-1} + b_g) \quad (1)$$

$$200 \quad o_t = \sigma(W_{xo} * X_t + W_{ho} * h_{t-1} + b_o)$$

$$201 \quad c_t = f_t \odot C_{t-1} + i_t \odot g_t$$

$$202 \quad h_t = o_t \odot \tanh (C_t)$$

203 In Eqn. (1), $X_t \in \mathbb{R}^{H \times W}$ denotes the input on time step t , $C_t, H_t \in \mathbb{R}^{C \times H \times W}$ denote cell memory
 204 and hidden state, where $H \times W$ is the spatial dimension of the study area represented by grids
 205 and C is number of channels. The hidden state and cell memory are dynamically updated

206 according to the input (i_t), forget (f_t), and output (o_t) gates with
 207 $W_{xi}, W_{hi}, W_{xf}, W_{hf}, W_{xg}, W_{hg}, W_{xo}, W_{ho}, b_i, b_f, b_g, b_o$ as learnable parameters. Convolutional
 208 operations are denoted as $*$, and element-wise multiplication is denoted as \odot . Given the
 209 relatively low amount of data from one watershed, we constrained the model complexity by
 210 using only one layer of ConvLSTM with hidden state dimension set to 20. Convolution
 211 operations are performed using 3×3 kernels and padding. In the baseline ConvLSTM-FC
 212 model, the hidden state and cell memory from the ConvLSTM layer pass through a fully
 213 connected (FC) layer, the weights and biases of which are all learnable parameters (Fig. 2a).

214 3.2 Spatial Attention Mechanism

215 We develop a ConvLSTM-SA model that combines the ConvLSTM architecture with
 216 spatial attention mechanism (Fig. 2b). Same as the ConvLSTM-FC model, the ConvLSTM-SA
 217 model has a single layer of ConvLSTM cells with 20 channels. Instead of a FC layer,
 218 ConvLSTM hidden state is processed by a spatial attention layer implemented as a modification
 219 from the Convolutional Block Attention Module (CBAM, Woo et al., 2018). CBAM was
 220 designed as an add-on module to CNNs to enhance their representation power. Let $F \in \mathbb{R}^{C \times H \times W}$
 221 denote the feature map (i.e., output) generated by CNN, with C channels on a $H \times W$ grid, the
 222 spatial attention submodule of CBAM can be thought of as a postprocessor on F (Woo et al.,
 223 2018):

$$224 \quad F' = M_s(F) \odot F, \quad (2)$$

225 where $F' \in \mathbb{R}^{C \times H \times W}$ is the feature map after CBAM processing, $M_s \in \mathbb{R}^{H \times W}$ is the spatial
 226 attention map, and \odot denotes element-wise multiplication with M_s broadcasted along channels.

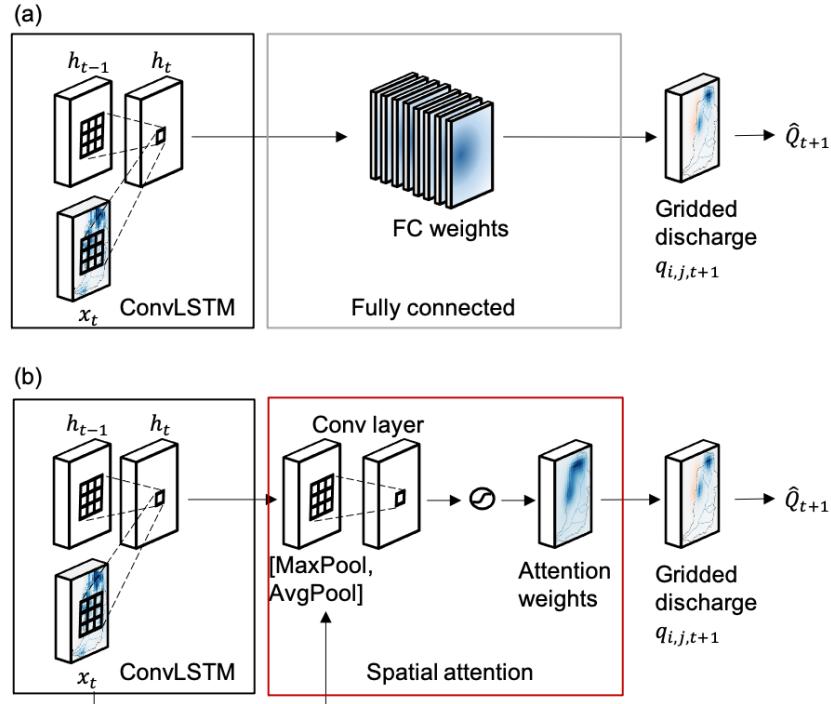
227 The feature map can be a concatenation of the input, cell memory, and hidden state calculated by
 228 ConvLSTM (Fig. 2), i.e., $F = [X_t; C_t; H_t]$. The spatial attention map specifies “where” (within
 229 the $H \times W$ grids) to amplify or suppress and is calculated by:

230
$$M_s(F) = \sigma(f^{7 \times 7}([AvgPool(F); MaxPool(F)])), \quad (3)$$

231 where σ is the sigmoid function, $f^{7 \times 7}$ represents a convolutional layer with a 7×7 filter for
 232 each channel, and *AvgPool* and *MaxPool* denote average and max, respectively, pooling
 233 operation of the feature map F across the channels.

234 In this study, two modifications were made to the original spatial attention mechanism as
 235 implemented in CBAM. First, we replaced the sigmoid function in Eqn. (3) with softmax
 236 function. This change ensures that the attention weights are always positive, and the sum of all
 237 weights across the entire space equals 1, providing a more physically meaningful interpretation.
 238 Essentially, this allows the original hidden state H_t to be spatially adjusted according to the
 239 attention map. Second, the spatial attention matrix was only applied to H_t , hidden state of the
 240 ConvLSTM layer:

241
$$H'_t = softmax(f^{7 \times 7}([AvgPool(F); MaxPool(F)])) \odot H_t. \quad (4)$$



242

243 *Figure 2. (a) In the baseline ConvLSTM-FC model, the hidden state from ConvLSTM layer*
 244 *passes through a fully connected (FC) layer before being aggregated to predict discharge at*
 245 *watershed outlet; (b) In the new ConvLSTM-SA model, the hidden state from the ConvLSTM*
 246 *layer passes through a spatial attention (SA) layer before aggregation.*

247 3.3 A Deep Learning Approach to Spatially Distributed Hydrologic Modeling

248 The distributed hydrologic modeling is formulated as a sequence-to-sequence learning
 249 task. Let $X_t \in \mathbb{R}^{H \times W}$ denote the spatial distribution of snowmelt plus rainfall (simulated by
 250 UEB) over a spatial raster with a dimension of $H \times W$ at day t , and y_t denote streamflow of the
 251 following day, the task is to predict discharge (at the watershed outlet or another location along
 252 the main stem of river or its tributaries) sequence $Q = \{Q_2, Q_3 \dots, Q_{t+1}\}$, given the snowmelt plus
 253 rainfall sequence $\mathcal{X} = \{X_1, X_2, \dots, X_t\}$. The task is completed in two steps. First, the ConvLSTM-
 254 SA model calculates discharge for every grid in the model domain. More specifically, H_t , the

255 hidden state of the ConvLSTM layer (Eqn. 1), is processed by spatial attention layer (Eqn. 4),
256 and then aggregated across the channels to calculate grid-wise discharge, denoted as $q_{i,j}, i =$
257 $1, \dots, H, j = 1, \dots, W$. The baseline ConvLSTM-FC model calculates grid-wise discharge
258 similarly, except replacing SA with a FC layer. For both models, the grid-wise discharge is
259 defined as the combined surface runoff and subsurface lateral flow (via karst conduit and/or
260 matrix) contributed by each grid to streamflow discharge on any specific time step.

261 In the second step, to calculate discharge at a specified location, discharge from grids
262 within contributing area are aggregated (summed) (Fig. 3). This process is designed to mimic a
263 fully distributed hydrologic model. For a physically based model, gridded runoff is often routed
264 along a river network delineated based on topography to gaging stations along the main stem
265 river and tributaries to be comparable to observed streamflow at the gaging stations. However, in
266 this study we chose not to perform explicit routing due to unknown subsurface connectivity. By
267 doing so, we assume that the LSTM component in ConvLSTM-FC and ConvLSTM-SA models
268 already capture the lag between recharge and discharge to stream, and so grid-wise discharge
269 calculated by ConvLSTM-FC or ConvLSTM-SA represents the volume of water that would have
270 reached the stream outlet, even though it originated from a grid at an earlier time.

271 For non-karst watersheds, contributing areas (watersheds and subwatersheds) are
272 typically delineated based on topography. In karst watersheds, however, subsurface connection
273 may result in “karst piracy”, where some groundwater flowpaths cross the surface topographic
274 divides (White, 2002). At the watershed scale, the model domain is extended from the
275 topographically delineated watershed boundary to account for known karst piracy identified from
276 previous tracer studies (Spangler, 2001, 2011; Fig. 1). The ConvLSTM-FC and ConvLSTM-SA
277 models sum up discharge from all active model grids to compute discharge at the watershed

278 outlet (USGS gage 10109000). This “watershed-scale” model is trained using data during WY
 279 1981–2007 and tested for WY 2008–2022. The training configuration is detailed in Text S1,
 280 Supporting Information. The trained watershed-scale model computes $q_{i,j,t}$, grid-wise discharge
 281 at time step t , which are passed on to the subwatershed scale module.

282 At the subwatershed scale, subsurface connections may transfer water between adjacent
 283 subbasins. Therefore, we implemented two methods for aggregating ConvLSTM-FC or
 284 ConvLSTM-SA grid-wise discharge at the subwatershed scale. The first method creates a binary
 285 (0 and 1) mask based on topographically delineated boundary for each subwatershed; the binary
 286 masks for all subwatersheds are non-overlapping and collectively cover the entire Logan River
 287 watershed. We then use the binary masks to crop grid-wise discharge:

$$288 \quad \hat{Q}_{k,t} = \sum_{i,j \in \Omega_k} q_{i,j,t}$$

289 where $\hat{Q}_{k,t}$ denotes computed discharge for subwatershed k at time step t , Ω_k is topographically
 290 delineated spatial extent of this subwatershed, and $q_{i,j,t}$ is ConvLSTM-FC or ConvLSTM-SA
 291 discharge for ij -th grid at time step t . We expect this method to perform well for non-karst
 292 watersheds, but will likely over- or under-estimate for a subwatershed, depending on whether it
 293 imports or exports water to neighbors. Therefore, the second method aims to inversely estimate
 294 contributing area by adding a fully-connected (FC) layer to calculate discharge for subwatershed
 295 k based on grid-wise discharge:

$$296 \quad \hat{Q}_{k,t} = \sum_{i,j} w_{i,j,k} q_{i,j,t},$$

297 where $w_{i,j,k}, i = 1, \dots, H, j = 1, \dots, W$ are coefficients estimated using non-negative ridge
 298 regression. Let $Q_{k,t}$ denote observed discharge at time step t , we estimate $\mathbf{w}_k =$
 299 $\begin{bmatrix} w_{1,1,k}, w_{1,2,k}, \dots, w_{i,j,k}, \dots, w_{H,W,k} \end{bmatrix}^T$ as

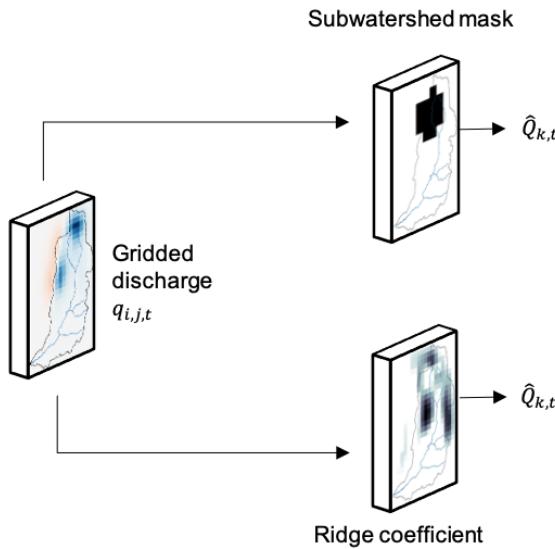
300
$$\operatorname{argmin}_{\mathbf{w}_k} \left[\sum_t (Q_{k,t} - \hat{Q}_{k,t})^2 + \alpha \|\mathbf{w}_k\|_2 \right],$$

301 subject to $w_{i,j,k} \geq 0, \forall i, j$.

302 In the above equation, α is a hyperparameter that controls the tradeoff between model
 303 goodness-of-fit to data and model complexity as represented by the L_2 regularization (also
 304 known as weight decay in machine learning context) term. The use of L_2 regularization mitigates
 305 collinearity issue (Hastie et al., 2009). In this study, collinearity exists between grid-wise
 306 discharge time series, because snowmelt plus rain time series of grids that are nearby or have
 307 similar meteorological forcing, topography, and vegetation cover are likely correlated. When
 308 discharge time series are highly correlated between two or more grids, Ridge regression tends to
 309 give similar coefficients to these time series. In contrast, Lasso, another commonly used
 310 regularized linear regression method, imposes L_1 regularization and tends to assign a high
 311 coefficient to one of the grids while zero to other grids with correlated time series; which one to
 312 receive nonzero coefficient is prone to uncertainties induced by the optimization algorithm and
 313 noise in data (Hastie et al., 2009; Zou and Hastie, 2005). Ridge regression is selected in this
 314 study to avoid false negatives, i.e., assigning a zero weight to a grid that may be contributing to
 315 discharge for a subwatershed.

316 The non-negative Ridge regression problem is solved using a python implementation

317 (Allen Institute, 2021) of the L-BFGS-B solver (Byrd et al., 1995; Zhu et al., 1997). To
 318 determine optimal hyperparameter α , we performed Ridge regression using α ranging from
 319 0.001 to 0.5. For each value of α , regression coefficients are estimated using observed discharge
 320 at LRO gage stations (Fig. 1) during WY 2019-2022. We used data during WY 2019-2022 for
 321 training because discharge records are relatively complete during this period except gaps due to
 322 ice damming. The value of α that yielded the lowest mean square error in WY 2018 was selected
 323 as the optimal value. The performance of the final model was assessed using observed discharge
 324 during a test period of WY 2014-2017. During this test period, discharge record length varies
 325 among the LRO stations (section 2).



326

327 *Figure 3. For a given subwatershed k , grid-wise discharge ($q_{i,j,t}$) computed by the ConvLSTM-
 328 SA model is element-wise multiplied with a binary mask based on topographic delineation (top),
 329 or coefficients determined by Ridge regression (bottom), before aggregating to calculate
 330 discharge $\hat{Q}_{k,t}$.*

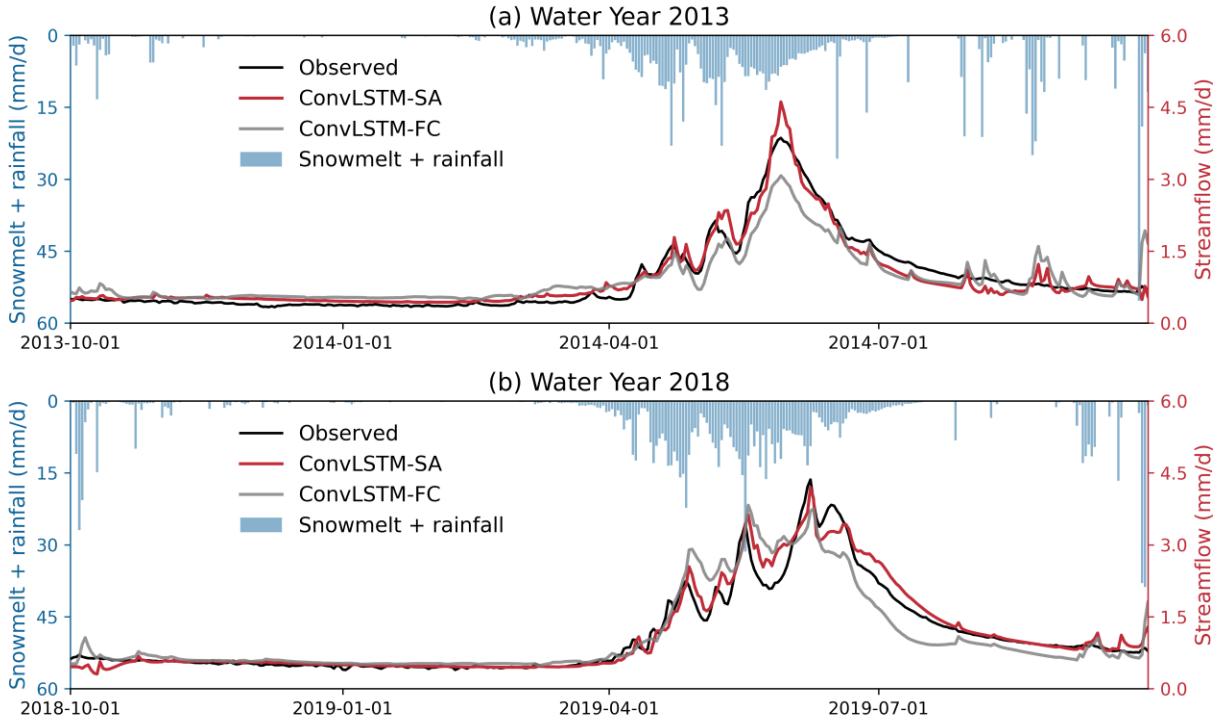
331 **4 Results and Discussion**

332 4.1 Simulating Discharge at Watershed Outlet

333 The performance of ConvLSTM-FC and ConvLSTM-SA models are assessed using four
 334 metrics (Table 1): percent bias (PBIAS, Gupta et al., 1999), root-mean-square error (RMSE),
 335 Nash-Sutcliff efficiency (NSE) and Kling-Gupta efficiency (KGE, Gupta et al., 2009). Compared
 336 to FC baseline, the spatial attention module improved test accuracy for all performance metrics.
 337 In addition, ConvLSTM-SA predicted hydrograph fit the observations better than FC baseline
 338 (Fig. 4). During the test period (WY2008-2022), ConvLSTM-SA achieved a KGE of 0.92, 0.96,
 339 and 0.60, respectively, during runoff (Mar. – Jun.), recession (Jul. – Oct.), and low flow (Nov. –
 340 Feb.) periods. The KGEs were all higher than KGE yielded by ConvLSTM-FC (0.86, 0.78,
 341 0.21). Given the importance of streamflow during the recession and low flow periods for local
 342 agricultural and municipal water supply, the substantial accuracy improvement from using
 343 spatial attention is promising.

344 Table 1. Performance Metrics of the ConvLSTM-SA and ConvLSTM-FC Models at the
 345 Watershed Scale During Training and Test Periods. PBIAS: percent bias; RMSE: root-mean-
 346 square error; NSE: Nash-Sutcliff efficiency; KGE: Kling-Gupta efficiency.

Model	Train / Calibrate (1981-2007)				Test (2008-2022)			
	PBIAS	RMSE	NSE	KGE	PBIAS	RMSE	NSE	KGE
	(%)	(mm/day)			(%)	(mm/day)		
ConvLSTM-FC	0.609	0.357	0.900	0.914	2.831	0.352	0.869	0.866
ConvLSTM-SA	-3.201	0.337	0.911	0.931	0.199	0.290	0.911	0.945



348

349 *Figure 4. Spatially averaged snow plus rainfall simulated by UEB (left axes), and observed and*
 350 *simulated streamflow of ConvLSTM-SA and ConvLSTM-FC models (right axes) for a normal (a)*
 351 *and a wet (b) year. Hydrograph of the entire test period (WY2008-2022) is shown in Fig. S1,*
 352 *Supporting Information.*

353 4.2 Simulating Discharge at Subwatershed Scales

354 At subwatershed scales, aggregating grid-wise discharge using binary masks tends to
 355 produce systematic error especially for tributaries (Table 2, Fig. 5). It also tends to yield small
 356 discharge peaks occurring in late summer (August through early October). Such peaks are
 357 learned from streamflow at the watershed outlet and are induced by summer storms. This may
 358 indicate difficulties in “deconvoluting” grid-wise discharge when recharge from rainfall does not
 359 show as much spatial variability as recharge from snowmelt. The binary mask method assumes
 360 that grids (and only these grids) within the topographic subwatershed boundary that have

361 contributed to discharge at the watershed outlet for a given day would contribute to discharge of
362 this subwatershed on the same day. Thus, the difference between observed and binary mask-
363 estimated discharge suggests the overall importing/exporting status of a subwatershed. For
364 example, the binary mask method overestimated Beaver Creek discharge by over 300%, while
365 underestimating Temple Fork discharge (Table 2, Fig. 5). This is consistent with findings from
366 previous tracer studies showing karst conduit connections between large, closed basins within
367 the Beaver Creek subwatershed to adjacent watersheds to the northwest and northeast (Figure S5,
368 Supporting Information). Large overestimation bias is found in Logan River discharge at the
369 Tony Grove station as the bias from Beaver Creek accumulated. The water exporting condition is
370 also supported by tracer studies which revealed recharge-discharge pathways from high elevation
371 areas to downstream springs (Ricks and Wood Camp Hollow, Fig. 1, Spangler, 2001; 2011);
372 these springs contribute to a substantial portion of Logan River streamflow (Wilson, 1976).
373 Further downstream at Wood Camp Bridge, the overestimation bias is reduced as the
374 subwatershed area encompasses springs recharged in high elevation areas, as well as Temple
375 Fork, that imports water from areas outside of the Logan River watershed (Figure S5, Supporting
376 Information).

377 Despite the inability of the mask method to account for inter-basin karst connections,
378 results suggest that ConvLSTM-SA with binary masks can be a promising approach to spatially
379 distributed hydrologic modeling for non-karstic watersheds. For those watersheds, we anticipate
380 that once trained using a downstream gage with sufficiently long streamflow records, the
381 ConvLSTM-SA with binary masks may be able to predict streamflow at ungaged upstream
382 locations reasonably well without the need for recalibration, especially for mesoscale
383 watersheds. However, the accuracy of the binary mask method may deteriorate as watershed area

384 increases and the timing and shape of hydrograph substantially differ among subwatersheds. In
 385 such cases, it is anticipated that the deep learning model would need more training data covering
 386 a longer period to learn the “deconvoluted” grid-wise discharge using streamflow at outlet alone.

387 Table 2. Performance Metrics of the ConvLSTM-SA Model for Subwatersheds During
 388 WY2014-2018 (test period) Using Binary Mask and Ridge Regression Methods.

Subwatershed	Mask				Ridge Regression			
	PBIAS	RMSE	NSE	KGE	PBIAS	RMSE	NSE	KGE
	(%)	(mm/day)			(%)	(mm/day)		
LR Franklin Basin	69.421	0.176	0.460	0.219	-1.660	0.090	0.860	0.921
Beaver Creek	-337.288	0.422	-16.861	-3.412	32.956	0.073	0.462	0.409
LR Tony Grove	-26.923	0.351	0.346	0.377	14.619	0.178	0.831	0.709
Temple Fork	39.389	0.073	0.023	0.383	10.960	0.045	0.628	0.782
LR Wood Camp Bridge	34.925	0.868	0.180	0.498	29.660	0.814	0.279	0.558
Right Hand Fork	-9.586	0.085	0.154	0.355	25.033	0.078	0.288	0.291

389 On the other hand, Ridge regression substantially improved discharge simulation
 390 accuracy across four metrics for five watersheds and improving RMSE, NSE while deteriorating
 391 PBIAS and KGE for Right Hand Fork (Table 2). The metrics for Right Hand Fork may be biased
 392 due to limited availability of discharge records during the test period (<1 year). Overall, the
 393 estimated discharge appears to match well with observed hydrograph during test period for all
 394 subwatersheds. One exception was found in 2017, during which time the model underestimated a
 395 series of streamflow spikes in early spring (Fig. 5) likely induced by snowmelt events not

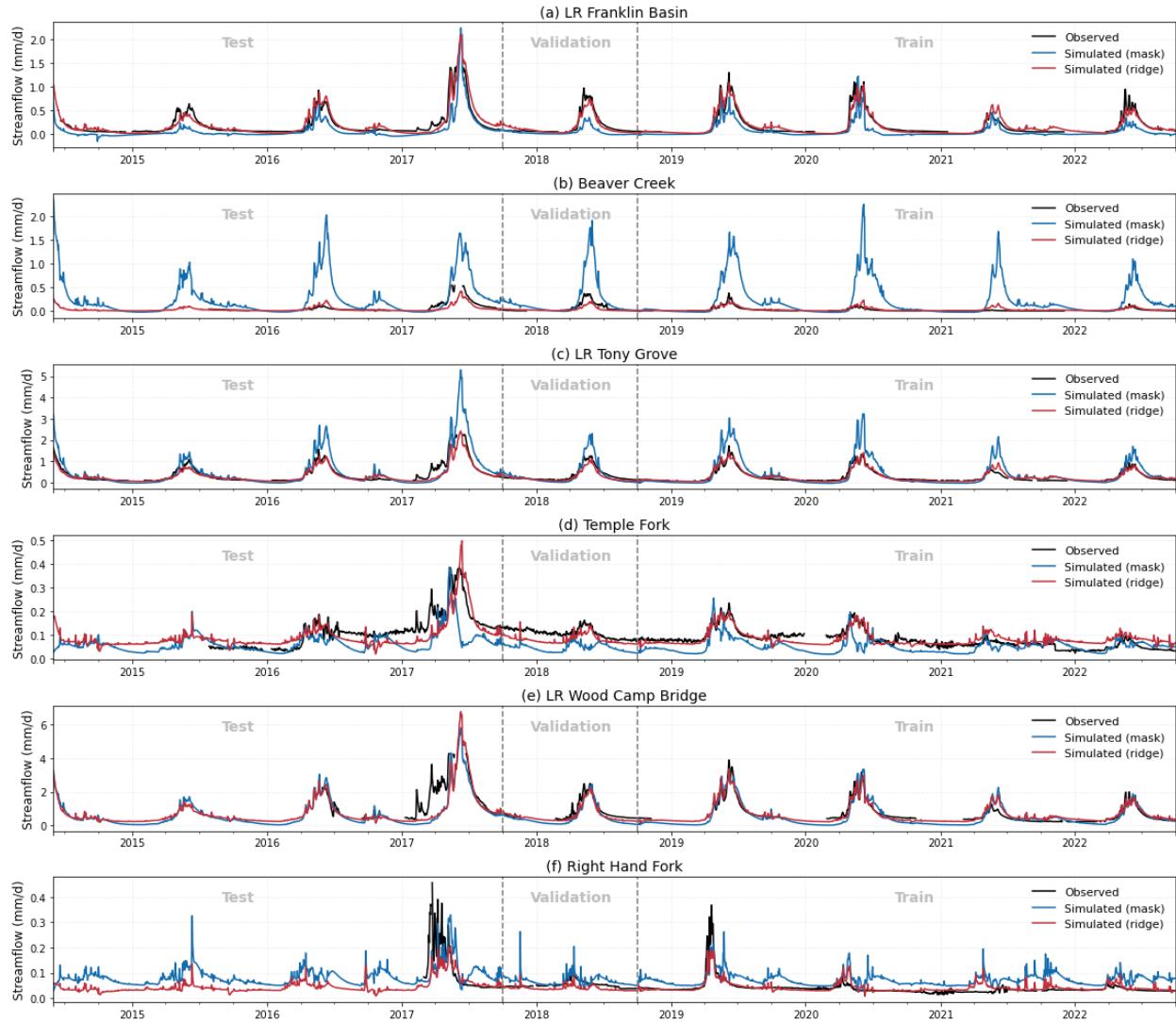
396 captured by the UEB model. In this year, a low bias was found in downscaled NLDAS
397 temperature, leading to subzero temperature at high elevation areas, while SNOTEL stations
398 within those areas recorded above zero temperature averaged in March and April. Therefore, the
399 UEB model substantially underestimated snowmelt rates in March and April. Given that only
400 four years of data were used for calibration and that the test period contains a larger range of
401 hydrologic conditions, the high accuracy observed here suggests ConvLSTM-SA and Ridge
402 regression to be an effective distributed hydrologic modeling approach for karst watersheds with
403 long-range subsurface connectivity.

404 4.3 Interpretative Analyses

405 4.3.1 *Spatial attention map*

406 Tracking ConvLSTM cell memory and attention map change in time provides
407 information about watershed dynamics in different parts of water-year hydrograph. Specifically,
408 we focus on three snapshots during low flow, spring runoff, and recession periods averaged over
409 WY 1980-2022 (Fig. 6). For the study area, the lowest streamflow occurs around February 1 of
410 each year. At this time, snow is being accumulated for most of the watershed with scattered
411 snowmelt/rain at lower elevations. Around Jun. 1, snowmelt drives streamflow to peak. By
412 October 1, the snowpack has completely melted, and streamflow is sustained by groundwater,
413 with a majority from karst conduit sources (Neilson et al., 2018).

414



415

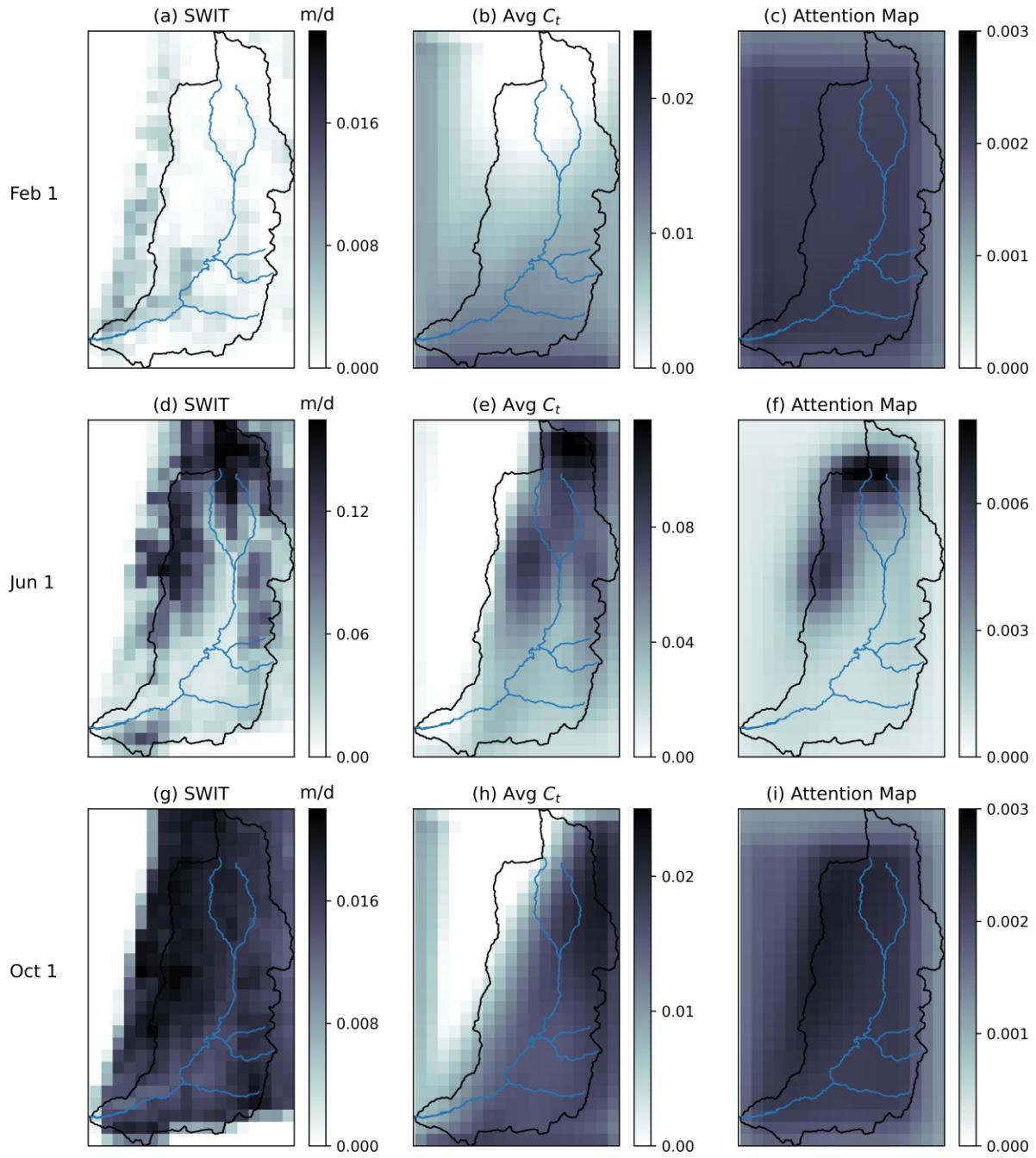
416 *Figure 5. Observed and model estimated discharge at LRO stations along the main stem*
 417 *(Franklin Basin, Tony Grove, Wood Camp Bridge) and tributaries (Beaver Creek, Temple Fork,*
 418 *Right Hand Fork). Locations of stations are shown in Fig. 1. Discharge is aggregated using*
 419 *binary subwatershed masks (blue) and Ridge regression coefficients (red), respectively. Data*
 420 *gaps exist in observations due to differences in sensor deployment, sensor malfunction and icing*
 421 *events.*

422

423 The cell memory of the trained ConvLSTM-SA model captures the temporal trend of
424 water storage, which is the highest during peak flow and lower during recession and low flow
425 periods (Fig. 6b,e,h). Meanwhile, spatial attention weights, dependent on snowmelt plus rainfall
426 (SWIT) and cell memory, reveal discharge-generating areas and how these areas change
427 dynamically (Fig. 6c,f,i). During low flow periods, uniform weights are observed, likely because
428 scattered snowmelt is not sufficient to replenish depleted watershed storage and generate
429 discharge. During spring runoff, on the other hand, high elevation snowmelt and rainfall recharge
430 the bulk of the watershed storage, making these areas responsible for generating most of the
431 discharge. Despite high input (snowmelt plus rain) and high cell memory, the model learned low
432 attention weights for areas to the east of the confluence of the Logan River and Beaver Creek.
433 Although the subwatersheds in this area are topographically part of the Logan River basin, this
434 area has extensive karst terrain, including Peter Sinks, which has been documented as
435 discharging towards Bear Lake to the north of the study watershed (Figure S5, Supporting
436 Information). During the recession period, snowmelt plus rain and watershed storage exhibit
437 different spatial patterns that together shape the spatial attention weight, which is high along the
438 mountain ridges west of Logan River. In these areas, numerous faults and sinkholes have been
439 found (Dover, 1995; Bahr, 2016), facilitating concentrated recharge and fast conduit flow
440 discharging to springs along the Logan River (Fig. 1).

441 The consistency between the learned attention weights and local hydrogeologic
442 information suggests the utility of the spatial attention mechanism for improving interpretability
443 of deep learning models when sufficient data is available for training these models. Unlike ad
444 hoc methods, including sensitivities (e.g., Anderson and Radić, 2022), that interpret already-
445 trained deep learning models, the spatial attention module is learnable and trained

446 simultaneously with other components of the deep learning model. In addition, the spatial
447 attention module can be customized to constrain the learned behavior. For example, Eqn. (4)
448 uses the softmax function to ensure that the attention weights are positive, which also helps to
449 constrain other learnable parameters. This led to more physically reasonable results than
450 perturbation-based sensitivity analyses on a model without such constraints, which produced
451 negative sensitivities of streamflow to snowmelt in our previous study (Xu et al., 2022). In this
452 study, we inserted the spatial attention module to process hidden state. The module could also be
453 inserted in other places within the deep neural network architecture (e.g., after the inputs), to add
454 interpretability to desired places. However, adding the attention module at multiple places may
455 increase data volume required to properly train the model.



456

457 *Figure 6. Multi-year average snowmelt plus rainfall (SWIT) simulated by UEB (a,d,g),*
 458 *ConvLSTM cell memory (C_t) averaged across channels (b,e,h), and spatial attention weights*
 459 *(c,f,i), on Feb. 1 (a,b,c), Jun. 1 (d,e,f), and Oct. 1 (g,h,i) of every year between WY1980-2022.*
 460 *Colorbar ranges differ among panels to adapt to large differences among variables shown.*

461 *4.3.2 Ridge regression coefficient map*

462 In addition to accurately simulating subwatershed discharge, we found that Ridge
463 regression coefficients suggest recharge-discharge pathways across subwatershed boundaries,
464 although they may be affected by similarities between grid-wise discharge time series at different
465 grids. To visualize such similarity, we performed principal component analysis (PCA) on a
466 $WH \times T$ matrix, where W, H are the spatial dimensions and T is number of time steps, which is
467 the same as the length of streamflow records. Each line of the matrix corresponds to discharge
468 time series of one grid. The leading three principal components (PCs) accounted for 74% of total
469 variance (Fig. S2, Supporting Information). Next, a pseudo color image was generated for each
470 gaging station (Fig. 7), such that the red, green, and blue bands of each grid are given by the
471 contribution to discharge of this grid from the three leading PCs (Fig. S3, Supporting
472 Information). Therefore, two grids having similar colors suggests they have similar grid-wise
473 discharge time series, likely resulting from similar topography and climate. In the meantime, the
474 degree of saturation (i.e., intensity) of any color in a grid in Fig. 7 is proportional to ridge
475 regression weights of this grid, which quantifies its contribution to a given gaging station (Fig.
476 S4, Supporting Information). Therefore, bright colors show a higher contribution than muted
477 colors.

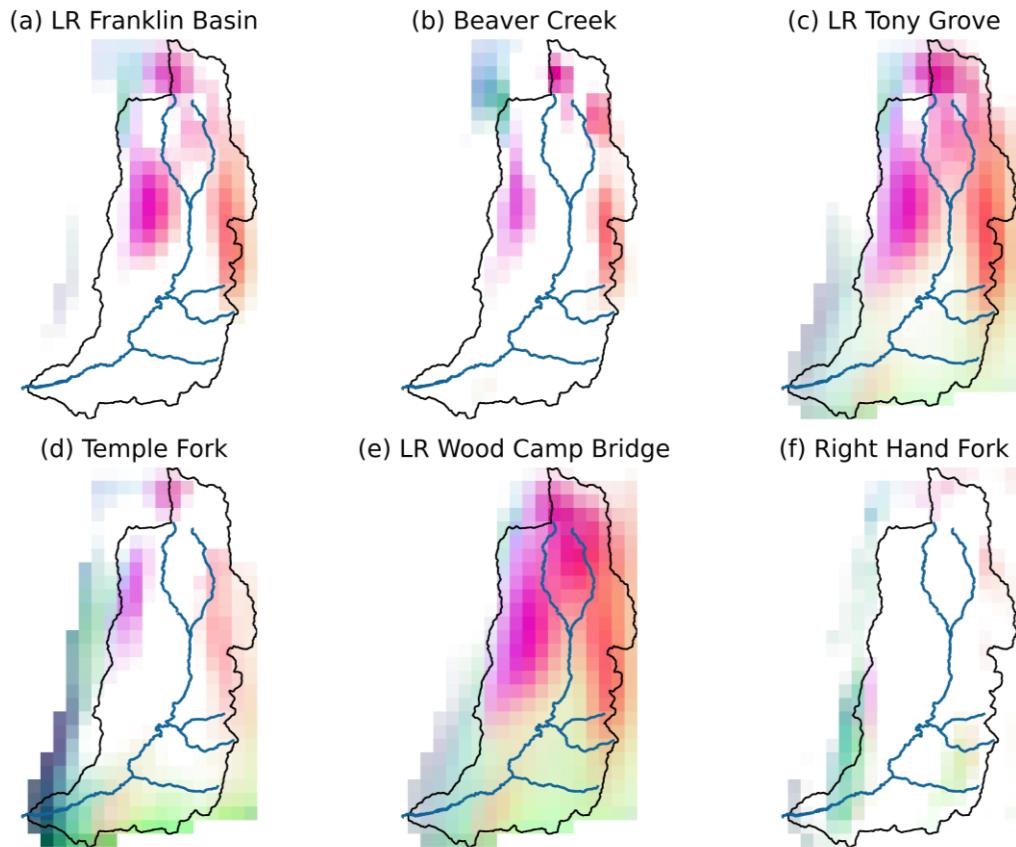
478 A grid is expected to receive a higher weight when it is contributing to discharge
479 corresponding to a subwatershed gaging station, but not vice versa, because Ridge regression
480 tends to give similar coefficients to grids with correlated discharge time series (section 3.3). This
481 behavior is more suitable than regularization techniques that enforce sparsity such as Lasso.
482 Because actual subsurface connectivity would be unknown without detailed tracer studies, we
483 would like to identify all areas that could be contributing to subwatershed discharge to the degree

484 supported by data without missing potential contributing areas.

485 The Ridge regression weights of almost all grids are below 1 (Fig. S2, Supporting
486 Information), which is physically reasonable. The three nested subwatersheds corresponding to
487 main stem LRO stations show increasing weights from headwater to downstream stations. The
488 tributary subwatersheds produced much lower streamflow than the main stem and thus receive
489 smaller regression coefficients. Similar spatial patterns were found between Ridge coefficients of
490 Logan River (LR) - Franklin Basin (Fig. 7a) and Beaver Creek (Fig. 7b). Hydrogeochemical data
491 suggests a small portion of Franklin Basin discharge originates from Beaver Creek (Ashmead et
492 al., 2023). However, a similarity is noticeable between grid-wise discharge time series of grids
493 receiving high regression coefficients for the two subwatersheds, suggesting that at least some of
494 the high weights may be a false positive. For Temple Fork and Right Hand Fork, the method
495 assigns moderate coefficients to headwaters of the two subwatersheds, but also picks up areas
496 west of the river and south of the study area, which are likely to be false positives due to
497 collinearity. However, high coefficients assigned to the east bank from Beaver Creek to Temple
498 Fork coincide with the Temple Ridge Fault and may suggest subsurface connectivity given the
499 highly karstified terrain in that area (Dover, 1995).

500 The above results underscore the potential of our modeling approach (ConvLSTM-SA
501 complemented by Ridge regression and PCA) to serve as a screening tool for possible
502 contributing areas that do not follow topographic subbasin boundaries or a method for
503 anticipating locations of karst piracy. For areas with distinct grid-wise discharge signatures, as
504 revealed by PCA, a high Ridge regression weight is a relatively strong indicator of contributing
505 area, while false positives are possible for areas with correlated grid-wise discharge signature.
506 Based on the screening results, field campaign and tracer studies can be designed to collect data

507 to rule out false positives and establish true recharge-discharge pathways.



508

509 *Figure 7. Pseudo color rendering of Ridge regression coefficients estimated using discharge at*
 510 *LRO stations along the main stem (Franklin Basin, Tony Grove, Wood Camp Bridge) and*
 511 *tributaries (Beaver Creek, Temple Fork, Right Hand Fork). Locations of stations are shown in*
 512 *Fig. 1. Regression weights are shown in Fig. S2, and pseudo color is determined by principal*
 513 *component analysis (Fig. S3, Supporting Information).*

514 **5 Conclusions**

515 This study developed an explainable, spatially distributed, deep learning-based approach
 516 to hydrologic modeling in a snow-dominated mountainous karst watershed, leveraging the power
 517 of Convolutional Long Short-Term Memory (ConvLSTM) integrated with a spatial attention

518 mechanism. The efficacy of the approach was demonstrated through a case study focused on the
519 Logan River watershed. Compared to the baseline ConvLSTM model, spatial attention improved
520 simulation accuracy of discharge at the watershed outlet during the test period. In addition, the
521 spatial attention weights computed by the trained model revealed key areas contributing to
522 discharge under low flow, recession, and runoff periods, aligning well with known
523 hydrogeological features and previous hydrogeochemical tracer studies.

524 Next, the model trained using discharge at the watershed outlet was applied to
525 subwatershed scales. When the model predicted grid-wise discharge was aggregated by
526 topographically delineated contributing areas, bias was observed in aggregated discharge and
527 suggests cross-basin water transfers. Simulation accuracy of subwatershed discharges is
528 significantly enhanced by the use of Ridge regression. Comparison between Ridge regression
529 weights and known hydrogeologic connections shows potential of Ridge regression as a
530 screening tool for possible recharge-discharge pathways of karst watersheds.

531 The presented approach proves adept at capturing the complex spatiotemporal dynamics
532 of a mountainous karst watershed. This work not only enhances our ability to predict
533 hydrological responses in these challenging environments, but also contributes to the broader
534 field of hydrologic modeling, because the ConvLSTM-SA model can also be used as a spatially
535 distributed hydrologic model for non-karst watersheds. Once trained on a downstream gage, the
536 ConvLSTM-SA with binary masks can potentially predict streamflow at ungaged upstream
537 locations. When upstream gages are available, observed subwatershed discharge can be utilized
538 with Ridge regression to infer inter-basin connections. Future research should focus on extending
539 this modeling approach to more diverse datasets of mountainous karst systems and testing the
540 approach's applicability to non-karstic watersheds and at larger scales.

541 **Acknowledgments**

542 This work was supported by the US National Science Foundation Hydrologic Sciences
 543 program grants 2043150/2043363/2044051. The authors are grateful for the thoughtful review
 544 and suggestions by Sean A. McKenna, an anonymous reviewer, and the Associate Editor.

545 **Open Research**

546 All data used in this research are publicly available. The UEB software is available via
 547 Tarboton et al., (2015). The data and code used for simulating streamflow are available at
 548 Longyang et al. (2024).

549 **References**

550 Anderson, S., & Radić, V. (2022). Evaluation and interpretation of convolutional long short-term
 551 memory networks for regional hydrological modelling. *Hydrology and Earth System
 552 Sciences*, 26(3), 795-825.

553 Allen Institute. (2021). Nonnegative Ridge Regression. Available from
 554 [https://github.com/AllenInstitute/mouse_connectivity_models/tree/master/mcmodels/regressors
 /nonnegative_linear](https://github.com/AllenInstitute/mouse_connectivity_models/tree/master/mcmodels/regressors

 555 /nonnegative_linear).

556 Bahr, K. (2016). *Structural and Lithological Influences on the Tony Grove Alpine Karst System,
 557 Bear River Range, North Central Utah*.

558 Bakalowicz, M. (2005). Karst groundwater: a challenge for new resources. *Hydrogeology
 559 journal*, 13, 148-160.

560 Byrd, R. H., Lu, P., Nocedal, J., & Zhu, C. (1995). A limited memory algorithm for bound
 561 constrained optimization. *SIAM Journal on scientific computing*, 16(5), 1190-1208. Access via
 562 <https://pubs.siam.org/doi/epdf/10.1137/0916069>.

563 Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in
 564 the brain. *Nature reviews neuroscience*, 3(3), 201-215.

565 Cosgrove, B., Gochis, D., Flowers, T., Dugger, A., Ogden, F., Graziano, T., Clark, E., Cabell, R.,
 566 Casiday, N., Cui, Z. and Eicher, K., (2024). NOAA's National Water Model: Advancing
 567 operational hydrology through continental-scale modeling. *JAWRA Journal of the American
 568 Water Resources Association*, 60(2), pp.247-272.

569 Dehghani, A., Moazam, H.M.Z.H., Mortazavizadeh, F., Ranjbar, V., Mirzaei, M., Mortezavi, S.,
 570 Ng, J.L. and Dehghani, A., (2023). Comparative evaluation of LSTM, CNN, and ConvLSTM
 571 for hourly short-term streamflow forecasting using deep learning approaches. *Ecological
 572 Informatics*, 75, p.102119.

573 Ding, Y., Zhu, Y., Feng, J., Zhang, P., & Cheng, Z. (2020). Interpretable spatio-temporal
 574 attention LSTM model for flood forecasting. *Neurocomputing*, 403, 348-359.

575 Dover, J.H. (1995). Geologic map of the Logan 30' x 60' quadrangle, Cache and Rich Counties,

576 Utah, and Lincoln and Uinta Counties, Wyoming: U.S. Geological Survey Miscellaneous
577 Investigations Series Map I-2210, 1 pl., scale 1:100,000.

578 Evans, J. P., & Oaks Jr, R. Q. (1996). Three-dimensional variations in extensional fault shape
579 and basin form: The Cache Valley basin, eastern Basin and Range province, United
580 States. *Geological Society of America Bulletin*, 108(12), 1580-1593.

581 Evans, J. P., McCalpin, J. P., & Holmes, D. C. (1996). Geologic Map of the Logan Quadrangle,
582 Cache County, Utah.

583 Fang, K., Pan, M., & Shen, C. (2018). The value of SMAP for long-term soil moisture estimation
584 with the help of deep learning. *IEEE Transactions on Geoscience and Remote Sensing*, 57(4),
585 2221-2233.

586 Feng, J., Wang, Z., Wu, Y., & Xi, Y. (2021, July). Spatial and temporal aware graph
587 convolutional network for flood forecasting. In *2021 International joint conference on neural
588 networks (IJCNN)* (pp. 1-8). IEEE.

589 Feng, J., Yan, L., & Hang, T. (2019). Stream-flow forecasting based on dynamic spatio-temporal
590 attention. *IEEE Access*, 7, 134754-134762.

591 Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a mechanism
592 of pattern recognition unaffected by shift in position. *Biological cybernetics*, 36(4), 193-202.

593 Gergel, D. R., Nijssen, B., Abatzoglou, J. T., Lettenmaier, D. P., & Stumbaugh, M. R. (2017).
594 Effects of climate change on snowpack and fire potential in the western USA. *Climatic
595 Change*, 141, 287-299.

596 Ghobadi, F., & Kang, D. (2022). Improving long-term streamflow prediction in a poorly gauged
597 basin using geo-spatiotemporal mesoscale data and attention-based deep learning: A
598 comparative study. *Journal of Hydrology*, 615, 128608.

599 Guo, M.H., Xu, T.X., Liu, J.J., Liu, Z.N., Jiang, P.T., Mu, T.J., Zhang, S.H., Martin, R.R.,
600 Cheng, M.M. and Hu, S.M., (2022). Attention mechanisms in computer vision: A
601 survey. *Computational visual media*, 8(3), pp.331-368.

602 Gupta, S. K., Ritchey, N. A., Wilber, A. C., Whitlock, C. H., Gibson, G. G., & Stackhouse Jr, P.
603 W. (1999). A climatology of surface radiation budget derived from satellite data. *Journal of
604 climate*, 12(8), 2691-2710.

605 Gupta, H. V., Kling, H., Yilmaz, K. K., & Martinez, G. F. (2009). Decomposition of the mean
606 squared error and NSE performance criteria: Implications for improving hydrological
607 modelling. *Journal of hydrology*, 377(1-2), 80-91.

608 Han, D., Liu, P., Xie, K., Li, H., Xia, Q., Cheng, Q., Wang, Y., Yang, Z., Zhang, Y. and Xia, J.,
609 (2023). An attention-based LSTM model for long-term runoff forecasting and factor
610 recognition. *Environmental Research Letters*, 18(2), p.024004.

611 Hastie, T., Tibshirani, R., Friedman, J. H., & Friedman, J. H. (2009). *The elements of statistical
612 learning: data mining, inference, and prediction* (Vol. 2, pp. 1-758). New York: Springer.

613 Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. *Neural computation*, 9(8),
614 1735-1780.

615 Kratzert, F., Klotz, D., Brenner, C., Schulz, K., & Herrnegger, M. (2018). Rainfall-runoff
616 modelling using long short-term memory (LSTM) networks. *Hydrology and Earth System
617 Sciences*, 22(11), 6005-6022.

618 Kratzert, F., Herrnegger, M., Klotz, D., Hochreiter, S., Klambauer, G. (2019). NeuralHydrology—
619 interpreting LSTMs in hydrology. *Explainable AI: Interpreting, explaining and visualizing
620 deep learning*, 347–362.

621 Lachmar, T., Skyler, S., & Newell, D. (2021). Geochemical insights into groundwater movement

622 in alpine karst, Bear River Range, Utah, USA. *Hydrogeology Journal*, 29(2), 687-701.

623 LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to
624 document recognition. *Proceedings of the IEEE*, 86(11), 2278-2324.

625 Li, D., Wrzesien, M. L., Durand, M., Adam, J., & Lettenmaier, D. P. (2017). How much runoff
626 originates as snow in the western United States, and how will that change in the
627 future?. *Geophysical Research Letters*, 44(12), 6163-6172.

628 Lin, Z., Li, M., Zheng, Z., Cheng, Y., & Yuan, C. (2020, April). Self-attention convlstm for
629 spatiotemporal prediction. In *Proceedings of the AAAI conference on artificial
630 intelligence* (Vol. 34, No. 07, pp. 11531-11538).

631 Logan River Observatory. (2024a). Logan River Observatory: Beaver Creek above confluence
632 with Logan River Aquatic Site (BC_CONF_A) Quality Controlled Data | CUAHSI
633 HydroShare. <https://www.hydroshare.org/resource/d680a2af2ee6491285381fb84d45c871/>. Accessed: June 2023.

635 Logan River Observatory. (2024b). Logan River Observatory: Logan River at Wood Camp
636 Bridge Aquatic Site (LR_WCB_A) Quality Controlled Data | CUAHSI HydroShare.
637 <https://www.hydroshare.org/resource/b8f196490b6348b7b2945ef559924f87/>. Accessed: June 2023.

639 Logan River Observatory. (2024c). Logan River Observatory: Logan River near Franklin Basin
640 Aquatic Site (LR_FB_BA) Quality Controlled Data | CUAHSI HydroShare.
641 <https://www.hydroshare.org/resource/1bb3210918414e13b077e87798d4a696/>. Accessed: June 2023.

643 Logan River Observatory. (2024d). Logan River Observatory: Logan River near Tony Grove
644 Aquatic Site (LR_TG_BA) Quality Controlled Data | CUAHSI HydroShare.
645 <https://www.hydroshare.org/resource/b93121c191a94abbb288acabba07f954/>. Accessed: June 2023.

647 Logan River Observatory. (2024e). Logan River Observatory: Right Hand Fork above
648 confluence with Logan River Aquatic Site (RHF_CONF_A) Quality Controlled Data |
649 CUAHSI HydroShare.
650 <https://www.hydroshare.org/resource/a017b44b64804311abaeb9d9917e8fcf/>. Accessed: June 2023.

652 Logan River Observatory. (2024f). Logan River Observatory: Temple Fork above confluence
653 with Logan River Aquatic Site (TF_CONF_A) Quality Controlled Data | CUAHSI
654 HydroShare. <https://www.hydroshare.org/resource/499bd5326b1443b29c9ac75b2903a025/>. Accessed: June 2023.

656 Longyang, Q., Choi, S., Tenant, H., Hill, D., Ashmead, N., Neilson, B. T., Newell, D. L.,
657 McNamara, J., & Xu, T. (2024). ConvLSTM-SA model code for Logan River Basin (LRB)
658 (0.0.1). Zenodo. <https://doi.org/10.5281/zenodo.11094821>

659 López-Moreno, J.I., Fassnacht, S.R., Heath, J.T., Musselman, K.N., Revuelto, J., Latron, J.,
660 Morán-Tejeda, E. & Jonas, T., (2013). Small scale spatial variability of snow density and depth
661 over complex alpine terrain: Implications for estimating snow water equivalent. *Advances in
662 water resources*, 55, pp.40-52.

663 Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model
664 predictions. *Advances in neural information processing systems*, 30.

665 Mahat, V., & Tarboton, D. G. (2012). Canopy radiation transmission for an energy balance
666 snowmelt model. *Water Resources Research*, 48(1).

667 Miller, Z. S., Peitzsch, E. H., Sproles, E. A., Birkeland, K. W., & Palomaki, R. T. (2022).

668 Assessing the seasonal evolution of snow depth spatial variability and scaling in complex
669 mountain terrain. *The Cryosphere*, 16(12), 4907-4930.

670 Mo, S., Zabaras, N., Shi, X., & Wu, J. (2019). Deep autoregressive neural networks for high-
671 dimensional inverse problems in groundwater contaminant source identification. *Water
672 Resources Research*, 55(5), 3856-3881.

673 Neilson, B.T., Tenant, H., Stout, T.L., Miller, M.P., Gabor, R.S., Jameel, Y., Millington, M.,
674 Gelderloos, A., Bowen, G.J. & Brooks, P.D., (2018). Stream centric methods for determining
675 groundwater contributions in karst mountain watersheds. *Water Resources Research*, 54(9),
676 pp.6708-6724.

677 Niu, Z., Zhong, G., & Yu, H. (2021). A review on the attention mechanism of deep
678 learning. *Neurocomputing*, 452, 48-62.

679 Oddo, P. C., Bolten, J. D., Kumar, S. V., & Cleary, B. (2024). Deep Convolutional LSTM for
680 improved flash flood prediction. *Frontiers in Water*, 6, 1346104.

681 Pan, B., Hsu, K., AghaKouchak, A., & Sorooshian, S. (2019). Improving precipitation estimation
682 using convolutional neural network. *Water Resources Research*, 55(3), 2301-2321.

683 Sundararajan, M., Taly, A., & Yan, Q. (2017, July). Axiomatic attribution for deep networks.
684 In *International conference on machine learning* (pp. 3319-3328). PMLR.

685 Sextone, G. A., & Fassnacht, S. R. (2014). What drives basin scale spatial variability of
686 snowpack properties in northern Colorado?. *The Cryosphere*, 8(2), 329-344.

687 Shi, X., Chen, Z., Wang, H., Yeung, D. Y., Wong, W. K., & Woo, W. C. (2015). Convolutional
688 LSTM network: A machine learning approach for precipitation nowcasting. *Advances in
689 neural information processing systems*, 28.

690 Spangler, L. E. (2001). Delineation of recharge areas for karst springs in Logan Canyon, Bear
691 River Range, northern Utah. *US Geol Surv Water Resour Invest Rep*, 1, 186-193.

692 Spangler, L. E. (2011). Karst hydrogeology of the Bear River Range in the vicinity of the Logan
693 River, Northern Utah. In *Geological Society of America Rocky Mountain-Cordilleran Section
694 Meeting, US Geological Survey*.

695 Sun, A. Y., Scanlon, B. R., Zhang, Z., Walling, D., Bhanja, S. N., Mukherjee, A., & Zhong, Z.
696 (2019). Combining physically based modeling and deep learning for fusing GRACE satellite
697 data: can we learn from mismatch?. *Water Resources Research*, 55(2), 1179-1195.

698 Tarboton, D. G., & Luce, C. H. (1996). *Utah energy balance snow accumulation and melt model
699 (UEB)* (p. 63). Utah Water Research Laboratory.

700 Tarboton, D. G., Gichamo, T. Z., & Merck, M. (2015). UEB [Source code]. GitHub.
701 <https://github.com/dtarb/UEB>.

702 Tyson, C., Longyang, Q., Neilson, B. T., Zeng, R., & Xu, T. (2023). Effects of meteorological
703 forcing uncertainty on high-resolution snow modeling and streamflow prediction in a
704 mountainous karst watershed. *Journal of Hydrology*, 619, 129304.

705 Wang, H., Qin, H., Liu, G., Huang, S., Qu, Y., Qi, X., & Zhang, Y. (2024). Hierarchical attention
706 network for short-term runoff forecasting. *Journal of Hydrology*, 131549.

707 White, W. B. (2002). Karst hydrology: recent developments and open questions. *Engineering
708 geology*, 65(2-3), 85-105.

709 Wilson, J. R. (1976). Glaciated dolomite karst in the Bear River Range, Utah. *PhD dissertation,
710 University of Utah, Department of Geology and Geophysics*.

711 Woo, S., Park, J., Lee, J. Y., & Kweon, I. S. (2018). Cbam: Convolutional block attention
712 module. In *Proceedings of the European conference on computer vision (ECCV)* (pp. 3-19).

713 Xia, Y., Mitchell, K., Ek, M., Sheffield, J., Cosgrove, B., Wood, E., et al. (2012). Continental-

714 scale water and energy flux analysis and validation for the North American land data
715 assimilation system project phase 2 (NLDAS-2): 1. Intercomparison and application of model
716 products. *Journal of Geophysical Research*, 117(D3). <https://doi.org/10.1029/2011jd016048>

717 Xu, T., Longyang, Q., Tyson, C., Zeng, R., & Neilson, B. T. (2022). Hybrid physically based and
718 deep learning modeling of a snow dominated, mountainous, karst watershed. *Water Resources
719 Research*, 58(3), e2021WR030993.

720 Zhu, C., Byrd, R. H., Lu, P., & Nocedal, J. (1997). Algorithm 778: L-BFGS-B: Fortran
721 subroutines for large-scale bound-constrained optimization. *ACM Transactions on
722 mathematical software (TOMS)*, 23(4), 550-560.

723 Zhu, S., Wei, J., Zhang, H., Xu, Y., & Qin, H. (2023). Spatiotemporal deep learning rainfall-
724 runoff forecasting combined with remote sensing precipitation products in large scale
725 basins. *Journal of Hydrology*, 616, 128727.

726 Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. *Journal of
727 the Royal Statistical Society Series B: Statistical Methodology*, 67(2), 301-320.