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Key Points:

An explainable spatially distributed deep learning hydrologic model is built using a

spatial attention mechanism.

e The model trained with streamflow at the watershed outlet simulates discharge at

subwatershed scales reasonably well.

e Recharge-discharge pathways suggested by attention weights are mostly consistent with
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hydrogeochemical tracer studies.

Abstract

In many regions globally, snowmelt-recharged mountainous karst aquifers serve as crucial
sources for municipal and agricultural water supplies. In these watersheds, complex interplay of
meteorological, topographical, and hydrogeological factors leads to intricate recharge-discharge
pathways. This study introduces a spatially distributed deep learning precipitation-runoff model
that combines Convolutional Long Short-Term Memory (ConvLSTM) with a spatial attention
mechanism. The effectiveness of the deep learning model was evaluated using data from the
Logan River watershed and subwatersheds, a characteristically karst-dominated hydrological
system in northern Utah. Compared to the ConvLSTM baseline, the inclusion of a spatial
attention mechanism improved performance for simulating discharge at the watershed outlet.
Analysis of attention weights in the trained model unveiled distinct areas contributing the most to
discharge under snowmelt and recession conditions. Furthermore, fine-tuning the model at
subwatershed scales provided insights into cross-subwatershed subsurface connectivity. These
findings align with results obtained from detailed hydrogeochemical tracer studies. Results
highlight the potential of the proposed deep learning approach to unravel the complexities of
karst aquifer systems, offering valuable insights for water resource management under future
climate conditions. Furthermore, results suggest that the proposed explainable, spatially
distributed, deep learning approach to hydrologic modeling holds promise for non-karstic

watersheds.

1 Introduction

Globally, and in many regions of the western U.S., karst watersheds serve as crucial
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sources for municipal and agricultural water supplies. Some of these watersheds are in
mountainous regions with snow-dominated hydrography, and the snowpack in these systems in
the western U.S. are predicted to be adversely impacted by changing precipitation patterns due to
climate change (Gergel et al., 2017; Li et al., 2017). Planning for these likely changes and
effective water resource management requires accurate prediction of streamflow, which,
however, is challenging for these watersheds, due to highly spatially variable snow processes and
surface/subsurface heterogeneity of karst hydrogeology. Complex mountain terrain and its effect
on microclimate, together, result in spatially varying snow accumulation and melt (L6pez-
Moreno et al., 2013; Sexstone and Fassnacht, 2014; Miller et al., 2022). In addition, karst
systems possess intricate subsurface connectivity via sinkholes, caves, and conduits that can
allow groundwater to cross basin boundaries (White, 2002; Bakalowicz, 2005). A detailed
investigation of the resulting recharge-discharge pathways requires extensive field surveys that
are not feasible at meso- and regional scales. As a result of their subsurface connectivity, karst
watersheds are challenging for general-purpose spatially distribute hydrologic modeling
frameworks such as the NOAA U.S. National Water Model (Cosgrove et al., 2024). These
modeling frameworks route surface runoff (typically calculated by a land surface model) within
topographically delineated watershed boundaries, and are thus unable to capture lateral

groundwater flow occurring across basin boundaries typical in karst terrain.

In recent years, deep learning algorithms have emerged as an alternative approach to
hydrologic modeling. Long Short-Term Memory (LSTM) networks (Hochreiter and
Schmidhuber, 1997) are capable of learning temporal dynamics and have been successful for
tasks such as rainfall-runoff modeling and soil moisture estimation (e.g., Fang et al., 2018;

Kratzert et al., 2018). Another popular type of architecture, convolutional neural networks
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(CNN), commonly used for extraction of spatial information (Fukushima, 1980; LeCun et al.,
1998), has also been shown to perform well in hydrologic applications where spatial patterns are
of interest (Sun et al., 2019; Pan et al., 2019; Mo et al., 2019; Anderson and Radi¢, 2022). More
recently, the Convolutional LSTM (ConvLSTM) architecture was proposed to combine LSTM
and CNN to capture spatiotemporal processes similar to movement of an object in a video (Shi et
al., 2015). ConvLSTM has achieved state-of-the-art performance in tasks such as precipitation
nowecasting (Shi et al., 2015), rainfall-runoff modeling (Xu et al., 2022), and streamflow
forecasting (Dehghani et al., 2023; Zhu et al., 2023; Oddo et al., 2024). Unlike LSTM-based
lumped rainfall-runoff models, ConvLSTM takes a spatially distributed approach and receives
“image”-like inputs (e.g., gridded snowmelt, temperature). For each model grid, ConvLSTM
uses the inputs (analogous to inflow) and current states at a grid and its neighbors to calculate the
future state (analogous to water storage) of this grid. Although simplified, the information flow
from neighbors to a given grid mimics the routing process in process-based distributed

hydrologic models.

However, convolution operations use a local receptive field, thus limiting the capability
of ConvLSTM to perceive long-range spatial dependencies (Lin et al., 2020). Although several
ConvLSTM layers can be stacked together to represent more complex spatiotemporal dynamics
occurring over long distances, using ConvLSTM alone may be insufficient to capture complex
recharge-discharge pathways induced by karst geology (Xu et al., 2022). More specifically,
hydrology of karst watersheds is characterized by a juxtaposition of surface runoff, slow matrix
flow, and fast conduit flow. In particular, karst conduits form subsurface connectivity over long
ranges and sometimes across topographically delineated basin boundaries. Therefore, in karst

watersheds the performance of ConvLSTM can potentially be improved by adding global
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features from the entire study area as opposed to being restricted to a small neighborhood when

using convolution alone.

In parallel to the pursuit of higher prediction accuracy, there has been a long-standing
interest in the hydrology community in machine learning models that are physically
interpretable. A key advantage of LSTM and ConvLSTM architectures lies in their resemblance
to the watershed storage, inflow and outflow dynamics (LSTM, Kratzert et al., 2019) and
spatiotemporal water flow (ConvLSTM). Nevertheless, whether and how these models can
reveal new insights into watershed hydrologic processes remain unclear. Several ad hoc methods
are available to interpret already-trained deep learning models, such as Integrated Gradient (IG,
Sundararajan et al., 2017) and Shapley Additive exPlanations (SHAP, Lundberg and Lee, 2017).
However, IG tends to be sensitive to the choice of baseline, while SHAP can be computationally

expensive for high dimensional problems.

In recent years, spatial attention mechanisms have attracted wide interest for improving
both performance and interpretability of deep learning models. Attention is a selective cognitive
process where human focuses on specific parts of information as needed, rather than processing
all available information at once (Corbetta and Shulman, 2002). Selective attention allows
humans to efficiently identify and concentrate on high-value information from a vast array of
stimuli (Niu et al., 2021). To emulate the selective focus seen in human perception, spatial
attention seeks to dynamically adjust the weights assigned to image features output by preceding
layers (Guo et al., 2022). Experiments on multiple benchmark datasets showed that spatial
attention was able to identify where the model should focus and improve the learned
representations by promoting important features and suppressing unimportant features (Woo et

al., 2018). Attention mechanisms have also been employed in hydrologic modeling, though prior
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studies have predominantly focused on spatially lumped (Han et al., 2023; Wang et al., 2024) or
semi-distributed modeling approaches (Feng et al., 2019; Ding et al., 2020; Feng et al., 2021).
Application of attention mechanisms in fully distributed hydrologic modeling remain limited and
are aimed at enhancing streamflow forecasting, relying on past streamflow data as inputs
(Ghobadi and Kang, 2022). However, the potential of spatial attention as an explainable tool for

understanding watershed dynamics has yet to be explored.

This study aims to present an explainable deep learning-based spatially distributed
hydrologic modeling approach tailored for snow-dominated karst watersheds, while also holding
promises for non-karstic counterparts. The modeling approach is demonstrated using the Logan
River watershed on the Utah-Idaho border. Through a multi-scale experiment, we train an
integrated ConvLSTM and spatial attention (ConvLSTM-SA) model with streamflow at
watershed outlet and use it to predict discharge from subwatersheds. We further assess the
capability of such a model to identify physically sensible recharge-discharge pathways within the
watershed, by comparing results from interpretative analysis with hydrogeochemical analyses
performed in the study watershed. We show that the spatial attention is suitable for learning karst
subsurface connectivity occurring over long distances, making ConvLSTM-SA well adept at
learning spatiotemporal hydrologic dynamics and potentially extendable to non-karstic
watersheds. In addition, the modeling approach can serve as a screening tool to identify

recharge-discharge pathways.

2 Study Area and Data

This study focuses on the canyon region of the Logan River watershed situated in the

Bear River mountain range and spanning across northeastern Utah and headwaters in
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132 southeastern Idaho, USA (Fig. 1). Covering an expanse of 552 km?, the study area is

133 predominantly covered by natural land (forest, rangeland) with minimal development, and

134 through most of the study area, the Logan River is free flowing with no diversions. Over the
135 study period (1980-2022), the area experienced an average basin precipitation of approximately
136 822 mm, mostly occurring as snowfall during the winter and early spring. The watershed is

137 underlain by variably karstified carbonate formations, with the Ordovician Garden City

138 Formation and Silurian Laketown and Fish Haven dolomites as primary hosts for karst aquifer
139 development (Dover, 1995; Evans et al., 1996). Stratigraphically between the Garden City

140  Formation and Fish Haven Dolomite lies the Ordovician Swan Peak Formation, hosting shales
141 and orthoquartzites, which acts as an important aquitard influencing groundwater movement.
142 Groundwater movement is also strongly influenced by the structural geology, which is

143 dominated by the southward plunging Logan Peak syncline as well as other parallel folds and
144 numerous faults (Dover, 1995; Evans and Oaks, 1996). Rainfall and snowmelt recharge occur
145 through sinkholes, seepage along losing reaches, and diffuse infiltration into ridge slopes

146 (Spangler, 2001). Karst aquifer discharge occurs through major and minor springs within the
147 watershed, as well as direct to gaining reaches of the Logan River (Neilson et al., 2018; Lachmar
148 etal., 2021). The river primarily flows from the north and east to the south and west of the

149 watershed. However, the presence of developed karst conduits and sinkholes introduces

150  complexity to subsurface water flow direction. Previous tracer studies carried out in the western
151  portion of the watershed suggests karst piracy contributing to flow paths across topographic

152 watershed boundaries (Spangler, 2001, 2011). To accommodate this complexity, our study area

153 extends beyond the topographically delineated watershed boundary (Fig. 1).

154 Streamflow records are obtained from USGS station 10109000 located at the watershed
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outlet (Fig. 1) and aggregated to daily time scale. Upstream of the USGS station, water is
diverted for agricultural and municipal water uses via the Highline Canal and Dewitt Springs
(Fig. 1). Daily diversion rates through the Highline Canal were acquired from USGS station
10108400. Diversion rates at Dewitt Springs were obtained from Logan City at a monthly
resolution before 2020 and daily resolution since 2020. The diversion rates (monthly rates were
evenly distributed to daily) were added to observed streamflow at station 10109000 to derive

target data for training and validation of the deep learning model.
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Figure 1. The Logan River watershed and its location (inset). Karst subsurface connectivity
identified from previous tracer studies (Spangler, 2001, 2011) are shown by lines connecting
dye-injection sites (small orange dots) and springs (large red dots). Squares show locations of

streamflow gages operated by USGS (orange) and Logan River Observatory (LRO, yellow).

Snow accumulation and melt within the study area were simulated using the Utah Energy
Balance (UEB) snow model based on mass and energy balances of on-land and canopy-
intercepted snowpack (Mahat and Tarboton, 2012; Tarboton and Luce, 1996). We ran the UEB
model using parameters described in Tyson et al. (2023) at 100 m spatial resolution and 2-hour
time steps during Water Year (WY) 1981-2022. A fine spatial resolution is used to capture the
spatial heterogeneity in snow accumulation and ablation processes in a mountainous terrain. The
UEB model was driven by downscaled (Xu et al., 2022; Tyson et al., 2023) North American
Land Data Assimilation System (NLDAS-2) Forcing dataset (Xia et al., 2012). Substantial
underestimation bias was found for almost all years when comparing downscaled precipitation
with observations at SNOTEL (SNOwpack TELemetry) stations, while temperature did not
exhibit consistent bias patterns across years. Therefore, bias correction was applied to
precipitation only (Xu et al., 2022; Tyson et al., 2023). Simulated snowmelt plus rainfall rates
were then aggregated to 1.6 km-by-1.6 km resolution and daily time steps to be fed into the deep
learning model. Our previous results found that this procedure was able to capture the spatial
variability in snowmelt timing and rates within a 1.6 km-by-1.6 km grid, which is important for a

karst watershed, at a reasonable computational expense (Xu et al., 2022).

Discharge data for Logan River Observatory (LRO) stream gages (Fig. 1) at Franklin
Basin, Beaver Creek, Tony Grove, Temple Fork, Wood Camp Bridge, and Right Hand Fork

were resampled from 15-minute to mean daily values (Logan River Observatory, 2024c, 2024a,
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2024d, 2024f, 2024b, 2024¢). The Tony Grove station has the longest period of discharge
records since May 30, 2014, while other stations were installed later and have varying lengths of
record. Gaps are present in the winter observations at these gages due to ice damming at the

gaged cross sections, which prevents accurate reporting of streamflow.

3 Methods

3.1 Convolutional Long Short-Term Memory

The key idea of ConvLSTM is to replace the fully connected input-to-state and state-to-
state transitions in classical LSTM (Hochreiter and Schmidhuber, 1997) with convolutional
layers (Shi et al., 2015). This enables ConvLSTM to model dynamics that contain spatial

structures. Formally, one layer of ConvLSTM can be written as:

ip = 0(Wy; * Xy + Wy xheq + b;)

fe = O'(fo * Xe + th *he_q + bf)

gt = tanh (Wyg * X¢ + Whg * hy_1 + by) (1)

0r = 0(Wyo * X + Wi * Xe—q + by)

¢ =fiOC_1+i O ge

h’t = O¢ Otanh (Ct)

In Eqn. (1), X, € REXW denotes the input on time step t, C;, H, € RE*¥*W denote cell memory
and hidden state, where H X W is the spatial dimension of the study area represented by grids

and C is number of channels. The hidden state and cell memory are dynamically updated
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according to the input (i), forget (f;), and output (0;) gates with

Wieir Whis Wap, Wi, Wag,

Whgr Wyo, Who, by, bs, by, by, as learnable parameters. Convolutional
operations are denoted as *, and element-wise multiplication is denoted as ®. Given the
relatively low amount of data from one watershed, we constrained the model complexity by
using only one layer of ConvLSTM with hidden state dimension set to 20. Convolution
operations are performed using 3 X 3 kernels and padding. In the baseline ConvLSTM-FC

model, the hidden state and cell memory from the ConvLSTM layer pass through a fully

connected (FC) layer, the weights and biases of which are all learnable parameters (Fig. 2a).

3.2 Spatial Attention Mechanism

We develop a ConvLSTM-SA model that combines the ConvLSTM architecture with
spatial attention mechanism (Fig. 2b). Same as the ConvLSTM-FC model, the ConvLSTM-SA
model has a single layer of ConvLSTM cells with 20 channels. Instead of a FC layer,
ConvLSTM hidden state is processed by a spatial attention layer implemented as a modification
from the Convolutional Block Attention Module (CBAM, Woo et al., 2018). CBAM was
designed as an add-on module to CNNs to enhance their representation power. Let F € RE*H*W
denote the feature map (i.e., output) generated by CNN, with C channels on a H X W grid, the

spatial attention submodule of CBAM can be thought of as a postprocessor on F (Woo et al.,

2018):

F'=M;(F)OF, 2)

where F' € REH*W s the feature map after CBAM processing, My € RP*W is the spatial

attention map, and ® denotes element-wise multiplication with M broadcasted along channels.
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The feature map can be a concatenation of the input, cell memory, and hidden state calculated by
ConvLSTM (Fig. 2), i.e., F = [X;; Cs; H.]. The spatial attention map specifies “where” (within

the H X W grids) to amplify or suppress and is calculated by:

M,(F) = o(f 7" ([AvgPool(F); MaxPool(F)]), (3)

where o is the sigmoid function, f7*7 represents a convolutional layer with a 7 X 7 filter for
each channel, and AvgPool and MaxPool denote average and max, respectively, pooling

operation of the feature map F across the channels.

In this study, two modifications were made to the original spatial attention mechanism as
implemented in CBAM. First, we replaced the sigmoid function in Eqn. (3) with softmax
function. This change ensures that the attention weights are always positive, and the sum of all
weights across the entire space equals 1, providing a more physically meaningful interpretation.
Essentially, this allows the original hidden state H, to be spatially adjusted according to the
attention map. Second, the spatial attention matrix was only applied to H¢, hidden state of the

ConvLSTM layer:

H} = softmax(f"*" ([AvgPool(F); MaxPool(F)]) ® H, . (4)
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Figure 2. (a) In the baseline ConvLSTM-FC model, the hidden state from ConvLSTM layer
passes through a fully connected (FC) layer before being aggregated to predict discharge at
watershed outlet,; (b) In the new ConvLSTM-SA model, the hidden state from the ConvLSTM

layer passes through a spatial attention (SA) layer before aggregation.

3.3 A Deep Learning Approach to Spatially Distributed Hydrologic Modeling

The distributed hydrologic modeling is formulated as a sequence-to-sequence learning
task. Let X, € RF*W denote the spatial distribution of snowmelt plus rainfall (simulated by
UEB) over a spatial raster with a dimension of H X W at day t, and y, denote streamflow of the
following day, the task is to predict discharge (at the watershed outlet or another location along
the main stem of river or its tributaries) sequence Q = {Q,, Q3 ..., Qt+1}, given the snowmelt plus
rainfall sequence X' = {X1, X, ..., X;}. The task is completed in two steps. First, the ConvLSTM-

SA model calculates discharge for every grid in the model domain. More specifically, H;, the
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hidden state of the ConvLSTM layer (Eqn. 1), is processed by spatial attention layer (Eqn. 4),

and then aggregated across the channels to calculate grid-wise discharge, denoted as q; j, i =

1,..,H,j =1,..,W. The baseline ConvLSTM-FC model calculates grid-wise discharge
similarly, except replacing SA with a FC layer. For both models, the grid-wise discharge is
defined as the combined surface runoff and subsurface lateral flow (via karst conduit and/or

matrix) contributed by each grid to streamflow discharge on any specific time step.

In the second step, to calculate discharge at a specified location, discharge from grids
within contributing area are aggregated (summed) (Fig. 3). This process is designed to mimic a
fully distributed hydrologic model. For a physically based model, gridded runoff is often routed
along a river network delineated based on topography to gaging stations along the main stem
river and tributaries to be comparable to observed streamflow at the gaging stations. However, in
this study we chose not to perform explicit routing due to unknown subsurface connectivity. By
doing so, we assume that the LSTM component in ConvLSTM-FC and ConvLSTM-SA models
already capture the lag between recharge and discharge to stream, and so grid-wise discharge
calculated by ConvLSTM-FC or ConvLSTM-SA represents the volume of water that would have

reached the stream outlet, even though it originated from a grid at an earlier time.

For non-karst watersheds, contributing areas (watersheds and subwatersheds) are
typically delineated based on topography. In karst watersheds, however, subsurface connection
may result in “karst piracy”, where some groundwater flowpaths cross the surface topographic
divides (White, 2002). At the watershed scale, the model domain is extended from the
topographically delineated watershed boundary to account for known karst piracy identified from
previous tracer studies (Spangler, 2001, 2011; Fig. 1). The ConvLSTM-FC and ConvLSTM-SA

models sum up discharge from all active model grids to compute discharge at the watershed
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outlet (USGS gage 10109000). This “watershed-scale” model is trained using data during WY
1981-2007 and tested for WY 2008—2022. The training configuration is detailed in Text S1,

Supporting Information. The trained watershed-scale model computes q; ; ¢, grid-wise discharge

at time step t, which are passed on to the subwatershed scale module.

At the subwatershed scale, subsurface connections may transfer water between adjacent
subbasins. Therefore, we implemented two methods for aggregating ConvLSTM-FC or
ConvLSTM-SA grid-wise discharge at the subwatershed scale. The first method creates a binary
(0 and 1) mask based on topographically delineated boundary for each subwatershed; the binary
masks for all subwatersheds are non-overlapping and collectively cover the entire Logan River
watershed. We then use the binary masks to crop grid-wise discharge:

Q= Z Qij¢

i,jE.Qk

where Ok,t denotes computed discharge for subwatershed k at time step t, () is topographically
delineated spatial extent of this subwatershed, and q; ; ; is ConvLSTM-FC or ConvLSTM-SA
discharge for ij-th grid at time step t. We expect this method to perform well for non-karst
watersheds, but will likely over- or under-estimate for a subwatershed, depending on whether it
imports or exports water to neighbors. Therefore, the second method aims to inversely estimate
contributing area by adding a fully-connected (FC) layer to calculate discharge for subwatershed

k based on grid-wise discharge:

Qk: = Z Wi ki j o
i
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wherew; ., i =1,...,H,j = 1,...,W are coefficients estimated using non-negative ridge

regression. Let Qy , denote observed discharge at time step t, we estimate wy, =

T
[Wl,l,kl Wl,Z,k’ . Wi,j,k! . WH,W,k] as

, ~ N2
argmin [Z(Qk,t - Qk,t) + allwgllz |,
t

Wi
subject to w; ;. = 0, Vi, j.

In the above equation, « is a hyperparameter that controls the tradeoff between model
goodness-of-fit to data and model complexity as represented by the L, regularization (also
known as weight decay in machine learning context) term. The use of L, regularization mitigates
collinearity issue (Hastie et al., 2009). In this study, collinearity exists between grid-wise
discharge time series, because snowmelt plus rain time series of grids that are nearby or have
similar meteorological forcing, topography, and vegetation cover are likely correlated. When
discharge time series are highly correlated between two or more grids, Ridge regression tends to
give similar coefficients to these time series. In contrast, Lasso, another commonly used
regularized linear regression method, imposes L, regularization and tends to assign a high
coefficient to one of the grids while zero to other grids with correlated time series; which one to
receive nonzero coefficient is prone to uncertainties induced by the optimization algorithm and
noise in data (Hastie et al., 2009; Zou and Hastie, 2005). Ridge regression is selected in this
study to avoid false negatives, i.e., assigning a zero weight to a grid that may be contributing to

discharge for a subwatershed.

The non-negative Ridge regression problem is solved using a python implementation
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(Allen Institute, 2021) of the L-BFGS-B solver (Byrd et al., 1995; Zhu et al., 1997). To
determine optimal hyperparameter a, we performed Ridge regression using a ranging from
0.001 to 0.5. For each value of a, regression coefficients are estimated using observed discharge
at LRO gage stations (Fig. 1) during WY 2019-2022. We used data during WY 2019-2022 for
training because discharge records are relatively complete during this period except gaps due to
ice damming. The value of a that yielded the lowest mean square error in WY 2018 was selected
as the optimal value. The performance of the final model was assessed using observed discharge
during a test period of WY 2014-2017. During this test period, discharge record length varies

among the LRO stations (section 2).

Subwatershed mask

> (o
Gridded
discharge
Gijit
—> Qie
Ridge coefficient

Figure 3. For a given subwatershed k, grid-wise discharge (q; j ) computed by the ConvLSTM-

SA model is element-wise multiplied with a binary mask based on topographic delineation (top),
or coefficients determined by Ridge regression (bottom), before aggregating to calculate

discharge Q Kt

4 Results and Discussion
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4.1 Simulating Discharge at Watershed Outlet

The performance of ConvLSTM-FC and ConvLSTM-SA models are assessed using four
metrics (Table 1): percent bias (PBIAS, Gupta et al., 1999), root-mean-square error (RMSE),
Nash-Sutcliff efficiency (NSE) and Kling-Gupta efficiency (KGE, Gupta et al., 2009). Compared
to FC baseline, the spatial attention module improved test accuracy for all performance metrics.
In addition, ConvLSTM-SA predicted hydrograph fit the observations better than FC baseline
(Fig. 4). During the test period (WY2008-2022), ConvLSTM-SA achieved a KGE of 0.92, 0.96,
and 0.60, respectively, during runoff (Mar. — Jun.), recession (Jul. — Oct.), and low flow (Nov. —
Feb.) periods. The KGEs were all higher than KGE yielded by ConvLSTM-FC (0.86, 0.78,

0.21). Given the importance of streamflow during the recession and low flow periods for local
agricultural and municipal water supply, the substantial accuracy improvement from using

spatial attention is promising.

Table 1. Performance Metrics of the ConvLSTM-SA and ConvLSTM-FC Models at the
Watershed Scale During Training and Test Periods. PBIAS: percent bias; RMSE: root-mean-

square error; NSE: Nash-Sutcliff efficiency; KGE: Kling-Gupta efficiency.

Train / Calibrate (1981-2007) Test (2008-2022)
Model PBIAS RMSE NSE KGE PBIAS RMSE NSE KGE
(%) (mm/day) (%) (mm/day)
ConvLSTM-FC 0.609 0.357 0.900 0914 2.831 0.352 0.869 0.866
ConvLSTM-SA  -3.201 0.337 0911  0.931 0.199 0.290 0.911 0.945
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349  Figure 4. Spatially averaged snow plus rainfall simulated by UEB (left axes), and observed and
350  simulated streamflow of ConvLSTM-SA and ConvLSTM-FC models (rvight axes) for a normal (a)
351 and a wet (b) year. Hydrograph of the entire test period (WY2008-2022) is shown in Fig. S1,

352 Supporting Information.

353 4.2 Simulating Discharge at Subwatershed Scales

354 At subwatershed scales, aggregating grid-wise discharge using binary masks tends to

355  produce systematic error especially for tributaries (Table 2, Fig. 5). It also tends to yield small
356  discharge peaks occurring in late summer (August through early October). Such peaks are

357  learned from streamflow at the watershed outlet and are induced by summer storms. This may
358  indicate difficulties in “deconvoluting” grid-wise discharge when recharge from rainfall does not
359  show as much spatial variability as recharge from snowmelt. The binary mask method assumes

360  that grids (and only these grids) within the topographic subwatershed boundary that have
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contributed to discharge at the watershed outlet for a given day would contribute to discharge of
this subwatershed on the same day. Thus, the difference between observed and binary mask-
estimated discharge suggests the overall importing/exporting status of a subwatershed. For
example, the binary mask method overestimated Beaver Creek discharge by over 300%, while
underestimating Temple Fork discharge (Table 2, Fig. 5). This is consistent with findings from
previous tracer studies showing karst conduit connections between large, closed basins within
the Beaver Creek subwatershed to adjacent watersheds to the northwest and northeast (Figure S5,
Supporting Information). Large overestimation bias is found in Logan River discharge at the
Tony Grove station as the bias from Beaver Creek accumulated. The water exporting condition is
also supported by tracer studies which revealed recharge-discharge pathways from high elevation
areas to downstream springs (Ricks and Wood Camp Hollow, Fig. 1, Spangler, 2001; 2011);
these springs contribute to a substantial portion of Logan River streamflow (Wilson, 1976).
Further downstream at Wood Camp Bridge, the overestimation bias is reduced as the
subwatershed area encompasses springs recharged in high elevation areas, as well as Temple
Fork, that imports water from areas outside of the Logan River watershed (Figure S5, Supporting

Information).

Despite the inability of the mask method to account for inter-basin karst connections,
results suggest that ConvLSTM-SA with binary masks can be a promising approach to spatially
distributed hydrologic modeling for non-karstic watersheds. For those watersheds, we anticipate
that once trained using a downstream gage with sufficiently long streamflow records, the
ConvLSTM-SA with binary masks may be able to predict streamflow at ungaged upstream
locations reasonably well without the need for recalibration, especially for mesoscale

watersheds. However, the accuracy of the binary mask method may deteriorate as watershed area
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increases and the timing and shape of hydrograph substantially differ among subwatersheds. In
such cases, it is anticipated that the deep learning model would need more training data covering

a longer period to learn the “deconvoluted” grid-wise discharge using streamflow at outlet alone.

Table 2. Performance Metrics of the ConvLSTM-SA Model for Subwatersheds During

WY2014-2018 (test period) Using Binary Mask and Ridge Regression Methods.

Mask Ridge Regression
Subwatershed  PBIAS RMSE PBIAS RMSE
NSE KGE NSE KGE
(%) (mm/day) (%) (mm/day)
LR Franklin 69.421 0.176 0.460 0.219 -1.660 0.090 0.860 0.921
Basin
-337.288 0.422 -16.861  -3.412 32.956 0.073 0.462 0.409
Beaver Creek
LR Tony -26.923 0.351 0.346 0.377 14.619 0.178 0.831 0.709
Grove
39.389 0.073 0.023 0.383 10.960 0.045 0.628 0.782
Temple Fork
LR Wood 34.925 0.868 0.180 0.498 29.660 0.814 0.279 0.558
Camp Bridge
Right Hand -9.586 0.085 0.154 0.355 25.033 0.078 0.288 0.291
Fork

On the other hand, Ridge regression substantially improved discharge simulation
accuracy across four metrics for five watersheds and improving RMSE, NSE while deteriorating
PBIAS and KGE for Right Hand Fork (Table 2). The metrics for Right Hand Fork may be biased
due to limited availability of discharge records during the test period (<1 year). Overall, the
estimated discharge appears to match well with observed hydrograph during test period for all
subwatersheds. One exception was found in 2017, during which time the model underestimated a

series of streamflow spikes in early spring (Fig. 5) likely induced by snowmelt events not
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captured by the UEB model. In this year, a low bias was found in downscaled NLDAS
temperature, leading to subzero temperature at high elevation areas, while SNOTEL stations
within those areas recorded above zero temperature averaged in March and April. Therefore, the
UEB model substantially underestimated snowmelt rates in March and April. Given that only
four years of data were used for calibration and that the test period contains a larger range of
hydrologic conditions, the high accuracy observed here suggests ConvLSTM-SA and Ridge
regression to be an effective distributed hydrologic modeling approach for karst watersheds with

long-range subsurface connectivity.

4.3 Interpretative Analyses

4.3.1 Spatial attention map

Tracking ConvLSTM cell memory and attention map change in time provides
information about watershed dynamics in different parts of water-year hydrograph. Specifically,
we focus on three snapshots during low flow, spring runoff, and recession periods averaged over
WY 1980-2022 (Fig. 6). For the study area, the lowest streamflow occurs around February 1 of
each year. At this time, snow is being accumulated for most of the watershed with scattered
snowmelt/rain at lower elevations. Around Jun. 1, snowmelt drives streamflow to peak. By
October 1, the snowpack has completely melted, and streamflow is sustained by groundwater,

with a majority from karst conduit sources (Neilson et al., 2018).
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Figure 5. Observed and model estimated discharge at LRO stations along the main stem
(Franklin Basin, Tony Grove, Wood Camp Bridge) and tributaries (Beaver Creek, Temple Fork,
Right Hand Fork). Locations of stations are shown in Fig. 1. Discharge is aggregated using
binary subwatershed masks (blue) and Ridge regression coefficients (red), respectively. Data
gaps exist in observations due to differences in sensor deployment, sensor malfunction and icing

events.
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The cell memory of the trained ConvLSTM-SA model captures the temporal trend of
water storage, which is the highest during peak flow and lower during recession and low flow
periods (Fig. 6b,e,h). Meanwhile, spatial attention weights, dependent on snowmelt plus rainfall
(SWIT) and cell memory, reveal discharge-generating areas and how these areas change
dynamically (Fig. 6c,f,i). During low flow periods, uniform weights are observed, likely because
scattered snowmelt is not sufficient to replenish depleted watershed storage and generate
discharge. During spring runoff, on the other hand, high elevation snowmelt and rainfall recharge
the bulk of the watershed storage, making these areas responsible for generating most of the
discharge. Despite high input (snowmelt plus rain) and high cell memory, the model learned low
attention weights for areas to the east of the confluence of the Logan River and Beaver Creek.
Although the subwatersheds in this area are topographically part of the Logan River basin, this
area has extensive karst terrain, including Peter Sinks, which has been documented as
discharging towards Bear Lake to the north of the study watershed (Figure S5, Supporting
Information). During the recession period, snowmelt plus rain and watershed storage exhibit
different spatial patterns that together shape the spatial attention weight, which is high along the
mountain ridges west of Logan River. In these areas, numerous faults and sinkholes have been
found (Dover, 1995; Bahr, 2016), facilitating concentrated recharge and fast conduit flow

discharging to springs along the Logan River (Fig. 1).

The consistency between the learned attention weights and local hydrogeologic
information suggests the utility of the spatial attention mechanism for improving interpretability
of deep learning models when sufficient data is available for training these models. Unlike ad
hoc methods, including sensitivities (e.g., Anderson and Radi¢, 2022), that interpret already-

trained deep learning models, the spatial attention module is learnable and trained
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simultaneously with other components of the deep learning model. In addition, the spatial
attention module can be customized to constrain the learned behavior. For example, Eqn. (4)
uses the softmax function to ensure that the attention weights are positive, which also helps to
constrain other learnable parameters. This led to more physically reasonable results than
perturbation-based sensitivity analyses on a model without such constraints, which produced
negative sensitivities of streamflow to snowmelt in our previous study (Xu et al., 2022). In this
study, we inserted the spatial attention module to process hidden state. The module could also be
inserted in other places within the deep neural network architecture (e.g., after the inputs), to add
interpretability to desired places. However, adding the attention module at multiple places may

increase data volume required to properly train the model.
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4.3.2 Ridge regression coefficient map

In addition to accurately simulating subwatershed discharge, we found that Ridge
regression coefficients suggest recharge-discharge pathways across subwatershed boundaries,
although they may be affected by similarities between grid-wise discharge time series at different
grids. To visualize such similarity, we performed principal component analysis (PCA) on a
WH X T matrix, where W, H are the spatial dimensions and T is number of time steps, which is
the same as the length of streamflow records. Each line of the matrix corresponds to discharge
time series of one grid. The leading three principal components (PCs) accounted for 74% of total
variance (Fig. S2, Supporting Information). Next, a pseudo color image was generated for each
gaging station (Fig. 7), such that the red, green, and blue bands of each grid are given by the
contribution to discharge of this grid from the three leading PCs (Fig. S3, Supporting
Information). Therefore, two grids having similar colors suggests they have similar grid-wise
discharge time series, likely resulting from similar topography and climate. In the meantime, the
degree of saturation (i.e., intensity) of any color in a grid in Fig. 7 is proportional to ridge
regression weights of this grid, which quantifies its contribution to a given gaging station (Fig.
S4, Supporting Information). Therefore, bright colors show a higher contribution than muted

colors.

A grid is expected to receive a higher weight when it is contributing to discharge
corresponding to a subwatershed gaging station, but not vice versa, because Ridge regression
tends to give similar coefficients to grids with correlated discharge time series (section 3.3). This
behavior is more suitable than regularization techniques that enforce sparsity such as Lasso.
Because actual subsurface connectivity would be unknown without detailed tracer studies, we

would like to identify all areas that could be contributing to subwatershed discharge to the degree



manuscript submitted to Water Resources Research

484  supported by data without missing potential contributing areas.

485 The Ridge regression weights of almost all grids are below 1 (Fig. S2, Supporting

486  Information), which is physically reasonable. The three nested subwatersheds corresponding to
487  main stem LRO stations show increasing weights from headwater to downstream stations. The
488  tributary subwatersheds produced much lower streamflow than the main stem and thus receive
489  smaller regression coefficients. Similar spatial patterns were found between Ridge coefficients of
490  Logan River (LR) - Franklin Basin (Fig. 7a) and Beaver Creek (Fig. 7b). Hydrogeochemical data
491  suggests a small portion of Franklin Basin discharge originates from Beaver Creek (Ashmead et
492 al., 2023). However, a similarity is noticeable between grid-wise discharge time series of grids
493 receiving high regression coefficients for the two subwatersheds, suggesting that at least some of
494  the high weights may be a false positive. For Temple Fork and Right Hand Fork, the method

495  assigns moderate coefficients to headwaters of the two subwatersheds, but also picks up areas
496  west of the river and south of the study area, which are likely to be false positives due to

497  collinearity. However, high coefficients assigned to the east bank from Beaver Creek to Temple
498  Fork coincide with the Temple Ridge Fault and may suggest subsurface connectivity given the

499  highly karstified terrain in that area (Dover, 1995).

500 The above results underscore the potential of our modeling approach (ConvLSTM-SA
501  complemented by Ridge regression and PCA) to serve as a screening tool for possible

502  contributing areas that do not follow topographic subbasin boundaries or a method for

503  anticipating locations of karst piracy. For areas with distinct grid-wise discharge signatures, as
504  revealed by PCA, a high Ridge regression weight is a relatively strong indicator of contributing
505  area, while false positives are possible for areas with correlated grid-wise discharge signature.

506  Based on the screening results, field campaign and tracer studies can be designed to collect data
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to rule out false positives and establish true recharge-discharge pathways.

(a) LR Franklin Basin (b) Beaver Creek (c) LR Tony Grove
(d) Temple Fork (e) LR Wood Camp Bridge (f) Right Hand Fork

iy

Figure 7. Pseudo color rendering of Ridge regression coefficients estimated using discharge at
LRO stations along the main stem (Franklin Basin, Tony Grove, Wood Camp Bridge) and
tributaries (Beaver Creek, Temple Fork, Right Hand Fork). Locations of stations are shown in
Fig. 1. Regression weights are shown in Fig. S2, and pseudo color is determined by principal

component analysis (Fig. S3, Supporting Information).
5 Conclusions

This study developed an explainable, spatially distributed, deep learning-based approach
to hydrologic modeling in a snow-dominated mountainous karst watershed, leveraging the power

of Convolutional Long Short-Term Memory (ConvLSTM) integrated with a spatial attention
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mechanism. The efficacy of the approach was demonstrated through a case study focused on the
Logan River watershed. Compared to the baseline ConvLSTM model, spatial attention improved
simulation accuracy of discharge at the watershed outlet during the test period. In addition, the
spatial attention weights computed by the trained model revealed key areas contributing to
discharge under low flow, recession, and runoff periods, aligning well with known

hydrogeological features and previous hydrogeochemical tracer studies.

Next, the model trained using discharge at the watershed outlet was applied to
subwatershed scales. When the model predicted grid-wise discharge was aggregated by
topographically delineated contributing areas, bias was observed in aggregated discharge and
suggests cross-basin water transfers. Simulation accuracy of subwatershed discharges is
significantly enhanced by the use of Ridge regression. Comparison between Ridge regression
weights and known hydrogeologic connections shows potential of Ridge regression as a

screening tool for possible recharge-discharge pathways of karst watersheds.

The presented approach proves adept at capturing the complex spatiotemporal dynamics
of a mountainous karst watershed. This work not only enhances our ability to predict
hydrological responses in these challenging environments, but also contributes to the broader
field of hydrologic modeling, because the ConvLSTM-SA model can also be used as a spatially
distributed hydrologic model for non-karst watersheds. Once trained on a downstream gage, the
ConvLSTM-SA with binary masks can potentially predict streamflow at ungaged upstream
locations. When upstream gages are available, observed subwatershed discharge can be utilized
with Ridge regression to infer inter-basin connections. Future research should focus on extending
this modeling approach to more diverse datasets of mountainous karst systems and testing the

approach’s applicability to non-karstic watersheds and at larger scales.
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