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Abstract—Scenario reduction (SR) aims to identify a small yet
representative scenario set to depict the underlying uncertainty,
which is critical to scenario-based stochastic optimization (SBSO)
of power systems. Existing SR techniques commonly aim to
achieve statistical approximation to the original scenario set.
However, SR and SBSO are commonly considered as two distinct
and decoupled processes, which cannot guarantee a superior
approximation of the original optimality. Instead, this paper
incorporates the SBSO problem structure into the SR process and
introduces a novel problem-driven scenario reduction (PDSR)
framework. Specifically, we project the original scenario set in
distribution space onto the mutual decision applicability between
scenarios in problem space. Subsequently, the SR process, embed-
ded by a distinctive problem-driven distance metric, is rendered
as a mixed-integer linear programming formulation to obtain
the representative scenario set while minimizing the optimality
gap. Furthermore, ex-ante and ex-post problem-driven evaluation
indices are proposed to evaluate the SR performance. Numeri-
cal experiments on two two-stage stochastic economic dispatch
problems validate the effectiveness of PDSR, and demonstrate
that PDSR significantly outperforms existing SR methods by
identifying salient (e.g., worst-case) scenarios, and achieving an
optimality gap of less than 0.1% within acceptable computation
time.

Index Terms—Problem-driven, scenario reduction, stochastic
optimization, worst-case scenario, risk management

NOMENCLATURE

A. Abbreviations

ADN Active distribution network
DDSR Distribution-driven scenario reduction
ES Energy storage
MILP Mixed-integer linear programming
OG Optimality gap
PDD Problem-driven distance
PDSR Problem-driven scenario reduction
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RES Renewable energy sources
SBSO Scenario-based stochastic optimization
SE Scenario effectiveness
SoC State of charge
SPDD Sum of problem-driven distance
SR Scenario reduction
TSSO Two-stage stochastic optimization

B. Sets

ω Original scenario set
ε Representative scenario set
ωB Set of nodes
ωE/ωR/ωL Set of nodes with ES/RES/Load

C. Parameters

!t/T Scheduling time interval/number of time steps in
a scheduling cycle

ε
c

j/ε
d

j Charge/discharge efficiency of j-th ES
ϑi Probability of scenario ϖi

Vi/Vi Upper/lower bound of squared voltage magni-
tude

PT Upper bound of trading power
PE

j Upper bound of charging/discharging power of
j-th ES

ϱ
R,c

/ϱ
L,s Penalty price of RES curtailment/load shedding

ϱ
E

j Capacity procurement price of j-th ES
ϱ
T+

s,t /ϱ
T→
s,t Intraday up-regulation/down-regulation price

ϱ
T
s,t Day-ahead trading price

SoC/SoC Lower/upper bound of SoC
N Number of original scenarios
P

R

i,s,t/P
L

i,s,t RES generation/load demand power at node i

rij/xij Line resistance/reactance of line ij

D. Variables

ς Trade-off factor
Vi,s,t Squared voltage magnitude at node i

φk Probability of scenario ↼k

D
T
s,t Intraday balancing state of ADN

D
E

j,s,t Charge/discharge state of j-th ES
Ej Procured energy capacity of j-th ES
Iij Current of line ij

K Number of representative scenarios
pi,s,t/qi,s,t Active/reactive injection power at node i
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P
R,c
i,s,t/P

L,s
i,s,t RES curtailment/load shedding power at node i

Pij,s,t/Qij,s,t Active/reactive power of line ij

P
E,c
j,s,t/P

E,d
j,s,t Charge/discharge power of j-th ES

P
T+

s,t /P
T→
s,t Intraday up-regulation/down-regulation power

P
T
t Day-ahead trading power

z
↑
ω/z

↑
ε Optimal solution of the original problem with

ω /reduced problem with ε

E. Functions

d(·) Problem-driven distance function
F (·) Objective of TSSO problem

I. INTRODUCTION

THE rapid integration of renewable energy sources (RES)
and new loads into the power systems has led to in-

creased variability and uncertainty in operations. Thus, ef-
fective decision-making in power system operations must
account for these uncertainties to manage risks [1]. With
complete information of uncertainties (e.g., a known proba-
bility distribution), chance-constrained optimization [2], [3],
robust optimization [4], [5] and distributionally robust opti-
mization [6], [7] have been verified to be effective approaches.
In cases where incomplete information of uncertainties [8]
(e.g., historical, forecasted scenarios), a common practice is
to employ scenario-based stochastic optimization (SBSO) [9]–
[11], where a finite scenario set is utilized to approximate
the probability distribution of uncertainties [12]. However,
scenario-based techniques typically struggle with the “curse
of dimensionality”, which becomes more pronounced as the
variety and number of uncertainties increase [13]. To reduce
this complexity, scenario reduction (SR) can be used to
identify a smaller representative scenario set to replace the
original scenario set for decision making while maintaining
an acceptably robust optimal solution. However, three critical
questions exist for SR: (i) how to quantify the similarity
between scenarios? (ii) how to define the representativeness
of the reduced scenarios prospectively? (iii) how to perform
SR to yield a representative scenario set that optimally reflects
the full original formulation?

Most SR methods implicitly assume that statistically better

representations of the original scenario set in the distribution
space necessarily yield better optimal solutions of SBSO. We
refer to these methods as distribution-driven scenario reduction
(DDSR) methods. The overview of DDSR methods is summa-
rized in Fig.1(a). DDSR methods generally construct the orig-
inal scenario set using raw scenario data [14], deep features
extracted by machine learning [15], [16], and relevant problem
properties manually selected based on engineering experience
(e.g., power ramping [17], network power flow [18], and
investment cost [19]). Moreover, to account for the impacts
of worst-case scenarios, the original scenario set is often split
into “normal” and “worst-case” subsets and SR is performed
separately on each subset [20]. However, the definition of
“worst-case” scenarios varies across different problem formu-
lations (e.g., economic dispatch and resilience-oriented dis-
patch [21]) and are often difficult to explicitly define. Subse-
quently, distribution-driven distance metrics, such as Euclidean

Fig. 1. Diagrams of scenario reduction methodologies: (a) distribution-driven
scenario reduction and (b) problem-driven scenario reduction.

distance [14], Wasserstein distance [22], and dynamic time
warping distance [23] are frequently used to measure the sim-
ilarity between scenarios. Furthermore, clustering techniques,
such as hierarchical clustering (HC) [24], K-means [25], K-
medoids [26], and Gaussian mixture model [27], are employed
to cluster the original scenario set into a representative scenario
set. However, these methods generally rely on a myriad
of hyper-parameters (e.g., random initialization and iterative
adjustments). Finally, statistical indices based on distribution-
driven distance metrics (e.g., Davis-Bouldin index) are used
to validate the clustering performance. Unfortunately, higher
statistical similarities between reduced and original scenario
sets may not guarantee a better optimality approximation,
which is particularly the case in optimization of power sys-
tems [28]. A simple example is that a slight increase in
load demand beyond the safety limit can result in additional
operational adjustments and penalty costs for system reliability
losses [29]. Moreover, DDSR methods tend to generate the
same representative scenario set for two different problems
that share the same original scenario set. That is, since DDSR
methods generally consider SR and SBSO as two distinct and
decoupled processes, they suffer from a critical oversight: an
inability to consider the impacts of the reduced scenario set
on the optimal solution to the original SBSO.

To address this gap, SR methods should re-evaluate rep-

resentativeness of scenarios. Specifically, the efficacy of SR
should be gauged by the performance of the representative
scenarios with consideration of the SBSO problem structure,
i.e., in problem space, as illustrated in Fig. 1(b). Problem

space is a projection of the distribution space that takes into
account the SBSO problem structure, wherein the scenarios
are positioned by the repulsive forces formed by their mutual
decision impacts on the problem outcomes, rendering a spatial
structure based on objective and decision elements. This paper,
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therefore, focuses on identifying scenarios with high decision

applicability, which refers to their relatively large impacts on
the optimal objective value and decision-making. Recently,
literature has integrated decision applicability into the SR
process and referred the framework problem-dependent SR.
In [30], a problem-dependent methodology is proposed for
SR that relies on a computationally complex Wasserstein
distance metric and alternating minimization algorithm, which
limits scalability and potentially yields suboptimal solutions.
A symmetric opportunity cost is employed in [31] as the
distance metric to measure the decision applicability between
scenarios, and heuristic methods are used to perform SR,
which limits the ability to characterize the optimality gap.
Ref. [32] interestingly develops a problem-driven scenario
clustering method with asymmetric distance metric where the
representative scenarios are selected based on their average
decision applicability in the entire cluster, which limits scala-
bility of the method to SBSOs with low dimensionality (e.g.,
few scenarios, simple problem structure) and is impractical in
power system applications.

In this paper, we propose a novel problem-driven scenario
reduction (PDSR) framework for solving SBSO problems to
near-optimality and case studies illustrate improvements of up
to ten times in terms of scalability and optimality gap over nine
state-of-the-art methods, which enables PDSR applications to
power systems for the first time. Specifically, our contributions
are as follows:

1) Problem-Driven Scenario Reduction Framework: We pro-
pose a novel PDSR framework for general SBSO prob-
lems by defining the concept of optimality gap (OG) for
SR and analytically characterizing the impacts of SR on
the SBSO problem outcomes.

2) Problem-Driven Distance Metric: To evaluate the repre-
sentativeness of scenarios, we introduce a provably effec-
tive problem-driven distance (PDD) metric that quantifies
the mutual decision applicability between scenarios. We
show that the OG can be bounded above by minimizing
the sum of PDD within clusters (SPDD). Furthermore,
we use the PDD and OG to introduce new ex-ante and
ex-post problem-driven SR evaluation indices.

3) Clustering Methodology: Based on the PDD, we convert
the original scenario set partitioning and representative
scenario selection process into a mixed-integer linear
program (MILP). The MILP objective balances min-
imization of SPPD within clusters and the reduction
degree reflected by the total number of clusters (i.e.,
representative scenarios).

4) Simulation-Based Analysis: Two case studies validate the
proposed PDSR framework by applying it to stochastic
two-stage economic optimization problems within the
context of active distribution networks and unit commit-
ment, which co-optimize day-ahead decisions and intra-
day decision adjustments. Simulation results demonstrate
PDSR’s ability to identify salient scenarios that achieve
an SR optimality gap up to ten times smaller than the
nine state-of-the-art SR methods.

The remainder of the paper is organized as follows. Sec-

tion II introduces the proposed PDSR framework. Formulation
of a scenario-based stochastic economic dispatch problem for
an active distribution network is presented in Section III.
Numerical studies based on real-world data are provided in
Section IV to illustrate comparative performance. Finally,
conclusions are summarized in Section V.

II. PROBLEM-DRIVEN SCENARIO REDUCTION
FRAMEWORK

In this section, we detail the novel PDSR framework within
the context of a general two-stage stochastic optimization
(TSSO) problem, which represents a rich set of power system
problems. Note that the PDSR framework can also be adapted
to single-stage and multi-stage SBSO problems.

A. Formulation of Two-Stage Stochastic Optimization

Two-stage stochastic optimization is an effective formula-
tion in stochastic optimization to address uncertainties due to
its “here-and-now” and “wait-and-see” characteristics, which
respectively represent the decisions to be made before and
after the uncertainty is revealed. The general formulation of
the TSSO built on the original scenario set is

min
z↓Z

F (z, ω) := f(z) +
N∑

i=1

ϑiG(yi, ϖi|z) (1a)

G(yi, ϖi|z) := min
yi↓Y (z,ωi)

g(yi, ϖi), (1b)

where F (z, ω) is the objective function of the TSSO, including
the objective of the first stage and the expected objective of
the second stage. f(z) is the objective function of the first
stage with the decision variable z → Z. Here, Z ↑ Rn

denotes the bounded feasible set. The original set of N

scenarios is denoted as ω = {ϖ1, ϖ2, ..., ϖN}. The probability
of scenario ϖi is ϑi > 0, which satisfies

∑N
i=1

ϑi = 1.
The second-stage problem is G(yi, ϖi|z) under the uncertainty
ϖi with yi → Y (z, ϖi), Y ↑ Rm as the decision variable
and z as the parameter, since z remains constant across all
second-stage problems. g(yi, ϖi) is the objective function of
the second stage. We denote the optimal solution of (1) as
z
↑
ω = argmin

z↓Z
F (z, ω). Additionally, we denote the sce-

nario specific subproblem F (z, ϖi) := f(z) + G(yi, ϖi) with
z
↑
ωi

= argmin
z↓Z

F (z, ϖi), we have F (z, ω) =
∑N

i=1
ϑiF (z, ϖi).

We reasonably require the TSSO to satisfy the assumption
of relatively complete recourse, implying that there exists a
solution to TSSO for any z → Z and ϖ → ω. This assumption
is common in stochastic optimization [33], ensuring sufficient
resources to handle potential risks, even costly.

To address the challenges of computation complexity when
N is large, SR is employed to significantly reduce the com-
putation complexity while maintaining the problem optimality
approximation accuracy at an acceptable level. The SR process
can be denoted as C(ω,K) = {{C1, ..., CK} : Ci ↓=
↔, ↗i;Ci ↘ Cj = ↔, ↗i ↓= j;≃iCi = I, I = {1, 2, . . . , N}}.
The original scenario set ω is partitioned into K(K ⇐
N) clusters and is reduced to a representative scenario set
ε = {↼1, ↼2, ..., ↼K}. Each scenario cluster Ck is represented



IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. X, NO. X, XX MONTH 2024 4

by the representative scenario ↼k with corresponding weight
φk =

∑
i↓Ck

ϑi, which satisfies
∑K

k=1
φk = 1. In this

paper, we concentrate on selecting ε as a subset of ω, instead
of generating new scenarios. The TSSO formulated on the
representative scenario set ε is given by

min
z↓Z

F (z, ε) := f(z) +
K∑

k=1

φkG(yk, ↼k|z) (2a)

G(yk, ↼k|z) := min
yk↓Y (z,εk)

g(yk, ↼k). (2b)

The optimal solution of the reduced problem (2) is denoted
as z

↑
ε = argmin

z↓Z
F (z, ε). Specifically, we would like to

understand how SR affects the optimality of SBSO. Thus, we
seek to define an SR optimality gap metric next.

B. SR Optimality Gap

SR aims to minimize the optimality gap from using K

representatives (ε) vs. N scenarios (ω). Towards this purpose,
the OG can be defined as

OG := F (z↑ε , ω)⇒ F (z↑ω , ω), (3)

where F (z↑ε , ω) means solving (1) with z = z
↑
ε . Compared

to [32], we present a distinct and rigorous derivation of an
upper bound on OG.

Since F (z, ω) ⇑ F (z↑ω , ω) for all z → Z, we have OG ⇑ 0.
A smaller OG indicates a more accurate problem optimality
approximation of ε to ω. Since F (z, ε) ⇑ F (z↑ε , ε) for all
z → Z, we can derive an upper bound of OG as

OG ⇓F (z↑ε , ω)⇒ F (z↑ω , ω) + (F (z↑ω , ε)⇒ F (z↑ε , ε))

=(F (z↑ε , ω)⇒ F (z↑ε , ε))⇒ (F (z↑ω , ω)⇒ F (z↑ω , ε)).
(4)

Note that both the first and the last pair of terms share a
common expression of F (z, ω)⇒F (z, ε), which can be further
reformulated as

F (z, ω)⇒ F (z, ε) =
N∑

i=1

ϑiF (z, ϖi)⇒
K∑

k=1

φkF (z, ↼k)

=
K∑

k=1

∑

i↓Ck

ϑiF (z, ϖi)⇒
K∑

k=1

∑

i↓Ck

ϑiF (z, ↼k)

=
K∑

k=1

∑

i↓Ck

ϑi

(
F (z, ϖi)⇒ F (z, ↼k)

)
. (5)

Combining (4) and (5), the upper bound of OG can be
further expanded as

OG ⇓
K∑

k=1

∑

i↓Ck

ϑi

(
F (z↑ε , ϖi)⇒ F (z↑ε , ↼k)

)

⇒
K∑

k=1

∑

i↓Ck

ϑi

(
F (z↑ω , ϖi)⇒ F (z↑ω , ↼k)

)

⇓
K∑

k=1

∑

i↓Ck

ϑi

(
|F (z↑ε , ϖi)⇒ F (z↑ε , ↼k)|

+ |F (z↑ω , ϖi)⇒ F (z↑ω , ↼k)|
)
.

(6)

Given that z
↑
ω and z

↑
ε are not known, we use a result

from [34] to derive an upper bound on (6) based on (7),
which states that for a locally Lipschitz continuous function
F (z, ϖ), there exists a continuous symmetric function d(·) and
a non-decreasing function h(·), such that for each z → Z and
ϖi, ↼k → ω, we have

|F (z, ϖi)⇒ F (z, ↼k)| ⇓ h(⇔z⇔)d(ϖi, ↼k), (7)

where d(ϖi, ↼k) is required to satisfy the following properties:
C1) Consistency: d(↼k, ϖi) = 0 ↖ ↼k = ϖi;
C2) Symmetricity: d(↼k, ϖi) = d(ϖi, ↼k), ↗↼k, ϖi → ω;
C3) Convergence: sup{d(↼k, ϖi) : ↼k, ϖi → ω, ⇔↼k ⇒ ϖi⇔ ⇓ ↽}
tends to 0 as ↽ ↙ 0;
C4) Triangle inequality: ∝ measurable, bounded function ⇀(·),
where d(↼k, ϖi) < ⇀(↼k) + ⇀(ϖi).

Finally, combining (6) and (7) begets

OG ⇓(h(⇔z↑ω⇔) + h(⇔z↑ε⇔))
K∑

k=1

∑

i↓Ck

ϑid(ϖi, ↼k). (8)

Now, the primary challenge to apply the above result lies in
defining an appropriate distance metric in the problem space,
d(ϖi, ↼k), that satisfies properties C1)-C4). Note that since Z is
bounded, ⇔z⇔ is well-defined, i.e, ∝M ′ 1, ⇔z⇔ ⇓ M ↗, z →
Z. Next, we project the distribution space into the problem

space and then define an appropriate metric d(ϖi, ↼k) within
the problem space.

C. Problem Space Projection

In scenario-based problem formulations, each z
↑
εk

is usually
implemented within its respective scenario clusters, where
z
↑
εk

= argmin
z↓Z

F (z, ↼k). Motivated by this, PDSR projects the

original scenario set in the distribution space onto the problem
space, which is constructed by the decision applicability
between scenarios. The projection process can be denoted as
ω ↙ F , where F := {Fij = F (z↑ωi , ϖj) | i, j → I}. Each
Fij represents a scenario-specific problem and is bounded
under the condition of relatively complete recourse. Note that,
if z

↑
ωi

= argmin
z↓Z

F (z, ϖi) has multiple optimal solutions,

we select the one that minimizes
∑

ω↓ω F (z, ϖ), indicating
better decision applicability to the original scenario set. In this
projection, we can directly quantify the impacts of uncertainty
and systematically incorporate the inherent characteristics of
the SBSO problem into the SR process. Of course, this
approach necessitates solving N

2 optimization problems to
determine F , which may be computationally intensive for
large N . However, since each problem is independent and
can be solved in parallel, the absolute time required to find
F can be reduced significantly. The algorithmic efficiency is
discussed in IV-C.

D. Problem-Driven Distance Metric

Opportunity cost can be utilized to describe the decision
applicability, which pertains to the trade-off wherein the
selection of a particular action necessitates the relinquishment
of potential benefits associated with the best alternative. In
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the context of SR, when scenario ↼k is chosen to represent
scenario ϖi, the opportunity cost is defined as

c(↼k, ϖi) := F (z↑εk , ϖi)⇒ F (z↑ωi , ϖi). (9)

However, c(↼k, ϖi) does not satisfy all properties C1)-C4)
and cannot serve as a distance metric d(·). Instead, we
consider the following problem-driven distance metric between
scenarios ϖi and ↼k:

d(ϖi, ↼k) :=c(↼k, ϖi) + c(ϖi, ↼k) (10)
=F (z↑εk , ϖi)⇒ F (z↑ωi , ϖi) + F (z↑ωi , ↼k)⇒ F (z↑εk , ↼k).

Proposition 1. The distance metric d(ϖi, ↼k) in (10) satisfies

all four properties C1)-C4) for (7).

Proof. Please see proof in Appendix A.

The PDD in (10) effectively quantifies the mutual decision
applicability between two scenarios. That is, a small d(ϖi, ↼k)
implies that scenario ↼k serves as an accurate representation
of scenario ϖi.

Combining (8) and (10) begets

OG ⇓ 2h(M)
K∑

k=1

∑

i↓Ck

ϑi

(
F (z↑εk , ϖi)⇒ F (z↑ωi , ϖi)

+F (z↑ωi , ↼k)⇒ F (z↑εk , ↼k)
)
.

(11)

Note that while the above analysis can be extended to non-
convex formulations, the bounds on OG are conditioned on
finding the global optimum. Convex formulations, as well as
certain simple non-convex formulations in (2) are the focus
of this paper, as they can be solved to global optimality by
existing commercial solvers. Next, we select salient scenarios
that minimize the upper bound in (11).

E. MILP Reformulation of Clustering

Since 2h(M) in (11) is a constant, minimizing the sum
of PDD within clusters achieves the lowest upper bound of
OG. To achieve this, the process of scenario partitioning
and representative scenario selection can be rendered as the
following MILP formulation.

min
v,u,l,K

N∑

j=1

lj + ςK/N (12a)

s.t.
N∑

i=1

ϑivij(Fji ⇒ Fii + Fij ⇒ Fjj) ⇓ lj , ↗j → I (12b)

vij ⇓ uj , vjj = uj , ↗i, j → I (12c)
N∑

j=1

vij = 1, ↗i → I (12d)

N∑

j=1

uj = K, ↗j → I (12e)

vij → {0, 1}, uj → {0, 1}, ↗ i, j → I . (12f)

In (12a),
∑N

j=1
lj describes the SPDD, and K/N describes

the reduction degree. ς is the trade-off factor to achieve
a balance between the SPDD and reduction degree, while

simultaneously deciding the optimal clustering number K. The
binary variable uj indicates whether scenario ϖj is selected
as a representative scenario of a cluster, while the binary
variable vij determines whether scenario ϖi is included in
the cluster represented by scenario ϖj . Constraint vij ⇓ uj

ensures that ϖi can only be assigned to a cluster that has a
designated representative, while vjj = uj enforces that ϖi

must be assigned to its respective cluster if it’s a representative
scenario. Constraint (12d) ensures that each scenario ϖj can
only be assigned to one cluster, while (12e) guarantees that
exactly K clusters are formed. The weight of cluster Ck is
calculated as φk =

∑N
i=1

vikϑi.

F. Problem-Driven Evaluation Indices

In this section, two types of problem-driven evaluation
indices are introduced: ex-ante and ex-post indices. Ex-ante

indices emphasizes the SR’s ability in partitioning and repre-
senting the original scenario set in the problem space before
solving the reduced problem. Ex-post indices focus on the
impacts of SR on the outcomes of the TSSO after solving
the reduced problem. For the following indices, the first two
indices are ex-ante indices, while the last two indices are ex-

post indices.
1) Sum of PDD within clusters (SPDD):

SPDD :=
N∑

j=1

lj =
K∑

k=1

∑

i↓Ck

ϑi(Fki⇒Fii+Fik ⇒Fkk). (13)

SPDD measures the dispersion between scenarios and their
respective clusters. A smaller SPDD value indicates a tighter
clustering result in the problem space.

2) Problem-driven Davies-Bouldin Index: Based on the
Davies-Bouldin Index, we introduce the Problem-driven
Davies-Bouldin Index (PDDBI) utilizing the PDD:

PDDBI :=
1

K

K∑

m=1

max
1↔n ↗=m↔K

(Dm +Dn

d(↼m, ↼n)

)
(14a)

Dm :=
∑

i↓Cm

ϑi

φm
d(↼m, ϖi). (14b)

A smaller PDDBI value indicates a better quality of the bal-
ance between the within-cluster compactness and the between-
cluster separation.

3) Optimality gap: After solving (1) and (2), we apply z
↑
ω

and z
↑
ε to ω, and calculate the percentage value of OG as

OGε(%) :=
F (z↑ε , ω)⇒ F (z↑ω , ω)

F (z↑ω , ω)
. (15)

This metric indicates the percentage deviation of the approx-
imated optimality from the optimality of the original problem,
and is desired to be close to zero 1.

1The feasibility for unexpected scenario realizations or outliers is ensured
by the assumption of relatively complete recourse and the availability of
corrective measures in the second stage.
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4) Representative scenario effectiveness: For the SBSO
based on the representative scenarios, identifying the relative
importance of individual representative scenario is crucial for
comprehending the problem structure and making reasonable
decisions. We introduce the concept of “Scenario Effective-
ness”, measuring the significance of a given representative
scenario in the problem space. The scenario effectiveness of
scenario ↼k, denoted as SEεk(%), is characterized by the
changes in the percentage OG upon its removal from ε:

SEεk(%) := OGε→k(%)⇒OGε(%), (16)

where ε→k = ε \ {↼k}. A higher value of SEεk(%) signifies
that the removal of ↼k induces more substantial changes in
the OG. This indicates that ↼k holds greater significance in
influencing the reduced problem outcomes.

G. Algorithm of PDSR

The proposed PDSR framework is illustrated in Algo-
rithm 1. This algorithm consists of two steps:

Step 1 projects the distribution space onto the problem
space by calculating the mutual decision applicability between
scenarios, and constructs the problem space matrix F . In
the projection process, the correlations between scenarios are
inherently accounted for by leveraging the problem structure,
making complex correlation analysis unnecessary. Notably,
with stronger correlations between the original scenarios, the
number of reduced scenarios is reduced.

Step 2 partitions the original scenario set into clusters and
selects representative scenarios by first tuning ς from ex-

ante indices, and then solving the MILP in (12). Note that ς
depends on the specific problem formulation and the original
scenario set. Thus, simple tuning is suggested to obtain an
acceptable K.

Algorithm 1: Problem-Driven Scenario Reduction
Input: Scenario set ω of N scenarios and weights ϑ.
Output: Scenario set ε of K scenarios and weights ϖ.
Step 1 - Projection in Problem Space

Step 1.1: Initialize problem space matrix F = 0.
Step 1.2: Project the distribution space onto

problem space by:
for i = 1 to N do

Solve the scenario-specific TSSO problem
F (z, ϖi) and obtain the optimal decision z

↑
ωi

.
Set Fii = F (z↑ωi , ϖi).
for j = 1 to N , i ↓= j parallel do

Solve the single-stage and deterministic
problem G(yj , ϖj |z↑ωi) in (1b).

Set Fij = F (z↑ωi , ϖj).
end

end
Step 2 - Clustering

Step 2.1: Select ς in (12a) from ex-ante indices.
Step 2.2: Solve MILP in (12) to obtain the

representative scenario set ε with weights ϖ.

To validate the effectiveness of the proposed PDSR frame-
work, we consider applying PDSR to the following two-stage
stochastic economic dispatch problem.

III. TWO-STAGE STOCHASTIC ECONOMIC DISPATCH FOR
ACTIVE DISTRIBUTION NETWORKS

In this section, we consider an optimal stochastic economic
dispatch of an active distribution network (ADN) that trades
with the transmission system. The ADN’s assets include wind
turbines (WT), photovoltaic systems (PV) and energy storage
(ES) facilities. We focus on uncertainties from WT, PV, loads
and two electricity markets: day-ahead and intraday price [35],
which engenders the two stages for dispatch. In the day-
ahead stage, uncertainties are described using the represen-
tative scenario set and the ADN needs to sign contracts
for power trading with the transmission system operator and
procure ES capacity from the ES owner to address intraday
uncertainties. In the intraday stage, due to the uncertainties,
there will exist deviations between the scheduled day-ahead
power trading and the actual intraday power demand, and
even violations of safety constraints especially in worst-case
scenarios. Therefore, the ADN decision-maker is risk-averse
and prefers to make strategy adjustments to limit constraint
violations, which are mainly considered as voltage magnitude
constraint violations.

A. Objective Function

The objective is to minimize the total operation cost in-
cluding the day-ahead trading cost and the expected intraday
balancing cost and the penalty cost. The day-ahead trading cost
in (17b) includes the cost of trading power with transmission
system and the procurement of ES capacity. The intraday cost
includes the balancing cost in the intraday balancing market
in (17c), and the penalty cost of load shedding and RES
curtailment in (17d).

min C
DA + C

IN,im + C
IN,p (17a)

C
DA =

S∑

s=1

φs

T∑

t=1

ϱ
T

s,tP
T

t !t+
∑

j↓ϑE

ϱ
E

j Ej (17b)

C
IN,im =

S∑

s=1

φs

T∑

t=1

!t(ϱT+

s,t P
T+

s,t + ϱ
T→
s,t P

T→
s,t ) (17c)

C
IN,p =

S∑

s=1

φs

T∑

t=1

!t(
∑

j↓ϑR

ϱ
R,c

P
R,c
j,s,t +

∑

j↓ϑL

ϱ
L,s

P
L,s
j,s,t).

(17d)

ϱ
T
s,t and P

T
t are the trading electricity price and trading

power between the ADN and transmission system in the day-
ahead market, respectively. ϱ

E

j and Ej are the procurement
price and procured ES capacity at node j in the day-ahead
market. T and !t are time periods and time interval for
scheduling. S is the number of scenarios and φs is the weight
of scenario s. ϱ

T+

s,t /ϱ
T→
s,t are the imbalancing price of up-

regulation and down-regulation in the intraday balancing mar-
ket under scenario s and time t. PT+

s,t /P
T→
s,t are the imbalanced

purchasing and selling power in the intraday balancing market.
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In the intraday balancing market, the ADN can only purchase
balancing energy at a higher price than in the day-ahead
market, while selling electricity at a lower price. PR,c

j,s,t/P
L,s
j,s,t

are the power of RES curtailment and load shedding at node
j. ωR/ωL/ωE refer to the set of nodes of RES, load, and ES.
ϱ
R,c

/ϱ
L,s are the penalty costs of RES curtailment and load

shedding.

B. Operational Constraints

1) Power flow constraints: The linear version of the Dist-

Flow model, i.e., LinDistFlow [36] is used in this paper to
approximate nodal voltage magnitudes and active/reactive line
flows in the ADN with the assumption that line losses can be
neglected. We denote ωN as the set of nodes. ↗j → ωN, we
have

Vj,s,t = Vi,s,t ⇒ 2(rijPij,s,t + xijQij,s,t) (18a)

pj,s,t = Pij,s,t ⇒
∑

l:j↘l

Pjl,s,t (18b)

qj,s,t = Qij,s,t ⇒
∑

l:j↘l

Qjl,s,t (18c)

Vj ⇓ Vj,s,t ⇓ Vj , (18d)

where rij/xij are the line resistance/reactance of line ij,
respectively. Vj,s,t denotes the squared voltage magnitude at
node j for scenario s at time t. Pij,s,t/Qij,s,t are the line ac-
tive/reactive power of line ij, respectively. pj,s,t/qj,s,t are the
active/reactive injection power at node j. (18a) describes the
voltage drop over line ij. (18b) and (18c) represent the active
and reactive power balance at node j. (18d) describes voltage
magnitude limits at node j, with Vj/Vj as the upper/lower
bound of squared voltage magnitude.

2) RES curtailment and load shedding constraints: ↗j →
ωR, we have

0 ⇓ P
R,c
j,s,t ⇓ P

R

j,s,t (19a)

0 ⇓ P
L,s
j,s,t ⇓ P

L

j,s,t, (19b)

where P
R

j,s,t/P
L

j,s,t are the RES injection and active power
consumption at node j for scenario s at time t, respectively.

3) ES operation constraints: ↗j → ωE, we have

SoCj,s,t+1 = SoCj,s,t +!t(PE,c
j,s,tε

c

j ⇒ P
E,d
j,s,t/ε

d

j )/Ej (20a)
T∑

t=1

(PE,c
j,s,tε

c

j ⇒ P
E,d
j,s,t/ε

d

j )!t = 0 (20b)

0 ⇓ P
E,c
j,s,t ⇓ (1⇒D

E

j,s,t)P
E

j (20c)

0 ⇓ P
E,d
j,s,t ⇓ D

E

j,s,tP
E

j (20d)

SoC ⇓ SoCj,s,t ⇓ SoC (20e)
D

E

j,s,t → {0, 1}, (20f)

where P
E,c
j,s,t/P

E,d
j,s,t are the charge/discharge power of ES at

node j. εcj/εdj are the charge/discharge efficiency, respectively.
PE

j is the maximum charging/discharging power. D
E

j,s,t is
a binary variable indicating the charging/discharging state.
SoC/SoC denote the maximum/minimum SoC, respectively.
Constraints (20a), (20b) and (20e) are related to the state of

charge (SoC). Constraint (20b) guarantees that the capacity
at the last time period is equal to the initial capacity. Con-
straints (20c) and (20d) impose restrictions on the maximum
charging/discharging power and charging state of ES.

4) Trading constraints with transmission system:

0 ⇓ P
T+

s,t ⇓ (1⇒D
T

s,t)P
T (21a)

0 ⇓ P
T→
s,t ⇓ D

T

s,tP
T (21b)

⇒ PT ⇓ P
T

t ⇓ PT (21c)

⇒ PT ⇓ P
T

t + P
T+

s,t ⇒ P
T→
s,t ⇓ PT (21d)

D
T

s,t → {0, 1}, (21e)

where PT is the maximum trading power between ADN and
transmission system. (21a) and (21b) indicate that the ADN
can only be in one balancing state at one time, with the binary
variable D

T
s,t as the balancing state of ADN.

5) Energy balancing constraints: ↗j → ωN, we have

pj,s,t = P
E,c
j,s,t ⇒ P

E,d
j,s,t + P

L

j,s,t ⇒ P
L,s
j,s,t ⇒ (PR

j,s,t ⇒ P
R,c
j,s,t)

(22a)

qj,s,t = Q
L

j,s,t ⇒Q
L,s
j,s,t, (22b)

where Q
L

j,s,t/Q
L,s
j,s,t are the reactive power consumption and

load shedding at node j. We assume that all the RESs are of
the unity power factor and the power factor of load demand
remains the same after load shedding. ↗ s, t, if j /→ ωE,
P

E,c
j,s,t = P

E,d
j,s,t = 0. Similarly, if j /→ ωR, PR

j,s,t = P
R,c
j,s,t = 0.

C. Overall Problem Formulation

Finally, the optimal day-ahead economic dispatch problem
is formulated as (23), which is a mixed-integer linear problem,
and can be solved by commercial solvers.

min
!1,!2

C
DA + C

IN,im + C
IN,p

s.t. (18) ⇒ (22),
(23)

where ”1 =
[
P

T
t , Ej

]
are the decision variables of first

stage (i.e., day-ahead stage). ”2 = [PT+

s,t , PT→
s,t , PE,c

j,s,t, P
E,d
j,s,t,

P
R,c
j,s,t, P

L,s
j,s,t, D

E

j,s,t, DT
s,t] are the decision variables of second

stage (i.e., intraday stage).

IV. NUMERICAL CASE STUDIES

In this section, we conduct case studies on two TSSO
problems to illustrate PDSR’s priority. We mainly concentrate
on the first case study, which involves a two-stage stochastic
economic dispatch of a modified IEEE 33-node ADN intro-
duced in Section III. Then, we provide a remark of applying
PDSR to mixed integer problems such as unit commitment.

A. Problem Description

In the first case study on the modified IEEE 33-node ADN,
one WT is located at node 10 and two PVs are located at
nodes 16 and 24, respectively. Beside of the uncertain RES
power output, the active load at nodes 10, 16, and 24 is
also considered as random variables, while the active load at
other nodes is assumed to have a fixed changing curve for
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simplicity. An ES is located at node 13. The voltage magnitude
is restricted as |Vi| → [0.90, 1.10] (p.u.), ↗i → ωN. The time
step is set as !t = 15min with T = 96 steps. The original
scenario set ω comprises N scenarios. It is worth mentioning
that, though PDSR does not require the specific scenario
generation method, ω should be generated with consideration
of the SBSO problem. For example, historical observations
can be used for long-term problems (e.g., system planning),
while forecasting methods are more suitable for short-term
problems (e.g., economic operation). Additionally, machine
learning techniques (e.g., generative adversarial networks [37])
can be employed to enhance data quality. In this paper, we
generate ω from the forecasting results of a real distribution
network. Additionally, to validate the performance of proposed
PDSR framework in uncovering salient scenarios, particularly
worst-case scenarios, we construct ω by randomly selecting
from the forecasting result, while also ensuring that it contains
a specified number of bad scenarios [38]. Each individual sce-
nario ϖ → R7≃T

, ϖ → ω is a multi-variable high-dimensional
vector characterizing 7 sources of uncertainty, including the
power of 1 WT, 2 PVs, 3 loads and the day-ahead electricity
price. The capacities of WT and PVs are normalized to 1MW,
1.2MW and 1MW. For simplicity, the intraday balancing
market price is set as ϱ

T+

s,t = 1.3ϱT
s,t and ϱ

T→
s,t = 0.7ϱT

s,t.
The power rating of ES is set as 0.4MW, and ES capacity
procurement is limited by E ⇓ 0.8MWh. The initial SoC of
ES is 0.5 and ε

c = ε
d = 0.95. The penalty costs of load

shedding and RES curtailment are set as $1000/MWh and
$280/MWh, respectively. The TSSO problem built on ω is
used as the Benchmark. The optimization is coded in Python
with the Cvxpy interface and solved by Gurobi 11.0 solver.
The programming environment is Intel Core i9-13900HX @
2.30GHz with RAM 16 GB.

B. Performance of PDSR

First, we consider N = 400 scenarios and construct the
F matrix by solving N

2 scenario-specific deterministic prob-
lems. Then, we utilize the MILP formulation in (12) to decide
K through a comprehensive analysis of the normalized ex-ante

indices under different ς. Notably, the simple tuning process of
ς can be completed within a few optimizations, each requiries
less than 3 seconds. The results are shown in Fig. 2. It is
observed that ς → [120, 140] and K = 6 correspond to a
local minimum in PDDBI, and the balance between reduction
degree K/N and SPDD is also achieved. This indicates that
6 representative scenarios can provide the most favorable
clustering structure for the dataset under analysis.

Fig. 2. The ex-ante validity of different ω.

Normal Scenarios:

Worst-case Scenario:

Fig. 3. Representative scenarios obtained by the PDSR framework for N =
400 and K = 6: (a) WT at node 10, (b) PV at node 16, (c) PV at node
24, (d) load at node 10, (e) load at node 16, (f) load at node 24, (g) day-
ahead electricity price and (h) un-optimization voltage magnitude violations
(boxplot, left) and energy trading cost (violinplot, right) of the 6 scenario
clusters from AC power flow.

The obtained K = 6 representative scenario clusters of
the proposed PDSR framework are presented in Fig. 3(a)
to Fig. 3(g). Fig. 3(h) indicates the un-optimization voltage
magnitude violations and energy trading cost of the 6 scenario
clusters from AC power flow. This highlights the severity
of these scenarios and underscores the importance of imple-
menting reasonable dispatching practices. Curves in the same
color belong to the same cluster. The corresponding weights
of each cluster are 0.1575, 0.165, 0.1825, 0.175, 0.1425 and
0.1775, respectively. The representative scenarios in Fig. 3
illustrate PDSR’s effectiveness in identifying salient features
from a large set of uncertainties in the system. Moreover,
PDSR includes one worst-case scenario (red ↼6) in the reduced
set. Specifically, worst-case scenarios are identified by the
outliers in the problem space, which are detected by the
condition ⇁ = !2(sort({

∑N
j=1

F (z↑ωj , ϖi)}
N
i=1

)) > bound.
sort(·) is the ascending sorting function, !2(·) is the second-
order difference function, and bound is the threshold value,
which can be set as 2 in this case.

∑N
j=1

F (z↑ωj , ϖi) describes
the decision adaptability level of all other potential solutions
to scenario ϖi. Scenario ↼6 achieves a high value of ⇁ and
is identified as a worst-case scenario. Besides, its significant
volatility and high values, and significant voltage magnitude
violations and trading cost also verify it as a worst-case
scenario. This observation is critical because incorporating too
many worst-case scenarios into the representative scenario set
may introduce conservatism, potentially leading to reduced
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economic efficiency.
The optimality gap OG(%) is 0.09%, which suggests a high

level of approximation accuracy. Notably, for all Fij in F ,
the MIP-gap is < 10→4 (i.e., default Gurobi MIPGap), which
ensures that the optimal solution is found despite the adopted
case study being a non-convex MILP problem. Finding the
optimal solution contributes to achieving high approximation
accuracy and low OG. We utilize the evaluation indices of
representative scenario effectiveness to further validate the
performance of the proposed PDSR framework. The results
are illustrated in Table I.

TABLE I
EVALUATION RESULTS OF REPRESENTATIVE SCENARIO EFFECTIVENESS

FOR N = 400 AND K = 6

ε1 ε2 ε3 ε4 ε5 ε6

SEωk 0.29% 0.25% 0.27% 0.28% 0.02% 0.33%

Table I suggests that each component of the representative
scenario set has a relatively large value of SEεk , indicating
their significant impact on the reduced problem outcomes.
Notably, the scenario effectiveness of representative scenario
↼6, corresponding to the red curve in Fig. 3, is highlighted.
This is consistent with the earlier analysis of the scenario
being a worst-case scenario and an important component of
the representative scenario set. This result demonstrates the
effectiveness of the proposed PDSR framework in capturing
the salient features of the original scenario set.

C. Comparison with State-of-the-Art SR Methods

To further demonstrate the benefit of the proposed PDSR
framework, we conduct a comparative analysis. DDSR meth-
ods, including HC using Wasserstein distance (HC-W), K-
means using Euclidean distances (KM-E), K-means using
dynamic time warping distance (KM-D), K-medoids using
Euclidean distances (KD-E), and Gaussian mixture model
using Mahalanobis distance (G-M) are compared. For DDSR
methods incorporating relevant problem properties, we include
K-means based on network power flow (KM-pf) [18], and
HC based on operational cost (HC-c) [19] in comparison.
Regarding other problem-dependent SR research, we also
include the method developed in [31] with graph clustering
(GC), and the method developed in [30] using Wasserstein
distance metric and alternating minimization algorithm (AM-
W) for comparison. Additionally, the method of constructing
the representative scenario set based on worst-case statistical
indicators in the distribution space (WS) is also included for
comparison.

The comparative indices include the ex-post SR perfor-
mance indices and the computation efficiency indices. In this
comparison, we concentrate on how the representative scenario
set impact the problem outcomes. Thus, the considered SR per-
formance indices include: the number of worst-case scenarios
captured in the representative scenario set (κ), which indicates
the SR method’s effectiveness in identifying “worst-case”
scenarios; the OG(%) defined in (15), which measures the

problem optimality approximation accuracy; the ES capacity
procurement E from solving (2), which measures the ability
of SR methods in capturing the underlying risk characteristics
in the original scenario set and making risk provisions; the
average verification penalty cost C̃

IN,p = 1/N
∑

ω↓ω C
IN,p
ω ,

where the penalty cost C
IN,p
ω is derived from F (z↑ε , ϖ). The

considered computation efficiency indices include: the time
required to process the data input for clustering (τp), and
the time required to solve the clustering problem (τc). The
comparison results are presented in Table II.

TABLE II
COMPARING SR METHODS FOR N = 400 AND K = 6

Method ϑ OG(%) E(MWh) C̃
IN,p($) ϖp(s) ϖc(s)

Benchmark 12 0 0.17 155.1 → →
PDSR 1 0.09 0.16 162.8 < 0.3 2.73

AM-W [30] 1 0.51 0.07 199.3 < 0.3 22.9

GC [31] 1 0.57 0.06 206.9 < 0.3 0.11

WS 3 0.83 0.58 67.53 0.01 →
HC-c [19] 0 1.70 0 250.6 < 0.8 0.01

KM-pf [18] 0 0.84 0.04 221.3 < 0.8 0.59

G-M 0 1.59 0.01 247.5 → 4.62

KM-D 0 1.71 0 250.6 → 266.5

KM-E 0 0.98 0.03 227.8 → 0.31

KD-E 0 0.77 0.04 217.7 → 1.46

HC-W 0 0.66 0.04 214.9 19.54 0.03

Optimality Gap: The observations from Table II suggest
that the PDSR framework, with a small value of OG(%) =
0.09%, significantly outperforms other state-of-the-art SR
methods. Besides, the ES capacity procurement E and C̃

IN,p

of PDSR also best approximate the results of Benchmark. The
DDSR methods, seeking minimum statistical difference, fail to
capture worst-case scenarios in their representative scenario
sets, which leads to a neglect of potential risks during the
operation, resulting in small procurements of ES capacity
and an inability to cope with uncertainties, thus achieving
relatively high penalty costs and OG(%). For instance, in
heavy load situations, the node voltage might drop below
safety requirements. Without the support of ES, the ADN must
resort to lots of load shedding to prevent violating the voltage
safety constraints, thereby incurring substantial penalty costs.
WS selects 6 statistical worst-case scenarios in the distribution
space, but only 3 of them are real worst-case scenarios in
the problem space. This discrepancy highlights that severity
in statistical metrics does not necessarily equate to severity
in problem outcomes. Moreover, focusing only on worst-case
scenarios may result in overly conservative decisions and
unnecessarily high costs. WS procures too much ES capacity
as E = 0.58MWh, achieving a low penalty cost, while also
leading to a relatively high OG(%) = 0.83%. Regarding
other problem-dependent SR research, The GC method in [31]
captures 1 worst-case scenario with OG(%) = 0.51%, while
the AM-W method in [30] also captures 1 worst-case scenario
with OG(%) = 0.57%. Those results are much lower than the
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DDSR methods. This indicates that measuring the difference
between scenarios by the symmetric opportunity cost can
enhance the SR performance. However, GC relies on heuristic
methods to derive representative scenarios, whereas AM-W
utilizes the alternating minimization algorithm, both of which
can potentially yield suboptimal outcomes. Additionally, the
method developed in [32] fails to solve the clustering process
within 3 hours as their clustering methodology does not
scale well with high-dimensional power system problems with
complex problem structure and large scenario sets. Compared
to the above methods, the proposed PDSR framework effi-
ciently considers the potential impacts of the scenarios on the
problem, and include one reasonable worst-case scenario in the
representative scenario set, as analyzed in Section IV-B. These
comparative findings suggest that PDSR exhibits superior
accuracy in representing the original scenario set, thereby
offering more reliable information for decision-making in
power system energy management under uncertainty.

Representative Scenario Effectiveness: In Fig. 4, the com-
parative results of representative scenario effectiveness are
depicted. For DDSR methods, removing some of the repre-
sentative scenarios does not significantly impact the problem
outcomes, as evidenced by the minimal changes in OG(%).
While in PDSR, such a removal can significantly alter the
problem outcomes. This indicates that the proposed PDSR
framework can effectively capture the salient scenarios with
significant impacts on the SBSO problem. Furthermore, all
OGε→k(%) results of PDSR are much lower than the DDSR
methods, indicating that statistically proximity in the distri-
bution space does not equal to strategy closeness and better
solution approximation in the problem space. Besides, the
comparison between GC, AM-W and PDSR indicates that
the proposed MILP clustering methodology is more effective
than the graph clustering employed in GC and the alternating
minimization algorithm in AM-W.

Fig. 4. Comparative results of representative scenario effectiveness for N =
400 and K = 6.

Computational Efficiency: The Benchmark struggles with
computational complexity when N is large. For example, for
N = 400 and N = 600, the Benchmark takes nearly 51 and
75 mins, respectively. Moreover, for N > 600, computation
times become impractical for the Benchmark. The DDSR
methods, however, overcome computation bottlenecks, but
at the price of potentially large OG(%) values. Problem-
dependent SR research, GC, AM-W and PDSR decompose the
original SBSO problem into mostly parallelizable and simple
scenario-specific subproblems. In this way, the computation

complexity is greatly reduced. Specifically, all GC, AM-W and
PDSR involve N parallel computations followed by N(N⇒1)
parallel computations to determine matrix F . In this paper,
the computation time for each scenario-specific subproblem
is τs < 0.3s (with LinDistFlow model). Theoretically, with
N(N ⇒ 1) parallel processes available, the computation time
for calculating the F matrix can be reduced to 2∞τs = 0.6s 2.
For N = 400 and K = 6, after calculating the F matrix, the
MILP clustering problem is solved consistently with MIP-gap
with τc < 3s. We define τo(K) as the time required to solve (2)
with K representative scenarios and τo(6) < 3s. Generally,
with W parallel processors, the total computation time of the
PDSR is

τ := τp + τc + τo(K)

= (∈N/W ∋+ ∈N(N ⇒ 1)/W ∋) τs + τc + τo(K).

For example, with N = 400 and a practical W = 100
processors, τ △ 8 mins (or 15.7% of the Benchmark).
Furthermore, as long as the original scenario set and SBSO
problem formulation remain unchanged, matrix F can be
stored and re-used. In conclusion, the PDSR framework can
effectively reduce computational complexity while achieving
a low SR optimality gap.

Scalability: We further compare the OG(%) results under
different N and K, as illustrated in Fig. 5. In Figs. 5(a,b),
we observe that the proposed PDSR framework outperforms
DDSR methods and GC across all values of N and K, as
evidenced by its consistently lower OG(%). This underscores
the distinct superiority of the PDSR framework in identi-
fying salient scenarios. Interestingly, the PDSR results (in
red) with N = 100 have smaller OG(%) than the DDSR
methods even for N = 400, which means that to attain a
comparable level of OG, the PDSR framework requires far
fewer scenarios. Besides, as expected, increasing K decreases
the OG(%) for PDSR. However, for DDSR methods, GC
and AM-W, this inherent regular benefit is not present. Fur-
thermore, we conduct the performance comparison with a
large original scenario set, using N = 1000 and K = 10
(i.e., a 99% reduction) as an example in Fig. 5(c). In this
case, the original SBSO problem in (1) is computationally
intractable. Therefore, we use F (z↑ε , ω) as the performance
evaluation metric, instead of OG(%). A smaller value of
F (z↑ε , ω) indicates a better approximation to the original SBSO
optimality. Notably, PDSR outperforms other SR methods with
the lowest F (z↑ε , ω). Based on the representative scenarios
from PDSR, the day-ahead SBSO problem obtains superior
operational strategies with high adaptability and effectiveness
across different scenarios. Moreover, for N = 1000 and
K = 10, we have τc = 45.8s, indicating that the MILP
formulation can be solved efficiently. In conclusion, the above
comparative analysis further emphasizes the benefit of the
proposed PDSR framework.

Remark. [PDSR for mixed-integer problems] Consider an
example of a two-stage stochastic unit commitment problem
applied to the IEEE 14-bus system, where nearly half of the

2Replacing LinDistFlow with its more accurate second-order conic relax-
ation, F can still be calculated in parallel within 2↑ ϖs = 3.2s.
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(a)

(b)

F
 (z

ω→ ,
ω)

(c)
Fig. 5. Comparing results for different N and K: (a) N = 100, (b) N = 400
and (c) N = 1000 and K = 10.

decision variables are binary. In this example, five generators
are available and one WT is located at bus 10, and two
PVs are located at buses 12 and 14. The time step is set as
!t = 1 hour with T = 24 steps. The uncertainties stem
from the RES power output and the load demand at the
RES nodes, resulting in six distinct sources of uncertainty.
The original scenario set ω contains N = 400 scenarios and
is reduced to K = 5 representative scenarios. The detailed
problem formulation is presented in Appendix B. To be
concise and comprehensive, we mainly show the comparison
results of PDSR with other SR methods. The comparison
indices include the number of worst-case scenarios captured
κ, the optimality gap OG(%), the intraday operational cost
C̃

IN(M$) = 1/N
∑

ω↓ω(C̃
IN,g+ C̃

IN,p) (C̃IN,g and C̃
IN,p are

from F (z↑ε , ϖ)), as well as the preprocessing time τp(s), and
clustering time τc(s). The comparative results are summarized
in Table III.

Table III indicates that the proposed PDSR framework
achieves the lowest OG(%) = 0.20%, which is significantly
lower than the other SR methods. Additionally, the intra-
day operational cost C̃IN of PDSR closely approximates the
Benchmark results, demonstrating PDSR’s effectiveness in
facilitating the decision-making process for generating robust
and cost-effective operational strategies. Moreover, τp with
parallel setting of PDSR is within acceptable limits. τc is quite
different from the result in Table II but is still acceptable,
which is because that the different problem structure lead to
different solving time of (12). The superiority of PDSR on the

mixed integer problem further demonstrates the effectiveness
of the proposed PDSR framework.

TABLE III
COMPARING SR METHODS FOR MIXED INTEGER UC PROBLEM

(N = 400 AND K = 5)

Method ϑ OG(%) C̃
IN(M$) ϖp(s) ϖc(s)

Benchmark 31 0 773.3 → →
PDSR 2 0.20 712.3 < 0.1 18.62

AM-W [30] 2 0.36 671.6 < 0.1 1.26

GC [31] 1 0.42 623.1 < 0.1 0.36

WS 3 1.52 783.4 0.01 →
HC-c [19] 0 0.52 650.6 < 0.7 0.01

KM-pf [18] 0 0.44 697.9 < 0.7 4.78

G-M 0 0.48 654.6 → 0.80

KM-D 0 0.69 650.5 → 8.94

KM-E 0 0.71 650.9 → 2.87

KD-E 0 0.69 651.6 → 1.23

HC-W 0 0.82 653.4 8.24 0.02

D. Summarizing Discussion on PDSR Framework

For SBSO problems, the definition of “representativeness”
is essential to construct the representative scenario set and
yield effective strategies. In this paper, we demonstrate, both
through theoretical analysis and numerical validation, that the
“representativeness” should be defined as the decision applica-
bility of the representative scenario to its represented scenario
cluster. The advantages of the proposed PDSR framework lie
in the following aspects:

(i) Representativeness: With the problem space constructed
from decision applicability, the PDSR framework suc-
cessfully achieves a low optimality gap, demonstrating a
significant level of representativeness.

(ii) Efficiency: The PDSR framework successfully captures
the scenarios with significant impacts on the problem,
especially the worst-case scenarios, enhancing the robust-
ness and reliability. Moreover, in comparison to other
SR methods, the PDSR framework effectively reduces
the number of required scenarios with the same level of
optimality gap, which is beneficial in cases with limited
monitoring and data accumulation.

(iii) Determinateness: Instead of using heuristic methods, the
PDSR framework transforms the process of scenario
partitioning and representative scenario selection into a
MILP formulation, which attains deterministic and opti-
mal outcomes with commercial solvers.

(iv) Generality: The proposed PDSR framework operates
without reliance on probability distribution, and only
has limited and reasonable assumptions on the SBSO
problem structure. As a result, the PDSR framework can
be applied to a broad range of SBSO problems, ensuring
high generality and scalability.
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Meanwhile, the potential limitations for PDSR lie in the
following aspects:

(i) Scalability: Large-scale power systems present scalability
challenges for PDSR due to the curse of dimensionality.
Firstly, to compute F , PDSR requires N + N(N ⇒ 1)
parallel computations, which can be a significant compu-
tation burden. Second, the resulting N -by-N F begets
a large-scale MILP with N(N + 1) binary variables
(albeit with a sparse structure). Potential techniques for
solving large-scale MILP include warm-start, neural net-
works [39], [40], and decomposition methods [41], [42].
Third, complex optimization frameworks (e.g., multi-
stage stochastic optimization), further increase the com-
putational complexity of scenario-specific subproblems.

(ii) Tractability: PDSR depends on the resolution of scenario-
specific subproblems to construct the F matrix. Conse-
quently, issues that cannot be resolved through a single
scenario, such as the Conditional Value-at-Risk (CVaR)
component within the objective function, are beyond
PDSR’s scope of solvability.

V. CONCLUSION

In this paper, a novel problem-driven scenario reduction
(PDSR) framework is proposed for power system SBSO
problems, which fully incorporates the problem structure into
the SR process. Specifically, we utilize the mutual decision ap-
plicability to construct the problem space as the input for SR,
and propose the problem-driven distance metric to measure
the similarity of scenarios in problem space. That is, PDSR
decomposes the original large-scale and complex optimiza-
tion problem into independent and simpler scenario-specific
subproblems, thereby significantly decreasing computational
complexity. Thus, the presented PDSR framework obtains
near-optimal approximation accuracy with just a few salient
representative scenarios within acceptable computation time,
as illustrated by extensive case studies: one ADN dispatch
problem balancing operational energy storage capacity and
economic costs, and another addressing a mixed-integer unit
commitment problem. Moreover, a comprehensive compara-
tive analysis with other SR methods is provided for different
N and K values and demonstrates broadly the superior
performance of our PDSR framework.

Future work will focus on further scaling Algorithm 1 by
filtering the original scenario set for PDSR to reduce the size
of the F matrix necessary to guarantee the desired optimality
gap. Additionally, PDSR will benefit from extending the
analysis to characterize the impacts of local solutions arising
from non-convex problems, such as with the AC optimal
power flow. Lastly, we are interested in extending the PDSR
framework to multi-stage stochastic problems and other SBSO
problems (e.g., CVaR) relevant to power engineering.

APPENDIX

A. Proof of Proposition 1

In this part, we prove that the proposed problem-driven
distance metric in (10) satisfies the required properties of (7).

Proof. C1) Consistency: First we notice that ↼k = ϖi ▽
d(↼k, ϖi) = 0. Conversely, given that both c(↼k, ϖi), c(ϖi, ↼k)
are nonnegative, d(↼k, ϖi) = 0 implies c(↼k, ϖi) = c(ϖi, ↼k) =
0, thus z

↑
εk

= z
↑
ωi

. We reasonably require the problem to
satisfy the assumption that z

↑
εk

= z
↑
ωi

▽ ↼k = ϖi. This
hypothesis rests on the premise that F (z, ϖ) is highly sensitive
to variations in ϖ at particular z, suggesting that identical
solutions imply identical scenarios. This assumption depends
on the problem structure and can be restrictive. For certain
problems dissatisfy this assumption, we can adjust the PDD
by simply incorporating a regularized scaled norm component
(µ > 0) as

d̃(ϖi, ↼k) = F (z↑εk , ϖi)⇒ F (z↑ωi , ϖi)

+ F (z↑ωi , ↼k)⇒ F (z↑εk , ↼k) + µ⇔↼k ⇒ ϖi⇔2.
(24)

In this case, d̃(ϖi, ↼k) = 0 ▽ ↼k = ϖi holds for any µ. In
this paper, we set µ = 0 and continue to use d(↼k, ϖi) for
brevity, but all the proofs and algorithms can be adapted for
d̃(ϖi, ↼k).

C2) Symmetricity: From definition, d(↼k, ϖi) = d(ϖi, ↼k).
C3) Convergence: As ↽ ↙ 0, ↼k and ϖi become arbitrarily

close. Given the Lipschitz continuity of F (z, ϖ) with respect
to ϖ, it follows that F (z↑εk , ϖi) ↙ F (z↑εk , ↼k) and F (z↑ωi , ϖi) ↙
F (z↑ωi , ↼k). Consequently, d(↼k, ϖi) tends to 0.

C4) Triangle inequality: Let ⇀(ϖi) = 2 supz↓Z |F (z, ϖi)|,
given F (z, ϖ) is bounded for all z and ϖ. We have F (z↑εk , ϖi)⇒
F (z↑ωi , ϖi) < |F (z↑εk , ϖi)|+|F (z↑ωi , ϖi)| < ⇀(ϖi), and similar for
⇀(↼k). Thus, we have d(↼k, ϖi) < ⇀(↼k) + ⇀(ϖi).

B. Formulation of the Two-Stage Stochastic Unit Commitment

Problem

The objective of the two-stage stochastic unit commitment
problem is to minimize the total operation cost, which includes
the day-ahead generation cost C

DA,g, intraday generation
regulation cost CIN,g, and intraday punishment cost CIN,p of
RES curtailment and load shedding.

min
!1,!2

C
DA,g + C

IN,g + C
IN,p (25a)

C
DA,g =

T∑

t=1

NG∑

g=1

(CPG

g Pg,t + C
NL

g ug,t + C
SC

g,t ) (25b)

C
IN,g =

S∑

s=1

φs

T∑

t=1

NG∑

g=1

(C+

g P
+

g,s,t + C
→
g P

→
g,s,t) (25c)

C
IN,p =

T∑

t=1

!t(
NR∑

r=1

C
R,c

P
R,c
r,s,t +

NL∑

l=1

C
L,s

P
L,s
l,s,t), (25d)

where Pg,t is the power output of generator g at time t,
ug,t is the binary variable indicating whether the generator
is on (ug,t = 1) or off (ug,t = 0). P

+

g,s,t/P
→
g,s,t are the

up/down regulation power of generator g in scenario s at
time t, CPG

g /C
NL
g are the linear generation cost coefficients

of generator g, C+
g /C

→
g are the generator up/down regulation

costs, CSC
g,t is the start-up and shut-down cost. PR,c

r,s,t/C
R,c are

the curtailed power of RES farm r and the associated penalty
cost. PL,s

l,s,t/C
L,s are the load shedding of load demand l and
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the associated penalty cost. φs is the probability of scenario s.
NG/NL/NR are the number of generators/regular loads/RES
farms.

The constrains are as follows:

Pij,s,t = Bij(▷i,s,t ⇒ ▷j,s,t) (26a)

(Pg,t + P
+

g,s,t ⇒ P
→
g,s,t) + (PR

r,s,t ⇒ P
R,c
r,s,t)⇒ (PL

l,s,t ⇒ P
L,s
l,s,t)

= ⇒(
∑

j↘i
Pji,s,t ⇒

∑
i↘k

Pik,s,t) (26b)

▷1,s,t = 0, ⇒ 1/3ϱ ⇓ ▷i,s,t ⇓ 1/3ϱ (26c)
Pg,s,t = Pg,t + P

+

g,s,t ⇒ P
→
g,s,t (26d)

vg,t = ug,t ⇒ ug,t→1 (26e)
P

+

g,s,t ⇓ Pgug,t, P→
g,s,t ⇓ Pgug,t (26f)

P
+

g,s,t ⇓ PgDg,s,t, P→
g,s,t ⇓ Pg(1⇒Dg,s,t) (26g)

ug,tP g ⇓ Pg,t ⇓ ug,tPg (26h)
ug,tP g ⇓ Pg,s,t ⇓ ug,tPg (26i)
RDg ⇓ Pg,s,t ⇒ Pg,s,t→1 ⇓ RUg (26j)
RDg ⇓ Pg,t ⇒ Pg,t→1 ⇓ RUg (26k)
C

SC

g,t ⇑ vg,tC
ON

g , CSC

g,t ⇑ ⇒vg,tC
OFF

g (26l)
∑t+T on

g

ϖ=t+1
ug,ϖ ⇑ vg,tT

on

g (26m)
∑t+T off

g

ϖ=t+1
(1⇒ ug,ϖ ) ⇑ ⇒vg,tT

o”

g (26n)

0 ⇓ P
R,c
r,s,t ⇓ P

R

r,s,t (26o)

0 ⇓ P
L,s
l,s,t ⇓ P

L

l,s,t (26p)
Dg,s,t → {0, 1}, ug,t → {0, 1}, (26q)

where (26a)-(26c) are the DC power flow equations,
(26e), (26m), (26n) are the generation on/off status and
time constraints, (26d), (26f)-(26i) are the generation power
range constraints, (26j)-(26k) are the generation ramp rate
constraints, (26o)-(26p) are the RES curtailment and load
shedding constraints. Pij,s,t is the power flow of line ij at
scenario s time t, Bij is the susceptance of line ij, ▷i,s,t

is the phase angle. PR
r,s,t/P

L

l,s,t are the power of RES farm
and load demand, respectively. vg,t is binary and indicates
the on/off status of generator g at time t. Pg/P g are the
maximum/minimum generator power output. Dg,s,t is the
binary variable indicating the up/down generator regulation
status. RDg/RUg are the generator ramp down and ramp
up limits. C

ON
g /C

OFF
g are the generator start-up and shut-

down cost. T on
g /T

o”
g are the minimum up and down time of

generator g. ”1 = [Pg,t, ug,t] is the set of decision variables at
the first stage. ”2 = [Dg,s,t, P

+

g,s,t, P
→
g,s,t, P

R,c
r,s,t, P

L,s
l,s,t] is the

set of decision variables at the second stage.
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