

1 **Liquid Structure of Iron and Iron–Nitrogen–Carbon Alloys within the Cores of Small**
2 **Terrestrial Bodies**

3 **Allison Pease¹, Jiachao Liu¹, Mingda Lv¹, Jack Piper¹, Yoshio Kono², and Susannah M. Dorfman¹**

4 ¹Department of Earth and Environmental Sciences, Michigan State University, East Lansing,
5 Michigan, United States

6 ²Department of Physics and Astronomy, Kwansei Gakuin University, Sanda, Japan.

7
8 Corresponding authors: Allison Pease (peaseall@msu.edu) and Susannah Dorfman
9 (dorfman3@msu.edu)

10

11 **Key Points:**

12

13

- Our experiments and models show that Fe–Fe bonds in alloy melt are shorter with
14 increasing pressure and longer with increasing N and C.
- Nitrogen or carbon contamination may result in an overestimation of Fe–Fe distances in
15 experiments.
- Nitrogen and carbon increase the volume of liquid Fe alloy, contributing to density
16 deficits in planetary cores.

19 **Abstract**

20 Nitrogen has been proposed to be stored within planetary cores, yet its effects on the structure and
21 density of molten Fe-alloys have not been explored experimentally. Using energy-dispersive X-ray
22 diffraction we determine the structure of Fe–N(–C) liquids at terrestrial planet core conditions (1–7
23 GPa and 1700–1900°C) within a Paris-Edinburgh press. Variation of N up to 7 wt.% and C up to 1.5
24 wt.% results in near-linear changes in Fe–Fe atom distances and structure factor with increasing light
25 element content. We do not observe a significant pressure-driven structural transition in Fe–N(–C)
26 liquids. We model the expansion of the Fe–Fe bonds using a modified Birch-Murnaghan equation of
27 state. With this model, we demonstrate that N or C contamination could lead to an overestimation
28 of the Fe–Fe distances of pure Fe. We observe that the incorporation of 1 wt.% N or C into Fe results
29 in a change in Fe–Fe distances that is twice as significant as the effect of 1 GPa. By approximating
30 the change in volume, we infer that N and C incorporated in liquid iron could contribute to the
31 density deficit observed in the cores of terrestrial bodies.

32 **Plain Language Summary**

33 The iron-rich cores of planets and moons such as the Earth, Moon, Mercury, and Ganymede are
34 partially to fully molten. Observations of molten cores, core densities, and magnetic fields indicate
35 that light elements are alloyed with iron. The abundance and distribution of these light elements
36 throughout the solar system is debated. In our experiments, we measure how varying amounts of
37 nitrogen and carbon affect the structure of liquid iron. We modeled how the length and arrangement
38 of chemical bonds changed for different pressures and compositions. Additionally, we developed a
39 new model for the physical properties of pure liquid iron. This model can be used to help determine
40 the abundance of light elements in the cores of rocky planets and moons.

41 **1 Introduction**

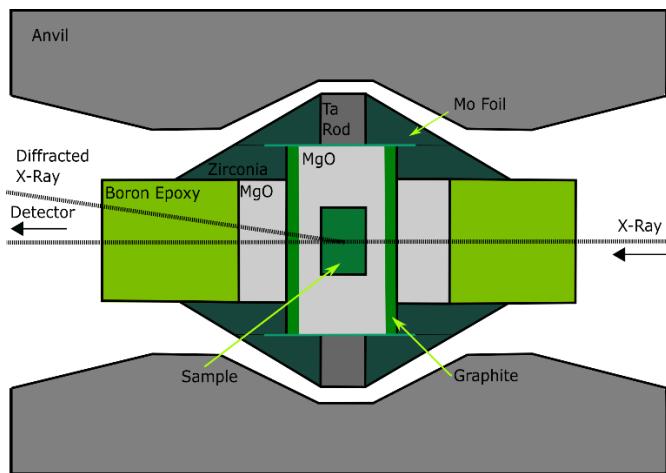
42 Geophysical observations of the Earth's core as well as the cores of small terrestrial bodies (e.g. the
43 Moon, Mercury, and Ganymede) indicate they are composed of a molten Fe-alloy enriched in light
44 elements (e.g. Birch, 1952; Margot et al., 2007; Schubert et al., 1996; Weber et al., 2011). Since
45 Birch, 1952, the relatively low density of Earth's liquid outer core compared to that of pure Fe has
46 been recognized to indicate the presence of up to 10 weight percent light elements that may include

47 S, C, Si, O, H, and N (Minobe et al., 2015; Poirier, 1994). Identities and amounts of light elements
48 incorporated in Earth's core reflect accretion and differentiation processes and may impact elastic
49 properties of the solid inner core (e.g. Chen et al. 2014; Minobe et al. 2015), the driving force for
50 the magnetic dynamo (e.g. Landeau et al. 2022), and melting point and thermal state at the inner
51 core boundary (e.g. Zhang et al. 2016). Likewise, for smaller planetary bodies which are constrained
52 by relatively few observations, light elements are key to lowering the melting point of the core alloy
53 and fueling the convection of molten cores. Evidence for partially or fully molten cores in terrestrial
54 bodies includes current or ancient magnetic fields of the Moon (Laneuville et al., 2014), Mercury
55 (Stevenson et al., 1983), and Ganymede (Kivelson et al., 1996), analysis of Apollo program seismic
56 observations indicating discontinuous seismic wave velocity in the lunar core (Weber et al., 2011),
57 Earth-based remote sensing and observations from Mariner 10 spacecraft of the large longitude
58 librations of the Mercurian core (Margot et al., 2007), and Galileo spacecraft measurements of
59 gravity of Ganymede (Schubert et al., 1996). Sulfur and carbon are predicted to be found within
60 cores of small planets and moons (e.g. Harder & Schubert, 2001; Li et al., 2017; Steenstra et al.,
61 2017), and they may have opposite and competitive behaviors during core formation (Tsuno et al.,
62 2018). Nitrogen has been proposed to be stored together with carbon within planetary cores: Fe–N
63 alloys are mutually soluble with Fe–C alloys as solids (Minobe et al., 2015) and as liquids (Jang et al.,
64 2014; Speelmanns et al., 2018). Fe–N alloys have been observed in diamond inclusions proposed to
65 originate from Earth's core–mantle boundary (Kaminsky & Wirth, 2017), and N could be sequestered
66 into cores at reducing conditions (e.g. ΔIW -0.4 to 2.2) (Dalou et al., 2017; Grewal et al., 2021), could
67 contribute to explaining observations of a superchondritic C/N ratio in the bulk silicate Earth (e.g.
68 Gu et al., 2024; Huang et al., 2024; Marty, 2012). Matching the observed density of planetary cores
69 remains a key constraint on composition, and geophysical properties of alloys at core conditions can
70 provide a constraint on elemental abundance within planetary cores (e.g. Badro et al., 2014; Bajgain
71 et al., 2021; Umemoto & Hirose, 2020)

72 Interpreting light element content of planetary cores is based on the behavior of pure metallic
73 iron at extreme conditions, but previous studies have produced conflicting results about the
74 structure, density, and compressibility of liquid Fe (e.g. Kono et al., 2015; Sanloup et al., 2000). A
75 sharp pressure-induced transition in pure liquid Fe to a denser, more compressible, more highly

76 coordinated structure has been proposed based on X-ray diffraction observations (Kono et al., 2015;
77 Sanloup et al., 2000) but is not universally observed. This change is observed at pressures near the
78 bcc–fcc–liquid Fe triple point at 5 GPa (Sanloup et al., 2000) or at 6 GPa (Kono et al., 2015) and is
79 inferred to represent a transition from bcc–like to fcc–like liquid structure. First-principles molecular
80 dynamics and analysis of experimental results suggest this transition may instead correspond to a
81 change in the connectivity of bonding coordination polyhedra from corner-sharing to more edge-
82 and face-sharing (Lai et al., 2017). The structural transition may also correspond to a discontinuity
83 in the slope of trends in the chemical partitioning of elements between liquid iron and silicate melt
84 (Sanloup et al., 2011). However, in other experiments, no significant change is observed in the
85 structure factor or pair distribution function near the bcc–fcc transition in the solid and up to 67 GPa
86 (Shen et al., 2004). Experimental observations of pure iron reaching more extreme pressures may
87 ignore bcc–like structural behavior in the limited pressure range near 1 bar and note that structural
88 transitions between close-packed fcc–like and hcp–like liquid do not significantly affect density,
89 representing the high pressure-temperature density of liquid iron with a single equation of state
90 (Kuwayama et al., 2020). These studies also find that experimental and analytical details, such as
91 pressure gradients and the angular range of diffraction data, may contribute to uncertainty and
92 inconsistency between measurements of the density and compressibility of liquid iron.

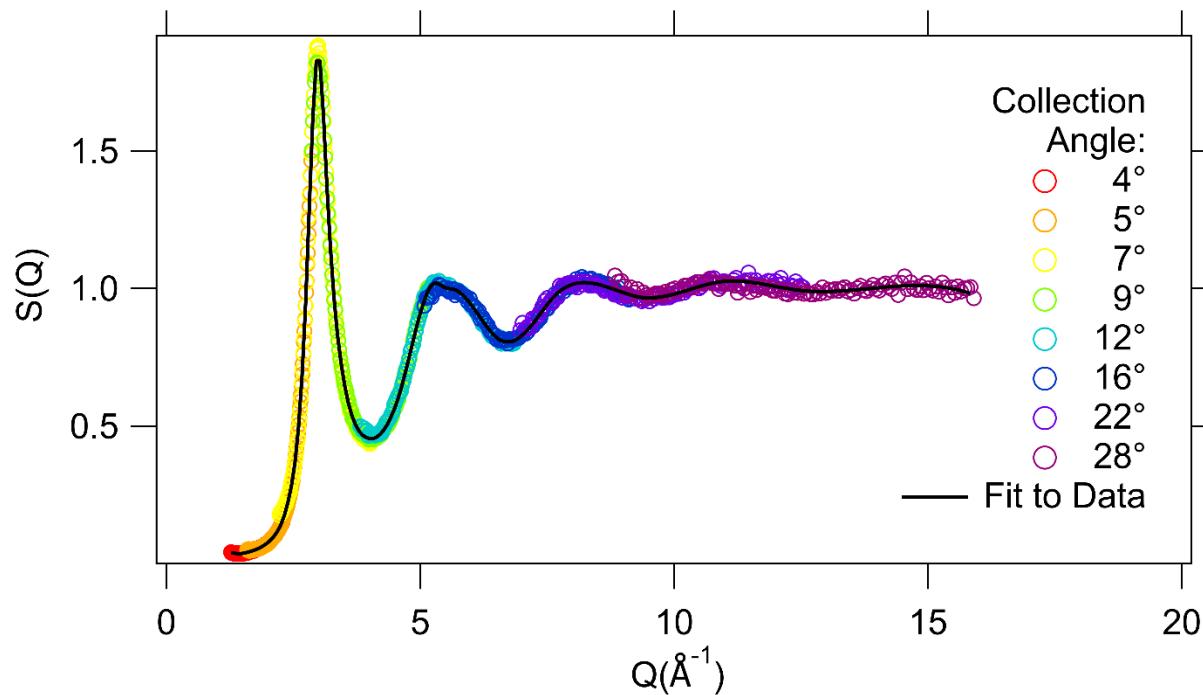
93 Previous experimental and theoretical studies have documented composition-dependent
94 structure changes in iron alloys, including the promotion or inhibition of pressure-induced structure
95 changes. Molecular dynamics simulations find that elements in binary alloys with liquid iron fall into
96 at least two categories of behavior based on substitution mechanisms: atoms with “Fe–like” atomic
97 radii, Si and Ni, directly replace Fe in the liquid, while atoms with small atomic radii, e.g H, C, O, S,
98 and N, are stored in quasi-interstitial sites (Posner & Steinle-Neumann, 2019). The sites are referred
99 to as quasi-interstitial rather than interstitial as liquids do not have a crystalline structure. Alloys with
100 light elements stored in quasi-interstitial sites (e.g. Fe–S, and Fe–C) have been observed to be highly
101 compressible relative to liquid Fe (Sanloup et al., 2002; Terasaki et al., 2010), while alloys with direct
102 substitution (e.g. Fe–Si) observed a negligible impact on compressibility (Sanloup et al., 2002, 2004).
103 Further, experiments on alloys with small light elements observe different impacts on the liquid
104 structure. Fe–Fe atomic distances in magnetic Fe–O alloys are longer (Morard et al., 2022), but when


modeled for a non-magnetic alloy the Fe–Fe atomic distances are comparable to pure Fe (Morard et al., 2022; Posner et al., 2017). Decreased Fe–Fe distances are observed for high concentrations > 30 atomic % of S in Fe–S, and Fe–C–S alloys (Zhao et al., 2023). However, the presence of a few atomic % S increases Fe–Fe distances in Fe–S alloys. Fe–S alloys have not been observed to undergo a pressure-induced structural change analogous to that in pure Fe, but both Fe–S and Fe–C–S alloys undergo a change in structure with composition (Kono et al., 2015; Morard et al., 2007; Sanloup et al., 2002; Shibasaki & Kono, 2018; Urakawa et al., 1998). Previous studies demonstrate that above ~30 atomic % S the Fe liquid structure is significantly perturbed by the quasi-interstitial inclusion of S atoms, resulting in a modified structure and a sharp decrease in Fe–Fe bond lengths (Zhao et al., 2023). In contrast, adding C increases nearest neighbor Fe–Fe distances, and Fe–C and Fe–Ni–C alloys were observed to undergo a pressure-induced structural change at ~5 GPa (Lai et al., 2017; Shibasaki et al., 2015). Although N is commonly stored with C, no previous experimental studies have investigated the impact of N on the density and liquid structure of molten Fe–alloys at relevant pressures and temperatures to terrestrial bodies. Laboratory experiments are needed to constrain N storage in terrestrial cores and interpret how the physical properties of Fe–N alloys impact observable geophysical features.

In this study, we systematically investigate the structure of liquid Fe–N and Fe–N(–C) alloys at pressure-temperature conditions relevant to the interior of the Moon, Ganymede, and the core-mantle boundary of Mercury.

2 Methods

Liquid structure experiments were prepared with six initial compositions ranging from pure Fe to 7.7 wt.% N (Table 1). The starting materials are ϵ -Fe₇N₃, γ' -Fe₄N, and Fe metal powders; nitride powders are from Kojundo Chemical Lab. Co. Ltd. The bulk composition of ϵ -Fe₇N₃ and γ' -Fe₄N used in this study are ~7.7 wt.% and ~5.3 wt.% N, respectively (Pease et al., 2024). The N ratio is lower than stoichiometry for γ' -Fe₄N due to the presence of up to 11 at.% metallic iron (Pease et al., 2024). Starting materials were mixed mechanically to obtain compositions with bulk N content intermediate between Fe₇N₃ and pure Fe.


132 Experiments were conducted within a Paris-Edinburgh press. Tungsten carbide anvils applied
 133 high pressures to a standard Paris-Edinburgh cell assembly (as in Kono et al. 2014). To prevent N
 134 contamination, between the BN capsule commonly used in previous experiments on Fe and Fe alloys
 135 (Kono et al., 2015; Shibasaki et al., 2015; Shibasaki & Kono, 2018), we used a MgO capsule (Figure
 136 1). Pressure was determined based on the equation of state of MgO (Kono et al., 2010). High
 137 temperatures were generated by a resistive graphite heater and calibrated based on previous
 138 observations of the relationship between applied heater power and temperature (Kono et al. 2014).

139
 140 **Figure 1:** Experimental setup for synchrotron X-ray measurements of the structure of Fe–N(–C)
 141 liquids at high pressures and temperatures in the Paris-Edinburgh press.

142 X-ray radiography and energy dispersive X-ray diffraction (EDXD) were carried out at 16-BM-
 143 B, Advanced Photon Source, Argonne National Laboratory. Multi-angle EDXD measurements were
 144 collected if a single homogeneous liquid phase was observed based on the visual inspection of x-ray
 145 radiography images collected using a Prosilica GC1380H CCD camera (supplementary Figures s1 and
 146 s2). At low pressures and moderate temperatures, N may exsolve from Fe melt (Liu et al., 2019), so
 147 x-ray radiography was repeated after each EDXD measurement to confirm that the liquid was a
 148 homogenous single phase at \sim 1700–1900°C. High-pressure multiangle EDXD of Fe alloy liquid was
 149 collected using a Ge solid-state detector at 2-theta angles (4°, 5°, 7°, 9°, 12°, 16°, 22°, and 28°)
 150 (Figure 2). EDXD of the MgO capsule was obtained at a 2-theta angle of 15 degrees. The total
 151 exposure time/pressure step was \sim 3 hours. Data were analyzed using the aEDXD software package
 152 developed at 16-BM-B. The reduced pair distribution function, $G(r)$, was calculated from the Fourier

153 transform of the structure factor $S(Q)$ with the maximum moment transfer Q up to 15. The multi-
 154 angle EDXD data were obtained for each liquid at \sim 1 GPa steps from minimum pressures of \sim 1–3
 155 GPa to maximum pressures of \sim 5–7 GPa (Table 1). Temperatures were constant over all experiments
 156 except Run #2–17, for which temperature was increased from 1700 to 1825°C after the second data
 157 point was collected.

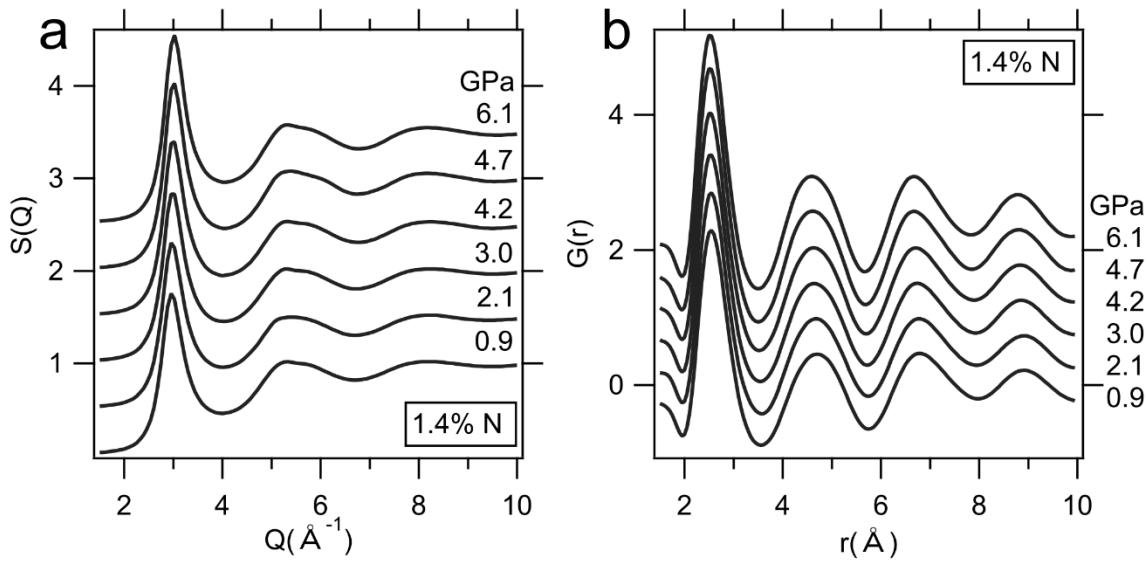
158
 159 **Figure 2:** Example of the structure factor [$S(Q)$] of Fe–N liquid obtained by processing multi-angle
 160 energy-dispersive X-ray diffraction data obtained at diffraction angles 4° – 28° with aEDXD software.
 161 This data was collected for sample 2–16 with 1.4 wt.%N at 3 GPa and \sim 1700 °C.

162 Compositions of recovered samples were analyzed using a Cameca SX-100 electron microprobe
 163 analyzer (EPMA) as described by Liu et al. (2019). To accurately detect light elements, N and C, we
 164 used Si_3N_4 , Fe, and Fe_3C standards and coated samples and standards in Al. The detection limit is
 165 estimated to be \sim 500 ppm for both N and C. EPMA results indicate that the quenched melt
 166 composition is different from the bulk composition of the alloy as loaded: several samples exhibit a
 167 loss of multiple wt.% N during the experiment, and contamination with C up to 1.5 wt.% (Table 1).
 168 Loss of N from the sample is related to heating the sample at conditions where N solubility is low,
 169 allowing a separate N-rich fluid to advect and diffuse out through the capsule. As reported by Liu et

170 al. (2019), Fe–rich liquid may coexist with N–rich bubbles above the liquidus, and the solubility of N
171 in Fe–rich liquid increases with pressure. X-radiography images for experiments reported in this work
172 also indicate samples in experiments 1–16, 2–17, 3–16, and 12–17 separate into Fe–rich and N–rich
173 fluid phases on first heating. The lower the pressure during the first heating, the greater the loss in
174 N observed in the recovered sample (summary can be found in supplementary Figures s1 and s3).
175 By proceeding to higher temperatures and pressures (and perhaps also by losing N from the system),
176 each of these experiments reached conditions where x-radiography images indicate a single liquid
177 phase. After this point, EDXD measurements were carried out. None of the samples exhibited a
178 second episode of N exsolution. We do not expect that additional N was lost as the sample was
179 compressed to its maximum pressure and then rapidly quenched, and previous studies have
180 reported that more N can be dissolved in Fe and Fe–C melts as the pressure is increased (Liu et al.,
181 2019; Speelmanns et al., 2018). Carbon may have entered the sample through a reaction with the
182 graphite heater, as suggested by Liu et al., (2019). We observed C contamination within all
183 experiments except run #2–16. We assume C was present in the sample upon first heating and
184 remained constant throughout the experiment, however, because C ranged from 0.66–1.5% in most
185 runs, given the constant possible C exchange we assume a ~1 wt.% uncertainty in the light element
186 composition of the liquid. The final composition (reported in Table 1) is inferred to represent the
187 composition of the liquid during EDXD measurements. The total N+C concentration in recovered Fe
188 alloy samples ranges from ~1–8 wt.%.

Run #	Starting N (wt.%)	Starting C (wt.%)	Composition of Quenched Sample (wt.%)			
			Fe	N	C	Total
7–17**	0	0	100.0 (4)	BDL	1.2 (4)	100.9 (3)
2–17**	3	0	98.5 (9)	0.2 (4)	1.5 (6)	100.3 (7)
2–16*	1.5	0	97.7 (4)	1.4 (3)	BDL	99.1 (5)
3–16	5.3	0	96.3 (8)	3.2 (7)	0.66 (8)	100.1 (3)
1–16	7.7	0	96.3 (7)	2.8 (5)	0.66 (8)	99.8 (5)
12–17	7.7	0	92.8 (3)	6.9 (2)	0.77 (8)	100.5 (3)

Table 1: Summary of experimental run conditions. Initial compositions are determined from weight ratios and compositions of powder samples. Compositions of the recovered samples were determined by the electron microprobe analyzer (EPMA) and inferred to be the composition of each sample during liquid structure measurement by EDXD. BDL- stands for below detection limit. *Indicates the stability and composition of this experiment was previously documented in Liu et al., 2019. **Indicates the data was reprocessed from Liu et al., 2019. Please note run # 7–17 is referred to as 6–17 in Liu et al., 2019.


189

190 **3 Results**

191 EDXD data were used to calculate structure factor $S(Q)$ and reduced pair distribution function $G(r)$
 192 for each composition and pressure. Given the low x-ray scattering factor of light elements N and C,
 193 the x-ray diffraction signal for Fe–N(–C) alloys is almost exclusively sensitive to the Fe atoms (e.g.
 194 Shibasaki et al. 2015). Figure 3 shows a characteristic plot of $S(Q)$ and $G(r)$ at each pressure step for
 195 experiment run # 2–16 where the composition was 1.4 wt.% N and 0 wt.% C. No new peaks or peak
 196 splitting were observed as the pressure increased (Figure 3).

197 Systematic differences in $S(Q)$ and $G(r)$ can be observed with increasing light element content at
 198 similar maximum pressures ~5 GPa (Figure 4). The first peak in $G(r)$, r_1 , represents the average Fe–
 199 Fe bond length. The second peak in $G(r)$, r_2 , represents multiple overlapping peaks corresponding to
 200 average distances to the next shell of Fe atoms in the liquid. An r_2 multiplet observed at high
 201 pressures and temperatures in previous studies (Sanloup et al., 2000; Shibasaki et al., 2015) has
 202 been interpreted to represent local bcc–like (high r) or fcc–like (low r) structures. More recently, this
 203 second peak has been identified by first-principles molecular dynamics calculations to be sensitive
 204 to the type of network formed by coordination polyhedra in iron–light element liquids, with corner-
 205 sharing between polyhedra corresponding to a peak at higher r_2 relative to edge- or face-sharing (Lai
 206 et al., 2017). The second peak in $S(Q)$ appears as a doublet for compositions close to pure iron, with

207 a strong first peak and a weaker shoulder at higher Q . For the composition with the highest wt.% N,
 208 the doublet instead appears as a single peak at higher Q . The r_2 peak appears to be composed of
 209 two peaks at ~ 4.5 and 4.9 \AA respectively, where their relative intensities are the greatest at 5–7 GPa
 210 depending on composition. At low wt.% N, the dominant peak is at $\sim 4.5 \text{ \AA}$; at high wt.% N, the
 211 dominant peak is at $\sim 4.9 \text{ \AA}$; and for run 2–17 with 1.7 wt.% N + C the intensities of the two peaks
 212 are \sim equal. These observations could indicate that increasing incorporation of N promotes local bcc–
 213 like structure at high pressures or a higher proportion of corner-shared polyhedral groups of atoms
 214 in N-rich alloys.

215
 216
 217 **Figure 3:** (a) structure factor $S(Q)$ and (b) reduced pair distribution function $G(r)$ for all pressures
 218 from experiment run 2–16 (1.4 wt.% N). $S(Q)$ and $G(r)$ are displayed with a vertical offset of 0.5. $G(r)$
 219 plots for other compositions can be viewed in Figure S4 of the supplementary material.

220

221

222 **Figure 4:** (a) structure factor $S(Q)$ and (b) reduced pair distribution function $G(r)$ for all compositions
 223 around 5 GPa. Each run is denoted by its run # and vertically stacked for comparison. The light
 224 element abundance can be found in Table 1 or by referencing the color bar. $S(Q)$ and $G(r)$ are
 225 displayed with a vertical offset of 0.5. Run 12–17 is offset by an additional 0.5.

226 To quantify trends in these spectra, Q_1 , r_1 , and r_2 were fit using an exponential Gaussian and
 227 a constant background. We were unable to consistently resolve a doublet fit to the r_2 multiplet (as
 228 in (Lai et al., 2017)). For each of our experiments, we observed that the r_1 peaks are centered at
 229 ~ 2.50 – 2.60 Å. For all compositions, we observe an increase in the first peak along $S(Q)$, Q_1 , and a
 230 decrease in r_1 and r_2 with increasing pressure (Table 2 and Figure 5). In addition, we observe a
 231 decrease in Q_1 and an increase in r_1 and r_2 with increasing light element content (Figure 5). These
 232 observations are consistent with the compression of the Fe–Fe atomic distances under pressure and
 233 expansion with the incorporation of N and C.

Run #	N-rich fluid Exsolved?	Pressure (GPa)	Temperature (°C)	Q_1 (Å ⁻¹)	r_1 (Å)	r_2 (Å)
7–17	No	1.2 (3)	1835 (50)	2.98 (1)	2.533 (5)	4.6642 (9)
		2.2 (3)	1828 (50)	3.00 (1)	2.528 (6)	4.633 (1)
		3.7 (3)	1826 (50)	3.01 (1)	2.519 (7)	4.592 (6)
		5.3 (3)	1833 (50)	3.03 (1)	2.516 (4)	4.57 (1)
		7.0 (3)	1831 (50)	3.04 (1)	2.502 (5)	4.546 (6)
2–17	Yes	3.0 (3)	1700 (50)	2.99 (2)	2.540 (6)	4.640 (2)
		3.3 (3)	1703 (50)	2.99 (1)	2.536 (4)	4.6568 (8)
		4.6 (3)	1826 (50)	2.99 (2)	2.545 (4)	4.658 (1)
		5.3 (3)	1825 (50)	3.00 (1)	2.537 (5)	4.6499 (1)
		6.1 (3)	1827 (50)	3.00 (2)	2.536 (5)	4.641 (4)
		7.3 (3)	1829 (50)	3.02 (2)	2.527 (5)	4.626 (5)
2–16	No	0.9 (3)	1726 (50)	2.97 (1)	2.548 (5)	4.693 (2)
		2.1 (3)	1731 (50)	2.97 (2)	2.546 (5)	4.6735 (5)
		3.0 (3)	1734 (50)	2.98 (1)	2.538 (4)	4.655 (1)
		4.2 (3)	1738 (50)	2.99 (2)	2.526 (8)	4.643 (1)
		4.7 (3)	1731 (50)	3.01 (1)	2.522 (8)	4.6205 (1)
		6.1 (3)	1727 (50)	3.02 (1)	2.522 (9)	4.612 (1)
3–16	Yes	1.2 (3)	1722 (50)	2.93 (1)	2.570 (7)	4.769 (2)
		2.0 (3)	1737 (50)	2.94 (2)	2.557 (5)	4.743 (2)
		2.9 (3)	1729 (50)	2.95 (1)	2.556 (4)	4.7311 (4)
		3.8 (3)	1736 (50)	2.96 (2)	2.546 (6)	4.726 (2)
		4.8 (3)	1733 (50)	2.97 (2)	2.545 (5)	4.692 (2)
		5.9 (3)	1729 (50)	2.98 (2)	2.541 (6)	4.673 (1)
		6.5 (3)	1733 (50)	2.98 (2)	2.538 (5)	4.666 (1)
1–16	Yes	1.8 (3)	1729 (50)	2.94 (2)	2.555 (4)	4.7509 (1)
		2.5 (3)	1729 (50)	2.96 (2)	2.554 (7)	4.738 (1)
		2.7 (3)	1729 (50)	2.95 (2)	2.552 (5)	4.725 (2)
		4.5 (3)	1740 (50)	2.98 (2)	2.543 (6)	4.688 (2)
		5.6 (3)	1732 (50)	2.98 (2)	2.541 (5)	4.675 (1)
12–17	Yes	3.2 (3)	1719 (50)	2.89 (2)	2.592 (2)	4.8599 (7)
		4.2 (3)	1728 (50)	2.90 (2)	2.585 (4)	4.8537 (1)
		5.0 (3)	1730 (50)	2.90 (1)	2.590 (2)	4.852 (6)

Table 2: Summary of experimental run conditions and fit values for Q_1 , r_1 , and r_2 based on an exponential modified Gaussian. The uncertainty for r_1 and r_2 is the standard deviation between a q_{\max} of 15 and 13; reported values are fit to a q_{\max} of 15. In Figure 5, the error bars assigned to r_2 are approximated to 0.01 to account for uncertainty pertaining to broadening. Choice of q_{\max} has a more significant impact on r_1 than on r_2 . The uncertainty for Q_1 is the standard deviation between $S(Q)$ and the filtered $S(Q)$; the reported values are $S(Q)$.

235

236
237

238 **Figure 5:** Structure of $\text{Fe}-\text{N}(-\text{C})$ liquids at $1700-1900^\circ\text{C}$ as a function of pressure and incorporation
239 of N and C (summed as total light element content). (a) first structure factor peak (Q_1), (b) the first
240 reduced pair distribution function peak (r_1), (c) the second reduced pair distribution function peak
241 (r_2), and (d) the area under r_1 , which depends on the average coordination of the liquid. Each run is
242 indicated by a different symbol, and the light element content measured after recovery to ambient
243 conditions is shown in colors indexed in the color bar (and in Table 1). Black lines represent pure Fe.

244 *Fits to a modified second-order Birch Murnaghan equation of state are used to model the effect of*
 245 *0–8 wt.% light elements and pressure on the position of r_1 , and r_2 (Equation 1), while a linear model*
 246 *is shown for Q_1 as a function of pressure and light element content (Equation 2).*

247 Within the uncertainty and resolution of our data, we do not observe evidence for a
 248 pressure-induced structural change in any Fe–N(–C) liquid compositions. A structural change in
 249 molten pure Fe or Fe–alloy may be indicated by a discontinuous change (Lai et al., 2017; Sanloup et
 250 al., 2000) or a change in the slope of r_1 , r_2 multiplet, and Q_1 with pressure (Lai et al., 2017; Shibasaki
 251 et al., 2015), as well as a corresponding change in the areas and shapes of peaks in $G(r)$ due to
 252 changing bonding coordination (Cristiglio et al., 2009; Lai et al., 2017). Taken together, our Fe–Fe
 253 distances for Fe–N(–C) liquids can be described by a single modified Birch–Murnaghan (BM) equation
 254 of state for linear compressibility (Birch, 1952) with incompressibility constant with composition and
 255 a linear relationship between Fe–Fe distance, r , and total N + C light element content in wt.%, x :

256 Equation 1:

$$257 P(r, x) = \frac{3}{2} * k_0 * \left[\left(\frac{r_0 + x * \Delta r_0}{r} \right)^7 - \left(\frac{r_0 + x * \Delta r_0}{r} \right)^5 \right] \\ 258 * \left[1 - \frac{3}{4} * (4 - k_0^p) * \left(\left(\frac{r_0 + x * \Delta r_0}{r} \right)^2 - 1 \right) \right]$$

259
 260 In this model, pressure ($P(r, x)$) varies as a function of r and x with fit parameters r_0 , k_0 , k_0^p ,
 261 representing the linear compressibility for Fe–Fe atomic distances in pure Fe liquid (note that k_0 may
 262 not equal the bulk modulus of the material), and Δr_0 representing the effect of light element
 263 incorporation to expand Fe–Fe distances. In Figure 5 b and c, curves represent modeled linear
 264 compressibility at constant composition for pure metal up to 8 wt.% (N+C) (parameters reported in
 265 Table 3). We do not observe a fittable inflection point or systematic offset between experimental r_1
 266 and r_2 at high pressure vs. low pressure which would indicate a discontinuous change in liquid
 267 structure. In addition, we find that Q_1 can be modeled with a linear response to both pressure and
 268 light element content, with three empirical fitting parameters a , b , and c from 1 to 8 wt.% (N+C)
 269 (Table 3):

270 Equation 2:

271
$$Q(P, x) = a + bP + cx$$

272
 273 We also observe no systematic misfits relative to this linear model for structure factor that would
 274 indicate a transition (Figure 5 a).

275 Finally, we calculated the area under r_1 as a proxy for the coordination number of the melt (e.g.
 276 Cristiglio et al. 2009). The area of the r_1 peak is constant with pressure for all runs (Figure 5d),
 277 although systematically lower for runs 2–17 and 12–17. If there is a pressure-induced structural
 278 transition, we do not observe it having a statistically significant impact on the position of Q_1 , r_1 , and
 279 r_2 , for the Fe–N(–C) system relative to these models. The run with the highest concentration of N,
 280 12–17 with ~8% light elements, is one of the low outlier runs in the area of r_1 , which combined with
 281 the higher r_2 peak may indicate lower coordination and more bcc–like or corner-shared structure at
 282 high pressure relative to compositions close to pure Fe. Q_1 , r_1 , and r_2 can be modeled as varying
 283 smoothly with pressure and linearly with N + C content.

284

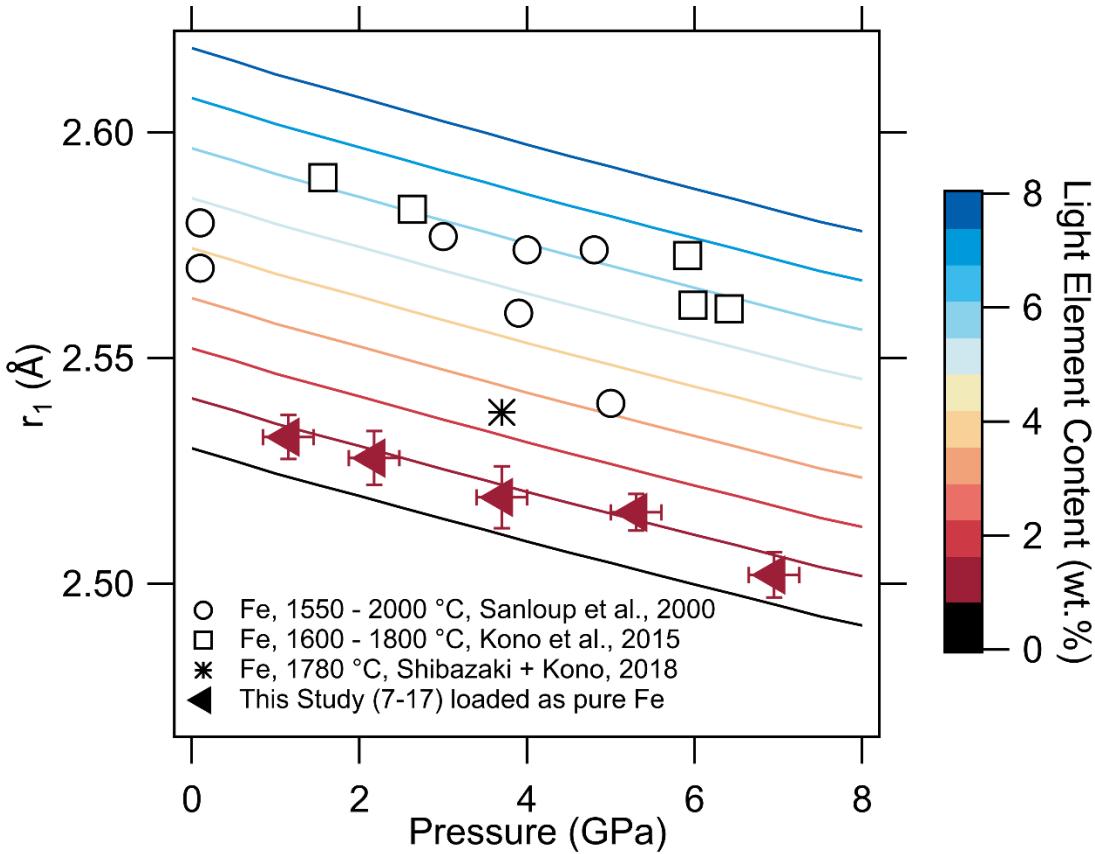

Modified BM Fit parameters	r_0	k_0	k_0^p	Δa_0
r_1	2.530	155(18)	4	0.0111 (7)
r_2	4.665	61 (4)	4	0.037 (2)
Linear Fit Parameters	a	b	c	
Q_1	2.977 (3)	0.0090 (7)	-0.0179	

Table 3: Global fit parameters used in this study. r_0 , K_0^p , and c were fixed, and all other variables were fit to the data. Modified BM fit parameters correspond to equation 1 and linear fit parameters correspond to equation 2.

285

286 **4 Discussion**

287 The Fe–Fe distances observed in this study for the experiment prepared by loading pure metallic Fe
288 are systematically lower than previous studies (Figure 6). Unlike our study, previous studies of liquid
289 structure of Fe (Kono et al., 2015; Sanloup et al., 2000; Shibasaki & Kono, 2018), Fe–C (Shibasaki et
290 al., 2015; Shibasaki & Kono, 2018), and Fe–Ni–C (Lai et al., 2017) alloys report their composition as
291 the composition that was loaded, do not report ex-situ composition analysis, and use a BN sample
292 chamber. We expect that compositions as loaded do not accurately represent compositions of melt
293 during experiments: we found that our experiment prepared as pure Fe contains 1.5 wt.% C upon
294 recovery due to contamination by the graphite heater, and 2/3 recovered samples were measured
295 with at least 1 wt.% difference in N, C, or both relative to the starting material. Moreover, we expect
296 that BN capsules provide a source of N that will be soluble in Fe and Fe alloy melts at high pressures
297 (e.g. Liu et al., 2019; Speelmanns et al., 2018). Nitrogen and/or carbon contamination may explain
298 the higher r_1 observed in (Kono et al., 2015; Sanloup et al., 2000; Shibasaki & Kono, 2018) relative
299 to the sample in this work with the lowest N and C content. Variability in light element contamination
300 of Fe liquid during experiments through reaction with the enclosure may explain the wide range of
301 reported r_1 , ~ 6 times the 1- σ error bar of the measurement. Kono et al., 2015 also note that the Re–W
302 ball included in their study for viscosity measurements may have dissolved in their Fe melt, changing
303 the composition. However, differences in analytical procedure, particularly the choice of q_{\max} , may
304 also result in systematic differences in the structure factor and pair distribution function. We find
305 that running analysis with a lower q_{\max} of 13, reducing the quality of the fit, systematically increases
306 the positions of peaks in the pair distribution function $G(r)$. Our P–r–x model based on systematic
307 composition variation and an N-free capsule provides an improved constraint on the physical
308 properties of pure Fe liquid, which is the foundation for constraints on the light element content of
309 small rocky bodies.

310

311

Figure 6: Pressure dependence of the first reduced pair distribution function peak (r_1) between the global fit proposed in this study at (1700 – 1900 °C) and previous studies on Fe. Black lines and symbols represent pure Fe (as loaded). The temperature of previous studies ranges from ~1200–2000 °C. Unlike this study, previous studies report the composition as loaded rather than as measured ex-situ after the experiment.

316

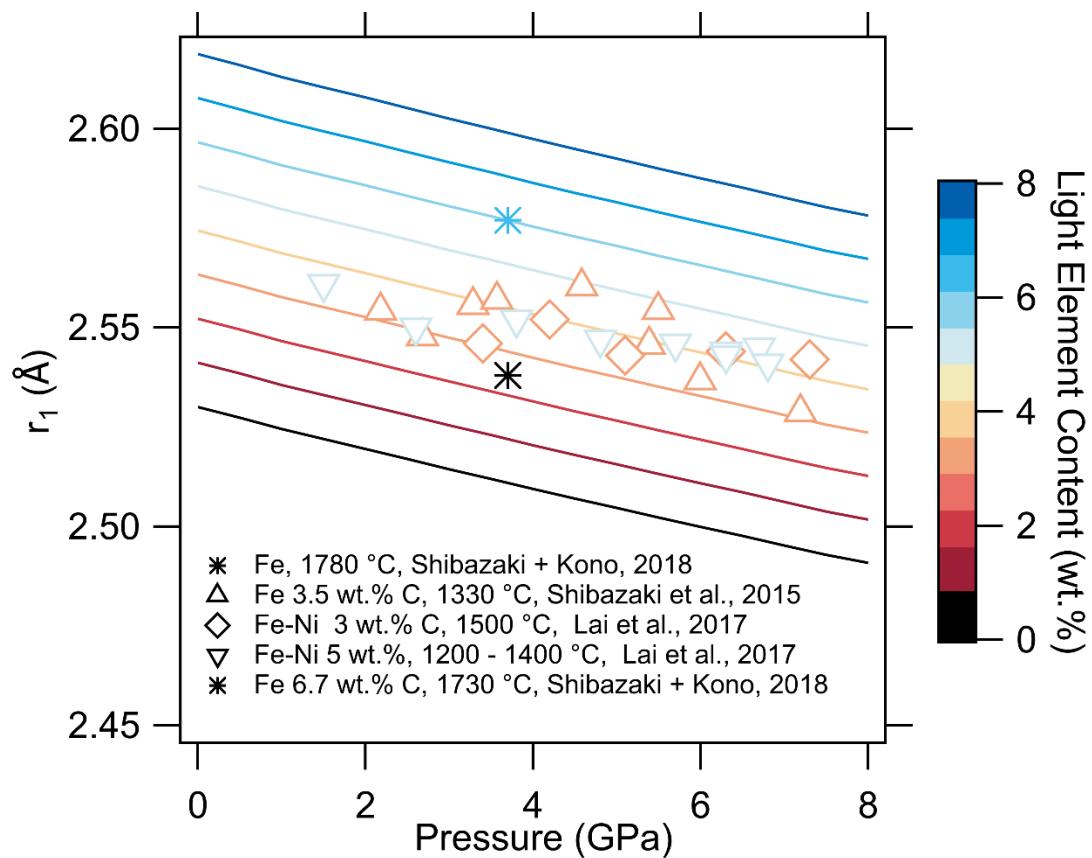
317

318

319

320

321

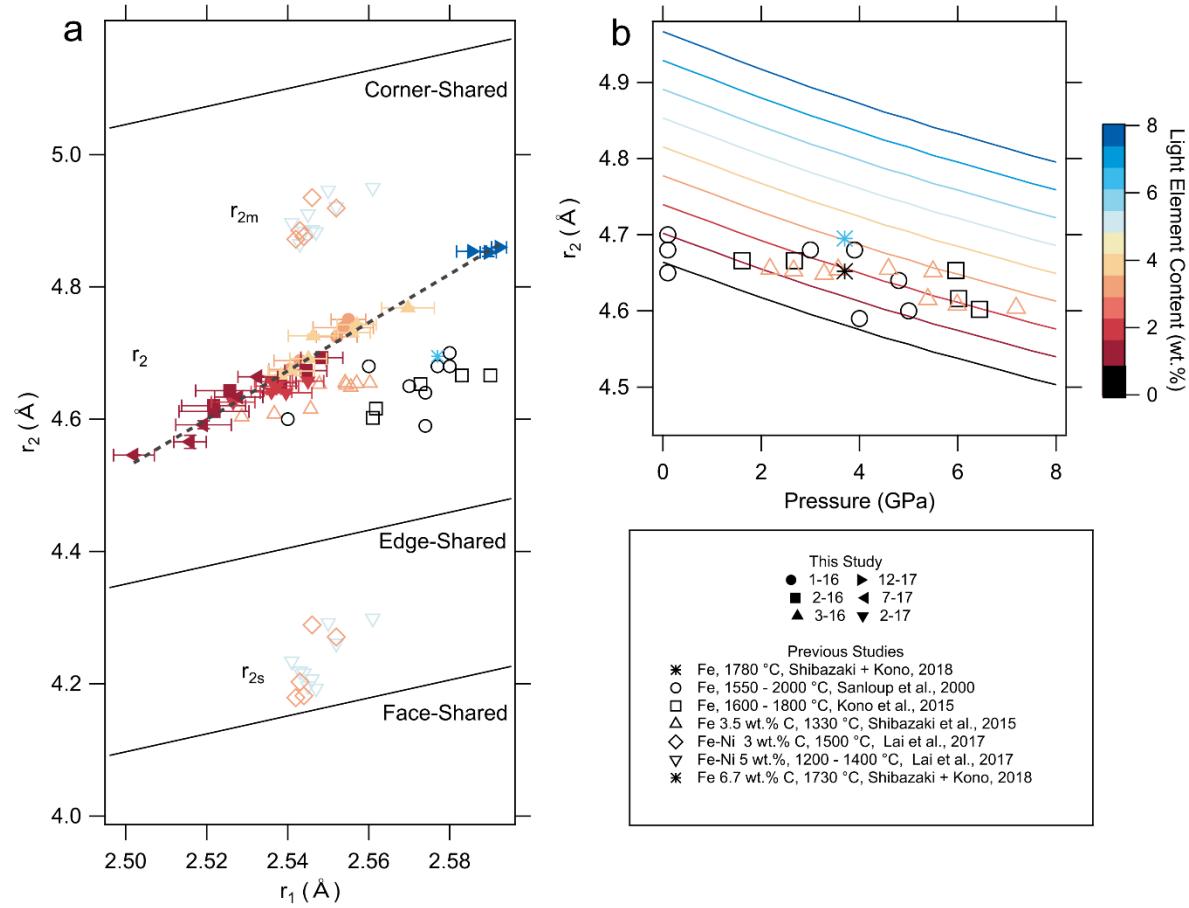

323

324

The expansion of atom-atom distances in Fe alloy liquid with the incorporation of N and C (Figure 5) appears similar to previous studies (Shibasaki & Kono, 2018). However, the comparison between our observations of the effects of N incorporation on Fe alloy liquid structure and previous studies of Fe–C or Fe–Ni–C systems (Figure 7) is complicated by differences in temperature, potential contamination, and differences in analytical methods. Qualitatively, our observations and previous studies of Fe–C and Fe–C–Ni systems observe that Q_1 decreases while r_1 and r_2 increase with increasing N or C content.

Our observations of the Fe–N(–C) system can be contrasted with qualitatively different behavior of Fe–S (Shibasaki & Kono, 2018) and Fe–S–C systems (Zhao et al., 2023). In S-bearing

systems, Fe–Fe distances are approximately unchanged with the incorporation of up to at least \sim 12 wt% S, above which concentration they decrease with increasing S (Figure 9). Reduction in r_1 for S-bearing Fe-alloys occurs at higher concentrations of light elements than compositions investigated in this study. For some previous studies, the magnitude of r_1 for C-bearing alloy liquid is similar to our model for the same wt.% N as reported wt.% C (Figure 7). Nitrogen and carbon incorporation result in a similar range in Q_1 and r_2 when compared to previous studies, but the absolute value of enriched light element abundances differs from previous studies (Lai et al., 2017; Shibasaki et al., 2015; Shibasaki & Kono, 2018). The difference in r_2 for the same amount of light elements by weight, \sim 8 wt.%, is lower for C than for N (Figure 8). The iso–nitrogen curves in Figures 5–7 were obtained by fitting data limited to a temperature range of \sim 1700–1900 °C, while the temperature range reported in previous studies spans \sim 1200–2000 °C. The thermal expansivity of the liquid is not constrained well enough to correct for temperature differences, but we can expect that increasing temperature would result in higher r_1 .

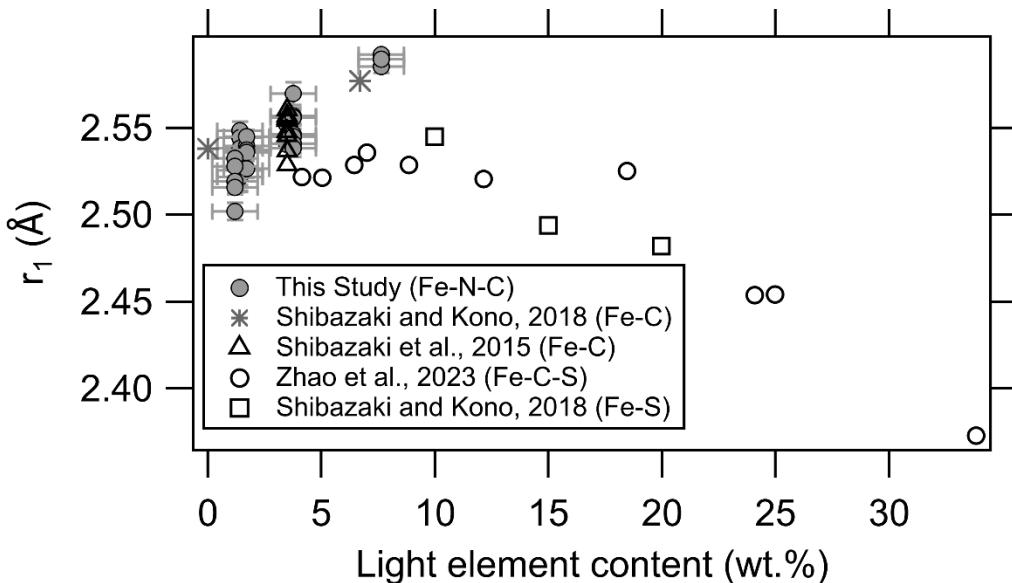

338

339

340 **Figure 7:** Pressure dependence of the first reduced pair distribution function peak (r_1) between the
341 global fit proposed in this study at (1700 – 1900 °C) and previous studies. Black lines and symbols
342 represent pure Fe (as loaded). Unlike this study, previous studies report their composition as loaded
343 rather than as measured ex-situ after the experiment.

344

345 While the results of Lai et al. 2017 for the Fe–Ni–C system indicate that pressure affects the
346 connectivity of bonding coordination in the melt, our results demonstrate a substantial effect of
347 composition on these structures. Lai et al. (2017) described this change by fitting the r_2 multiplet as
348 two peaks, r_{2s} at a smaller distance and r_{2m} at a longer distance, which correspond to mostly face-
349 shared coordination polyhedra and corner- and edge-shared polyhedra, respectively (Figure 8). Our
350 study and other previous studies fit the multiplet as a single peak (e.g. (Shibazaki et al., 2015;
351 Shibazaki & Kono, 2018), but note that the asymmetry of the peak can change with pressure (e.g.
352 (Lai et al., 2017)) and composition. When plotted relative to r_1 (Figure 8), we observe a sharp
353 increase in the average value of r_2 with increasing light element content, corresponding to a relative
354 increase in corner-shared polyhedral units. The most N-rich composition (run 12–17) exhibits a
355 similar average r_2 as what was reported for r_{2m} for Fe–Ni–C alloys (Lai et al., 2017). For C-free, N-
356 bearing samples (e.g. 2–16), r_2 is higher than in N-free, C-bearing samples (e.g. 7–17). The r_2 position
357 for the dominantly N-bearing alloy with ~8 wt.% N and C total is also substantially higher than the
358 alloy within similar total light element content dominated by C (Figure 8b) (Shibazaki & Kono, 2018).
359 The N-rich alloys may have a greater ratio of corner-shared polyhedral units relative to the C-rich
360 alloys. Alternatively, this may be interpreted as a bcc-like structure in the N-rich alloy (Sanloup et al.
361 2000).



362

363 **Figure 8:** Peak positions of r_2 with respect to r_1 (a) and pressure (b). Solid symbols are from this
 364 study, and open symbols are from previous studies (Kono et al., 2015; Lai et al., 2017; Sanloup et al.,
 365 2000; Shibazaki et al., 2015; Shibazaki & Kono, 2018). Color corresponds to the light element content
 366 (wt. %). (a) This study (fit with an exponential modified Gaussian) and previous studies (except Lai et
 367 al., 2017) fit and report one peak for r_2 . Lai et al., (2017) fit two Gaussians to r_2 termed r_{2s} and r_{2m} .
 368 The black solid lines correspond to the predicted ideal r_2 for face, edge, and corner-shared motif
 369 connections based on molecular dynamics calculations published in Lai et al., (2017). The grey
 370 dashed line highlights the trend observed in this study for the Fe–N(–C) system. (b) Pressure
 371 dependence of the second reduced pair distribution function peak (r_2) between the global fit
 372 proposed in this study at 1700–1900 °C and previous studies. Unlike this study, previous studies
 373 report their composition as loaded rather than as measured ex-situ after the experiment.

374 In contrast to this study, previous studies of Fe and Fe–C systems have interpreted liquid
375 structure observations to show a pressure-induced transition at \sim 5 GPa (Lai et al., 2017; Sanloup et
376 al., 2000; Shibasaki et al., 2015). A change in chemical partitioning of elements into liquid iron alloy
377 (Sanloup et al., 2011) has been suggested to be linked to the liquid structure transition. Sanloup et
378 al. (2000) documented the pressure and temperature impact on the liquid Fe structure up to 5 GPa,
379 and interpreted a decrease in r_1 and change in the shape of the r_2 peak from singlet to doublet as a
380 change from bcc structure to bcc + fcc. Lai et al., (2017) and Shibasaki et al., (2015) observed a
381 change in the slope of Q_1 , r_1 , and r_2 along with increased broadening in r_2 at higher pressures. Based
382 on their complementary molecular dynamics calculations, Lai et al., (2017), interpret their
383 observations to show a relative change in corner, edge, and face-sharing in polyhedral units of
384 atoms. Both Lai et al., (2017) and Shibasaki et al., (2015) observe consistent results for the behavior
385 of r and Q . In contrast, we don't see a correlated change in r and Q in Fe–N(–C) liquid with pressure.
386 A flat slope in Fe–Fe distances with pressure (as observed by Lai et al., 2017; Sanloup et al., 2000;
387 Shibasaki et al., 2015) relative to the compressibility of r_1 in Kono et al., 2015 and this study followed
388 by an increase in compressibility could also be explained by increasing N and C incorporation from
389 the reaction with a BN capsule and graphite heater. Given that the presence of C in the melt lowers
390 the solubility of N (Liu et al., 2019), we predict N-contamination could be the greatest in studies of
391 carbon-free compositions. Our data do not confirm a pressure-induced liquid structure transition,
392 although we acknowledge limited resolution in pressure that may hinder the identification of a
393 transition.

394

395

396 **Figure 9:** Relationship between light element content at the nearest Fe–Fe bond (r_1). This study is
 397 represented by grey circles with the lower and upper bound of r_1 corresponding to observations at
 398 the maximum and minimum pressure, respectively. For previous studies, pressure ranges from 3–5
 399 GPa (Shibazaki & Kono, 2018), 2–7 GPa (Shibazaki et al., 2015), and 1–5 GPa (Zhao et al., 2023).

400 The abundance of N and C in planetary cores inferred from remote sensing observations is
 401 constrained by the equation of state of the liquid alloy. Previous studies have demonstrated S and C
 402 increase the compressibility of liquid Fe (Sanloup et al., 2002; Terasaki et al., 2010), while Si has a
 403 negligible impact on Fe's compressibility (Sanloup et al., 2002, 2004). This is interpreted to be due
 404 to the quasi-interstitial incorporation of S and C vs. substitution mechanism for incorporation of Si
 405 (e.g. (Posner & Steinle-Neumann, 2019)). In this study, we fit pressure, composition, and r_1 or r_2
 406 using a modified BM equation of state. Within this model, we do not change our value for
 407 incompressibility (K_0) as a function of composition, and observe a good fit to the data for light
 408 element abundance up to 7 wt.%. For run 12–17 with > 7 wt.% N and C we observe a less significant
 409 change in r_1 and r_2 with increasing pressure indicating the alloy could be more incompressible with
 410 increasing N and C content. This observation contradicts previous studies investigating the Fe–C
 411 system (e.g. Sanloup et al., 2002; Terasaki et al., 2010), and may be the result of data density in this
 412 study or N and C impacting Fe melts differently. Further, we observe that r_1 is more incompressible
 413 than r_2 . In contrast, Morard et al. (2017) observed that the first coordination sphere in Fe–C liquid

414 was more compressible than the outer coordination spheres. This difference in Fe–Fe
415 compressibility for nearest and outer coordination spheres reflects differences in the incorporation
416 of N relative to C in the alloy.

417 The density of a molten Fe–N(–C) alloy is dependent on the abundance of light elements present
418 and the average atomic spacing in the liquid. The density of liquids can be obtained from the analysis
419 of diffraction data at low atomic spacings below the r_1 peak, provided that observations cover a wide
420 enough range of Q to converge (e.g. Morard et al., 2014). At low r values, we observe noise in $G(r)$,
421 similar to previous measurements using the same method by Lai et al., (2017) but in contrast to
422 observations of Fe–C liquid based on monochromatic angle-dispersive synchrotron X-ray diffraction
423 (Morard et al., 2017). This noise may reflect a narrower range of Q_{\max} constrained by the
424 experimental setup that prevents the extraction of density from the data. Morard et al., (2017)
425 determined the density of Fe with 1.8–3.7 wt.% C at 6 GPa and 1727°C to be 7,200 kg/m³ (Morard
426 et al., 2017), and found that this density is sufficient to match the ~10% density deficit of Earth's
427 outer core relative to pure Fe. The uncertainty in density in these previous measurements is
428 significant: density may be underestimated for metallic liquids by up to 30% using x-ray diffraction
429 analysis with a hard sphere model (Ikuta et al., 2016). Although we do not apply this model to
430 measure density directly in this study, we can estimate a range of densities consistent with our
431 observed volumetric expansion and possible mechanisms for the incorporation of light elements. If
432 we assume volume per formula unit is directly related to the Fe–Fe atomic distance cubed, observed
433 expansion in Fe–Fe distance due to N and C would correspond to a volume change of 8–10 % when
434 8 wt.% light elements are present (supplementary Figure S5). If N and C are stored quasi-interstitially
435 (e.g. Posner & Steinle-Neumann, 2019), then the effective mass of the Fe-alloy would be greater
436 than the mass of pure Fe by ~8%. This suggests a bound on the density decrease for purely quasi-
437 interstitial N and C of ~0–2%. Either the effect of N and C on density decrease relative to pure Fe is
438 lower than previously reported, allowing for a higher concentration of N and C in planetary cores
439 than expected, or some N and C incorporation by substitution would be consistent with our
440 observations.

441 The composition of Earth's outer core is constrained using a combination of experimental
442 analogs, geophysical observations, and cosmochemical and geochemical calculations (e.g. Hirose et

443 al., 2021; Trønnes et al., 2019). The light element components in Earth's outer core have been
444 estimated to include <1 wt.% of N and C combined; with up to 0.2 to 0.5 wt.% C (Fischer et al., 2020;
445 Gu et al., 2024; Hirose et al., 2021) and up to 0.03 to 2 wt.% N (Bajgain et al., 2019; Gu et al., 2024).
446 Like Earth, other terrestrial bodies (e.g. the Moon, Mercury, and Ganymede) are predicted to have
447 partially or fully molten cores (e.g. Kivelson et al., 1996; Laneuville et al., 2014; Margot et al., 2007;
448 Schubert et al., 1996; Stevenson et al., 1983; Weber et al., 2011). The distribution of light elements
449 in the cores of these smaller bodies is expected to differ from Earth due to differences in
450 compositions of material accreted at different distances from the sun and the pressure-
451 temperature-oxygen fugacity conditions during differentiation (e.g. Grewal et al., 2019; Rubie et al.,
452 2015). Bodies close to the sun are predicted to be enriched in Si: Mercury's core has been proposed
453 to contain ~15 wt.% Si (Trønnes et al., 2019). The cores of bodies further from the sun are predicted
454 to be relatively enriched in S: < 6wt.% sulfur in the lunar core (Weber et al., 2011) and ~10-20 wt.%
455 in the Martian core (Brennan et al., 2020; Gendre et al., 2022). The solubility of C in Fe-alloys
456 decreases with increasing S content (Tsuno et al., 2018), indicating that the abundance of C may be
457 linked to concentration of S. The concentration of C in the Martian core may range from ~10ppm –
458 3.5 wt.% C (Tsuno et al., 2018), while the core of the Moon may range from 0.6–4.8 wt.% C (Steenstra
459 et al., 2017). These estimates demonstrate the significant uncertainty and range in expected
460 terrestrial planet and moon core compositions. Relatively few studies have estimated the abundance
461 of N and C in terrestrial bodies; our model provides systematic constraints on effects of < 8wt.% N
462 and C on volume of Fe alloy that support future studies of planetary core compositions.

463 **5 Conclusions**

464 The abundance of N and C in planetary cores is linked to the pressure-temperature-composition
465 range during core formation. When N is incorporated into a molten Fe-alloy, it decreases the density
466 and increases the distance between the nearest Fe–Fe atoms. The effects of N and C on the length
467 of the nearest Fe–Fe atoms and the structure factor are similar, making them difficult to distinguish.
468 However, N may have a stronger effect on the connectivity of polyhedral coordination units in the
469 melt compared to C. Our results provide an equation of state for the liquid structure as a function
470 of pressure and light element content. Given the similar behavior between N and C, we suggest that

471 N is hosted in the liquid structure by the same mechanism, quasi-interstitial incorporation, that is
472 proposed for C.

473 The pressure effect on Fe–Fe atom distances and structure factor for all Fe–N(–C) alloys in this
474 study is smooth within uncertainty up to 7 GPa, in contrast with previous studies of Fe, Fe–C, and
475 Fe–S systems that observed a structural transition (Kono et al., 2015; Sanloup et al., 2000; Shibasaki
476 et al., 2015; Zhao et al., 2023) with increasing pressure or light element content. A difference of
477 approximately 2 wt.% N and/or C have the same effect as the observed change in the nearest Fe–Fe
478 distance proposed for a liquid structure transition between 3–5 GPa. The abundance of light
479 elements has a relatively stronger impact on the Fe–Fe bond distance and density compared to the
480 structure transition inferred in previous studies. Further, our new data indicates that previous
481 studies could have overestimated Fe–Fe distances. We find that N and C systematically impact the
482 melt structure of Fe-alloys. There is no discontinuous change in Fe–Fe bonds or volume, so we
483 propose that a pressure-composition equation of state can be used to predict the liquid structure.
484 This systematic change in volume with pressure and temperature can be used to understand the
485 density deficit in planetary cores.

486 **Acknowledgments**

487 We would like to acknowledge the assistance provided by O. Neill and J. Li in preparing the samples
488 and standards for electron microprobe analysis at the University of Michigan. We would also like to
489 recognize the assistance and user support provided by T. Estmond and R. Hrubiak regarding the
490 aEDXD software. Part of this work was performed at HPCAT (Sector 16), Advanced Photon Source
491 (APS), Argonne National Laboratory. HPCAT operations are supported by DOE-NNSA's Office of
492 Experimental Sciences. The Advanced Photon Source, a U.S. Department of Energy (DOE) Office of
493 Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under
494 Contract No. DE-AC02-06CH11357. A. Pease and beamline facility access was supported by the US
495 Department of Energy, National Nuclear Security Administration, through the Chicago/DOE Alliance
496 Center (DE- NA0003975). S. Dorfman, M. Lv, J. Piper acknowledge support from NSF EAR-1751664.

497 **Open Research:**

498 In this work, calculations were performed using aEDXD software (this software can be accessed at
499 <https://github.com/hp-edxd/hp-edxd>), the processed energy dispersive X-ray diffraction data ($S(Q)$
500 and $G(r)$) from this study can be found in Pease et al., 2024. The composition data can be found
501 within supplementary dataset 1 (ds01) and a summary of the experiment conditions/MgO peak
502 locations is in supplementary dataset 2 (ds02).

503 **References**

504 Badro, J., Côté, A. S., & Brodholt, J. P. (2014). A seismologically consistent compositional model of
505 Earth's core. *Proceedings of the National Academy of Sciences*, 111(21), 7542–7545.
506 <https://doi.org/10.1073/pnas.1316708111>

507 Bajgain, S. K., Mookherjee, M., Dasgupta, R., Ghosh, D. B., & Karki, B. B. (2019). Nitrogen Content
508 in the Earth's Outer Core. *Geophysical Research Letters*, 46(1), 89–98.
509 <https://doi.org/https://doi.org/10.1029/2018GL080555>

510 Bajgain, S. K., Mookherjee, M., & Dasgupta, R. (2021). Earth's core could be the largest terrestrial
511 carbon reservoir. *Communications Earth & Environment*, 2(1), 165.
512 <https://doi.org/10.1038/s43247-021-00222-7>

513 Birch, F. (1952). Elasticity and constitution of the Earth's interior. *Journal of Geophysical Research*
514 (1896-1977), 57(2), 227–286. <https://doi.org/https://doi.org/10.1029/JZ057i002p00227>

515 Brennan, M. C., Fischer, R. A., & Irving, J. C. E. (2020). Core formation and geophysical properties
516 of Mars. *Earth and Planetary Science Letters*, 530, 115923.
517 <https://doi.org/https://doi.org/10.1016/j.epsl.2019.115923>

518 Chen, B., Li, Z., Zhang, D., Liu, J., Hu, M. Y., Zhao, J., et al. (2014). Hidden carbon in Earth's inner
519 core revealed by shear softening in dense Fe7C3. *Proceedings of the National Academy of
520 Sciences*, 111(50), 17755–17758. <https://doi.org/10.1073/pnas.1411154111>

521 Cristiglio, V., Cuello, G. J., Piarristeguy, A. A., & Pradel, A. (2009). The coordination number
522 calculation from total structure factor measurements. *Journal of Non-Crystalline Solids*,
523 355(37), 1811–1814. <https://doi.org/https://doi.org/10.1016/j.jnoncrysol.2008.12.027>

524 Dalou, C., Hirschmann, M. M., von der Handt, A., Mosenfelder, J., & Armstrong, L. S. (2017).
525 Nitrogen and carbon fractionation during core–mantle differentiation at shallow depth. *Earth
526 and Planetary Science Letters*, 458, 141–151.
527 <https://doi.org/https://doi.org/10.1016/j.epsl.2016.10.026>

528 Fischer, R. A., Cottrell, E., Hauri, E., Lee, K. K. M., & Le Voyer, M. (2020). The carbon content of
529 Earth and its core. *Proceedings of the National Academy of Sciences*, 117(16), 8743–8749.
530 <https://doi.org/10.1073/pnas.1919930117>

531 Gendre, H., Badro, J., Wehr, N., & Borensztajn, S. (2022). Martian core composition from
532 experimental high-pressure metal-silicate phase equilibria. *Geochemical Perspectives Letters*,

533 21, 42–46. <https://doi.org/https://doi.org/10.7185/geochemlet.2216>

534 Grewal, D. S., Dasgupta, R., Sun, C., Tsuno, K., & Costin, G. (2019). Delivery of carbon, nitrogen,
535 and sulfur to the silicate Earth by a giant impact. *Science Advances*, 5(1), eaau3669.
536 <https://doi.org/10.1126/sciadv.aau3669>

537 Grewal, D. S., Dasgupta, R., Hough, T., & Farnell, A. (2021). Rates of protoplanetary accretion and
538 differentiation set nitrogen budget of rocky planets. *Nature Geoscience*, 14(6), 369–376.
539 <https://doi.org/10.1038/s41561-021-00733-0>

540 Gu, J. T., Peng, B., Ji, X., Zhang, J., Yang, H., Hoyos, S., et al. (2024). Composition of Earth's initial
541 atmosphere and fate of accreted volatiles set by core formation and magma ocean redox
542 evolution. *Earth and Planetary Science Letters*, 629, 118618.
543 <https://doi.org/https://doi.org/10.1016/j.epsl.2024.118618>

544 Harder, H., & Schubert, G. (2001). Sulfur in Mercury's Core? *Icarus*, 151(1), 118–122.
545 <https://doi.org/https://doi.org/10.1006/icar.2001.6586>

546 Hirose, K., Wood, B., & Vočadlo, L. (2021). Light elements in the Earth's core. *Nature Reviews Earth
547 & Environment*, 2(9), 645–658. <https://doi.org/10.1038/s43017-021-00203-6>

548 Huang, D., Siebert, J., Sossi, P., Kubik, E., Aviße, G., & Murakami, M. (2024). Nitrogen sequestration
549 in the core at megabar pressure and implications for terrestrial accretion. *Geochimica et
550 Cosmochimica Acta*, 376, 100–112. <https://doi.org/https://doi.org/10.1016/j.gca.2024.05.010>

551 Ikuta, D., Kono, Y., & Shen, G. (2016). Structural analysis of liquid aluminum at high pressure and
552 high temperature using the hard sphere model. *Journal of Applied Physics*, 120(13), 135901.
553 <https://doi.org/10.1063/1.4963278>

554 Jang, J.-M., Seo, S.-H., Jiang, M., Paek, M.-K., Wang, X., & Pak, J.-J. (2014). Nitrogen Solubility in
555 Liquid Fe–C Alloys. *ISIJ International*, 54(1), 32–36.
556 <https://doi.org/10.2355/isijinternational.54.32>

557 Kaminsky, F., & Wirth, R. (2017). Nitrides and carbonitrides from the lowermost mantle and their
558 importance in the search for Earth's “lost” nitrogen. *American Mineralogist*, 102(8), 1667–
559 1676. <https://doi.org/10.2138/am-2017-6101>

560 Kivelson, M. G., Khurana, K. K., Russell, C. T., Walker, R. J., Warnecke, J., Coroniti, F. V., et al. (1996).
561 Discovery of Ganymede's magnetic field by the Galileo spacecraft. *Nature*, 384(6609), 537–
562 541. <https://doi.org/10.1038/384537a0>

563 Kono, Y., Irifune, T., Higo, Y., Inoue, T., & Barnhoorn, A. (2010). PVT relation of MgO derived by
564 simultaneous elastic wave velocity and in situ X-ray measurements: A new pressure scale for
565 the mantle transition region. *Physics of the Earth and Planetary Interiors*, 183(1), 196–211.
566 <https://doi.org/https://doi.org/10.1016/j.pepi.2010.03.010>

567 Kono, Y., Park, C., Kenney-Benson, C., Shen, G., & Wang, Y. (2014). Toward comprehensive studies
568 of liquids at high pressures and high temperatures: Combined structure, elastic wave velocity,
569 and viscosity measurements in the Paris–Edinburgh cell. *Physics of the Earth and Planetary*

570 *Interiors*, 228, 269–280. [https://doi.org/https://doi.org/10.1016/j.pepi.2013.09.006](https://doi.org/10.1016/j.pepi.2013.09.006)

571 Kono, Y., Kenney-Benson, C., Shibasaki, Y., Park, C., Shen, G., & Wang, Y. (2015). High-pressure
572 viscosity of liquid Fe and FeS revisited by falling sphere viscometry using ultrafast X-ray
573 imaging. *Physics of the Earth and Planetary Interiors*, 241, 57–64.
574 <https://doi.org/https://doi.org/10.1016/j.pepi.2015.02.006>

575 Kuwayama, Y., Morard, G., Nakajima, Y., Hirose, K., Baron, A. Q. R., Kawaguchi, S. I., et al. (2020).
576 Equation of State of Liquid Iron under Extreme Conditions. *Physical Review Letters*, 124(16),
577 165701. <https://doi.org/10.1103/PhysRevLett.124.165701>

578 Lai, X., Chen, B., Wang, J., Kono, Y., & Zhu, F. (2017). Polyamorphic Transformations in Fe-Ni-C
579 Liquids: Implications for Chemical Evolution of Terrestrial Planets. *Journal of Geophysical
580 Research: Solid Earth*, 122(12), 9745–9754.
581 <https://doi.org/https://doi.org/10.1002/2017JB014835>

582 Landeau, M., Fournier, A., Nataf, H.-C., Cébron, D., & Schaeffer, N. (2022). Sustaining Earth's
583 magnetic dynamo. *Nature Reviews Earth & Environment*, 3(4), 255–269.
584 <https://doi.org/10.1038/s43017-022-00264-1>

585 Laneuville, M., Wieczorek, M. A., Breuer, D., Aubert, J., Morard, G., & Rückriemen, T. (2014). A
586 long-lived lunar dynamo powered by core crystallization. *Earth and Planetary Science Letters*,
587 401, 251–260. <https://doi.org/https://doi.org/10.1016/j.epsl.2014.05.057>

588 Li, Y., Dasgupta, R., & Tsuno, K. (2017). Carbon contents in reduced basalts at graphite saturation:
589 Implications for the degassing of Mars, Mercury, and the Moon. *Journal of Geophysical
590 Research: Planets*, 122(6), 1300–1320. <https://doi.org/https://doi.org/10.1002/2017JE005289>

591 Liu, J., Dorfman, S. M., Lv, M., Li, J., Zhu, F., & Kono, Y. (2019). Loss of immiscible nitrogen from
592 metallic melt explains Earth's missing nitrogen. *Geochemical Perspectives Letters*, 11, 18–22.
593 <https://doi.org/https://doi.org/10.7185/geochemlet.1919>

594 Margot, J. L., Peale, S. J., Jurgens, R. F., Slade, M. A., & Holin, I. V. (2007). Large Longitude Libration
595 of Mercury Reveals a Molten Core. *Science*, 316(5825), 710–714.
596 <https://doi.org/10.1126/science.1140514>

597 Marty, B. (2012). The origins and concentrations of water, carbon, nitrogen and noble gases on
598 Earth. *Earth and Planetary Science Letters*, 313–314, 56–66.
599 <https://doi.org/https://doi.org/10.1016/j.epsl.2011.10.040>

600 Minobe, S., Nakajima, Y., Hirose, K., & Ohishi, Y. (2015). Stability and compressibility of a new iron-
601 nitride β -Fe₇N₃ to core pressures. *Geophysical Research Letters*, 42(13), 5206–5211.
602 <https://doi.org/https://doi.org/10.1002/2015GL064496>

603 Morard, G., Sanloup, C., Fiquet, G., Mezouar, M., Rey, N., Poloni, R., & Beck, P. (2007). Structure of
604 eutectic Fe–FeS melts to pressures up to 17 GPa: Implications for planetary cores. *Earth and
605 Planetary Science Letters*, 263(1), 128–139.
606 <https://doi.org/https://doi.org/10.1016/j.epsl.2007.09.009>

607 Morard, G, Garbarino, G., Antonangeli, D., Andrault, D., Guignot, N., Siebert, J., et al. (2014).
608 Density measurements and structural properties of liquid and amorphous metals under high
609 pressure. *High Pressure Research*, 34(1), 9–21.
610 <https://doi.org/10.1080/08957959.2013.860137>

611 Morard, G, Nakajima, Y., Andrault, D., Antonangeli, D., Auzende, A. L., Boulard, E., et al. (2017).
612 Structure and Density of Fe-C Liquid Alloys Under High Pressure. *Journal of Geophysical*
613 *Research: Solid Earth*, 122(10), 7813–7823.
614 <https://doi.org/https://doi.org/10.1002/2017JB014779>

615 Morard, Guillaume, Antonangeli, D., Bouchet, J., Rivoldini, A., Boccato, S., Miozzi, F., et al. (2022).
616 Structural and Electronic Transitions in Liquid FeO Under High Pressure. *Journal of*
617 *Geophysical Research: Solid Earth*, 127(11), e2022JB025117.
618 <https://doi.org/https://doi.org/10.1029/2022JB025117>

619 Pease, A., Liu, J., Lv, M., Xiao, Y., Armstrong, K., Popov, D., et al. (2024). Strength, plasticity, and
620 spin transition of Fe-N compounds in planetary cores. *Physics of the Earth and Planetary*
621 *Interiors*, 355, 107236. <https://doi.org/10.1016/j.pepi.2024.107236>

622 Pease, A., Liu, J., Lv, M., Piper, J., Kono, Y., & Dorfman, S. M. (2024, June). Dataset for “Liquid
623 Structure of Iron and Iron- Nitrogen-Carbon Alloys within the Cores of Small Terrestrial
624 Bodies.” Zenodo. <https://doi.org/10.5281/zenodo.12555446>

625 Poirier, J.-P. (1994). Light elements in the Earth’s outer core: A critical review. *Physics of the Earth*
626 *and Planetary Interiors*, 85(3), 319–337. [https://doi.org/https://doi.org/10.1016/0031-9201\(94\)90120-1](https://doi.org/https://doi.org/10.1016/0031-9201(94)90120-1)

628 Posner, E. S., & Steinle-Neumann, G. (2019). Mass Transport and Structural Properties of Binary
629 Liquid Iron Alloys at High Pressure. *Geochemistry, Geophysics, Geosystems*, 20(7), 3556–3568.
630 <https://doi.org/https://doi.org/10.1029/2019GC008393>

631 Posner, E. S., Steinle-Neumann, G., Vlček, V., & Rubie, D. C. (2017). Structural changes and
632 anomalous self-diffusion of oxygen in liquid iron at high pressure. *Geophysical Research*
633 *Letters*, 44(8), 3526–3534. <https://doi.org/https://doi.org/10.1002/2017GL072926>

634 Rubie, D. C., Jacobson, S. A., Morbidelli, A., O’Brien, D. P., Young, E. D., de Vries, J., et al. (2015).
635 Accretion and differentiation of the terrestrial planets with implications for the compositions
636 of early-formed Solar System bodies and accretion of water. *Icarus*, 248, 89–108.
637 <https://doi.org/https://doi.org/10.1016/j.icarus.2014.10.015>

638 Sanloup, C., Guyot, F., Gillet, P., Fiquet, G., Hemley, R., Mezouar, M., & Martinez, I. (2000).
639 Structural changes in liquid Fe at high pressures and high temperatures from Synchrotron X-
640 ray Diffraction. *Europhysics Letters*, 52(2), 151. <https://doi.org/10.1209/epl/i2000-00417-3>

641 Sanloup, C., Guyot, F., Gillet, P., & Fei, Y. (2002). Physical properties of liquid Fe alloys at high
642 pressure and their bearings on the nature of metallic planetary cores. *Journal of Geophysical*
643 *Research: Solid Earth*, 107(B11), ECV 4-1-ECV 4-9.
644 <https://doi.org/https://doi.org/10.1029/2001JB000808>

645 Sanloup, C., Fiquet, G., Gregoryanz, E., Morard, G., & Mezouar, M. (2004). Effect of Si on liquid Fe
646 compressibility: Implications for sound velocity in core materials. *Geophysical Research
647 Letters*, 31(7). [https://doi.org/https://doi.org/10.1029/2004GL019526](https://doi.org/10.1029/2004GL019526)

648 Sanloup, C., van Westrenen, W., Dasgupta, R., Maynard-Casely, H., & Perrillat, J.-P. (2011).
649 Compressibility change in iron-rich melt and implications for core formation models. *Earth
650 and Planetary Science Letters*, 306(1), 118–122.
651 [https://doi.org/https://doi.org/10.1016/j.epsl.2011.03.039](https://doi.org/10.1016/j.epsl.2011.03.039)

652 Schubert, G., Zhang, K., Kivelson, M. G., & Anderson, J. D. (1996). The magnetic field and internal
653 structure of Ganymede. *Nature*, 384(6609), 544–545. <https://doi.org/10.1038/384544a0>

654 Shen, G., Prakapenka, V. B., Rivers, M. L., & Sutton, S. R. (2004). Structure of Liquid Iron at
655 Pressures up to 58 GPa. *Physical Review Letters*, 92(18), 185701.
656 <https://doi.org/10.1103/PhysRevLett.92.185701>

657 Shibasaki, Y., & Kono, Y. (2018). Effect of Silicon, Carbon, and Sulfur on Structure of Liquid Iron and
658 Implications for Structure-Property Relations in Liquid Iron-Light Element Alloys. *Journal of
659 Geophysical Research: Solid Earth*, 123(6), 4697–4706.
660 <https://doi.org/https://doi.org/10.1029/2018JB015456>

661 Shibasaki, Y., Kono, Y., & Fei, Y. (2015). Microscopic structural change in a liquid Fe-C alloy of
662 ~5 GPa. *Geophysical Research Letters*, 42(13), 5236–5242.
663 <https://doi.org/https://doi.org/10.1002/2015GL064271>

664 Speelman, I. M., Schmidt, M. W., & Liebske, C. (2018). Nitrogen Solubility in Core Materials.
665 *Geophysical Research Letters*, 45(15), 7434–7443.
666 <https://doi.org/https://doi.org/10.1029/2018GL079130>

667 Steenstra, E. S., Lin, Y., Rai, N., Jansen, M., & van Westrenen, W. (2017). Carbon as the dominant
668 light element in the lunar core, 102(1), 92–97. <https://doi.org/doi:10.2138/am-2017-5727>

669 Stevenson, D. J., Spohn, T., & Schubert, G. (1983). Magnetism and thermal evolution of the
670 terrestrial planets. *Icarus*, 54(3), 466–489. [https://doi.org/https://doi.org/10.1016/0019-1035\(83\)90241-5](https://doi.org/https://doi.org/10.1016/0019-1035(83)90241-5)

672 Terasaki, H., Nishida, K., Shibasaki, Y., Sakamaki, T., Suzuki, A., Ohtani, E., & Kikegawa, T. (2010).
673 Density measurement of Fe3C liquid using X-ray absorption image up to 10 GPa and effect of
674 light elements on compressibility of liquid iron. *Journal of Geophysical Research: Solid Earth*,
675 115(B6). <https://doi.org/https://doi.org/10.1029/2009JB006905>

676 Trønnes, R. G., Baron, M. A., Eigenmann, K. R., Guren, M. G., Heyn, B. H., Løken, A., & Mohn, C. E.
677 (2019). Core formation, mantle differentiation and core-mantle interaction within Earth and
678 the terrestrial planets. *Tectonophysics*, 760, 165–198.
679 <https://doi.org/https://doi.org/10.1016/j.tecto.2018.10.021>

680 Tsuno, K., Grewal, D. S., & Dasgupta, R. (2018). Core-mantle fractionation of carbon in Earth and
681 Mars: The effects of sulfur. *Geochimica et Cosmochimica Acta*, 238, 477–495.
682 <https://doi.org/https://doi.org/10.1016/j.gca.2018.07.010>

683 Umemoto, K., & Hirose, K. (2020). Chemical compositions of the outer core examined by first
684 principles calculations. *Earth and Planetary Science Letters*, 531, 116009.
685 <https://doi.org/https://doi.org/10.1016/j.epsl.2019.116009>

686 Urakawa, S., Igawa, N., Kusaba, K., Olmo, H., & Shimomura, O. (1998). Structure of Molten Iron
687 Sulfide under Pressure. *Review of High Pressure Science and Technology/Koatsuryoku No*
688 *Kagaku To Gijutsu*, 7, 286–288. <https://doi.org/10.4131/jshpreview.7.286>

689 Weber, R. C., Lin, P.-Y., Garnero, E. J., Williams, Q., & Lognonné, P. (2011). Seismic Detection of the
690 Lunar Core. *Science*, 331(6015), 309–312. <https://doi.org/10.1126/science.1199375>

691 Zhang, Y., Sekine, T., He, H., Yu, Y., Liu, F., & Zhang, M. (2016). Experimental constraints on light
692 elements in the Earth's outer core. *Scientific Reports*, 6(1), 22473.
693 <https://doi.org/10.1038/srep22473>

694 Zhao, B., Morard, G., Boulard, E., Boccato, S., Siersch, N. C., Rivoldini, A., et al. (2023). Local
695 Structure and Density of Liquid Fe-C-S Alloys at Moon's Core Conditions. *Journal of*
696 *Geophysical Research: Planets*, 128(3), e2022JE007577.
697 <https://doi.org/https://doi.org/10.1029/2022JE007577>

698

699