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Abstract: People use cannabidiol (CBD), the primary non-psychoactive cannabinoid of 
cannabis, as a treatment for symptoms that are commonly associated with pregnancy 
including nausea, pain, and anxiety. Many people believe CBD is safe to take during 
pregnancy. However, CBD crosses the placenta and affects the activity of protein targets 
that are expressed in the fetal brain. Cannabidiol alters the activity of ion channels 
including voltage-gated sodium, potassium, and calcium channels that control the 
electrical activity of neurons. Abnormal electrical activity could disrupt brain function via 
changes in axon growth and synapse structure and function. Furthermore, CBD alters the 
activity of G-protein coupled receptors that are expressed in the fetal brain and are 
important for axon growth and guidance suggesting that fetal exposure could prevent 
axons from reaching their correct targets. Indeed, cannabidiol exposure reduces axon 
growth in vitro and in vivo. This raises the possibility that CBD consumption during 
pregnancy could disrupt fetal brain development. Recent studies show that oral 
cannabidiol consumption during pregnancy alters the excitability of the pyramidal neurons 
of the prefrontal cortex and affects postnatal cognitive function in mouse offspring. 
Furthermore, fetal CBD exposure increases thermal pain sensitivity in offspring. 
Gestational cannabidiol exposure affects compulsivity and memory in a different rodent 
model. Here, we discuss how CBD affects various ion channels and G-protein coupled 
receptors, the roles of these proteins in neurodevelopment, and evidence that CBD 
affects neurodevelopment.   
 
Significance Statement:  
Cannabidiol (CBD) is taken to help with nausea and other symptoms that are common in 
pregnancy. Cannabidiol may be an alluring remedy for pregnancy symptoms. However, 
CBD readily crosses the placenta and reaches molecular targets important for fetal brain 
development. Animal studies suggest that gestational CBD exposure may affect offspring 
brain development and function. 
 
Introduction: 
 
CBD is the primary non-psychoactive cannabinoid of cannabis that is federally legal and 
is sold commercially across the United States, and in many other countries. Whole 
cannabis and its psychoactive component, tetrahydrocannabinol (THC), are legal to sell 
and consume in fewer countries. Whole cannabis and its component parts (THC and 
CBD) are used to treat nausea, anxiety, and pain, symptoms that are common to 
pregnancy pain (1-6). Among pregnant women, cannabis can be detected in 19-22% of 
umbilical cord tissue samples in Colorado and California (1, 2), where cannabis is legal. 
Self-reported and tissue assessments do not include consumption of CBD alone (without 
THC), suggesting that the total proportion of pregnancies exposed to CBD in some form 
is likely much higher. Given its touted therapeutic effects and unregulated market, a 
segment of the population including pregnant women will readily consume the federally 
legal CBD, even if they would be unwilling to consume whole marijuana or THC. In fact, 
in addition to the number of people who consume CBD as a component of whole cannabis 
(1, 2), survey data show that an additional 19% of pregnant people in the United States 
and Canada consume CBD alone, placing the percentage of pregnancies exposed to 



CBD in some form at nearly 40% (6). In contrast to THC, CBD is primarily consumed 
orally or topically (6).  
 
Cannabidiol crosses the placenta and accumulates in fetal brain tissue (7) suggesting 
that maternally consumed CBD can directly interact with receptors that are expressed in 
the fetal developing brain. CBD acts upon several ion channels and G-protein-coupled 
receptors (GPCRs) that are expressed in the developing brain (8-17). Human CBD 
consumption results in plasma concentrations from the nanomolar to 3 micromolar range 
depending upon the route of administration suggesting interactions that require higher 
CBD concentrations are likely not relevant to effects on humans (18-20). However, note 
that CBD accumulates in maternal plasma during pregnancy and the fetal brain, and thus 
may affect brain development at lower doses in humans (7, 21). This review compiles 
animal research about how CBD affects protein targets that are expressed in the central 
and peripheral nervous system, how CBD targets are important for fetal brain 
development, and what we know about how gestational CBD exposure affects offspring 
brain development and postnatal behavior. 
 
Fetal CBD exposure affects postnatal behaviors 
Gestational oral CBD consumption in two independent dosing paradigms alters postnatal 
mouse behavior. CBD and its metabolites are detectable in plasma of E18.5 pups and 
dams two hours after an oral 50 mg/kg CBD dose and are still detectable at P0, but are 
negligible at P4 and undetectable at P8 suggesting that any differences in offspring 
postnatal behaviors are due to differences in embryonic brain development rather than 
the effects of acute CBD exposure (22). Oral administration of 50 mg/kg CBD in sunflower 
seed oil or vehicle from embryonic day (E)5 until birth impairs problem-solving behavior 
in female, but not male, offspring (22). While gestational exposure to whole cannabis is 
associated with increased incidence in anxiety in humans, E5-birth fetal CBD exposure 
does not significantly alter anxiety behaviors in both female and male mice as measured 
by the elevated zero maze, the open field test, and the light-dark box (22). 
 
Administration of 20 mg/kg CBD in honey daily starting two weeks before copulation and 
continuing throughout pregnancy and lactation improves spatial memory measured by 
the Y maze in female offspring (23). Oral consumption of 20 mg/kg CBD increased 
compulsivity as measured by marble burying in female, but not male offspring (23). Fetal 
CBD exposure resulted in large scale reduction in DNA methylation in the cortex and 
hippocampus of the exposed dam and her exposed offspring (23). In contrast, 50 mg/kg 
CBD oral CBD daily from E5-birth did not result in a difference in spatial memory as 
measured by the Y-maze and did not increase compulsivity (22). Of note, in these studies, 
fetal CBD exposure affects behaviors that are mediated by the prefrontal cortex (PFC) 
solely in the female offspring (22, 23). The differences between results in spatial memory 
and marble burying tests between the two studies may be due to differences in duration 
of exposure or the CBD dose administered to the dam. CBD could induce differences in 
postnatal behavior through its effects on ion channel function or G-protein coupled 
receptors that are expressed during embryonic and fetal development (Tables 1 and 2, 
Figure 1).  
 



Fetal Cannabidiol exposure increases offspring thermal pain sensitivity  
 
Oral consumption of 50 mg/kg CBD during pregnancy increases sensitivity to thermal 
pain in male, but not female offspring in mice (22). Several thermal sensing calcium 
channels such as Transient Receptor Potential Villanoid (TRPV) 1-4 are activated by CBD 
(9, 10, 24) (Table 1). Canabidiol-induced activation of these channels is followed by a 
refractory desensitization of the channels (8, 25). In contrast, CBD antagonizes a cold-
sensing calcium channel called TRPM8 (25, 26). Many of these channels are expressed 
in the dorsal root ganglion and other neurons in the central and peripheral nervous system 
during fetal development (27-31), suggesting that their aberrant regulation following early 
CBD exposure could contribute to fetal CBD-induced thermal pain sensitivity in adult. 
Along with these results, fetal CBD exposure does not significantly affect thermal 
sensitivity in TRPV1ko/ko male mice like it does in wild type mice, demonstrating the 
excessive activation of TRPV1 by CBD is, at least in part, responsible for CBD-induced 
thermal pain sensitivity in male offspring (22).  
 
Cannabidiol alters function of ion channels expressed in the developing central 
nervous system (Table 1) 
 
Ion Channel Channel Function  

 
Effect of CBD on 
channel 

Embryonic/Fetal 
Expression 

NaV1.1 (Scn1a) Sodium influx 
(depolarizing) 
Loss of function 
mutations 
associated with 
epilepsy, Dravet 
syndrome (32) (33, 
34) 
Important for 
neurite outgrowth 
(35, 36) 
 

Inhibit-stabilizes 
closed state and 
prevents channel 
opening 
 (37-41) 

Human and mouse 
cortex (42) 
Human fetal 
astrocytes, P7 
mouse neurons 
(28, 31) 

NaV1.2 (Scn2a) Sodium influx 
(depolarizing) 
Loss of function 
mutations cause 
epilepsy (34, 43) 
(44)  

Inhibit-stabilizes 
closed state (38, 
45)  

Human and mouse 
cortex (42) 

NaV1.3 (Scn3a) Sodium influx 
(depolarizing) 
 
 

Inhibit-stabilizes 
closed state (38) 

E18 rat brain (46) 
Human fetal 
astrocytes (28, 47) 
P7 mouse neurons, 
OPCs, 
oligodendrocytes 
(31) 



NaV1.4 (Scn4a) Sodium influx 
(depolarizing) (48) 
 

Inhibit-stabilizes 
closed state (37-39) 

Human fetal 
astrocytes (28) 
(31) 

NaV1.5 (Scn5a) Sodium influx 
(depolarizing) 
Regulates cardiac 
muscle contraction 
(48) 

Inhibit-stabilizes 
closed state (38, 
41) 

Human fetal 
astrocytes (28) 
(31, 49) 
Cardiac muscle 
(50, 51) 

NaV1.6 (Scn8a) Sodium influx 
(depolarizing) Loss 
of function 
mutations lead to 
epilepsy 
(34) 

Inhibit-stabilizes 
closed state (38, 
51) 

P7 mouse 
astrocytes, 
neurons, OPCs, 
oligodendrocytes 
(31) 

NaV1.7 (Scn9a) Sodium influx 
(depolarizing) 
Loss of function 
mutations cause 
epilepsy (44) 

Inhibit-stabilizes 
closed state (38, 
40) 

Dorsal Root 
Ganglion Neurons 
(Rat) (52) 

CaV1.2 (Cacna1c) 
L-type calcium  

Calcium influx 
(depolarizing) (53) 

Inhibit (41) P7 mouse neurons, 
OPCs (31) 

CaV3.1  
(Cacna1g)  
T-type calcium 

Calcium influx 
(depolarizing) 
Cardiac pacemaker 
activity, neuronal 
excitability 

Inhibit (54, 55) P7 mouse neurons, 
OPC (31) 

CaV3.2 (Cacna1h) 
T-type calcium  

Calcium influx 
(depolarizing) 
 

Inhibit (54-56) P7 mouse neurons, 
astrocytes, OPCs 
(31) 

KV4.3 (Kcnd3) Potassium efflux 
(hyperpolarizing 
effect) in cardiac 
muscle (41, 57) 

Inhibit (41) P7 mouse OPC, 
neurons, Astrocytes  
(31) 

KV7.1 (Kcnq1) 
mink 
Potassium voltage-
gated channel 
subfamily KQT 
member 1 (58) 

Potassium efflux 
(hyperpolarizing 
effect) (58) 

Inhibit (IC50 2.7uM) 
(41) 

P7 mouse 
endothelial cells 
(31)  

KV7.2 (Kcnq2) Potassium efflux 
(hyperpolarizing 
effect) 

Agonize (59, 60)  P7 mouse neurons 
and OPCs (31), 
Human fetal 
astrocytes  (28) 

KV7.3 (Kcnq3) Potassium efflux 
(hyperpolarizing 
effect) 

Agonize (59) Human fetal 
astrocytes (28) 



P7 mouse neurons 
oligodendrocytes 
(31) 

KV11.1 (Kcnh2 or 
hERG- human 
ether a go go) 

Potassium efflux 
(hyperpolarizing 
effect) (61) 

Inhibit (41) P7 mouse neurons 
and OPCs (31) 

Alpha-1/Alpha1-
Beta Glycine 
receptor 
(Glra1) 

Chloride influx (62-
71) 
(hyperpolarizing 
effect) 
Important for motor 
coordination, 
respiration, muscle 
tone, pain 
processing  

Activate (100 umol/l 
(EC50 132.4+/- 12 
umol/l and 144 +/-
22 umol/l) (62, 65, 
72) 

E11-18 rat spinal 
cord (73) 

5-HT3A (HTR3A) Serotonin gated ion 
channel-transient 
membrane 
depolarizing(74) 

Allosteric inhibitor 
(IC50 0.6uM) 
(EC50 1.2 and 
1.4uM in absence 
and presence of 
CBD)(75, 76) 

GABAergic (77) 
Neocortical 
interneurons (78) 
P7 neurons (31)  

TRPV1 (79, 80) Heat activated 
Sodium/Calcium 
influx 
(depolarizing):  
Neural crest (30)- 
excessive 
activation causes 
craniofacial and 
heart abnormalities 

Activate and then 
desensitize (8-10, 
24) 

Human fetal 
astrocytes (28): 
Dorsal root 
ganglion (DRG) 
sensory neurons.  
Peripheral organs, 
skin, urinary tract, 
rectum, respiratory 
organs, stomach, 
colon, skeletal 
muscles (27)  
E10 Lens of the 
eye (29)  
Neural crest cells 
(30) 
Spinal cord 
neurons and Dorsal 
Root Ganglion from 
E13.5 mouse 
through adulthood 
(81) 

TRPV2  
(79, 80) 

Heat activated 
Sodium/Calcium 
influx(depolarizing) 
 

Activate followed by 
desensitization (10, 
24, 82-85)  

Spinal cord 
neurons and Dorsal 
Root Ganglion from 
E 10.5 mice (81) 



TRPV3 (79, 80) (86) Heat activated 
Sodium/Calcium 
influx (depolarizing) 

Agonist followed by 
desensitization (87, 
88) 

Expressed in 
Keratinocytes(86) 
dorsal root 
ganglion, tongue, 
trigeminal ganglion, 
spinal cord, and 
brain (89) 

TRPV4 (79, 80) Heat activated 
Sodium/Calcium 
influx (depolarizing) 
(30) excessive 
activation causes 
craniofacial and 
heart abnormalities 

Agonist followed by 
desensitization (87) 

E10 mouse Lens of 
the eye (29) neural 
crest cells (30) 

TRPM8 (79, 80) 
(90) 

Cold activated 
Sodium/Calcium 
influx (depolarizing)  

Antagonist (25, 26) E13.5-P0 mouse 
DRG and spinal 
cord(81). Human 
fetal astrocytes (28) 
P7 mouse 
astrocytes, 
neurons, OPC, 
oligodendrocytes, 
endothelial cells, 
microglia (31) 

TRPA1 (79, 80) Heat activated 
Sodium/Calcium 
influx (depolarizing) 
in pain sensory 
neurons (91) 

Agonist (26, 92) Human fetal 
astrocytes (28) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure 1. Cannabidiol targets ion channels expressed in the central nervous 
system 

 
Gestational Cannabidiol affects postnatal neuronal excitability and synapse 
function in the PFC 
 
Consistent with female-specific altered problem-solving behaviors that are known to be 
mediated by the PFC, fetal CBD exposure decreases the excitability and synaptic 
strength of layer 2/3 pyramidal neurons of the female PFC at postnatal days (P)14-21 
(22). Specifically, fetal CBD exposure increased minimum currents required to trigger 
action potentials. In addition, the amplitude of excitatory postsynaptic currents induced by 
uncaged glutamate was decreased only in female mice (22). These results suggest that 
gestational exposure to CBD disrupts prefrontal neuronal and synaptic function. One 
potential mechanism by which CBD could affect intrinsic excitability and synapse 
development is through its effect on multiple ion channels (Figure 1). For example, CBD 
inhibits several voltage-gated sodium channels that are expressed in the fetal central 
nervous system in humans and rodents (28, 31, 38, 42, 46, 93). Loss of function mutations 
in these voltage-gated sodium channels cause severe epilepsy which is associated with 
cognitive impairment (33, 34, 42, 44, 94). Perhaps CBD-induced inhibition of voltage-
gated channels that are expressed in the cortex could alter neuronal activity and further 
affect activity-dependent cortical synapse development long term. Cannabidiol inhibits 
three voltage-gated calcium channels that are expressed in neurons and astrocytes in the 



human and rodent fetal central nervous system (31, 54). CBD also alters voltage-gated 
potassium channels. Opening of potassium channels returns a depolarized neuron to 
resting membrane potential. CBD shifts the voltage at which voltage-gated potassium 
channels KV7.2/3 open so that they will bring neurons back to resting membrane potential 
faster (59). However, CBD inhibits KV4.3 and KV11.1(41), which may increase the 
duration of action potentials in cells that express these channels. In addition to the direct 
regulation of voltage-gated channels, CBD inhibits 5Ht3a receptor, a serotonin-gated 
calcium channel that is expressed in the fetal GABAergic interneurons, which regulate 
cortical excitability and synaptic plasticity in the rodent cerebral cortex (78, REF). 
Cannabidiol acts as an agonist at 5HT1a receptors in humans and rodents, which can 
hyperpolarize pyramidal neurons via Gαi coupled inhibitory mechanisms (95-97). Thus, 
CBD directly affects multiple ion channels and GPCRs that are expressed in the 
developing cortex, which may explain how gestational exposure to CBD could disrupt 
synapse development and alter neuronal excitability of regions of the brain that express 
these protein targets. 
 
Cannabidiol interacts with G-protein coupled receptors (Table 2) 
 
G-protein 
Receptor 

Protein Function Effect of CBD on 
GPR 

Expression 

GPR 3 
G-protein coupled 
receptor 3 
(98, 99) 

Stimulates cyclic 
AMP accumulation 
Promotes neurite 
outgrowth (100, 
101)  
 

Inverse agonism 
(102, 103) 

Retinal Ganglion 
Cells (104), 
Cerebellar granular 
neurons (101, 104) 
Cortex, pituitary, 
thalamus, 
hypothalamus, 
amygdala, 
hippocampus, 
cerebellum, eye, 
lung, kidney, liver, 
testes, ovary (13, 
99, 105-107) 

GPR 6 
G-protein coupled 
receptor 6 (108) 

Stimulates cyclic 
AMP accumulation 
(increases levels) 
Promotes neurite 
outgrowth (100) 

Inverse agonism 
(102, 103) 

Higher expression 
in rodent cerebellar 
granular neurons 
(100)  

GPR 12 
G-protein coupled 
receptor 12 (109, 
110) 

Stimulates cyclic 
AMP accumulation 
Promotes neurite 
outgrowth (100) 

Inverse agonist 
(103, 111)  

Frontal cortex, 
Cerebral cortex, 
hippocampus, 
striatum, 
hypothalamus, 
thalamus, piriform 
cortex, olfactory 



bulb, pituitary, 
lateral septal nuclei 
(112, 113) starting 
at E14.5 in mouse 
(114)  

GPR 55 
G-protein coupled 
receptor 55 (115) 

Release of calcium 
from ER stores,  
Activates the 
ERK1/2 and RhoA 
pathways, 
Activates 
transcription factors 
(116-118) 

Antagonism (118) E14-P0 Embryonic 
mouse retina 
neurons (119) 
Embryonic 
zebrafish central 
nervous system 
and sensory 
neurons (120) 

5HT1AR  
5-
hydroxytryptamine 
receptor 1A  

Inhibition of 
adenylyl cyclases 
(via Gai/o) and 
regulation of 
potassium and 
calcium ion 
channels to inhibit 
neuronal activity 
and reduce intra 
cellular calcium 
concentration (121) 
(122)  

Agonism (14, 97, 
123) 
 
 

Rat brain starting at 
E12 (124) 
Hippocampus (125)  
Prefrontal cortex, 
(126-129) 

CB1 Cannabinoid 
Receptor 1 (130, 
131) 

Gi/o inhibition of 
adenylate cyclase 
and arrestin 
recruitment (132, 
133) (134) 
Activation of 
extracellular signal-
regulated kinase 
(ERK) signaling 
(135) 

Increases 
availability of 
endogenous ligand, 
but can have 
negative allosteric 
effects (136) 

Highly expressed in 
the central nervous 
system of mouse, 
rat, and human  
(137, 138) 

CB2 Cannabinoid 
Receptor 2 (139) 

Signals through G-
alpha-S to induce 
IL6 and IL10 (140) 
Signals through 
Gi/o to inhibit 
adenylate cyclase 
(141) 

Increases 
availability of 
endogenous ligand, 
but can have 
negative allosteric 
effects (136) 

Immune system 
(138), Lower 
expression in 
cortex, striatum, 
hippocampus, 
amygdala, 
brainstem, 
cerebellum (142-
147) 

 
 



Cannabidiol disrupts axon growth and guidance.  
 
Cannabidiol reduces axon growth rate and disrupts axon guidance through its effect on 
G-protein-coupled receptors (119). CBD inhibits GPR55 to cause growth cone collapse 
and reduce axon growth rate overall in cultured neurons (118, 119). Furthermore, CBD 
exposure disrupts retinal projection axon growth and guidance in mice and hamsters (118, 
119). In addition, CBD also disrupts function of GPR3 (102), a G-protein coupled receptor 
that induces neurite outgrowth in multiple neuronal cell types (101, 104). While CBD does 
not directly bind CB1, it can increase the availability of an endogenous ligand, 
endocannabinoid, that activates CB receptors (148). Both CB1 and CB2 are important for 
axon guidance (149, 150). The activation of CB1 causes the collapse of growth cones 
(151-153). Regulation of CB1 is important for axon growth, guidance, and fasciculation 
(154, 155), suggesting that aberrant activation of CB1 could disrupt correct axon 
guidance. At very high concentrations, CBD is a partial agonist for D2 dopamine receptors 
which are expressed in the developing cerebral and cerebellar cortex in rodents, but this 
interaction is likely not physiologically relevant because the CBD concentrations reached 
in humans are not sufficient for the interaction (156, 157). CBD activates TRPV2, a 
channel that is expressed embryonically and stimulates axon growth (81), suggesting that 
the effect of CBD on axon growth likely depends on cell types and the population of 
receptors it expresses. In other cellular contexts, CBD interferes with sonic hedgehog 
(Shh) signaling, which is required for axons crossing from one hemisphere of the brain to 
the other (158, 159). In addition to disrupting multiple molecular signaling cascades that 
are important for axon growth and guidance, CBD affects ion channel function (Table 1, 
Figure 1) and neuronal activity that modulates axon growth (160). Thus, there are many 
mechanisms by which CBD may disrupt axon growth and guidance during brain 
development. 
 
Cannabidiol may alter the number of neurons and astrocytes in the developing 
brain 
 
Cannabidiol decreases viability of several cell types in the developing brain. CBD 
concentrations as low as 0.1 µM induce apoptosis of perinatal rat cortical neurons (161). 
Similar CBD concentrations reduce viability of oligodendrocytes (162). A slightly higher 
CBD concentration (0.5 to 5 µM) causes apoptosis of rat perinatal cortical astrocytes 
(161). The neurotoxic effects of CBD are not observed in all neuronal types. For example, 
lower concentrations of CBD have a protective effect on mouse hippocampal neurons 
(163). In fact, while whole cannabis or THC exposure is associated with reduced 
hippocampal volume in adult humans, CBD exposure diminishes this effect through 
increasing neurogenesis in the hippocampus (164). These results may help explain how 
20 mg/kg CBD during gestation improves female offspring performance in spatial memory 
tasks that depend upon hippocampal function (23). However, fetal exposure to higher 
concentrations of CBD does not improve or reduce spatial memory in offspring (22). CBD 
may have varying effects on cells depending upon the protein targets they express at the 
time of exposure.  
 
Conclusion 



 
Whole cannabis and its psychoactive component, THC, have been extensively studied 
for adverse effects on fetal development (21, 164-171). However, studies on CBD usage 
in pregnant women remain scarce likely because it is not psychoactive and has been 
widely legalized. This is concerning because CBD helps with pregnancy symptoms (172, 
173) many believe CBD is without risk (174). In this review, we presented a summary of 
the available data on the molecular CBD targets that are expressed in the fetal and 
perinatal brain and peripheral neurons. Specifically, we identify many ion channels and 
receptors expressed in the developing central and peripheral nervous system that could 
mediate the effects of CBD during prenatal exposure. While the prevalence of CBD use 
is on the rise (172), the mechanistic links between early CBD exposure and its potential 
impact upon neurodevelopmental pathology remain elusive. Importantly, experimental 
evidence shows that CBD consumption during pregnancy causes poor cognition and 
thermal pain sensitivity in offspring in mice (22), and thus could have detrimental effects 
on offspring if exposed during pregnancy. More studies are needed to better understand 
the biological mechanisms behind CBD-mediated effects on brain development during 
this critical time. Larger studies are thus needed to assess the public health impact of 
CBD treatment and to elucidate the safety of CBD during pregnancy use. 
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