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Abstract: People use cannabidiol (CBD), the primary non-psychoactive cannabinoid of
cannabis, as a treatment for symptoms that are commonly associated with pregnancy
including nausea, pain, and anxiety. Many people believe CBD is safe to take during
pregnancy. However, CBD crosses the placenta and affects the activity of protein targets
that are expressed in the fetal brain. Cannabidiol alters the activity of ion channels
including voltage-gated sodium, potassium, and calcium channels that control the
electrical activity of neurons. Abnormal electrical activity could disrupt brain function via
changes in axon growth and synapse structure and function. Furthermore, CBD alters the
activity of G-protein coupled receptors that are expressed in the fetal brain and are
important for axon growth and guidance suggesting that fetal exposure could prevent
axons from reaching their correct targets. Indeed, cannabidiol exposure reduces axon
growth in vitro and in vivo. This raises the possibility that CBD consumption during
pregnancy could disrupt fetal brain development. Recent studies show that oral
cannabidiol consumption during pregnancy alters the excitability of the pyramidal neurons
of the prefrontal cortex and affects postnatal cognitive function in mouse offspring.
Furthermore, fetal CBD exposure increases thermal pain sensitivity in offspring.
Gestational cannabidiol exposure affects compulsivity and memory in a different rodent
model. Here, we discuss how CBD affects various ion channels and G-protein coupled
receptors, the roles of these proteins in neurodevelopment, and evidence that CBD
affects neurodevelopment.

Significance Statement:

Cannabidiol (CBD) is taken to help with nausea and other symptoms that are common in
pregnancy. Cannabidiol may be an alluring remedy for pregnancy symptoms. However,
CBD readily crosses the placenta and reaches molecular targets important for fetal brain
development. Animal studies suggest that gestational CBD exposure may affect offspring
brain development and function.

Introduction:

CBD is the primary non-psychoactive cannabinoid of cannabis that is federally legal and
is sold commercially across the United States, and in many other countries. Whole
cannabis and its psychoactive component, tetrahydrocannabinol (THC), are legal to sell
and consume in fewer countries. Whole cannabis and its component parts (THC and
CBD) are used to treat nausea, anxiety, and pain, symptoms that are common to
pregnancy pain (1-6). Among pregnant women, cannabis can be detected in 19-22% of
umbilical cord tissue samples in Colorado and California (1, 2), where cannabis is legal.
Self-reported and tissue assessments do not include consumption of CBD alone (without
THC), suggesting that the total proportion of pregnancies exposed to CBD in some form
is likely much higher. Given its touted therapeutic effects and unregulated market, a
segment of the population including pregnant women will readily consume the federally
legal CBD, even if they would be unwilling to consume whole marijuana or THC. In fact,
in addition to the number of people who consume CBD as a component of whole cannabis
(1, 2), survey data show that an additional 19% of pregnant people in the United States
and Canada consume CBD alone, placing the percentage of pregnancies exposed to



CBD in some form at nearly 40% (6). In contrast to THC, CBD is primarily consumed
orally or topically (6).

Cannabidiol crosses the placenta and accumulates in fetal brain tissue (7) suggesting
that maternally consumed CBD can directly interact with receptors that are expressed in
the fetal developing brain. CBD acts upon several ion channels and G-protein-coupled
receptors (GPCRs) that are expressed in the developing brain (8-17). Human CBD
consumption results in plasma concentrations from the nanomolar to 3 micromolar range
depending upon the route of administration suggesting interactions that require higher
CBD concentrations are likely not relevant to effects on humans (18-20). However, note
that CBD accumulates in maternal plasma during pregnancy and the fetal brain, and thus
may affect brain development at lower doses in humans (7, 21). This review compiles
animal research about how CBD affects protein targets that are expressed in the central
and peripheral nervous system, how CBD targets are important for fetal brain
development, and what we know about how gestational CBD exposure affects offspring
brain development and postnatal behavior.

Fetal CBD exposure affects postnatal behaviors

Gestational oral CBD consumption in two independent dosing paradigms alters postnatal
mouse behavior. CBD and its metabolites are detectable in plasma of E18.5 pups and
dams two hours after an oral 50 mg/kg CBD dose and are still detectable at PO, but are
negligible at P4 and undetectable at P8 suggesting that any differences in offspring
postnatal behaviors are due to differences in embryonic brain development rather than
the effects of acute CBD exposure (22). Oral administration of 50 mg/kg CBD in sunflower
seed oil or vehicle from embryonic day (E)5 until birth impairs problem-solving behavior
in female, but not male, offspring (22). While gestational exposure to whole cannabis is
associated with increased incidence in anxiety in humans, E5-birth fetal CBD exposure
does not significantly alter anxiety behaviors in both female and male mice as measured
by the elevated zero maze, the open field test, and the light-dark box (22).

Administration of 20 mg/kg CBD in honey daily starting two weeks before copulation and
continuing throughout pregnancy and lactation improves spatial memory measured by
the Y maze in female offspring (23). Oral consumption of 20 mg/kg CBD increased
compulsivity as measured by marble burying in female, but not male offspring (23). Fetal
CBD exposure resulted in large scale reduction in DNA methylation in the cortex and
hippocampus of the exposed dam and her exposed offspring (23). In contrast, 50 mg/kg
CBD oral CBD daily from E5-birth did not result in a difference in spatial memory as
measured by the Y-maze and did not increase compulsivity (22). Of note, in these studies,
fetal CBD exposure affects behaviors that are mediated by the prefrontal cortex (PFC)
solely in the female offspring (22, 23). The differences between results in spatial memory
and marble burying tests between the two studies may be due to differences in duration
of exposure or the CBD dose administered to the dam. CBD could induce differences in
postnatal behavior through its effects on ion channel function or G-protein coupled
receptors that are expressed during embryonic and fetal development (Tables 1 and 2,
Figure 1).



Fetal Cannabidiol exposure increases offspring thermal pain sensitivity

Oral consumption of 50 mg/kg CBD during pregnancy increases sensitivity to thermal
pain in male, but not female offspring in mice (22). Several thermal sensing calcium
channels such as Transient Receptor Potential Villanoid (TRPV) 1-4 are activated by CBD
(9, 10, 24) (Table 1). Canabidiol-induced activation of these channels is followed by a
refractory desensitization of the channels (8, 25). In contrast, CBD antagonizes a cold-
sensing calcium channel called TRPM8 (25, 26). Many of these channels are expressed
in the dorsal root ganglion and other neurons in the central and peripheral nervous system
during fetal development (27-31), suggesting that their aberrant regulation following early
CBD exposure could contribute to fetal CBD-induced thermal pain sensitivity in adult.
Along with these results, fetal CBD exposure does not significantly affect thermal
sensitivity in TRPV1%%° male mice like it does in wild type mice, demonstrating the
excessive activation of TRPV1 by CBD is, at least in part, responsible for CBD-induced
thermal pain sensitivity in male offspring (22).

Cannabidiol alters function of ion channels expressed in the developing central
nervous system (Table 1)

epilepsy, Dravet
syndrome (32) (33,
34)

Important for
neurite outgrowth
(35, 36)

lon Channel Channel Function | Effect of CBD on | Embryonic/Fetal
channel Expression
NaV1.1 (Scn1a) Sodium influx Inhibit-stabilizes Human and mouse
(depolarizing) closed state and cortex (42)
Loss of function prevents channel Human fetal
mutations opening astrocytes, P7
associated with (37-41) mouse neurons

(28, 31)

NaV1.2 (Scn2a)

Sodium influx
(depolarizing)
Loss of function
mutations cause
epilepsy (34, 43)

Inhibit-stabilizes
closed state (38,
45)

Human and mouse
cortex (42)

(44)
NaV1.3 (Scn3a) Sodium influx Inhibit-stabilizes E18 rat brain (46)
(depolarizing) closed state (38) Human fetal

astrocytes (28, 47)
P7 mouse neurons,
OPCs,
oligodendrocytes
(31)




NaV1.4 (Scn4a)

Sodium influx
(depolarizing) (48)

Inhibit-stabilizes
closed state (37-39)

Human fetal
astrocytes (28)

(31)
NaV1.5 (Scnba) Sodium influx Inhibit-stabilizes Human fetal
(depolarizing) closed state (38, astrocytes (28)
Regulates cardiac | 41) (31, 49)
muscle contraction Cardiac muscle
(48) (50, 51)
NaV1.6 (Scn8a) Sodium influx Inhibit-stabilizes P7 mouse
(depolarizing) Loss | closed state (38, astrocytes,

of function 51) neurons, OPCs,
mutations lead to oligodendrocytes
epilepsy (31)
(34)

NaV1.7 (Scn9a) Sodium influx Inhibit-stabilizes Dorsal Root
(depolarizing) closed state (38, Ganglion Neurons
Loss of function 40) (Rat) (52)

mutations cause
epilepsy (44)

Cav1.2 (Cacnaic)
L-type calcium

Calcium influx
(depolarizing) (53)

Inhibit (41)

P7 mouse neurons,
OPCs (31)

Cav3.1
(Cacna1g)
T-type calcium

Calcium influx
(depolarizing)
Cardiac pacemaker
activity, neuronal

Inhibit (54, 55)

P7 mouse neurons,
OPC (31)

excitability
CaV3.2 (Cacnath) | Calcium influx Inhibit (54-56) P7 mouse neurons,
T-type calcium (depolarizing) astrocytes, OPCs

(31)

KV4.3 (Kcnd3)

Potassium efflux
(hyperpolarizing
effect) in cardiac
muscle (41, 57)

Inhibit (41)

P7 mouse OPC,
neurons, Astrocytes
(31)

KV7.1 (Keng1)
mink

Potassium voltage-
gated channel
subfamily KQT
member 1 (58)

Potassium efflux
(hyperpolarizing
effect) (58)

Inhibit (IC50 2.7uM)
(41)

P7 mouse
endothelial cells
(31)

KV7.2 (Kcng2)

Potassium efflux

Agonize (59, 60)

P7 mouse neurons

(hyperpolarizing and OPCs (31),
effect) Human fetal
astrocytes (28)
KV7.3 (Kcng3) Potassium efflux Agonize (59) Human fetal

(hyperpolarizing
effect)

astrocytes (28)




P7 mouse neurons
oligodendrocytes
(31)

KV11.1 (Kenh2 or
hERG- human
ether a go go)

Potassium efflux
(hyperpolarizing
effect) (61)

Inhibit (41)

P7 mouse neurons
and OPCs (31)

Alpha-1/Alpha1-
Beta Glycine
receptor

(Glra1)

Chloride influx (62-
71)
(hyperpolarizing
effect)

Important for motor
coordination,
respiration, muscle
tone, pain
processing

Activate (100 umol/l
(EC50 132.4+/- 12
umol/l and 144 +/-
22 umol/l) (62, 65,
72)

E11-18 rat spinal
cord (73)

5-HTsa (HTR3A)

Serotonin gated ion
channel-transient
membrane
depolarizing(74)

Allosteric inhibitor
(IC50 0.6uM)
(EC50 1.2 and
1.4uM in absence
and presence of
CBD)(75, 76)

GABAergic (77)
Neocortical
interneurons (78)
P7 neurons (31)

TRPV1 (79, 80)

Heat activated
Sodium/Calcium
influx
(depolarizing):
Neural crest (30)-
excessive
activation causes
craniofacial and
heart abnormalities

Activate and then
desensitize (8-10,
24)

Human fetal
astrocytes (28):
Dorsal root
ganglion (DRG)
sSensory neurons.
Peripheral organs,
skin, urinary tract,
rectum, respiratory
organs, stomach,
colon, skeletal
muscles (27)

E10 Lens of the
eye (29)

Neural crest cells
(30)

Spinal cord
neurons and Dorsal
Root Ganglion from
E13.5 mouse
through adulthood
(81)

TRPV2
(79, 80)

Heat activated
Sodium/Calcium
influx(depolarizing)

Activate followed by
desensitization (10,
24, 82-85)

Spinal cord
neurons and Dorsal
Root Ganglion from
E 10.5 mice (81)




TRPV3 (79, 80) (86)

Heat activated
Sodium/Calcium
influx (depolarizing)

Agonist followed by
desensitization (87,
88)

Expressed in
Keratinocytes(86)
dorsal root
ganglion, tongue,
trigeminal ganglion,
spinal cord, and
brain (89)

TRPV4 (79, 80)

Heat activated
Sodium/Calcium
influx (depolarizing)
(30) excessive
activation causes
craniofacial and
heart abnormalities

Agonist followed by
desensitization (87)

E10 mouse Lens of
the eye (29) neural
crest cells (30)

TRPMS (79, 80)
(90)

Cold activated
Sodium/Calcium
influx (depolarizing)

Antagonist (25, 26)

E13.5-PO mouse
DRG and spinal
cord(81). Human
fetal astrocytes (28)
P7 mouse
astrocytes,
neurons, OPC,
oligodendrocytes,
endothelial cells,
microglia (31)

TRPAT (79, 80)

Heat activated
Sodium/Calcium
influx (depolarizing)
in pain sensory
neurons (91)

Agonist (26, 92)

Human fetal
astrocytes (28)




Figure 1. Cannabidiol targets ion channels expressed in the central nervous
system
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Gestational Cannabidiol affects postnatal neuronal excitability and synapse
function in the PFC

Consistent with female-specific altered problem-solving behaviors that are known to be
mediated by the PFC, fetal CBD exposure decreases the excitability and synaptic
strength of layer 2/3 pyramidal neurons of the female PFC at postnatal days (P)14-21
(22). Specifically, fetal CBD exposure increased minimum currents required to trigger
action potentials. In addition, the amplitude of excitatory postsynaptic currents induced by
uncaged glutamate was decreased only in female mice (22). These results suggest that
gestational exposure to CBD disrupts prefrontal neuronal and synaptic function. One
potential mechanism by which CBD could affect intrinsic excitability and synapse
development is through its effect on multiple ion channels (Figure 1). For example, CBD
inhibits several voltage-gated sodium channels that are expressed in the fetal central
nervous system in humans and rodents (28, 31, 38, 42, 46, 93). Loss of function mutations
in these voltage-gated sodium channels cause severe epilepsy which is associated with
cognitive impairment (33, 34, 42, 44, 94). Perhaps CBD-induced inhibition of voltage-
gated channels that are expressed in the cortex could alter neuronal activity and further
affect activity-dependent cortical synapse development long term. Cannabidiol inhibits
three voltage-gated calcium channels that are expressed in neurons and astrocytes in the



human and rodent fetal central nervous system (31, 54). CBD also alters voltage-gated
potassium channels. Opening of potassium channels returns a depolarized neuron to
resting membrane potential. CBD shifts the voltage at which voltage-gated potassium
channels KV7.2/3 open so that they will bring neurons back to resting membrane potential
faster (59). However, CBD inhibits KV4.3 and KV11.1(41), which may increase the
duration of action potentials in cells that express these channels. In addition to the direct
regulation of voltage-gated channels, CBD inhibits 5Ht3a receptor, a serotonin-gated
calcium channel that is expressed in the fetal GABAergic interneurons, which regulate
cortical excitability and synaptic plasticity in the rodent cerebral cortex (78, REF).
Cannabidiol acts as an agonist at 5HT1a receptors in humans and rodents, which can
hyperpolarize pyramidal neurons via Gai coupled inhibitory mechanisms (95-97). Thus,
CBD directly affects multiple ion channels and GPCRs that are expressed in the
developing cortex, which may explain how gestational exposure to CBD could disrupt
synapse development and alter neuronal excitability of regions of the brain that express
these protein targets.

Cannabidiol interacts with G-protein coupled receptors (Table 2)

G-protein coupled
receptor 6 (108)

AMP accumulation
(increases levels)
Promotes neurite
outgrowth (100)

G-protein Protein Function Effect of CBD on | Expression

Receptor GPR

GPR 3 Stimulates cyclic Inverse agonism Retinal Ganglion

G-protein coupled | AMP accumulation | (102, 103) Cells (104),

receptor 3 Promotes neurite Cerebellar granular

(98, 99) outgrowth (100, neurons (101, 104)

101) Cortex, pituitary,

thalamus,
hypothalamus,
amygdala,
hippocampus,
cerebellum, eye,
lung, kidney, liver,
testes, ovary (13,
99, 105-107)

GPR 6 Stimulates cyclic Inverse agonism Higher expression

(102, 103)

in rodent cerebellar
granular neurons
(100)

GPR 12
G-protein coupled
receptor 12 (109,
110)

Stimulates cyclic
AMP accumulation
Promotes neurite
outgrowth (100)

Inverse agonist
(103, 111)

Frontal cortex,
Cerebral cortex,
hippocampus,
striatum,
hypothalamus,
thalamus, piriform
cortex, olfactory




bulb, pituitary,
lateral septal nuclei
(112, 113) starting
at E14.5 in mouse
(114)

GPR 55
G-protein coupled
receptor 55 (115)

Release of calcium
from ER stores,
Activates the
ERK1/2 and RhoA

Antagonism (118)

E14-P0O Embryonic
mouse retina
neurons (119)
Embryonic

pathways, zebrafish central
Activates nervous system
transcription factors and sensory
(116-118) neurons (120)
5HT1aAR Inhibition of Agonism (14, 97, Rat brain starting at
5- adenylyl cyclases 123) E12 (124)
hydroxytryptamine | (via Gai/o) and Hippocampus (125)

receptor 1A

regulation of
potassium and
calcium ion
channels to inhibit
neuronal activity
and reduce intra
cellular calcium
concentration (121)
(122)

Prefrontal cortex,
(126-129)

CB1 Cannabinoid
Receptor 1 (130,
131)

Gi/o inhibition of
adenylate cyclase
and arrestin
recruitment (132,
133) (134)
Activation of
extracellular signal-
regulated kinase
(ERK) signaling
(135)

Increases
availability of
endogenous ligand,
but can have
negative allosteric
effects (136)

Highly expressed in
the central nervous
system of mouse,
rat, and human
(137, 138)

CB2 Cannabinoid
Receptor 2 (139)

Signals through G-
alpha-S to induce
IL6 and IL10 (140)
Signals through
Gi/o to inhibit
adenylate cyclase
(141)

Increases
availability of
endogenous ligand,
but can have
negative allosteric
effects (136)

Immune system
(138), Lower
expression in
cortex, striatum,
hippocampus,
amygdala,
brainstem,
cerebellum (142-
147)




Cannabidiol disrupts axon growth and guidance.

Cannabidiol reduces axon growth rate and disrupts axon guidance through its effect on
G-protein-coupled receptors (119). CBD inhibits GPR55 to cause growth cone collapse
and reduce axon growth rate overall in cultured neurons (118, 119). Furthermore, CBD
exposure disrupts retinal projection axon growth and guidance in mice and hamsters (118,
119). In addition, CBD also disrupts function of GPR3 (102), a G-protein coupled receptor
that induces neurite outgrowth in multiple neuronal cell types (101, 104). While CBD does
not directly bind CB1, it can increase the availability of an endogenous ligand,
endocannabinoid, that activates CB receptors (148). Both CB1 and CB2 are important for
axon guidance (149, 150). The activation of CB1 causes the collapse of growth cones
(151-153). Regulation of CB1 is important for axon growth, guidance, and fasciculation
(154, 155), suggesting that aberrant activation of CB1 could disrupt correct axon
guidance. At very high concentrations, CBD is a partial agonist for D2 dopamine receptors
which are expressed in the developing cerebral and cerebellar cortex in rodents, but this
interaction is likely not physiologically relevant because the CBD concentrations reached
in humans are not sufficient for the interaction (156, 157). CBD activates TRPV2, a
channel that is expressed embryonically and stimulates axon growth (81), suggesting that
the effect of CBD on axon growth likely depends on cell types and the population of
receptors it expresses. In other cellular contexts, CBD interferes with sonic hedgehog
(Shh) signaling, which is required for axons crossing from one hemisphere of the brain to
the other (158, 159). In addition to disrupting multiple molecular signaling cascades that
are important for axon growth and guidance, CBD affects ion channel function (Table 1,
Figure 1) and neuronal activity that modulates axon growth (160). Thus, there are many
mechanisms by which CBD may disrupt axon growth and guidance during brain
development.

Cannabidiol may alter the number of neurons and astrocytes in the developing
brain

Cannabidiol decreases viability of several cell types in the developing brain. CBD
concentrations as low as 0.1 uM induce apoptosis of perinatal rat cortical neurons (161).
Similar CBD concentrations reduce viability of oligodendrocytes (162). A slightly higher
CBD concentration (0.5 to 5 yM) causes apoptosis of rat perinatal cortical astrocytes
(161). The neurotoxic effects of CBD are not observed in all neuronal types. For example,
lower concentrations of CBD have a protective effect on mouse hippocampal neurons
(163). In fact, while whole cannabis or THC exposure is associated with reduced
hippocampal volume in adult humans, CBD exposure diminishes this effect through
increasing neurogenesis in the hippocampus (164). These results may help explain how
20 mg/kg CBD during gestation improves female offspring performance in spatial memory
tasks that depend upon hippocampal function (23). However, fetal exposure to higher
concentrations of CBD does not improve or reduce spatial memory in offspring (22). CBD
may have varying effects on cells depending upon the protein targets they express at the
time of exposure.

Conclusion



Whole cannabis and its psychoactive component, THC, have been extensively studied
for adverse effects on fetal development (21, 164-171). However, studies on CBD usage
in pregnant women remain scarce likely because it is not psychoactive and has been
widely legalized. This is concerning because CBD helps with pregnancy symptoms (172,
173) many believe CBD is without risk (174). In this review, we presented a summary of
the available data on the molecular CBD targets that are expressed in the fetal and
perinatal brain and peripheral neurons. Specifically, we identify many ion channels and
receptors expressed in the developing central and peripheral nervous system that could
mediate the effects of CBD during prenatal exposure. While the prevalence of CBD use
is on the rise (172), the mechanistic links between early CBD exposure and its potential
impact upon neurodevelopmental pathology remain elusive. Importantly, experimental
evidence shows that CBD consumption during pregnancy causes poor cognition and
thermal pain sensitivity in offspring in mice (22), and thus could have detrimental effects
on offspring if exposed during pregnancy. More studies are needed to better understand
the biological mechanisms behind CBD-mediated effects on brain development during
this critical time. Larger studies are thus needed to assess the public health impact of
CBD treatment and to elucidate the safety of CBD during pregnancy use.
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