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Motor vehicle crashes (MVCs) are a leading cause of death for law enforcement officers (LEOs) in the U.S. LEOs
and more specifically novice LEOs (nLEOs) are susceptible to high cognitive workload while driving which can
lead to fatal MVCs. The objective of this study was to develop a machine learning algorithm (MLA) that can
estimate cognitive workload of LEOs while performing secondary tasks in a patrol vehicle. A ride-along study was

conducted with 24 nLEOs. Participants performed their normal patrol operations while their physiological re-
sponses such as heartrate, eye movement, and galvanic skin response were recorded using unobtrusive devices.
Findings suggested that the random forest algorithm could predict cognitive workload with relatively high ac-
curacy (>70%) given that it was entirely reliant on physiological signals. The developed MLA can be used to
develop adaptive in-vehicle technology based on real-time estimation of cognitive workload, which can reduce
the risk of MVCs in police operations.

1. Introduction

Motor vehicle crashes (MVCs) are one of the most prevalent causes of
death in the U.S. About 46,000 people lost their lives in car crashes and
roughly 5.2 million people were seriously injured due to crashes in 2022
alone (NSC, 2022). MVCs are also the leading cause of line-of-duty
deaths for public safety workers and more specifically law enforce-
ment officers (LEOs) (BLS, 2020). Compared to firefighters and emer-
gency medical services workers, LEOs (people responsible for, among
other duties, enforcing state and local law via patrolling and responding
to emergency situations in their vehicles) are involved in a significantly
higher number of fatal MVCs (BLS, 2019). These crashes account for
around 30-40% of LEOs’ fatal work injuries (NLEMF, 2020, 2023). For
example, in 2023, 37 LEOs have died due to traffic-related crashes in the
U.S. (NLEMF, 2023). Additionally, compared to all other occupations,
LEO MVCs are 2.5 times more than the national average (Maguire et al.,
2002). Primary reasons for these crashes include the frequent use of
in-vehicle technology while driving (Yager et al., 2015), fatigue (Vila
and Kenney, 2002), and lack of sufficient training in handling
high-demand situations (e.g., pursuit situations, multi-tasking)
(Hembroff et al., 2018). LEOs and more specifically novice LEOs
(nLEOs) with less than 5 years of patrol experience were selected as the
focus of this study because they are at the highest risk among all

emergency responders to be involved in crashes (Maguire et al., 2002).
Novice LEOs tend to be at higher risk due to experiencing higher
workload caused by having to review more chunks of data to come to a
decision and having more frequent saccades, fixations, and time to
detect road anomalies (Park et al., 2024)().

Police in-vehicle technology include the technology that civilian
drivers interact with frequently such as cell phones and global posi-
tioning systems (GPS) as well as LEO-specific technology such as mobile
computer terminals (MCTs) (a laptop that provides real-time navigation
and case information to LEOs) and dispatch radios. In prior in-
vestigations (Park et al., 2020; Shupsky et al., 2021; Zahabi and Kaber,
2018a, 2018b; Zahabi et al., 2020), the MCT and radio were found to be
the most important and frequently used in-vehicle technologies for LEOs
while driving, primarily used for tasks such as researching case infor-
mation, communicating with dispatch officers, and navigation. Use of
these technologies has increased LEOs’ distraction and cognitive work-
load while driving (Shahini et al., 2020). However, research on the
development of technology to aid LEOs that incorporates their mental
workload or performance has been insufficient, with most studies
focused on analyzing workload through simulator studies or on
analyzing the devices used while LEOs complete the patrol task (Zahabi
et al., 2021; Shupsky et al., 2021; Zahabi et al., 2021). Some studies
introduced adaptive technology features to the MCT (i.e., changing the
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information presentation based on the context) (Kurkinen et al., 2010;
Streefkerk et al., 2006). However, these adaptations were limited to
specific MCT tasks, did not consider driver cognitive state, and have not
been implemented in current MCTs used by police departments. Other
studies developed adaptive technology solutions for civilian drivers,
under normal driving situations, and with relatively simple secondary
tasks (e.g., Park and Kim, 2015). However, there are several differences
between LEOs and civilian drivers such as the temporal demands placed
on the officers due to the need for real-time information access,
complexity of in-vehicle technology (e.g., MCT), and driving situations
(e.g., driving in pursuit conditions) (Zahabi et al., 2021). Furthermore,
LEOs’ in-vehicle technologies are designed assuming that the user per-
forming a task is an expert and do not make mistakes or decisions that
are not optimal (Zahabi and Kaber, 2018b). This assumption has pre-
vented the technologies from being effectively designed around the
cognitive processes of a novice or focusing on how those processes differ
from expert cognition. Novices deal with higher cognitive workload (the
mental effort an individual exerts to complete a task) compared to
experienced drivers and they are more vulnerable to the risk of MVCs
while driving (Moray, 2013). To better aid in the design of technology to
reduce cognitive workload, novice behavior must be more effectively
accounted for.

Police in-vehicle technology should adjust its function or presenta-
tion in response to the current state of the officer. This could involve
displaying less information on a user interface when the officer has a
high cognitive workload or giving the officer warnings to indicate that
they are operating in a high-workload condition and making recom-
mendations accordingly. Knowing the cognitive workload (CW) of LEOs
based on their physiological responses such as heartrate or eye move-
ment is one way to allow adaptive technology to respond to the state of
the driver. This study used the data from a ride-along study with LEOs as
a basis for developing an algorithm to provide an adaptive technology
that can be used in police vehicles. While other naturalistic driving
studies have been conducted with civilian drivers (Tivesten and Dozza,
2015; Williamson et al., 2015), the findings may not be generalizable to
LEOs due to the differences in in-vehicle technology and driving con-
ditions between the LEOs and civilian drivers.

1.1. Cognitive workload classification

To understand how the CW for novice LEOs can be classified, the
differences between novices and experts have to be understood in a
cognitive context. These differences can be summarized using Wickens’
human information processing model (Wickens, 2008). With regards to
attentional resources, novices are more likely to be impaired by dis-
tractions due to higher attentional resource demands, while experts are
less likely to be impaired and can rely on non-visual signals more easily
(Regan et al., 1998; Mourant and Rockwell, 1970). With regards to
memory, the chunking process for novices is less effective compared to
experts, and novices tend to attempt to make decisions before they finish
processing all the information (Bruer, 1993). This concept in particular
is relevant to LEOs that are required to both search for and recall key
pieces of information about cases they respond to while completing the
driving task through visual and auditory modalities, sometimes simul-
taneously. Novices exhibit higher CW than experts when faced with
critical decisions similar to those needed to prevent a MVC. (Ouddiz
et al,, 2020). In contrast, experts have better recall than novices,
allowing them to more effectively rely on their long-term memory and
experiences to make decisions and better manage their overall CW
(Horswill and McKenna, 2004). One key example of this would be in
officer response to incoming calls while in the middle of a stop. Novices
spend more time deciding how to respond to multiple requests for action
compared to experts that can quickly refer to their experiences and take
action more effectively.

Technologies and models that target novices specifically have rarely
been able to capture all the fundamental differences between novices
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and experts to effectively model or predict their CW in various driving
situations (Islam et al., 2020; Son et al., 2013). While there have been
plenty of attempts to model driver CW using machine learning algo-
rithms (MLAs) (such as random forest and support vector machines),
which estimate workload based on data fed to them in real time, in the
past, these approaches relied on physiological variables that would be
cumbersome to implement for naturalistic driving tasks or rely entirely
on driving simulator data to develop their MLAs (Islam et al., 2020; Lee
et al., 2024; Son et al., 2013). The approach taken in this study is novel
in that it relies on physiological variables captured while nLEOs are
performing their normal patrol duties. These physiological variables
were collected using unobtrusive devices and included heartrate vari-
ability (HRV), percentage change in pupil size (PCPS), blink rate (BR)
and galvanic skin response (GSR). As HRV decreases, cognitive work-
load increases, whereas increases in all other measures mentioned are
generally indicative of higher cognitive workload. These physiological
variables have all been validated as effective indicators of workload, and
when combined under a single algorithm can be used to effectively
determine an individual’s cognitive workload at a given moment
(McDonald et al., 2019; Singh et al., 2013; Zahabi et al., 2022). These
measures were selected for their relative consistency in evaluating
workload while being unobtrusive to the wearer, allowing for partici-
pation in normal work activities (Fuhl et al., 2016; Schuurmans et al.,
2020).

1.2. Problem statement and research objectives

LEOs and more specifically novice LEOs are at a significantly higher
risk of MVCs compared to other occupations. Taking advantage of
technologies that accounts for the CW of LEOs might help reduce these
crash rates. Therefore, there is a need to detect and predict CW for nLEOs
in real-time and provide that information to in-vehicle technology. The
objective of this study was to develop an MLA that could predict the CW
of nLEOs using features that could be measured in real-time with un-
obtrusive devices while the patrol task is being performed.

2. Method
2.1. Participants

Twenty-four (24) LEOs were recruited (age: M = 30.76 yrs, SD =
5.07 yrs; gender: 6 females, 18 males). To qualify for this study, par-
ticipants needed to have normal or corrected-to-normal vision without
glasses, have less than 5 years of primary patrol experience (Filtness
etal., 2013; Hillerbrand, 1989), and have more than 1.5 years of regular
driving experience to control for workload increases caused by inexpe-
rience with the driving task. The intent of this study was to observe how
secondary tasks could affect the CW of nLEOs while they are performing
their duties in the vehicle, not to observe inexperience with the task of
driving in general. From this pool of participants, four participants were
excluded from the final count due to data collection issues or ride-along
had to be stopped due to emergencies. All participants read and signed
the provided informed consent form before participating in the study. As
the study took place during the participants’ normal working hours, they
were not compensated for their time. The study protocol was approved
by Texas A&M Institutional Review Board (IRB 2021-0757D).

2.2. Equipment

An Empatica E4 (Empatica) watch was used to measure the HRV and
GSR data from the participant. To measure the pupillometry data, the
Pupil Labs eye tracking glasses (Pupil Labs) were used. These devices are
validated for use in measuring these physiological measures and were
synchronized before data were collected by plugging the E4 watch into
the laptop used to run the eye tracking software (Fuhl et al., 2016;
Schuurmans et al., 2020). The ride-alongs were also recorded using a
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dash camera attached behind the front seats of the police vehicle
(Fig. 1).

2.3. Study procedure

Upon arriving at the police station, the researcher presented the
participant with an informed consent form. Once this form was signed,
the Empatica E4 was attached to the wrist of the participant (Fig. 2) and
activated to give the device time to calibrate while other set-up pro-
cedures were completed.

While the E4 was calibrating, the participant filled out a de-
mographic questionnaire. The researcher used this time to set up the eye
tracking glasses and the dash camera in the participant’s police vehicle
as shown in Fig. 1. Then, the participant put on the eye tracking device
and a calibration procedure was executed where the participant was
asked to look at each of the four apriltags placed on the windshield
without blinking as directed by the researcher. Following this step, a
baseline pupil diameter was collected by running the eye tracking
software for 2 min (Zahabi et al., 2021) while the participant remained
seated in the vehicle. Another baseline pupil data was also collected at
the end of the ride-along and before the officer left the vehicle.

Once the calibration was completed, the study was initiated. A
unique synchronization technique explained in the following section
was performed to ensure that data from the E4, dash camera, and the eye
tracking glasses could be synchronized after the data collection. The
participant was then instructed to perform their normal patrol duties
(such as monitoring civilian traffic for infractions and responding to
emergency calls requiring a police presence) while wearing the eye
tracking glasses and Empatica E4. The researcher did not initiate in-
teractions with the participant to ensure that the patrol was as natu-
ralistic as possible. Fig. 3 illustrates the set-up for the experiment, with a
participant in the driver’s seat on the left and a researcher on the right
(passenger seat). Note the myriad technologies that the officer has to
interact with during their patrols and the apriltags that can be seen on
the MCT for tracking eye movements.

Data collection continued until at least 3 h of data were collected or
the participant chose to stop the experiment for any reason. A 3-h time
frame was chosen to ensure enough data could be collected to train an
effective MLA and has been used in previous ride-along studies with
LEOs (Zahabi et al., 2022). Data were collected during daylight hours
due to eye tracking glasses not functioning during nighttime conditions.
When participants were required to stop and exit their vehicle to do their
police duties, data collection was paused, and the participant removed
their eye tracking glasses (but not the Empatica E4). Once the partici-
pant was ready to drive again, the synchronization technique was
repeated, and the naturalistic observation resumed.

Once the study was concluded, the participant returned to their
police station and the equipment used for the observation was removed.
A Driver Activity Load Index (DALI) questionnaire was given to partic-
ipants to evaluate their CW during the driving part of their patrol
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Fig. 1. Ride-along Study Set-up (Note: MCT: Mobile computer terminal, FOV:
Field of view).
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(Pauzié, 2008b). DALI is a revised version of the NASA-Task Load Index
(NASA-TLX) questionnaire specifically adapted to accommodate the
driving task. The most important difference among the methods is the
unique set of DALI demand components to promote applicability to the
driving domain. For example, the ‘physical demand’ component of the
NASA-TLX is not very relevant to the driving activity where maneuvers
are not physically demanding especially in modern cars. In addition, the
‘cognitive demand’ component of the NASA-TLX refers to both percep-
tual and cognitive aspects of workload but DALI identifies these various
modalities in the context of driving.

Then, the participant was given a copy of the informed consent form
for their records and thanked for their participation. Fig. 4 outlines how
data were collected and moved from the devices used for data collection
and transformed into a useable format.

2.4. Synchronization technique

The first step in the synchronization process was ensuring that the
dash camera and eye tracking software were turned on to record and a
timestamp was taken with the E4 by pressing the button as shown in
Fig. 2. Doing this caused a red LED to flash on the E4 for 3 s. This pro-
cedure was done in view of both the dash camera and the world camera
of the eye tracking software. A file within the E4’s data storage was used
to hold the timestamp that occurred each time the button was pressed. In
post-processing, the data collected by all devices before this timestamp
could be discarded to ensure that all data were synchronized. When the
participant had to stop the observation to conduct police activities, a
similar procedure was executed. The sampling rate for Empatica E4 for
collecting GSR data was 4 Hz and for collecting the BVP data was 60 Hz.
The eye-tracking device sampling frequency was varied with a cap of
130 Hz. More information about the synchronization approach can be
found from Wozniak et al. (2022).

2.5. Data analysis

Data points that fell within periods where the police vehicle was
stopped or occurred before or after the start and end timestamps
respectively were removed so only active patrol times were included.
Rows of data were found in 5-min intervals starting from where the
observation began. This interval was chosen because it is the standard
interval used for collecting root mean squared standard deviation
(RMSSD) data (Electrophysiology, 1996).

RMSSD and the low frequency/high frequency (LF/HF) ratio for each
participant were calculated using HRV data. From the GSR data statis-
tics, the skin conductance level (SCL) and skin conductance response
(SCR) in the form of the SCLm (SCL magnitude), SCLc (SCL change),
SCRh (index of SCR habituation), SCRa (SCR amplitude), and SCRr (SCR
response rise) were extracted (McDonald et al., 2019; Singh et al., 2013;
Zahabi et al., 2022). Blink rate was calculated within each 5-min interval
using the number of blinks recorded during that period by the Pupil Labs
eye tracking software. The PCPS was also calculated using Pupil Labs
data and the baseline pupil diameters recorded before and after the
ride-along.

For instances where one of the four raw data streams could not be
collected, the 5-min intervals associated with that set of data were dis-
carded. In the case of missing only one or two raw data streams for only
some intervals within a participant, the missing values were approxi-
mated using a method based on accepted decision tree imputation
methods (Rahman and Islam, 2011) . This decision tree looked at all of
the values for the missing data value from the other 5-min intervals and
made an estimate of the missing value using the other data collected
from that participant. This process was only used for data values within
participants due to the differences that exist between participants with
regards to average physiological values.

The final step in data analysis before MLA development could begin
was to establish ground truth workload values for each of the 5-min
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Fig. 2. Empatica E4 attachment procedure (Empatica, 2020).
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Fig. 3. Police in-vehicle technologies.
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Fig. 4. Data Movement Chart (Note: HRV: Heart rate variability, GSR: Galvanic
skin response, PCPS: Percentage change in pupil size).

intervals. Because it would be unreasonable to assign DALI values taken
for the overall ride-along as the CW for each interval, these ratings were
weighted against the physiological features themselves to establish a
ground truth and get around the limitations of naturalistic observation
studies. The classification of CW was divided into two groups, “high”
and “low” CW. This number of groups was chosen based on a fuzzy logic
analysis in MATLAB to separate the collected physiological data into two
CW groups, three CW groups, and five CW groups to see which sepa-
ration resulted in the most even split of data (based on pre-established
thresholds for each physiological feature). An even split of data would
imply that there was significant variation between the groups and that
an MLA would be warranted. It was found that having two CW groups
resulted in the most even split of the data, with 40.1% of data rows being
classified as low CW. This was also considered to be reasonable due to
the naturally high CW that was expected to be experienced by nLEOs

during their patrol task. Similar approaches have been used in previous
studies to find the optimal number of CW classes (Park et al., 2023).
Each feature, including DALI ratings, was assigned to be either a high
impact, medium impact, or low impact feature for establishing ground
truth CW. High impact variables included DALI, RMSSD, SCLm and SCLc
due to their resistance to environmental factors, high number of vali-
dating studies, and ability to detect minute changes in workload (Cinaz
et al., 2013; Fallahi et al., 2016; Mehler et al., 2010, 2011; Pauzié,
2008a, 2008b; Reimer and Mehler, 2011; Shimomura et al., 2008;
Zakerian et al., 2018). These features were given a weight of 0.125 (or
12% in Fig. 5) for determining the ground truth workload, with the
thresholds for these physiological variables were established by previous
studies (Abhishekh et al., 2013; Abusharha, 2017; Arthur, 1990; de
Waard, 1996; Pfleging et al., 2016; Zahabi et al., 2021). Medium impact
variables included the LF/HF ratio, SCRh, SCRa, and SCRr, due to lower
resilience to environmental factors and high correlation to other phys-
iological measures (Cinaz et al., 2013; Fallahi et al., 2016; Hsu et al.,
2015; Novak et al., 2011; Rodriguez Paras, 2015; Verwey and Veltman,
1996). These features were given a weight of 0.075 each (or 8% in Fig. 5)
in determining ground truth workload. Finally, PCPS, BR, and average
GSR were assigned as low impact features due to the nature of data
collection impeding the quality of eye tracking data and the noise factor
associated with raw average GSR values (Cardona and Quevedo, 2014;
Faure et al., 2016; Igbal et al., 2005; Johns et al., 2014; Kahng and
Mantik, 2002; Kosch et al., 2019; Pfleging et al., 2016; Stern et al.,
1994). These features were assigned an importance weight of 0.0667
each (or 7% in Fig. 5). The specific weights chosen for each group were
selected to keep the weight gap between feature groups relatively low
while still maintaining a significant difference between the high impact
and low impact features. While there is no established guideline

R AVEGSR RMSSD
7% 1% 12%
PCPS
7% DALI
12%
SCRh
7%
SCRa
8%

SCRr
8%

Fig. 5. Weights assigned to features for establishing the ground truth.
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exploring how these features should be prioritized over each other, the
weights selected here were inferred based on the above literature and
thorough examination of the collected data. Fig. 5 illustrates the
breakdown in feature weight assignment between all of the features.
Once these weights were applied to all of the 5-min intervals, ground
truths could be established, and an MLA could be developed.

2.6. MLA development

Development of an MLA to predict CW of nLEOs was completed first
by developing MLAs that were found to be prevalent in the prediction of
CW in the driving domain. The quality of each of these MLAs was
assessed across multiple seeds on the metrics of receiver operating
characteristic (ROC) area under the curve (AUC), precision, and accu-
racy. The classification dataset used for validation and testing consisted
of a randomly selected set of 20% of the overall collected data, with the
remaining 80% of the data being used to train the model.

3. Results
3.1. Data screening

After grouping the raw data into 5-min intervals, a total of 769 rows
of data were initially created. Of those rows, only 328 had all metrics
filled in with no missing values. Due to the nature of collecting data from
a naturalistic setting, this amount of missing data was roughly expected.
Sampling rate was based on the fastest recorded metric, which was
usually eye tracking and had a variable Hz rate around 30-60 Hz. Before
missing data could be filled in, outliers in the data had to be removed.
This was done by finding for each column all rows that had a value more
than two standard deviations larger or smaller than the mean for that
column with the value in question removed. The next step in the filtering
process was to remove rows for which there were no values to extrap-
olate average values within the participant for that column. As 229 rows
of data needed extrapolation to fill in missing values, a decision tree
algorithm was created to predict the missing values for each missing
data entry for these rows. To prevent individual differences from con-
founding the predictions for these missing values, the algorithm only
considered values within participants when filling in data. After
removing outliers and filling in missing values, a total of 557 rows of
data were captured. Once ground truths had been assigned to each data
row, there were 228 rows with the high workload classification and 329
rows with the low workload classification, meaning that approximately
59% of the rows were classified as being low workload.

3.2. MLA performance

Based on previous studies on effective MLAs in the driving domain
that relied on physiological variables, the following MLAs were selected
to be trained by the collected data: decision trees (DT), random forests
(RF), naive bayes algorithms, and support vector machines (McDonald

Table 1
Accuracy results for most successful seeds of each MLA trained on physiological
data.
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et al., 2019). Table 1 summarizes the best performance of these algo-
rithms on the basis of their accuracy in classifying a randomly selected
set of 20% of the total dataset with the rest being used to train the al-
gorithm. For the MLAs besides naive bayes, hyperparameters were
selected and tuned using 10-fold cross validation sets from the training
data repeated three times, with the best set of hyperparameters in terms
of test data accuracy being selected. The support vector machine MLAs
are split into radial and polynomial kernels indicated by SVMr and
SVMDp respectively. These two kernels were selected based on their use
in a previous study evaluating MLAs in the driving domain using
physiological variables only (McDonald et al., 2019). Additionally, the
no information rate (NIR) refers to the rate of success at guessing the
classification of a row of data with no other information available.
Tuned hyperparameters for each seed included minimum n value, cost
complexity, and tree depth.

A trained MLA was considered successful if it had a higher accuracy
than the NIR with at least 95% confidence. The results displayed the
average of 5 seeds that performed the best from a total of 50 seed tests
for each MLA to showcase their most effective performance. If an MLA
had fewer than 5 seeds perform better than the NIR within a 95% con-
fidence interval (CI), then only seeds that met this condition were
considered when averaging results. Overall, success rates were 42% for
RF, 34% for SVMr, 8% for naive bayes, 6% for SVMp, and 4% for DT. It
was found that the RF model performed the best both in terms of high
accuracy (i.e., 73%) and consistent performance when compared to the
NIR across multiple seeds.

Additional metrics that were evaluated to determine the best MLA
include the AUC and precision. AUC is a measure of model performance
at any given threshold that evaluates the predictive ability of learning
algorithms (Huang and Ling, 2005) while precision refers to the degree
of difference between various samples. For both metrics, high values
indicate a more effective model. It was found that the RF model per-
formed the best on average for AUC while NB performed the best on
precision when looking at the best performing seeds overall. The results
of the AUC and precision comparisons are shown in Table 2. Note that no
AUC was calculated for the naive bayes MLA because no hyper-
parameters were manipulated.

The MLAs were also compared in terms of the training and test times
(i.e., the amount of time on average it took to train and run test data
through the MLAs respectively). Once again, the RF MLA outperformed
the other MLAs in test time with an average test time roughly 0.06 s
faster than the second fastest MLA. Table 3 below displays the average
training time and testing time for each MLA. Note that training time is in
minutes and testing time is in seconds. These testing times in particular
are important because they carry implications for how well each MLA
might be able to perform when actually implemented into adaptive
technology. In addition, classification of officers’ cognitive workload is a
time sensitive task and should be performed in real-time.

Table 2
Precision and AUC results for most successful seeds of each MLA trained on
physiological data.

Algorithm Metric Algorithm Metric
Accuracy (%) NIR (%) 95% CI (%) AUC Precision (%)
RF 73.21 59.24 (64, 81.1) RF 0.79 73.16
SVMr 67.7 56.25 (58.22, 76.20) SVMr 0.70 68.12
SVMp 68.62 57.4 (59.2, 77.02) SVMp 0.72 71.99
DT 62.5 52.23 (52.86, 71.45) DT 0.65 66.33
NB 71.4 53.57 (57.81, 82.69) NB N/A 76.03

Note: RF = Random Forest, SVMr = Support Vector Machine radial, SVMp =
Support Vector Machine Polynomial, DT = Decision Tree, NB = Naive Bayes,
NIR=No information rate.

Note: RF = Random Forest, SVMr = Support Vector Machine radial, SVMp =
Support Vector Machine Polynomial, DT = Decision Tree, NB = Naive Bayes,
AUC = Area Under the Curve.
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Table 3
Average training time and testing time for each MLA.

Machine Learning Algorithm Training Time (minutes) Test Time (seconds)

RF 6.97 0.02
SVMr 1.48 0.28
SVMp 2.34 0.31
DT 2.20 0.15
NB 0.62 0.08

Note: RF = Random Forest, SVMr = Support Vector Machine radial, SVMp =
Support Vector Machine Polynomial, DT = Decision Tree, NB = Naive Bayes.

3.3. Feature importance

Table 4 summarizes the importance of features for each of the tested
MLAs. These feature importance ratings, generally speaking, can be
thought of as the amount of relative weight that each MLA puts on the
value of a feature when deciding how to classify workload, with more
positive values indicating higher weight. Note that for SVMp and SVMr
some feature importance ratings were negative, indicating that those
features were not useful in predicting CW. For every MLA except for NB,
SCRr was found to be the most important feature, with features such as
SCRa and SCLa being considered less important. The most important
features for the best model (i.e., RF) were SCRr, SCLc, LF/HF, PCPS, and
SCLm respectively.

4. Discussion
4.1. MLA selection

The objective of this study was to develop an MLA that could predict
the CW of nLEOs using features that could be measured in real-time with
unobtrusive devices while the patrol task is being performed. Out of all
of the MLAs tested, the RF algorithm consistently performed better than
the NIR rate in terms of accuracy while meeting the precision and ROC
AUC guidelines found for creating effective MLAs, which include pre-
cision ratings on average of at least 0.7 as well as ROC AUC values of
around 0.85 (Lee et al., 2010; Pencina et al., 2008). Specific values for
good accuracy are not standardized, so 0.7 was used as a general
benchmark in line with the precision recommendation. Under these
guidelines, it can be assumed with confidence that the RF algorithm can
perform well when fed new or real-time test data. These values are
general guidelines, as the effectiveness of a MLA is primarily determined
by its ability to learn as it obtains more data, meaning that future data
collection should be able to improve this MLA to validate its

Table 4

Feature importance for best MLA results.
Feature Algorithm

RF DT SVMp SVMr NB

SCRr 0.21 0.41 3.90 3.90 0.26
LE/HF 0.11 0.16 0.54 0.54 0.0052
SCLm 0.10 0.15 0.11 0.11 8.86E-06
Blink Rate 0.092 0.080 —-0.49 —0.49 0.41
SCRa 0.073 0.044 -3.63 -3.63 0.0045
SCRh 0.060 0.042 —0.90 —-0.90 0.18
RMSSD 0.067 0.039 0.63 0.63 0.0041
SCLc 0.12 0.030 0.053 0.053 0.00097
avgGSR 0.067 0.025 0.59 0.59 0.10
PCPS 0.11 0.024 0.20 0.20 0.022

Note: RF = Random Forest, SVMr = Support Vector Machine radial, SVMp =
Support Vector Machine Polynomial, DT = Decision Tree, NB = Naive Bayes,
SCLm = SCL magnitude, SCLc = SCL change, SCRh = index of SCR habituation,
SCRa—SCR amplitude, and SCRr = SCR response rise, LF/HF = Low frequency/
High frequency Ratio, RMSSD = Root Mean Squared Standard Deviation,
avgGSR = Average Galvanic Skin Response, PCPS = Percentage Change in Pupil
Size.
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effectiveness in predicting cognitive workload (El Naga and Murphy,
2015). Note that these MLAs were not compared to other studies due to
this data being pulled from a naturalistic study rather than simulator or
experiment data. Other recent studies have been conducted with similar
objectives and were able to obtain higher classification accuracy
(>90%) primarily due to being able to collect data in controlled simu-
lator settings (Lee et al., 2024). Of the tested MLAs, the DT algorithm
performed the worst, failing to perform significantly better than the NIR
rate roughly 96% of the time. Naive bayes and SVMp algorithms per-
formed poorly as well. As naive bayes assumes full independence of
features and it was reasonable to assume that at least some of the fea-
tures in this dataset were related to each other, this result was expected
for naive bayes (Lewis, 1998). However, it was anticipated that DT and
SVMp would perform much better than they actually did. One possible
reason for this discrepancy would be the use of data collected in a
naturalistic setting rather than in a laboratory or in a simulator study.
This could also be due to the stringent requirements placed on tested
MLAs to be considered successful in terms of accuracy with regard to the
NIR.

The important features found for this MLA are also of note. In
particular, the GSR features were found to be the best for RF regarding
predicting cognitive workload. This carries important implications for
real-world implementation due to the E4 being the least obtrusive device
LEOs were required to wear. While eye-tracking glasses are limited by
the time of day and the places being driven, GSR data can be collected at
any time without potentially intruding on officer performance. While it
would be ideal to maintain all features used for subsequent data
collection, knowing that the potential to truncate feature collection in a
pinch opens up opportunities for data collection in other naturalistic
settings that were not considered for this study, such as night patrols.

To validate the selection of the RF MLA, several factors were
considered, most notably the accuracy, precision, and ROC AUC on
average of all the seeds tested with the RF MLA. As the RF MLA per-
formed better than its other competitors, it was the final MLA selected.
Note that while specific seeds might have had other MLAs perform better
than the RF, the RF MLA provided the most consistent results. RF al-
gorithms are also popular in the driving domain and have been used in
several studies in the past for purposes such as driver behavior profiling,
making incorporation to other technologies and comparisons easier to
make (Das and Khilar, 2019; Ferreira et al., 2017; Rahman et al., 2019).
These studies have looked at several different avenues of application
such as using phones or in-vehicle GPS for the implementation of
adaptive technology, and the advantages of such an algorithm would be
invaluable to the development of these technologies.

4.2. Real-time workload classification

The primary reason that physiological variables alone were consid-
ered in this ride-along study design was because one of the end goals for
the developed MLA was to be able to classify workload in real-time. The
applications of this classification would be to implement them into
technology that can use the current workload of the user to adjust the in-
vehicle technology to accommodate them. Given that novice drivers are
more prone to high workload and this higher workload can lead to more
potentially fatal mistakes, understanding when these risks might happen
using MLAs is critical. To offset the potential issues in accuracy of the
MLA, new samples need to consistently be taken to have the workload
update as frequently as possible. Individual differences also need to be
accounted for by having the MLA be trained specifically with data
collected for an individual participant and supplemented by the already
collected data. To test this, a real-time algorithm was developed in py-
thon and tested in a lab setting to see if data could be recorded and run
through the developed MLA in real-time. This was proven to be the case
and the developed MLA was able to predict CW in real-time without
having to stop data collection. This finding is crucial when considered in
tandem with the test times for the developed MLAs. In addition to being
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the most accurate on average, the RF MLA was by far the fastest in
calculating the output when fed the same amount of test data as the
other MLAs. Though the difference of a few hundredths of a second
might seem insignificant, the longer it takes an MLA to output results in
real-time, the higher the risk that the output it provides will be too late
to be useful. To prevent this, an MLA that can calculate output as quickly
as possible is essential, giving RF more credence as an optimal choice
among the tested MLAs.

4.3. Technology applications

In this study, adaptive technology refers to in-vehicle technology
that detects the driver’s workload and responds accordingly, by
adjusting the amount/format of information that is presented to the
driver. While performance on tasks has been shown to be most effective
when an optimal level of arousal is maintained under the Yerkes-Dodson
law (Yerkes and Dodson, 1908), the goal of this technology is to reduce
the impact on the primary driving task by minimizing attention needed
for the secondary task of using in-vehicle technology. Adaptive tech-
nology, therefore, has the dual goal of maximizing driver safety and
making information as accessible as possible for the driver when their
level of CW allows for it.

Adaptive technology has the potential to take full advantage of the
real-time workload classification MLA developed in this study. An
example of this can be found in the information that police officers
receive about a suspect on their MCTs. LEOs are frequently confronted
with overwhelming amounts of text-based information that obscure
important information and make it difficult to determine the nature of
the situation they are driving to while focusing on the road. At the same
time, this information might be important to the case and the LEO needs
to be aware of it before arriving at the scene. To address this issue,
adaptive technology based on LEOs’ workload level can be imple-
mented. Figs. 6 and 7 illustrate a prototype of a heads-up display that
would automatically adjust its appearance based on the CW of a LEO. If
the LEO is experiencing high workload, then a low clutter display (i.e., a
summary page with icons showing the most important pieces of infor-
mation and their status) will be displayed (Fig. 6). Note that the red
pictures indicate the most relevant points of information for the LEO (i.
e., the violations). More detail on how to implement the MLA in an
adaptive head-up display is provided in Nadri et al. Although prior
research (Kurkinen et al., 2010; Streefkerk et al., 2006) introduced some
adaptive technology features to the MCT (i.e., changing the information
presentation based on the context), these adaptations were limited to
specific MCT tasks and did not consider driver cognitive state.

Conversely, when the LEO’s CW is low, more information can be
made available to them (i.e., a high clutter display similar to the current
MCT interface in police vehicles which is text-based) without increasing
the risk of a MVC (Fig. 7). This is an example of how adaptive technology
could be integrated with real-time CW classification from the developed
MLA. Future studies should validate the proposed MLA with additional
user-testing and then implement it in real-world scenarios to evaluate
the effectiveness of this technology in reducing CW. To that end, the
feature importance findings of this study can be useful. Given the dif-
ficulty of implementing a multitude of physiological measures into in-
vehicle technology, prioritizing GSR in accordance with the findings
on feature importance is also suggested.

Fig. 6. Low clutter display.
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Fig. 7. High clutter display.

4.4. Limitations and future work

The nature of naturalistic observation caused significant amounts of
data to be lost over the course of the experiment and necessitated
retaining all features in spite of the risk of overfitting MLAs. Mitigation
techniques that were found to be effective to maximize the amount of
data collected included performing data collection only in the daytime,
targeting cloudy days to avoid the amount of eye data lost to sunlight
glare, and ensuring that all devices are properly secured to avoid data
loss that goes undetected until the experiment is over.

Future studies need to continue testing the developed MLA with
different scenarios to see how effective it is at predicting CW in scenarios
other than the ones identified in this study. This could be done with
driving simulator studies or further naturalistic observation studies. As
this study was focused on novice LEOs, the recommendations and al-
gorithm are mainly for novice LEOs. Future studies should assess the
accuracy of the model in predicting cognitive workload for expert offi-
cers. Expert officers might also need adaptive technology, but based on
our prior ride-along observations (Shahini et al., 2020; Zahabi et al.,
2022), expert officers rely less on MCTs and are more experienced in
handling high demand situations than novice LEOs. However, novel/-
difficult situations can cause experts to have similar behavior as novices
meaning that adaptive technology for novices is likely to be broadly
applicable to the situations where experts would need to take advantage
of it. Although our proposed algorithm and adaptive system idea was not
intended for training purposes, they can be used to train the officers to
be more aware of the cognitive demands posed by different in-vehicle
technologies.

One of our future goals is to incorporate other measures such as
driving and secondary task performance to more accurately predict
LEOs’ CW. The results of these future experiments should provide a
more robust MLA that can take advantage of the driving performance of
LEOs to adjust how adaptive in-vehicle technology interacts with the
driver. Ideally, wearable devices that are less intrusive without sacri-
ficing effectiveness should be employed. While the Pupil Labs eye
tracking device did not impede the patrol task of LEOs significantly,
implementing a wireless version of the glasses or one that functions as
sunglasses that most officers wear while on duty would improve the
quality of implemented MLAs while reducing any induced cognitive load
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by the system on LEOs. Development and implementation of this tech-
nology would greatly improve the quality of data collection and real-
time MLA implementation overall.

5. Conclusion

A machine learning algorithm for classifying cognitive workload was
developed based on a ride-along study with novice LEOs. This MLA uses
physiological responses in the form of HRV, GSR, BR, PCPS, and
extracted features from these metrics to classify workload. The results
can be used to develop technology that can predict the workload of
nLEOs in real-time and adapt the functions of a vehicle accordingly,
either to emphasize or deemphasize secondary tasks. Incorporating the
developed MLA with adaptive technology can help nLEOs to better
manage their tasks in the vehicle and can improve their safety in police
operations.
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