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ABSTRACT The organization of cytoskeletal elements is pivotal for coordinating intracel-
lular transport in eukaryotic cells. Several quantitative measures based on image analysis
have been proposed to characterize morphometric features of fluorescently labeled actin
networks. While helpful in detecting differences in actin organization between treatments
or genotypes, the accuracy of these measures could not be rigorously assessed due to a
lack of ground-truth data to which they could be compared. To overcome this limitation, we
utilized coarse-grained computer simulations of actin filaments and cross-linkers to gener-
ate synthetic actin networks with varying levels of bundling. We converted the simulated
networks into pseudofluorescence images similar to images obtained using confocal mi-
croscopy. Using both published and novel analysis procedures, we extracted a series of
morphometric parameters and benchmarked them against analogous measures based on
the ground-truth actin configurations. Our analysis revealed a set of parameters that reli-
ably reports on actin network density, orientation, ordering, and bundling. Application of
these morphometric parameters to root epidermal cells of Arabidopsis thaliana revealed
subtle changes in network organization between wild-type and mutant cells. This work
provides robust measures that can be used to quantify features of actin networks and char-
acterize changes in actin organization for different experimental conditions.
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and characterize changes in actin organization for different experimental conditions.
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INTRODUCTION

Eukaryotic cells are highly ordered systems that maintain their
shape and internal organization with the help of the cytoskeleton,
a dynamic network of protein filaments that provides both struc-
tural integrity and tracks for intracellular transport. The organiza-
tion of the cytoskeleton, composed of microtubule and actin fila-
ment networks, is crucial for normal cell functions, normal growth,
and the development of multicellular organisms. In plant cells, the
actin cytoskeleton defines the direction of cell expansion (Li et al.,
2015; Szymanski and Staiger, 2018). In addition, plant actin fila-
ments play a central role during interphase by providing the tracks
for organelle movements, which are driven by class XI myosin mo-
tors (Nebenflihr and Dixit, 2018).

During cytoplasmic streaming, major streams of active or-
ganelle movements follow actin filament bundles, and the behav-
ior of individual organelles is strongly influenced by the arrange-
ment of actin filaments (Geitmann and Nebenfihr, 2015). In the
well-studied pollen system, actin filaments form prominent longi-
tudinal bundles that are required for organelle movements and
cell expansion. Any disruption of actin organization, such as that
caused by the loss of proteins affecting actin bundling, also dis-
rupts tip growth (Zhang et al., 2019). Interestingly, alterations of
the level of actin filament bundling also lead to larger growth de-
fects that go beyond individual cells. For example, loss of two iso-
forms of the villin actin cross-linker in Arabidopsis leads to a lack
of growth coordination between neighboring cells, which results in
twisted growth of roots, stems, and leaves (van der Honing et al.,
2012). Similar effects have been reported for a villin mutant in rice
where the twisted growth is accompanied by a faster gravitropic
response (Wu et al., 2015). This latter effect is likely caused by
faster recycling of the auxin transport protein PIN2, a conclusion
that is further supported by the discovery that the auxin transport
inhibitor 2,3,5-triiodobenzoic acid (TIBA) triggers villin oligomer-
ization, increased bundling of filaments, and reduced recycling of
PIN2 (Zou et al., 2019). Actin filament organization is also involved
in pathogen responses. For example, VILLIN3 is a target of the
pathogen-associated molecular pattern (PAMP) signaling, resulting
in less bundling of filaments and closing of the stomata to prevent
entry of pathogens (Zou et al., 2021).

These observations demonstrate that the actin cytoskeleton is
an integral component of plant cells. The actin cytoskeleton is also
highly sensitive to environmental conditions and can readily adapt
to external signals (Yuan et al., 2023). Quantitative image analysis
provides a means to investigate the complex organization of actin
filaments and better understand cellular processes involving the
cytoskeleton. Over the years, a number of image-based analysis
tools have been developed to characterize different actin filament
architectures found in both plant and animal cells (Jacques et al.,
2013; Gan et al., 2016; Kimori et al., 2016; Liu et al., 2022; Li et al.,
2023).

A frequently used protocol for image-based analysis of two-
dimensional (2D) microscopy images of the plant actin cytoskele-
ton was developed by Higaki et al. (Higaki et al., 2010). This

Abbreviations used: CV, Coefficient of Variation; LFB, Local Filament Bundling;
N¢, Number of Cross-linkers; PCA, Principal Component Analysis.
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method, based on confocal images of fluorescently labeled actin
filaments, identifies filaments by a combination of filtering, thresh-
olding, and skeletonization. The main measures of actin cytoskele-
tal morphology from this analysis are measures of filament orien-
tation, network density, and network bundling. These morpholog-
ical measures are capable of capturing biologically relevant and
interpretable differences in cytoskeletal organization between dif-
ferent experimental conditions. The largely automated image anal-
ysis pipeline is also conducive to rapid analysis of large numbers of
images. These approaches were useful, for example, in dissecting
the role of the actin cytoskeleton during growth (Henty et al., 2011;
Rosero et al., 2013; Scheuring et al., 2016; Takatsuka et al., 2018)
and in establishing that actin filaments are rearranged in response
to pathogen attack (Henty-Ridilla et al., 2013; Inada et al., 2016; Lu
et al., 2020).

While the morphological measures of Higaki et al. have
provided valuable insights into the interplay between cellular pro-
cesses and cytoskeletal organization, there are situations where
these published parameters break down. For example, a bundling
measure based on the skewness of pixel intensities is sensitive
to the overall level of bundling in the cells and the relative signal
intensities of the images. In cases where cells have a high degree
of bundling, the coefficient of variation of pixel intensities has been
suggested as a more robust measure of bundling (Higaki et al.,
2020). Furthermore, these published morphological measures
were benchmarked using artificial images that do not resemble
cytoskeletal networks in real cells. Given the limitations in imaging
the complete actin filament network with optical microscopes, the
extent to which the morphological measures proposed by Higaki
et al. capture information about the cytoskeletal organization in
real cells remains unknown.

Computer simulations based on realistic biophysical interac-
tions provide a means to generate simulated actin networks with
single-filament resolution. Such simulated networks offer an oppor-
tunity to test the fidelity of morphological parameters against a net-
work where the locations of all filaments are known, and ground-
truth values of the morphological parameters can be determined.
Several simulation frameworks such as Actin Filament Network Sim-
ulation (AFINES) (Freedman et al., 2017), MEDYAN (Popov et al.,
2016), and CytoSim (Nedelec and Foethke, 2007) have proven
useful in simulating realistic actin networks at biologically relevant
length scales. For example, simulations have shown the formation
of mesh-like networks, ordered bundle structures, and contracted
network structures similar to those observed both in cells and in
reconstituted actin-cross-linker systems. In these simulations, the
resulting network structures were regulated by the cross-linker den-
sity (Cyron et al., 2013; Popov et al., 2016; Belmonte et al., 2017,
Freedman et al., 2018; Akenuwa and Abel, 2023).

In this study, we utilized such realistic simulated networks to test
the accuracy of several proposed morphometric measures of actin
organization (Higaki et al., 2010, 2020). Existing studies have inves-
tigated confocal images of fluorescently labeled actin filaments,
but the underlying filament configuration is not known. Thus, our
approach offers a distinct advantage in assessing morphometric
measures because the simulations provide realistic networks with
detailed information about every filament. We assess the ability
of different parameters to faithfully represent the underlying actin
organization by comparing values derived from image analysis to
defined ground-truth data from computer simulations. Specifically,
we analyzed pseudofluorescence images from actin networks that
were generated with different numbers of cross-linkers to simulate
different levels of filament bundling. Using this approach, we
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Snapshots of representative networks obtained from simulations. Simulated networks are shown for 0, 200,
400, and 800 cross-linkers (A-D). For each case, two sample networks are shown after 400 s of simulation.
Pseudofluorescence images are shown at left, and skeletonized images are shown at right. Pseudofluorescence images
have been inverted so that filaments appear dark against a white background.

identify a set of robust morphometric measures of actin filament
organization and use them to characterize wild-type and mutant
root epidermal cells of Arabidopsis thaliana.

RESULTS

Simulations and image processing of cross-linked actin
networks

We simulated actin filaments in cell-sized regions with varying num-
bers of cross-linkers (N.) using the AFINES model (Freedman et al.,
2017). AFINES is a coarse-grained model that simulates the dynam-
ics of individual semiflexible actin filaments and actin cross-linking
proteins. AFINES has been used to study different network archi-
tectures, ranging from mesh-like to highly-bundled networks, by
modulating the cross-linker density (Freedman et al., 2017, 2018;
Akenuwa and Abel, 2023). The simulated actin networks served as
ground-truth filament configurations and were used to generate
pseudofluorescence images analogous to confocal microscopy im-
ages (see Materials and Methods). We then processed the pseud-
ofluorescence images using a pipeline developed to extract lin-
ear features from experimental microscopy images. The process-
ing pipeline consisted of smoothing, background subtraction, and
filtering to enhance linear features, followed by thresholding to re-
veal skeletonized images (for details, see Materials and Methods).
The pipeline is analogous to the procedure described in Higaki
et al. (2010) and Ueda et al. (2010). The skeletonized image was
used as a mask, and the pixel intensities along the skeletonized
features were used to maintain information about the local num-
ber of filaments.

Our simulations revealed a variety of network structures with
varying degrees of filament bundling depending on the number
of cross-linkers in the system. Figure 1 shows pseudofluorescence
images and the associated skeletonized images for representative
networks. The pseudofluorescence images highlight the local den-
sity of filaments and show the increased degree of bundling as the
number of cross-linkers increases. When N. = 0 and 200 cross-
linkers, meshwork structures extended across the entire simulation
domain. Skeletonized images reproduced a fine meshwork of lines
reflecting the meshwork structure in the original images. With N
= 400, prominent bundles with stray filaments emerged in the net-
work. With No = 800, two main bundles spanned the entire do-
main and tended to align with the long axis of the simulation do-
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main. By aligning with the longer dimension of the confinement
area, the filament bundles reduce energetically unfavorable bend-
ing that would be required to fit in the shorter dimension. This
is consistent with observations from previous studies (Claessens
et al., 2006; Alvarado et al., 2014). For bundled networks, skele-
tonized images mainly capture the pronounced bundle structures
and some of the finer filament structures.

While the image processing procedure generally captures the
features of filament structures, there are also clear limitations. For
example, the skeletonization procedure does not capture all of the
filaments because of the thresholding of pixel intensities. In ad-
dition, both single filaments and larger bundles are represented
as single-pixel lines, which can underrepresent the thickness of
a bundle. However, the pixel intensities along the skeletonized
features serve as a proxy for the number of bundled filaments.
Overall, the skeletonization procedure captures the vast majority of
prominent features of the actin network in the original fluorescence
image.

Morphometric analysis of network organization in
simulated networks

Using the skeletonized images obtained from simulated actin net-
works, we calculated a variety of morphometric parameters that
characterize different aspects of network organization. The param-
eters can be broadly classified as measures of filament Density, Ori-
entation, Ordering, and Bundling (Table 1). These parameters in-
clude both published and unpublished parameters. To assess how
well the parameters characterize the actual network organization,
we computed analogous “ground-truth” parameters based on the
actin filament positions from the raw simulation data. For the re-
mainder of this paper, we refer to parameters as measured when
they are obtained from image-based analysis and as ground truth
when obtained directly from simulation data, where we know the
location and shape of all filaments exactly. Details about the defini-
tions and procedures for calculating the parameters can be found
in Materials and Methods.

Analysis of network Density

Measures of network Density provide information about the extent
to which filaments occupy the domain containing the actin net-
work. We calculated occupancy and distance for various numbers
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Category Published parameters (units)
Density Occupancy (Higaki et al., 2010)
Orientation Mean Angle (°) (Ueda et al., 2010)
Ordering Parallelness (Ueda et al., 2010)
Bundling Skewness (Higaki et al., 2010)

Coefficient of Variation (Higaki et al., 2020)

Morphometric parameters.

of cross-linkers. The occupancy is calculated as the fraction of
pixels containing filaments within the skeletonized image (Higaki
et al., 2010). The distance is the median distance from any pixel
without a filament to the nearest filament.

Figures 2A and B show the measured and ground-truth val-
ues of occupancy respectively. Both the measured and ground-
truth values decrease on average with increasing numbers of cross-
linkers. To facilitate comparison between measured and ground-
truth values, we plotted the measured values against ground-truth
values for each simulated network (Figure 2C). The relation be-
tween the measured and ground-truth values is approximately lin-
ear for N < 500, but it deviates at high levels of cross-linking. In
this regime, the filaments are highly bundled, and the measured
values are less sensitive to changes in N, than the ground-truth
values. The measured and ground-truth values of distance increase
with more cross-linkers (Figure 2D; Supplemental Figure S1), with a
tight correlation of the values up to around N = 600. The opposite
trends for occupancy and distance arise because cross-linking pro-
motes filament bundling, thereby consolidating filaments into bun-
dles and leading to larger filament-free regions (Figure 1). Although
they follow the same trend, the measured occupancy values are 5
to 10 times smaller than ground-truth occupancy values. These dif-
ferences can be attributed to the skeletonization procedure: Bun-
dles that are several filaments thick are reduced to a single line, and
thresholding leads to some filaments being neglected. The values
of the measured and ground-truth distance are similar, indicating
that the measured values are less sensitive to the image processing
procedure.

We further compared the measured occupancy and distance
values (Figure 2E). This highlights that occupancy is much more
sensitive than distance to changes in N. for more mesh-like net-
works (N: < 500). In contrast, distance is much more sensitive to
changes in N for highly bundled networks (N. > 500). Overall,
the agreement between trends for measured and ground-truth
parameters related to filament Density indicates that the mea-
sured parameters reliably capture information about the actual
actin network, although this fidelity is reduced for highly bundled
networks.

Analysis of network Orientation and Ordering

Measures of network Orientation and Ordering provide informa-
tion about the average orientation of filaments and the degree
to which they are aligned with one another, respectively. We
characterized network Orientation using the mean weighted
angle of filaments relative to the long axis of the confinement
area (Supplemental Figure S2). As discussed in Materials and
Methods, we determined the local angles by smoothing filaments
over 0.5 pm segments (Madison et al., 2015), which reduced the
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Ground truth

New parameters (units) (units)

Distance (um) Occupancy
Distance (um)

Mean Angle (°)
Parallelness
Angular Variation (°)
Order Parameter
Local Filament

Bundling

Mean Weighted Angle (°)
Angular Variation (°)
Order Parameter

Bundle Parameter

variability of measurements based on pixel pairs that was used in
a previously published algorithm (Ueda et al., 2010). In addition,
this new method weighted the angle measurements by the pixel
intensity to better reflect the number of individual filaments that
have each measured orientation. These changes resulted in a new
Orientation measure that better represented the ground-truth
data (compare Supplemental Figure S2, C and D). Both measured
values of mean weighted angle and ground-truth values of the
mean angle remained close to zero regardless of cross-linker
number. For bundled networks, this is a consequence of filaments
preferentially aligning with the longitudinal axis of the simulation
domain to minimize unfavorable bending (Alvarado et al., 2014;
Akenuwa and Abel, 2023). For mesh-like networks at low cross-
linker numbers, the mean angle near zero is a consequence of the
random orientation of filaments.

To characterize the Ordering of filaments, we examined angu-
lar variation, order parameter, and parallelness. These parameters
measure, respectively, the SD of filament angles, the degree to
which actin filaments align with the mean angle, and the degree
to which actin filaments are parallel to each other. Figure 3 com-
pares the measured and ground-truth values of these parameters
for different numbers of cross-linkers. The angular variation de-
creased with increasing numbers of cross-linkers in both measured
and ground-truth calculations (Figure 3A; Supplemental Figure S3,
A and D), while the order parameter (Figure 3B; Supplemental Fig-
ure S3, B and E) and parallelness (Figure 3C; Supplemental Figure
S3, C and F) increased. These results indicate that with additional
cross-linkers, filaments become more aligned, which is a conse-
quence of the formation of bundles. Interestingly, we observed a
kink in the shapes of Ordering parameter plots which gave rise to
two approximately linear regimes. The kinks in the order parameter
and angular variation are less pronounced than in parallelness. In
addition, the parallelness measurements deviated more from the
ground-truth data. This indicates that the order parameter and an-
gular variation are better measures of ground-truth network Order-
ing than parallelness. For this reason, we exclude parallelness from
our analysis below.

We further compared the measured values of order parameter
and angular variation (Supplemental Figure S3G). We found that
order parameter is more sensitive to changes in N. for less bun-
dled networks (N. < 400), while angular variation is more sensitive
for highly bundled networks (N > 400). In general, we observed
good agreement between ground-truth and measured parameters
of ordering.

Analysis of network Bundling
Measures of network Bundling provide information about the
degree to which filaments are organized into bundles. We first

Molecular Biology of the Cell
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used two established metrics, the skewness and coefficient of
variation (CV) of pixel intensities along the skeletonized filaments
(Higaki et al., 2010; van der Honing et al., 2012; Rosero et al.,
2013; Higaki et al., 2020). Skewness has been used widely as a
measure of bundling, while CV was introduced more recently as an
improved measure of bundling. To compare against a ground-truth
value, we defined the local filament bunding (LFB) metric, which
gives a measure of the characteristic bundle size. LFB is calculated
as the average number of filaments colocalized within small,
occupied regions of the simulation domain. It increases with larger
numbers of cross-linkers, highlighting that more filaments are

within close proximity of one another in bundles (Figure 4A). The
distributions for large numbers of cross-linkers exhibit substantial
overlap because adding cross-linkers to an already highly bundled
system has only a marginal effect on the filament bundles.

In contrast to LFB, both skewness and CV are nonmonotonic
as a function of the number of cross-linkers (Supplemental Figure
S4, A and B). Plotting skewness and CV against LFB reveals that
both suffer shortcomings in distinguishing the degree of bundling
(Figure 4, B and C). The data indicate that CVis a better metric over
alarger range, with a clear linear trend for smaller values of N.. This
is consistent with reports suggesting that skewness is an unreliable
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measure of bundling, and that CV is a more robust measure in the
cases where skewness breaks down (Higaki et al., 2020). However,
our analysis indicates that CV also breaks down, following a non-
monotonic trend with a peak around 400 cross-linkers (Figure 4C;
Supplemental Figure S4B). Thus, CV works well as a measure of
bundling for networks with relatively low degrees of bundling, but
it is not suitable as the degree of bundling increases.

Given that skewness and CV fail at high bundling levels, we
sought to identify a measure that more closely reported the
increase in LFB with increasing numbers of cross-linkers. Based
on the drop of CV values at high levels of bundling and the
corresponding increase in distance, we reasoned that multiplying
CV by distance might compensate for the decrease of CV and
provide better discrimination between cases. Thus, we defined a
new bundle parameteras CV x distance. CV was chosen instead of
skewness because it performed better as an indicator of bundling
over a wider range of cross-linkers and is strictly nonnegative. In
contrast to skewness and CV, bundle parameter values increased
from 0 to 700 cross-linkers and maintained a strong linear correla-
tion with ground-truth LFB before plateauing at very high numbers
of cross-linkers (Figure 4D; Supplemental Figure S4C). This result
demonstrates that scaling CV by a measure of network Density
provides a more robust measure of bundling, especially in highly
bundled networks.

Principal component analysis distinguishes between levels
of cross-linking and reveals correlations in morphometric
parameters

Morphometric parameters are useful in part because they can facili-
tate the grouping of images into different classes that reveal insight
into the biology of the system being studied (Pincus and Theriot,
2007; Alizadeh et al., 2019; Alderfer et al., 2022). One approach is
to use principal component analysis (PCA), which is a linear dimen-
sionality reduction method. PCA can be used to visualize relation-
ships between images based on their morphometric parameters,
reveal correlations between the parameters, and help to identify
distinct classes of networks.

We first performed PCA for the image-based parameters us-
ing six measured morphometric features for all 450 simulated net-
works: occupancy, distance, mean weighted angle, angular vari-
ation, order parameter, and bundle parameter. Figure 5A shows
the data projected onto the first and second principal compo-
nents. The first principal component (PC1) captured about 80% of
the variance and yielded good separation between images asso-
ciated with different levels of cross-linking. Networks with low lev-

6 | O.H. Akenuwa et al.

els of cross-linking were associated with negative values of PCT,
while highly cross-linked networks were associated with positive
values of PC1. The points associated with different levels of cross-
linking were generally well separated except for the overlap of
networks with small (0 and 100) and large (700 and 800) num-
bers of cross-linkers. This overlap reflects the inherent similarity
between networks in these limits: With small numbers of cross-
linkers, not enough filaments were cross-linked to yield significant
differences in the morphometric parameters. With large numbers
of cross-linkers, the vast majority of the filaments were bundled,
leading to relatively minor differences as more cross-linkers were
added.

Measures of Density, Ordering, and Bundling contributed
strongly to PC1, as indicated by their loadings (Figure 5C). Occu-
pancy and angular variation were highly correlated, and PC1 had
negative loadings for these parameters. Hence, when the param-
eters increased, PC1 decreased. Distance, bundle parameter, and
order parameter were highly correlated with one another but an-
ticorrelated with occupancy and angular variation. PC1 had large
positive loadings for these parameters. Thus, increasing values of
PC1 were associated with more bundled networks, which is con-
sistent with larger numbers of cross-linkers being associated with
larger values of PC1 (Figure 5A). The correlations between morpho-
metric parameters were also reflected by pairwise correlations co-
efficients (Supplemental Table S1). PC2 was dominated by the Ori-
entation parameter of mean weighted angle. However, PC2 cap-
tured a relatively small fraction of the overall variance and showed
no obvious discrimination between the various degrees of cross-
linking. Thus, for the networks considered here, this measure was
not useful for categorizing networks. We speculate that the sec-
ond principal component primarily reflects the inherent variability
between networks even at the same conditions.

For comparison, we also performed PCA using the analogous
ground-truth morphometric parameters (Figure 5B). The results
were similar, reflecting the high degree of correlation seen in the
previous comparison of measured and ground-truth parameters.
As before, the first principal component captured about 80% of
the variance and yielded similar separation between networks with
different numbers of cross-linkers. The loading plot revealed that
analogous ground-truth parameters similarly contributed to PC1
and PC2 (Figure 5D). Taken together, the measured and ground-
truth PCA results show that the morphometric parameters quanti-
tatively characterize aspects of actin network organization that can
be used to distinguish between different classes of networks that
differ in their degree of bundling.

Molecular Biology of the Cell
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Application of morphometric parameters to natural actin
networks in root epidermal cells

Having validated a useful set of morphometric parameters with syn-
thetic actin networks, we tested whether the parameters allowed
us to distinguish different actin networks in root epidermal cells.
For this purpose, we imaged the outer cortical actin network in
fully expanded atrichoblasts in the early differentiation zone of the
root epidermis in young Arabidopsis thaliana seedlings in both
wild-type and myo17e myosin mutants (Park and Nebenfiihr, 2013).
Analysis of the confocal images followed the same procedure de-
scribed above for the pseudofluorescence images based on our
synthetic networks. To further simplify the analysis of the images,
we introduced an automated detection of the cell area based on
the convex hull of all detected actin filaments. This ensured that the
calculation of Density measures was based on the actual visible cell
area and not on the arbitrary size of the image frame.

The actin networks showed considerable variation between
cells (Figure 6). In both genotypes, we observed cells with a dense
mesh of actin filaments as well as cells with a less dense network.
All cells also contained a combination of thin and faint filaments,
and wider and brighter filaments that presumably represent bun-
dles containing multiple actin filaments. The morphometric param-
eters for each illustrative image are shown in Supplemental Figure
S5. The complete set of 30 cell images per genotype used for the
quantitative analysis is shown in Supplemental Figure S6.

Comparison of morphometric parameters obtained from im-
ages of wild-type and myo17e mutant roots revealed significant
reduction in occupancy in the mutant cells (Figure 7A). Unexpect-
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edly, the other Density measurement, distance, did not show a sig-
nificant difference between the genotypes (Figure 7B). The Ori-
entation of the filaments (mean weighted angle) was not different
between the genotypes (Figure 7C). The two Ordering parame-
ters, angular variation and order parameter (Figure 7, D and E), in-
dicated that the mutant networks were significantly more ordered
than those found in wild-type cells. Similarly, the bundle param-
eter was on average higher in the myo17e cells compared with
wild-type cells (Figure 7F).

To further explore the relationship between genotypes and
morphometric parameters, we performed PCA using these six
parameters from the 60 experimental images (Figure 8). Although
there is overlap between wild-type and myo17Te mutant cells in
the PC1-PC2 plane, there is clear clustering of each cell type
(Figure 8A). Both PC1 and PC2 had substantive contributions from
Density, Ordering, and Bundling parameters, and together they
captured about 80% of the variance (Figure 8B). In contrast, for the
simulated networks, only PC1 had substantial contributions from
these parameters. Interestingly, PC1 for the experimental images
had loadings similar to those for PC1 from the simulations, while
PC2 mainly had large contributions from Ordering parameters.
This suggests that PC1 captures features of the networks similar
to those in the simulated networks, while PC2 captures distinct
features of the ordering of filaments in the actin networks. PC2
does not have an analogous principal component in the simula-
tion data, which suggests that there are meaningful features in
the experimental images that are not present in the simulation
data.

Morphometric analysis of actin networks | 7



Representative images of actin networks in root epidermis cells of (A) wild-type and (B) myosin mutant
seedlings. Fluorescent images have been inverted so that filaments appear dark on a bright background.
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PCA of morphometric parameters derived from actin networks in root epidermis cells of wild-type (WT) and
myosin mutant (myo11e) seedlings. (A) Data from cells projected onto the first two principal components (PC1 and
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Interestingly, even though Bundling, Density, and Ordering pa-
rameters all indicated clear differences between wild-type and mu-
tant cells, there was a striking lack of correlation between the Or-
dering parameters and the other two categories (Supplemental Ta-
ble S2). In the PCA, this was reflected by the nearly perpendicular
loading vectors for Ordering parameters on one hand, and Den-
sity and Bundling on the other (Figure 8B). Mean weighted angle
was found to be largely independent of all other measurements
and was the dominant contributor to PC3 in the PCA. This is anal-
ogous to its contribution to PC2 in the simulated networks, and
it again does not appear to be an important factor in distinguish-
ing between different classes of networks. To test the classifica-
tion accuracy of the parameters in terms of genotype, we used a
support vector machine using either single parameters, combina-
tions of two parameters, or all parameters (Supplemental Table S3).
While some of the individual measures allowed discrimination of
wild-type and mutant cells that approached the predictive power
of the combined dataset, all tests resulted in at least 25% false
assignments. This result can be explained by an open-ended com-
parison of network similarities, which we performed next.

We used k-means clustering to cluster the data points, which we
visualized in the PC1-PC2 plane (Figure 8C). We chose k = 4 clus-
ters based on analysis of the total within-cluster sum of squares
(Supplemental Figure S8). The clusters identified were identical
whether using data points in the full-dimensional space or in the
2D PC1-PC2 plane. The clustering resulted in three primary clus-
ters distinguished by different levels of fine meshwork and local
bundles. A fourth cluster (“outliers”) corresponded to large values
of PC2 and was dominated by very prominent bundles and larger
filament-free regions (Supplemental Figure S7D). Of the primary
clusters, the cluster with a dense network of fine actin filaments and
a limited number of brighter bundles (“fine meshwork”) was com-
prised mainly of wild-type cells (Supplemental Figure S7A). A sec-
ond “mixed” cluster, which contained a mixture of both wild-type
and myo17e mutant cells, was characterized by more prominent
filament bundles together with areas of dense filament meshwork
(Supplemental Figure S7B). A third cluster, characterized by bright
bundles and a less dense meshwork of fine filaments (“prominent
bundles”), was comprised largely of myo117e mutant cells (Supple-
mental Figure S7C). Importantly, both genotypes were found in all
of the primary clusters. This suggests that both genotypes were
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able to generate networks with different architectures, which ex-
plains the relatively high error rate in in our classification analysis.
We also performed k-means clustering with subsets of the mor-
phometric parameters and found that single parameters did not
produce clusters consistent with the target clusters, but that se-
lect combinations of two parameters produced clusters that were
nearly identical to the target clusters (Supplemental Table S4; Sup-
plemental Figure S9).

DISCUSSION

We set out to test the validity and usefulness of morphometric
parameters that can be extracted from images of fluorescently la-
beled actin filaments. Using computer simulations, we generated
actin networks that have a striking resemblance to those of natu-
ral cells. With these networks, we constructed pseudofluorescence
images analogous to those from experiments from which we ex-
tracted a series of measures describing different aspects of the
actin network. In contrast with previous studies utilizing morpho-
metric parameters (Higaki et al., 2010; Jacques et al., 2013; Gan
et al., 2016; Kimori et al., 2016; Liu et al., 2022; Li et al., 2023), our
simulation results allowed us to test the fidelity of the parameters
by comparing them to ground-truth parameters determined from
the underlying network of filaments. This approach allowed us to
identify a set of morphometric parameters that reliably character-
izes different aspects of actin filament networks.

A crucial aspect of analyzing fluorescence images of actin net-
works is the identification of actin filaments. Simple thresholding
based on image brightness works only for ideal images with mini-
mal noise and uniform background, and it typically leads to prob-
lems with the detection of filaments in denser networks. We have
implemented an approach that uses multi-directional linear convo-
lutions to emphasize linear components of the filament network to
allow for more robust detection of faint filaments by thresholding
(Sun and Vallotton, 2009). This approach still does not capture all
actin filaments, but it is able to detect both bright bundles and faint
signals. Our implementation of this approach in an ImageJ macro
is similar to that described by Higaki and coworkers (Higaki et al.,
2010, 2020). Although the two algorithms result in subtle differ-
ences in the skeletonized images, the disparities lead only to small
differences in measured parameters (data not shown).

Morphometric analysis of actin networks | 9



We categorized the morphometric parameters into four main
categories: Density, Orientation, Ordering, and Bundling. In
general, the measured values derived from pseudofluorescence
images were highly predictive of the analogous ground-truth
parameters, although the values were not always consistent, and
the relation was not always linear. For Orientation and Ordering
parameters, the measured parameters were close in value to the
ground-truth parameters. The measures of filament Density, on the
other hand, showed strong correlation with the ground-truth data
but underestimated the actual extent of the network: measured oc-
cupancy values were lower than ground-truth values and distance
values where larger than ground truth. For Bundling parame-
ters, we compared measured values to local filament bundling,
which characterized the average bundle size in the ground-truth
networks. Existing measures (skewness and CV) suffered shortcom-
ings, so we introduced a new bundle parameter that provided a
useful measure of filament bundling across all cross-linking levels.
All morphometric parameters measured here, irrespective of the
differences in absolute values between measured and ground-truth
values, generally provide a good representation of the ground
truth.

The comparison to ground-truth data allowed us to detect
shortcomings in some of the published morphometric parameters.
For example, the mean angle calculation described in Ueda et al.
(Ueda et al., 2010) systematically overestimated deviations from
the horizontal and contained more noise compared with the angle
calculation based on a sliding window employed here (Supplemen-
tal Figure S2D). The calculation of local angles along the filaments
enabled us to calculate more accurate measures for network Or-
dering, namely angular variation and order parameter. These pa-
rameters matched the ground truth values more closely than paral-
lelness, which is based on frequencies of pixel pairs and therefore
is inherently more noisy (Figure 3). In addition, parallelness con-
sistently underestimated the ordering of the networks. The largest
discrepancy with ground truth values was found for the Bundling
measures of skewness and coefficient of variation. Both measures
displayed a nonmonotonic relation with local filament bundling
and decreased at higher levels of cross-linking. Thus, for a given
parameter value, it would be impossible to identify the degree of
bundling based on the value of these Bundling parameters alone.
While skewness and particularly coefficient of variation remain use-
ful Bundling measures for networks dominated by fine meshwork,
we recommend using bundle parameter since it provides a reliable
estimate of bundling levels over a much broader range.

The differences between measured and ground-truth values of
occupancy and distance were likely caused by the image process-
ing pipeline, where thresholding eliminated faint signals from sin-
gle filaments and skeletonization underrepresented the true width
of actin bundles. Further, occupancy was less sensitive to the level
of cross-linking in highly cross-linked networks compared with less
cross-linked networks. In contrast, distance remained sensitive to
changes in the number of cross-linkers in highly cross-linked net-
works. Plotting measured distance against measured occupancy
(Figure 2E) revealed that each parameter was most sensitive to
changes in the level of cross-linking in different regimes. Thus,
there is value to calculating both when analyzing images of fila-
ment networks.

Curiously, several of the measured parameters showed a devi-
ation from a strictly linear response when plotted against ground-
truth values. Although the deviation was most pronounced for oc-
cupancy (Figure 2A), it can also be seen for angular variation (Figure
3A) and to some extent for order parameter (Figure 3B). This may
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be an effect of the skeletonization procedure that misses some as-
pects of the networks depending on their bundling level.

When applying the morphometric measures to natural actin net-
works, itis important to bear in mind certain limitations. In the simu-
lations, the number of filaments, and hence the total fluorescence
signal, was constant between the different conditions. However,
we cannot know whether a similar situation exists in plant cells of
different genotypes or under different treatment conditions. This
problem can, at least partially, be avoided by enhancing linear fea-
tures prior to applying a threshold based on the signal intensities
present in the individual image as implemented here. Neverthe-
less, variable signal intensity between samples can make compar-
isons difficult since it is not known whether single filaments can be
reliably detected. In general, it is therefore advisable to keep ex-
posure settings (e.g., laser power and detector sensitivity) constant
between images as long as saturation of pixels can be avoided,
since this will affect the calculation of the bundle parameter which
depends on proper determination of signal variation.

Interestingly, most measured parameters of natural networks fall
into the range of zero to 500 cross-linkers in our simulated net-
works, suggesting that the natural networks in the observed cells
do not reach the very high bundling levels we imposed in our simu-
lations. The only deviation from this general rule was the occupancy
values, which were slightly higher in biological networks. This was
likely caused in part because the reference area is limited to the
convex hull around the detected filaments in experimental images.
Filament anchoring in cells, which is not a feature of the simula-
tions, may also play a role. This may be a useful feature to include
in future simulations of actin networks.

The analysis of biological data revealed clear differences be-
tween the actin networks in wild-type and myo77e mutant cells
(Figure 7). Curiously, our results suggest that the myosin mutant
has more bundling in its root epidermal cells than wild-type, which
is different from findings using double mutants (Ueda et al., 2010;
Madison et al., 2015). This unexpected effect of the myosin muta-
tion might reflect inherent differences between the cell types ob-
served in the different studies. Alternatively, the level of bundling
may be different for single and double mutants. Importantly, the
distributions of measured morphometric parameters overlapped
substantially, even when the means were significantly different
(Figure 7). This overlapping distribution of the two genotypes was
also found in the PCA, suggesting that the actin filament networks
of the two genotypes are not fundamentally different, but that the
mutation simply shifts the balance more toward bundling (Figure
8). These different types of network architectures were readily de-
tectable by k-means clustering, which integrates the different mor-
phometric measures into a comprehensive analysis (Supplemen-
tal Figure S7). A similar conclusion was presented by Higaki et al.
(2010) who used hierarchical clustering of occupancy, skewness,
and mean angle to distinguish four different network types in guard
cells.

Another critical result from PCA is the discovery that Ordering
parameters are only weakly correlated with Density and Bundling
parameters, in contrast with the simulation data. This suggests that
cells can regulate filament organization independently of bundling
levels, which likely requires additional regulatory elements that
were not included in our simulations. One candidate for such a
regulatory factor could be proteins that anchor actin filaments to
other elements in a cell, for example, the nucleus or the plasma
membrane. It is also conceivable that the three-dimensional nature
of the cytoplasm, which forms a continuous sleeve around the cen-
tral vacuole, leads to other actin network configurations than can
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be generated in the 2D plane used in our simulations. The number
and length of actin filaments was also fixed in simulations, which
is in contrast with the dynamic nature of filaments in cells. An im-
portant implication based on this observation is that it may not be
possible to predict which particular parameters are most informa-
tive for the description of experimental filament networks. For ex-
ample, we have shown that occupancy and distance have different
sensitivities to networks with low and high densities, respectively.
We can also envisage scenarios where bundling does not correlate
with density, for example, if cells have a higher or lower percentage
of their total actin proteins in filament form. It is therefore advisable
to determine all measures and use them as an ensemble to charac-
terize the network architecture, as has previously been suggested
for cell shape analysis (Alizadeh et al., 2019).

Both the synthetic networks and the natural networks analyzed
here had filaments that were on average aligned with the long axis
of the confinement area or cell, respectively. As a result, the Ori-
entation parameter was not useful to distinguish the different net-
works. However, it is conceivable that different genotypes or treat-
ments may lead to a predominant orientation that deviates from
the long axis of the cell. For example, loss of multiple myosin XI
genes has been found to lead to a nearly complete loss of longitu-
dinal actin bundles in leaf midvein epidermal cells and the appear-
ance of oblique or transverse bundles (Peremyslov et al., 2010).
The mean weighted angle measure would be able to quantify these
changes.

Taken together, our results indicate that the image-derived mor-
phometric parameters we describe here provide a useful measure
of actin network organization that is faithful to the underlying orga-
nization of actin filaments. Further, they can be used to distinguish
subtle differences between cells, thus emphasizing the importance
of morphometric analysis in helping to decipher how cytoskeletal
organization is influenced by cell identity, genotype, or other ex-
perimental perturbations.

MATERIALS AND METHODS

Computer simulations of cross-linked actin networks

We utilized the Actin Filament Network Simulation (AFINES) model
to simulate cross-linked actin filaments in confined environments
(Freedman et al., 2017). Details of the simulations can be found
elsewhere (Freedman et al., 2017; Akenuwa and Abel, 2023).
Briefly, AFINES is a coarse-grained model that uses kinetic Monte
Carlo and Brownian dynamics methods to simulate the dynamics of
actin filaments and actin cross-linking proteins in two dimensions.
Actin filaments are modeled as semiflexible, bead-spring polymers
with a bending stiffness chosen to match the persistence length
of actin filaments. Cross-linking proteins are modeled as springs
with two ends that can stochastically bind and unbind from fila-
ments. Cross-linkers preferentially cross-link filaments that are lo-
cally aligned with a small relative angle between them (Akenuwa
and Abel, 2023). Dynamics are governed by alternating between a
kinetic Monte Carlo step to update the binding and unbinding of
cross-linkers and a Brownian dynamics step to update the positions
of filaments and cross-linkers.

Actin filaments and cross-linkers were simulated in a 40 ym x
10 pm domain to reflect the characteristic shape of root epider-
mal cells. The simulations used reflective boundary conditions in
the short dimension and periodic boundary conditions in the long
dimension. We simulated a fixed number of actin filaments (100)
of length 10 um and varied the number of cross-linkers, with N. =
0, 100, 200, 300, 400, 500, 600, 700, and 800. We generated 50
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independent samples for each simulation condition. Each network
was simulated for 400 s, and the final configuration was used for
analysis.

Generation of pseudofluorescence images from simulations
To mimic confocal microscopy images, we converted simulated
actin networks into pseudofluorescence images. To do this, we
placed point sources every 0.1 pm along each filament to mimic
fluorescent markers. The system was divided into 0.1 pm x 0.1 pym
voxels, and the intensity of each source was modeled as a Gaus-
sian function with o = 0.1 pm. We added the intensity from each
source for all voxels within 0.2 um of the source, and the resulting
intensity map was plotted as an image with a simulated pixel size
of 0.0212 pm.

Identification of actin filaments in pseudofluorescence and

confocal images

Fluorescence images were processed similarly to Higaki et al.
(2010). Briefly, the original images were smoothed with the
“Mean... " filter in ImageJ and a smoothing radius of 0.2 um. The
resulting image was further processed by subtracting the back-
ground with a sliding paraboloid algorithm, followed by applying
multidirectional nonmaximum suppression to enhance the linear
features of the image (Sun and Vallotton, 2009). This enhanced im-
age was thresholded at the mean intensity of all nonzero pixels
and converted to a binary image. Subsequent skeletonization was
performed using the “Skeletonize” command in ImageJ, yielding
single-pixel lines of uniform intensity. This image was used as a
mask to extract the pixel intensities from the original, unprocessed
image.

Determination of measured morphometric parameters
from images

We calculated morphometric parameters from confocal images
of root epidermal cells and pseudofluorescence images of simu-
lated actin networks. We organized the morphometric parameters
into four categories: network Density, Orientation, Ordering, and
Bundling.

Measures of network Density. Network Density was measured
using occupancy and distance. Occupancy was calculated as the
fraction of pixels containing filaments within the skeletonized im-
age (Higaki et al., 2020). Distance was calculated as the median
distance from each pixel without a filament to the nearest filament.
The distribution of distance values was obtained with the “Distance
Map"” command in ImageJ.

Measure of network Orientation. Network Orientation was cap-
tured by the mean of filament angles weighted by pixel intensities.
To obtain the angles of filaments, we employed a sliding window
approach. For every pixel in the skeletonized filaments, we moved
along pixels comprising a continuous filament to cover a length of
0.5 um. A line segment was drawn between the endpoints, and
the angle relative to the horizontal was calculated (Madison et al.,
2015). We obtained the mean weighted angle by multiplying each
angle by the intensity (weight) of the central pixel and averaging
with respect to the total weight. Weighting by the intensity of the
pixels provides a measure of the number of actin filaments repre-
sented by the single skeletonized filament.

Measures of network Ordering. Network Ordering was mea-
sured using the SD of filament angles (angular variation) and an
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order parameter based on skeletonized filament orientation. The
angular variation was calculated as the SD of the weighted distribu-
tion of angle measurements above. To obtain the order parameter,
we utilized the same sliding window approach as above and cal-
culated (2cos?(9) — 1), where @ is the angle of the line segment
relative to the mean weighted angle and (-) denotes a weighted
average over all pixels in the skeletonized filaments. To calculate
parallelness, the angles of all neighboring pixel pairs in the skele-
tonized image were determined as 0°, 45°, 90°, and 135° relative
to the longitudinal axis of the image, as described in Ueda et al.
(2010). The parallelness is given by

[no — ngol + [Nas — n13s|
No + Nas + N9o + N135

parellelness =

where ng, nas, ngo, and nq35 are the numbers of pixel pairs that
make 0°, 45°, 90°, and 135° angles, respectively.

Measures of network Bundling. Bundling of filaments was mea-
sured using the skewness (Higaki et al., 2010) and coefficient of
variation (CV) (Higaki et al., 2020) of the distribution of pixel inten-
sities within the skeletonized filaments. We also calculated a new
bundle parameter, defined as CV xdistance.

Determination of ground-truth morphometric parameters
from simulated actin networks

Analogous ground-truth morphometric parameters were calcu-
lated using the simulated actin filament configurations. We deter-
mined the occupancy of a sample by dividing the system into vox-
els of side length 0.0212 um and calculating the fraction of voxels
containing at least one filament.

To calculate distance, we determined the distribution of dis-
tances from all voxels without a filament to the closest voxel with a
filament. Distance was the median value of the distribution.

To obtain the mean angle and angular variation, we determined
the angle of each 1-pm segment along the filaments relative to the
horizontal axis and then computed the mean and SD of all such an-
gles. The order parameter was calculated as (2cos?(0) — 1), where
0 is defined as the angle relative to the mean angle and () de-
notes an average over all segments. The parallelness was calcu-
lated using equation (1) above with ng the number of angles be-
tween 0° and 22.5° and 157.5° and 180°, ngs the number of angles
between 22.5° and 67.5°, ngy the number of angles between 67.5°
and 112.5°, and ny3s is the number of angles between 112.5° and
157.5°.

To characterize network Bundling, we defined a parameter
termed local filament bundling (LFB). We divided the system into
voxels of side length 0.025 pm and identified the filaments in each
voxel. Then, for each voxel containing a filament, we placed a 0.5
pum x 0.5 pm box centered on the voxel and determined the num-
ber of unique filaments in that box. All such values were averaged
to obtain the LFB. A larger value of LFB indicates that more fil-
aments are within close proximity on average, thus indicating a
higher degree of bundling.

Code availability

The code used for image analysis, calculation of morphome-
tric parameters, and data analysis, along with the analyzed
datasets, is available on GitHub at https://github.com/oakenuwa/
Morphometric_Analysis_code.git
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Experimental details

Plant material. All Arabidopsis thaliana seeds were obtained
from the Arabidopsis Biological Resource Center (ABRC; abrc.org).
Columbia (Col-0) was used as wild-type. Myosin XI mutants used
were myo11e-3 (xik-3; SALK_018764) (Ojangu et al., 2007) All plant
lines were transformed with the YFP-FABD2 actin marker driven by
the double 35S promoter (Park and Nebenfihr, 2013). Seedlings
were grown vertically on % MS medium with 1% sucrose and 0.5%
phytagel for 5 d prior to imaging.

Confocal imaging. Seedlings were placed in a 5-cm dish with a
#1.5 cover glass bottom and covered with a small patch of phytagel
in growth medium. Fully grown root epidermal cells were imaged
on a Leica SP8X laser scanning confocal microscope with a 63x/1.4
oil objective. Imaging of the YFP fluorophore used the 514 nm line
of the white-light laser and a HyD detector with a detection win-
dow from 520 nm to 590 nm. The outermost 4 to 7 um of epidermal
cells was imaged as a Z-stack with 0.2 pm step size and a pixel size
of about 45 nm. The resulting image stack was deconvolved with
the adaptive “Lightning” process in Leica LAS X software and col-
lapsed into a single 2D image by maximal intensity projection. This
projection reliably captures all actin filaments in the cortical cyto-
plasm between plasma membrane and tonoplast, which typically
is around 1 pm thick in such fully expanded plant cells.
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