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Abstract

Rieske dioxygenases have a long history of being utilized as green chemical tools in
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cis-dihydroxylation of a wide variety of aromatic substrates. The practical utility of
these enzymes has been hampered however by steric and electronic constraints on

their substrate scopes, resulting in limited reactivity with certain substrate classes.
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Herein, we report the engineering of a widely used member of the Rieske
dioxygenase class of enzymes, toluene dioxygenase (TDO), to produce improved
variants with greatly increased activity for the cis-dihydroxylation of benzoates.
Through rational mutagenesis and screening, TDO variants with substantially
improved activity over the wild-type enzyme were identified. Homology modeling,
docking studies, molecular dynamics simulations, and substrate tunnel analysis were
applied in an effort to elucidate how the identified mutations resulted in improved
activity for this polar substrate class. These analyses revealed modification of the
substrate tunnel as the likely cause of the improved activity observed with the best-

performing enzyme variants.
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1 | INTRODUCTION

development of transgenic organisms capable of producing these

compounds in large quantities (Zylstra & Gibson, 1989). Since this

Rieske dioxygenases (RDOs) are a class of enzymes that play a crucial
role in the bacterial metabolism of aromatic compounds in the soil
(Abu-Omar et al., 2005; Williams & Sayers, 1994). The metabolic
pathways responsible for the degradation of aromatic compounds in
these organisms often begin with the RDO-catalyzed regio- and
stereoselective dihydroxylation of the aromatic substrate (Figure 1a)
(Abu-Omar et al., 2005; Gibson, Koch, Kallio, et al., 1968; Gibson,
Koch, Schuld, et al., 1968, 1970; Williams & Sayers, 1994; Ziffer
et al., 1977). Owing to the versatility of the cis-diol metabolites
produced by these enzymes, RDOs rapidly became a popular tool in
organic synthesis (Banwell et al., 2003; Boyd & Bugg, 2006; Boyd &
Sheldrake, 1998; Hudlicky & Reed, 1995, 2009a, 2009b; Hudlicky &
Thorpe, 1996; Lewis, 2014, 2016; Sheldrake, 1992) following the

time, over 400 diverse metabolites of RDOs have been characterized
(Johnson, 2004), and these metabolites have been applied as building
blocks in the synthesis of many valuable compounds (Banwell
et al.,, 2003; Boyd & Bugg, 2006; Boyd & Sheldrake, 1998; Hudlicky
& Reed, 1995, 2009a, 2009b; Hudlicky & Thorpe, 1996;
Lewis, 2014, 2016; Sheldrake, 1992).

Despite the popularity of RDOs as tools in organic synthesis,
their practical utility in this context has been restricted by steric and
electronic constraints on their substrate scopes or activity (Froese,
Hudlicky, et al., 2014; Newman, et al.,, 2004; Seo et al., 2013;
Osifalujo et al., 2022, 2023; Shainsky et al., 2013; Sheldrake, 1992;
Wissner, Schelle, et al., 2021). While some bulky and/or highly
polar substrates cannot be metabolized at all by these enzymes
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FIGURE 1 (a) Application of the Rieske
dioxygenase (RDO)-catalyzed asymmetric
dihydroxylation of ethyl benzoate in the synthesis
of oseltamivir (Sullivan et al., 2009; Werner et al.,
2010). (b) Methodology for the production of
ester-functionalized cis-diols from RDO
metabolites through carbonylation (Froese,
Hudlicky, et al., 2014).
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(Ang et al., 2009; Froese, Hudlicky, et al., 2014; Keenan et al., 2005;
Osifalujo et al., 2023; Seo et al., 2013; Sheldrake, 1992), the sterics
and electronics of any potential substrate can also have a
considerable impact on the enzyme's activity level (Endoma
et al.,, 2002; Froese, Endoma-Arias, et al., 2014; Johnson, 2004;
Osifalujo et al., 2022; Sakamoto et al., 2001; Shainsky et al., 2013;
Wissner, Escobedo-Hinojosa, et al.,, 2021). Although cis-diol
metabolites produced from aromatics that are metabolized at
relatively low rates by RDOs have been utilized in the synthesis
of valuable compounds, the poor enzymatic turnover and low-
yielding fermentations observed with these substrates hinders the
practicality of these syntheses (Baidilov et al., 2018; Endoma-Arias
et al., 2014; Makarova et al., 2019; Werner et al., 2010; Winter
et al.,, 2013). To address these limitations in the synthetic utility of
RDOs, improved RDO variants have been developed through
enzyme engineering that possess expanded substrate scopes or
enhanced reactivity in specific contexts (Bernath-Levin et al., 2014;
Gally et al., 2015; Newman et al., 2004; Osifalujo et al., 2022, 2023;
Seo et al., 2013; Shainsky et al., 2013; Vila et al.,, 2017; Wissner,
Schelle, et al,, 2021; Wissner, Escobedo-Hinojosa, et al, 2021,
Zhang et al., 2000). Recently, our laboratory has reported rational
engineering studies that have produced RDO variants with increased
cis-dihydroxylation activity for aromatic acetates as well as RDO
variants with novel cis-dihydroxylation activity for aromatic amides
(Osifalujo et al., 2022, 2023). These studies and many others have
demonstrated the pliability of the RDO scaffold and the potential
for enzyme engineering to expand the practical utility of these
enzymes, however many important substrate classes remain
unaddressed in this context.

The RDO-derived metabolites of benzoates have demonstrated

themselves to be very useful in organic synthesis, having been
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applied in an efficient synthesis of the antiviral compound
oseltamivir (Figure 1a) (Sullivan et al., 2009; Werner et al., 2010),
as well as in the production of antiproliferative kibdelone family of
compounds (Winter et al.,, 2013). The fermentation yields for the
production of these metabolites using the wild-type enzymes,
however, are more than an order of magnitude lower than the yields
observed with less polar substrates (Froese, Hudlicky, et al., 2014).
This is likely a result of the fact that many of the characterized RDOs
have evolved to metabolize nonpolar aromatics such as toluene and
naphthalene in their environment (Gibson, Koch, et al., 1968, 1970;
Parales & Resnick, 2007; Ziffer et al., 1977), and thus their active sites
are organized to bind nonpolar substrates (Friemann et al., 2009;
Karlsson et al., 2003). These low fermentation yields have limited the
practical utility of syntheses that employ benzoate metabolites as
building blocks. In an attempt to overcome these limitations, a
methodology has been developed to introduce the ester functional
groups into other RDO metabolites through carbonylation (Figure 1b)
(Froese, Hudlicky, et al, 2014). The use of this carbonylation
methodology, however, increases the number of required synthetic
operations, decreasing overall synthetic yields, and relies on toxic
heavy metal catalysts. For these reasons, an improved enzymatic
catalyst for the cis-dihydroxylation of benzoates would be a
valuable synthetic tool. Given our previous success in developing
RDO variants with improved or expanded reactivity for polar
substrates through enzyme engineering (Osifalujo et al., 2022, 2023),
our laboratory determined to apply a similar strategy to develop novel
RDO variants with improved activity for the cis-dihydroxylation of
benzoates. The success of such a study would provide new catalytic
tools to the synthetic community that would make the application of
cis-diol metabolites derived from benzoates in organic synthesis much

more practical.
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2 | MATERIALS AND METHODS

2.1 | General experimental

Escherichia coli BL21 (DE3) competent cells were obtained from
ThermoFisher. Plasmid isolation/purification was performed using New
England Biolabs Monarch® miniprep kit. Transformations of electro-
competent cells were performed on an Eppendorf Eporator®. Whole-cell
assay cultures were grown in Greiner Bio-One polystyrene clear, round-
bottom 96-well plates. All cultures were incubated in a Barnstead MaxQ
4000 Digital Orbital Incubator Shaker equipped with an Enzyscreen
universal clamp system unless otherwise stated. Fluorescence analyses
were performed using a Biotek® Synergy™ H1 monochromator-based
multi-mode plate reader, using Corning® polystyrene black, opaque, flat-
bottom 96-well plates. All reagents were obtained from MilliporeSigma
unless otherwise stated. Media were made at pH 7.2 and streptomycin
was added at 50 ug mL™2. All E. coli cultures were maintained at 37°C
unless otherwise stated. NMR analyses were performed using a Jeol ECZ
400S (400 MHz) instrument. Homology modeling was performed using
Alphafold2 (Jumper et al., 2021). Docking analyses were performed using
AutoDock (Version 4.2.6) (Morris et al., 2009). Molecular dynamics
simulations were performed using GROMACS (Abraham et al., 2015;
Pronk et al., 2013; van der Spoel et al., 2005). Mapping of active site
cavities was performed using PyMOL (Version 2.0 Schrédinger, LLC).
Computation and analysis of substrate tunnels were performed using
CAVER (version 3.0.3) (Chovancova et al., 2012; Pavelka et al., 2016).
Optical rotation analyses were performed by NuMega Labs.

2.2 | Mutant library generation

The pCP-02 expression system was used as the template for toluene
dioxygenase (TDO) mutant library generation (Preston-Herrera
et al., 2021). Saturation mutagenesis was performed following the
procedure of Liu and Naismith (Liu & Naismith, 2008; Zheng, 2004).
Amplification was performed using an ABI GeneAmp® 9700 Thermal
Cycler. Mutagenic primers were designed according to the procedure
of Liu and Naismith (Liu & Naismith, 2008; Zheng, 2004) (see
Supporting Information: Table Sl for primer sequences). Sequencing

analyses were performed by Eurofins Genomics©.

2.3 | Generation of combined mutants

Plasmids bearing beneficial active site mutations generated as part of
the study were used as the templates for the introduction of additional
mutations. The introduction of point mutations was performed
following the procedure of Liu and Naismith (Liu & Naismith, 2008;
Zheng, 2004). Amplification was performed using an ABI GeneAmp®
9700 Thermal Cycler. Mutagenic primers were designed according to
the procedure of Liu and Naismith (2008) and Zheng (2004) (see
Supporting Information: Table S| for primer sequences). Sequencing
analyses were performed by Eurofins Genomics©.

2.4 | Whole-cell fermentation 96 well-plate
assay protocol

E. coli (BL21 (DE3)) electrocompetent cells were transformed with
isolated pCP-02 plasmids expressing TDO (parent and/or mutant
libraries), and isolated pCP-01 plasmids as negative controls (Preston-
Herrera et al., 2021). The transformation cultures were selected
on LB+ streptomycin agar plates overnight. Single colonies were
inoculated into 160 pL LB + streptomycin media with 0.3% glucose in
a 96-well round bottom seed plate and incubated with shaking
overnight. All plates included three or more wells containing E. coli
(BL21 (DE3)) pCP-02 cells expressing the parent TDO enzyme, and
three or more wells containing E. coli (BL21 (DE3)) pCP-01 (negative
control) (Preston-Herrera et al., 2021). Seed plates were used to
inoculate 5puL into 145 puL LB media containing streptomycin in a
fresh 96-well round bottom assay plate, and the cultures were
incubated with shaking for 2h 50 min. The assay plates were then
pelleted, and the supernatant was discarded. Cultures were resus-
pended in 140 uL minimal media (KH,PO,4 - 7.5gL™%; citric acid -
2gL™Y MgS0,7H,0 - 5gL™%; trace metal solution - 2mLL™?
[Na,SO4 - 1gL ™% MnSO,4 - 2gL™Y; ZnCly - 2gL™Y; CoCly6H,0 -
2gL™% CuSO4-5H,0 - 0.3gL™; FeS0O,-7H,0 - 10gL™% pH 1.0];
conc. H,S04 - 1.2mLL™Y; ferric ammonium citrate - 0.3gL™%;
glucose - 4 g L™1; thiamine - 0.034 g L™%; pH 7.2) (Endoma et al., 2002)
containing streptomycin and incubated for a 1h recovery period.
Following this, the cultures were induced to a final concentration of
0.5mM isopropyl B-p-1-thiogalactopyranoside (IPTG), and the
incubation temperature was reduced to 30°C. After a 2 h induction
period, aromatic substrates were added as 68 mM stock solutions in
dimethyl sulfoxide (DMSO) to a final concentration of 2 mM. Cultures
were incubated with aromatic substrates for 1.5h at 30°C, after
which the cultures were pelleted. A 100 uL portion of supernatant
from each well was transferred to 96-well black opaque assay plates.
The reaction was initiated by adding 50 pL of NalO, stock solution to
each well to a final concentration of 10 mM, and the assay plates
were incubated with shaking at room temperature for 30 min.
Cleaved diols were detected by adding 50 uL of fluoresceinamine
stock solution (prepared with 3puL conc. HCl (11.65M)/1mL
fluoresceinamine solution) to each well to a final concentration of
0.1 mM (Preston-Herrera et al., 2021). Assay plates were incubated
with shaking at room temperature for 5 h. The fluorescence response
from each well was analyzed at 485nm (ex), 520 nm (em), and
normalized to the mean fluorescence response of the negative

controls ([l - Ip)/lo).

2.5 | Preparative scale production of methyl
(5S,6R)-5,6-dihydroxy-1,3-cyclohexadiene-1-
carboxylate

E. coli (BL21 (DE3)) electrocompetent cells were transformed with
isolated pCP-02 plasmid containing the TDO genes or relevant mutant
version (Preston-Herrera et al, 2021), and selected on LB agar
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containing streptomycin overnight. Single colonies were inoculated
into 5mL LB medium containing streptomycin and incubated with
shaking overnight. Cultures (2x500mL LB with streptomycin in
2000 mL Erlenmeyer flasks) were inoculated with 5mL overnight
culture each and incubated with shaking. Growth of the cultures
was monitored via optical density measurement at 600 nm. Upon
reaching an OD600 of 0.5-0.6 AU, 500 mL cultures were pelleted
and resuspended in minimal media (KH,PO, - 7.5gL™?; citric acid -
2gLY MgS0O,7H,0 - 5gL™%: trace metal solution - 2mLL™?
[Na,SO4 - 1gL7Y; MnSO,4 - 2gL7Y; ZnCl, - 2g L% CoCly-6H,0 -
2gL™Y CuSO4-5H,0 - 0.3gL™Y; FeSO,7H,0 - 10gL™L pH 1.0];
conc. HySO, - 1.2mLL"Y ferric ammonium citrate - 0.3gL™%;
glucose - 4 g L™1; thiamine - 0.034 gL™%; pH 7.2) (Endoma et al., 2002)
containing streptomycin. After 1 h of recovery in minimal media, the
cultures were induced to a final concentration of 0.5 mM IPTG and the
incubation temperature decreased to 30°C. After a 2h induction
period, methyl benzoate was added as a solution in DMSO via pipette
to the cultures, in two portions, to a final concentration of 2 mM. The
cultures were incubated with the methyl benzoate substrate for 3 h,
and subsequently pelleted and the supernatant was decanted. The
combined supernatant was then extracted with 3x 1L EtOAc, and
the combined extracts were dried over anhydrous MgSQ,. The dried
extract was concentrated and the excess aromatic substrate
was removed by filtration through a plug of silica (3:2; EtOAc:hexanes).
The resultant solutions were concentrated under reduced pressure
to obtain 30-124mg of methyl (55,6R)-5,6-dihydroxy-1,3-
cyclohexadiene-1-carboxylate as a clear, colorless oil. Metabolites
were dissolved in CDCl3 for *H NMR analysis (*H NMR (400 MHz,
CDCl3) & 7.06 (d, J=5.5Hz, 1H), 6.21 (dd, J=9.6, 2.8 Hz, 1H), 6.1
(ddd, J=9.6, 4.8, 2.1 Hz, 1H), 4.58-4.60 (m, 1H), 4.45-4.50 (m, 1H),
3.81 (s, 3H)).

2.6 | Computational visualization of the TDO/TDO
variant active sites and substrate tunnels

Homology models were generated using Alphafold2 (Jumper
et al., 2021) and AlphaFill (Hekkelman et al., 2023) for analysis of
TDO variant active sites and substrate tunnels. The active site cavity
in each case was mapped using the surface feature of PyMOL
(Version 2.0 Schrodinger, LLC) (cavity detection radius - 3 solvent
radii; cavity detection cutoff - 1 solvent radius). Substrate tunnels
were computed and analyzed using CAVER (Version 3.0.3)
(Chovancova et al., 2012; Pavelka et al., 2016) (minimum probe
radius - 0.9; shell depth - 4; shell radius - 3).

2.7 | Enzyme-substrate docking analysis and
molecular dynamics simulation

Homology models generated with Alphafold2 (Jumper et al., 2021)
and AlphaFill (Hekkelman et al., 2023) were utilized for docking
analysis with TDO variants. Enzyme structures were prepared for
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docking analysis by removing all heteroatoms except the active site
iron atom using the “delete atoms” function in AutoDock Tools
(Morris et al., 2009). Enzyme structures were further prepared by
repairing all missing atoms, adding polar hydrogens, and by adding
Kollman charges using the respective functions in AutoDock Tools
(Morris et al., 2009). Grid box parameters were set to limit binding to
the active site (x=30A, y=30A, z=30A) using AutoDock Tools
(Morris et al., 2009). Ligand structures were similarly prepared using
AutoDock Tools (Morris et al., 2009). Docking analysis was
performed using AutoDock (Version 4.2.6) (Morris et al., 2009). The
resultant binding predictions were filtered for binding modes that
could result in the successful metabolism of the substrate. All
reported binding energies represent the most favorable binding
energies among binding modes that could result in the successful
metabolism of the substrate. The docking predictions produced were
subsequently subjected to molecular dynamics simulations using
GROMACS (Abraham et al., 2015; Pronk et al., 2013; van der Spoel
et al., 2005). Topologies were generated for both the ligand
and enzyme using the CHARMMB36 force field (July 2022) (Best
et al.,, 2009; Huang et al., 2016) and the duration of all simulations
was 10 ns (5,000,000 steps).

3 | RESULTS AND DISCUSSIONS
3.1 | Engineering of TDO

To identify the optimal template for the engineering of RDO variants
with improved activity for benzoates, a series of wild-type RDO
enzymes (TDO) from Pseudomonas putida F1 (Zylstra & Gibson, 1989),
naphthalene dioxygenase (NDO) from P. putida G7 (Simon
et al., 1993), cumene dioxygenase (CDO) from P. fluorescens IPO1
(Dong et al, 2005), and biphenyl dioxygenase (BPDO) from
Rhodococcus strain sp. RHA1 (Furusawa et al., 2004) were screened
for their activity on a model substrate (methyl benzoate) using
expression platforms for these enzyme systems developed in our
laboratory (Preston-Herrera et al., 2021). These screens indicated that
among these wild-type enzymes, TDO possessed the greatest baseline
activity for this substrate (Supporting Information: Figure S1). Based on
this result, TDO was selected as the template for further engineering in
this study. With the previous success our laboratory has experienced
in improving RDO activity for other substrates by applying a rational
mutagenesis approach (Osifalujo et al., 2022, 2023), it was determined
that a similar approach would be utilized in this study. To this end,
eight active site residues were selected for saturation mutagenesis
(M220, A223, L272, 1276, V309, L321, 1324, and F366; Figure 2).
These residues were selected based on their proximity to the
substituent of the (native) aromatic substrate when it is bound to
the active site (M220 - 4.9 A, A223 - 39 A, 1272 - 5.1A,1276 - 5.2 A,
V309 - 4.5A, 1321 - 3.8A, 1324 - 49 A, and F366 - 4.3 A; Figure 2)
(Friemann et al., 2009), and based on previous results from our lab and
from others (Osifalujo et al., 2022, 2023; Wissner, Schelle, et al., 2021).

Using a TDO expression platform developed in our lab as the template
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(Preston-Herrera et al., 2021), individual saturation mutagenesis
libraries were produced by mutating each of the eight described sites
using established methods (Liu & Naismith, 2008; Zheng, 2004).
Mutant libraries were then transformed into E. coli (BL21 (DE3)) and
single colonies were cultured in 96-well plates according to reported
protocols (Osifalujo et al., 2022, 2023). Members of each variant
library were screened for their cis-dihydroxylation activity on two
model substrates (methyl benzoate and ethyl benzoate) alongside the
parent enzyme and negative controls (pCP-01), using a reported high-
throughput, fluorescence-based assay system (Figure 3a) (Preston-
Herrera et al., 2021). From these screening studies, five variant libraries

FIGURE 2 Image of the active site of toluene dioxygenase (TDO)
with the native substrate (toluene, purple) bound (Friemann et al., 2009).
Residues selected for saturation mutagenesis in this study are
highlighted (yellow). The mononuclear iron center is shown (orange).
Image generated with ChimeraX software (Goddard et al., 2018).
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(M220, A223, L272, 1276, V309) were shown to contain members that
possessed increased activity for either methyl or ethyl benzoate
(or both) relative to the parent enzyme. Representative screening data
for the L272 variant library is shown in Figure 3b. The validity of all
putative “hits” was confirmed through secondary screening before
submission for genetic sequencing to identify the nature of any
beneficial mutations. These sequencing analyses identified eight point
mutations that afforded increased cis-dihydroxylation activity for
benzoates (M220A, A223V, L272M, L272W, 1276C, 1276T, 1276V,
and V309G). Among these mutations, V309G has previously been
shown to greatly increase the promiscuity of TDO (Osifalujo
et al, 2022, 2023; Wissner, Escobedo-Hinojosa, et al., 2021), and
M220A has been shown to improve TDO activity for aromatic acetates
and for sterically bulky substrates (Osifalujo et al., 2022; Wissner,
Schelle, et al., 2021). 1276V has been reported to increase activity for
aromatic acetates and confer activity for amide-functionalized aro-
matics (Osifalujo et al., 2022, 2023), while A223V has been reported
to increase activity for sterically bulky substrates (Wissner, Escobedo-
Hinojosa, et al., 2021), with L272M and 1276T having been shown
to increase activity for aromatic acetates (Osifalujo et al., 2022). The
L272W mutation is known to confer novel activity for amide-
functionalized aromatics (Osifalujo et al., 2023). To our knowledge,
the 1276C mutation identified in this study has not previously been
shown to alter the activity or selectivity of TDO in any previous study.

To accurately determine the relative activity of all the improved
TDO variants identified to this point in the study in comparison to the
parent enzyme, the cis-dihydroxylation activity of all of the described
variants for both methyl and ethyl benzoate was tested in parallel,
alongside the parent (Figure 4a). These assays determined that the
TDO 1276V variant possessed the greatest activity for methyl
benzoate, while the TDO M220A variant possessed the greatest

activity for ethyl benzoate while also demonstrating strong activity

strong fluorescence

(b)
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FIGURE 3 (a) Schematic representation of the
fluorescence-based assay used to detect and
quantify the cis-diol metabolites produced by
active Rieske dioxygenases (RDOs) (Preston-
Herrera et al., 2021); (b) Activity of the toluene
dioxygenase (TDO) L272 variant library members
for the methyl benzoate substrate relative to the
parent enzyme (n = 176). Fluorescence response
of each variant was normalized to the mean

150 fluorescence response of the negative controls

(E. coli BL21 (DE3) pCP-01) ([I - Iol/lo) (n =4)
(Preston-Herrera et al., 2021).
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FIGURE 4 (a) Relative activity of variants
bearing single active site mutations for ethyl
benzoate and methyl benzoate compared to the
parent enzyme (n = 6). Fluorescence response of

each variant was normalized to the mean

(@)

>

3

3

s
fluorescence response of the negative controls 2 34
(E. coli BL21 (DE3) pCP-01) ([l - Io]/lo) (n=6) & 2]
(Preston-Herrera et al., 2021). (b) Relative activity 3
of doubly combined variants for methyl benzoate § 1
and ethyl benzoate compared to the parent @
enzyme (n = 6). Fluorescence response of each S o0-
variant was normalized to the mean fluorescence [ 0&'\‘
response of the negative controls (E. coli BL21 Qé

(DE3) pCP-01) ([l - Ip)/1o) (n = 6) (Preston-Herrera
et al.,, 2021).
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for methyl benzoate (Figure 4a). The activity of all these variants for
native non-polar substrates (toluene and ethyl benzene) were also
tested in parallel, which revealed that every variant retained activity
for both substrates, although some of the point mutations (i.e.
M220A) resulted in a significant decrease in activity for these
substrates (~50% decrease in activity) (Figure S5).

Previous results from our laboratory and others have demon-
strated the potential synergistic effects on enzyme activity that can
result from combining beneficial point mutations (Osifalujo
et al,, 2022, 2023; Wissner, Escobedo-Hinojosa, et al., 2021). With
this in mind, we determined to iteratively combine the most beneficial
mutations identified in the first phase of the study to generate doubly
and triply combined mutants. To this end, 10 doubly combined variants
(TDO M220A/A223V, TDO M220A/L272W, TDO M220A/1276V,
TDO M220A/V309G, TDO A223V/L272W, TDO A223V/I1276V, TDO
A223V/V309G, TDO L272W/1276V, TDO L272W/V309G, and TDO
1276V/V309G) and four triply combined variants (TDO M220A/
A223V/L272W, TDO M220A/A223V/1276V, TDO M220A/L272W/
1276V, and TDO A223V/L272W/I1276V) were produced through
established methods (Liu & Naismith, 2008; Zheng, 2004). As was
carried out for the single mutants, the activity of all of the doubly
combined variants for both methyl and ethyl benzoate was tested in
parallel (Figure 4b). These assays did reveal a synergistic effect, with
the TDO M220A/L272W variant demonstrating the highest activity
for methyl benzoate of any of the variants tested in this study, and the
TDO L272W/1276V variant demonstrating the highest activity for
ethyl benzoate (Figure 4b). While many of these doubly combined

BIOTECHNOLOGY] WILEY 3149
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methyl benzoate
3 ethyl benzoate

methyl benzoate
B ethyl benzoate

variants showed decreased activity for the native non-polar substrates,
the TDO A223V/V309G, TDO L272W/V309G, and TDO 1276V/
V309G variants were shown to have modest improvements in activity
for ethyl benzene relative to the parent (Supporting Information:
Figure S6). The synergistic effects observed with the doubly combined
variants did not extend to the triply combined variants, however, as all
four of these variants demonstrated lower activity for methyl benzoate
when compared to any of the variants with single mutations
(Supporting Information: Figure S7). The TDO M220A/L272W/1276V
variant did possess strong activity for ethyl benzoate, although lower
than that of the TDO L272W/1276V variant (Supporting Information:
Figure S7). All these triply combined variants also demonstrated
reduced activity for the native non-polar substrates relative to the
parent enzyme (Supporting Information: Figure S8).

To determine whether the active site mutations introduced into
the improved variants identified in this study had any effect on the
regio- or enantioselectivity of the enzymatic dihydroxylation, suffi-
cient quantities of the relevant metabolites needed to be produced to
facilitate their analysis. To this end, medium-scale (1-2 L) biotrans-
formations were performed with five of the best-performing variants
(TDO M220A, TDO 1276V, TDO M220A/L272W, TDO L272W/
1276V, and TDO A223V/L272W/1276V), as well as the parent
enzyme, using methyl benzoate as the substrate. The extracted cis-
diol metabolites from each of these biotransformations were then
compared through *H NMR and optical rotation analysis. *H NMR
analysis revealed that none of the mutations introduced had any
effect on the regioselectivity of the enzymatic transformation
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(Supporting Information: Figure S9), and optical rotation analysis

revealed minimal effect on the enantioselectivity (Supporting

Information: Table SlI).

3.2 | Computational analysis of engineered
TDO variants

To investigate the cause of the improved activity for methyl and ethyl
benzoate observed with the variants produced in this study,
homology models of the seven best-performing variants from each
phase of this study (TDO M220A, TDO 1276V, TDO M220A/L272W,
TDO M220A/1276V, TDO A223V/1276V, TDO L272W/I276V, and
TDO M220A/L272W/1276V) were constructed using Alphafold2
(Jumper et al., 2021) and the active site iron cofactors added to the
predicted structures using AlphaFill (Hekkelman et al., 2023). Previ-
ous studies have suggested that certain mutations, including V309G
and 1276V, can increase the promiscuity of TDO by expanding the
binding space in the active site (Osifalujo et al., 2022, 2023; Wissner,
Schelle, et al., 2021), facilitating the binding of substrates, such as
benzoates, that are sterically larger than the native substrate
(toluene). Using the described homology models, the active site
cavity was mapped for each variant using PyMOL (Version 2.0
Schrodinger, LLC). This analysis demonstrated that some of the best-
performing variants did have expanded binding space in their active
sites (TDO M220A/L272W, TDO L272W/1276V), while others had
active site cavities similar in size (TDO M220A), or in some cases
slightly smaller than (TDO A223V/1276V), the parent enzyme
(Figure 5 and Supporting Information: Figure S10). Therefore, the

improvement in activity observed among the variants produced

in this study could not be solely attributed to expanded active
site cavities.

To investigate the binding of the engineered variants, as well as
the parent enzyme, to both methyl and ethyl benzoate, docking
analyses were performed using Autodock (Version 4.2.6) (Morris
et al., 2009). The docking predictions produced from these analyses
were then refined through molecular dynamics simulations using
GROMACS (Abraham et al., 2015; Pronk et al., 2013; van der Spoel
et al., 2005). These analyses did not reveal any correlation between
the observed activities of the enzymes and their binding energies
(Supporting Information: Table SllI). Modest improvements in binding
were observed among some variants for ethyl benzoate following
molecular dynamics simulations, including the TDO 1276V, A223V/
1276V, and L272W/I276V variants, however, these improvements
were not observed for the methyl benzoate substrate (Supporting
Information: Table SllIl). Therefore, these analyses of substrate
binding did not provide a satisfactory explanation for the observed
improvements in activity over the parent enzyme.

Finally, the structure of the substrate tunnels leading to the
active site were investigated for the best-performing variants using
CAVER (Chovancova et al., 2012; Pavelka et al., 2016). Computa-
tional studies of other RDOs have suggested that the structure of the
substrate tunnel leading to the active site, specifically the structure of
bottlenecks in the substrate tunnel, can be a primary determinant of
the substrate scope of these enzymes (Escalante et al, 2017).
Further, modifications of the residues lining the substrate tunnel have
been shown to affect the activity/selectivity RDOs (Halder
et al,, 2018), as well as Rieske (mono)oxygenases (Liu et al., 2022).
Mapping of the substrate tunnel in the wild-type enzyme in this way

revealed that multiple residues that had been successfully altered to

FIGURE 5 Visualization of the active site
cavities of toluene dioxygenase (TDO) (wild-type)
(a), TDO M220A/L272W (b), TDO A223V/1276V
(c), and TDO L272W/1276V (d). Image (a)
generated using the reported crystal structure of
TDO (Friemann et al., 2009) and with PyMOL
(Version 2.0 Schrodinger, LLC). Images (b-d)
generated with homology models produced by
Alphafold2 (Jumper et al., 2021) and AlphaFill
(Hekkelman et al., 2023), and with PyMOL
(Version 2.0 Schrodinger, LLC). Mutated residues
are highlighted (yellow) and the mononuclear iron
center is shown (orange).
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FIGURE 6 Images of the substrate tunnels
(red) of TDO (wild-type) (A), TDO M220A/L272W
(B), TDO L272W/1276V (C), and TDO M220A/
L272W/1276V (D). Overlap of the aromatic indole
ring with the substrate tunnel/entrance to the
active site cavity is shown for engineered enzymes.
Residues at the bottleneck are highlighted (cyan) in
the wild-type enzyme. Mutated residues are
highlighted for engineered enzymes (yellow) and
the mononuclear iron center is shown (orange).
Substrate tunnels computed with CAVER
(Chovancova et al., 2012; Pavelka et al., 2016)
using the reported crystal structure of the wild-
type enzyme (Friemann et al., 2009) or with
homology models subjected to docking analysis/
molecular dynamics simulations (Abraham et al.,
2015; Hekkelman et al., 2023; Jumper et al., 2021;
Morris et al., 2009; Pronk et al., 2013; van der
Spoel et al., 2005). Images generated with PyMOL
(Version 2.0 Schrodinger, LLC).
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(b) ¢

TABLE 1 Characteristics of substrate tunnels as measured by CAVER (Chovancova et al., 2012; Pavelka et al., 2016).

Radius of
Enzyme bottleneck (A)
TDO (WT) 1.21
TDO M220A 1.25
TDO 1276V 1.11
TDO M220A/L272W 1.15
TDO M220A/1276V 1.69
TDO A223V/1276V 1.31
TDO L272W/1276V 1.13
TDO M220A/L272W/1276V 1.09

Change in
bottleneck radius® Cost® Change in cost®
- 0.46 -
+3% 0.40 -13%
-8% 0.52 +13%
-5% 0.40 -13%
+40% 0.27 -41%
+8% 0.37 -20%
-7% 0.45 -2%
-10% 0.42 -9%

2Defined by CAVER to reflect the probability that a pathway is used as a route for the transportation of the substances (Chovancova et al., 2012; Pavelka

et al., 2016).

bReported relative to the bottleneck radius/cost calculated for the wild-type enzyme.

improve activity in this study (A223 and L272) existed at the
bottleneck of the substrate tunnel (Figure 6a). All the engineered
variants analyzed in this way displayed altered substrate tunnels
relative to the wild-type enzyme (Supporting Information:
Figures S19 and S20). The most illuminating results from these
analyses came from the variants bearing the L272W mutation (TDO
M220A/L272W, TDO L272W/I1276V, and TDO M220A/L272W/
1276V), which were some of the best-performing variants identified
in this study. These analyses showed that the aromatic indole ring
introduced by the leucine-to-tryptophan mutation was positioned
adjacent to the substrate tunnel and at the entrance to the active
site cavity (Figure 6). Computational studies of the related enzyme
naphthalene dioxygenase (NDO) have suggested that a phenyl-
alanine residue positioned at the entrance to the active site cavity in
this enzyme plays a role in controlling substrate entrance to

the active site by forming stabilizing m-m stacking interactions
(Escalante et al., 2017). By analogy, our findings suggest that the
improvements in activity observed with engineered variants bearing
the L272W mutation may be a result of the introduction of
new stabilizing -1t stacking interactions at the entrance to the
active site cavity. These analyses also allowed for the radius of the
bottlenecks in each substrate tunnel to be measured computationally,
and for a “cost” to be associated with each tunnel reflecting the
probability of that tunnel being used to transport substrates (Table 1).
These measurements showed that the cost associated with the
substrate tunnel of every improved variant, except the TDO 1276V
variant, was reduced relative to the wild-type enzyme (Table 1).
In the case of the TDO M220A/1276V variant, the bottleneck in
the substrate tunnel was expanded by 40%, which was reflected

in the 41% reduction in the cost associated with this substrate
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tunnel (Table 1). Taken together, these substrate tunnel analyses
provide plausible explanations for the increases in activity observed
with many of the engineered variants produced in this study. While
these computational analyses have suggested possible explanations for
the observed improvements in activity (expanded active site cavities,
remodeling of substrate tunnels, and/or the introduction of new
stabilizing -t stacking interactions), a complete picture has not yet

been established.

4 | CONCLUSION

In this study, new variants of TDO were rationally engineered that
demonstrate considerable improvements in cis-dihydroxylation activity
for benzoates, the cis-diol metabolites of which have demonstrated
themselves to be very valuable in organic synthesis (Sullivan
et al, 2009; Werner et al., 2010; Winter et al., 2013). To account
for the significant improvements in activity observed with these
engineered TDO variants, homology modeling, docking analyses,
molecular dynamics simulations, and mapping of their substrate
tunnels were performed using Alphafold2 (Jumper et al, 2021),
AlphaFill (Hekkelman et al., 2023), AutoDock (Morris et al., 2009),
GROMACS (Abraham et al., 2015; Pronk et al., 2013; van der Spoel
et al., 2005), and CAVER (Chovancova et al., 2012; Pavelka et al., 2016)
respectively. Although these studies cannot fully account for the level
of activity observed among all the engineered TDO variants, they have
provided valuable insights as to the potential source(s) of the observed
improvements in activity. These sources may include increases in the
size of the TDO binding pocket facilitating the binding of benzoates
which are sterically larger than the native substrate, the introduction of
new stabilizing m-rt stacking interactions at the entrance to the active
site/alongside the substrate tunnel, and/or the remodeling of substrate

tunnels leading to the active site.
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