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Abstract

This review article highlights state-of-the-art data-driven techniques to discover, encode, surrogate, or emulate constitutive
laws that describe the path-independent and path-dependent response of solids. Our objective is to provide an organized
taxonomy to a large spectrum of methodologies developed in the past decades and to discuss the benefits and drawbacks of
the various techniques for interpreting and forecasting mechanics behavior across different scales. Distinguishing between
machine-learning-based and model-free methods, we further categorize approaches based on their interpretability and on
their learning process/type of required data, while discussing the key problems of generalization and trustworthiness. We
attempt to provide a road map of how these can be reconciled in a data-availability-aware context. We also touch upon rel-

evant aspects such as data sampling techniques, design of experiment, verification, and validation.

1 Introduction

Problems in solid mechanics are formulated in terms of three
sets of equations: the first encodes basic conservation prin-
ciples (e.g., balance of linear momentum) and governs the
equilibrium of deformable bodies following the definition
of a stress tensor; the second describes the kinematics of
motion in terms of displacements, strains and strain rates.
The third set, denoted as constitutive law (CL) (or material
model), describes the response of a material to external stim-
uli by establishing a relation between kinematic and static
quantities (e.g., between strains and stresses) eventually
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mediated though other measurable and/or internal (i.e., non-
measurable) field variables, whose evolution laws are part
and parcel of the description. The material behavior and,
therefore, the CL can be classified either as path-independ-
ent (also, history-independent) if the current state of a point
does not depend on its previous states, or path-dependent
(also, history-dependent) when the current state depends on
the history of states experienced by the point. While conser-
vation principles and kinematics are considered axiomatic
and epistemic, material modeling is empirical in nature; it
is in continuous evolution and it constitutes one of the most
important research fields is mechanics.

Since the introduction of Young’s modulus in the 19"
century [1], engineers have predominantly defined CLs using
the so-called phenomenological approach, where experi-
mental observations and physical requirements are distilled
into a priori selected analytical ansatz relationships whose
parameters are meant to be characteristic of the material
[2-5]. Thus, constitutive modeling is traditionally based on
data and, due to the limitations of traditional experimental
setups, hinged on limited observations on a restricted set of
load cases (e.g., inducing uniaxial, biaxial and hydrostatic
stress states). On the other hand, CLs were expected to gen-
eralize to significantly more complex conditions, a task for
which the development of continuum thermodynamics theo-
ries and computational techniques has been crucial.

The development of full-field experimental meth-
ods such as digital image correlation (DIC) [6, 7], X-ray
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computed tomography [8—10] and digital volume correlation
(DVC) [11, 12] and advances in the related computational
approaches [13, 14] have shifted the constitutive modeling
paradigm from a limited- to a large-data regime. In par-
ticular, the computational multiscale techniques available
to date deliver in-silico observations of arbitrary complex
implicit macroscopic behaviors from simple CLs defined
at the micro-scale. However, along with the opportunity
to obtain better CL comes also the challenge of analyzing
the increased amount of data available. In this context, the
recent breakthrough in big data analysis and information
mining gives a unique opportunity to improve constitutive
modeling for applications in mechanics and material science.
Although the preliminary results obtained in this area bring
great promise of efficient and highly accurate predictions,
the fast development of this discipline calls for a timely iden-
tification of the most promising directions to pursue in order
to boost the progress of mechanics and that can introduce a
diversity of solution techniques.

1.1 Classification and Nomenclature

Available techniques that deal with large data are often
referred to as data-driven (DD) approaches, due to their
strict dependence upon a set of experimental or numerical
observations of the material behavior (Fig. 1). In general,
each method deploys a set of algorithms, assumptions and
procedures, whose purpose is to analyze the available data
and deduct useful information to describe the behavior of
a certain material or class of materials. Since the recent
breakthroughs in deep learning, machine learning (ML)
techniques have received renewed interest in applications in
mechanics and materials. Particularly the rise of sparse iden-
tification and discovery [15, 16], Physics Informed neural
networks (PINNs) and operator learning approaches [17, 18]
for the solution of forward and inverse problems involving
partial differential equations (PDEs) [19, 20] have had a sig-
nificant impact on the computational engineering field, shift-
ing the attention to combining data with physics. The great
promise of fast and highly accurate predictions for mecha-
nistic simulations as well as cost reduction in an industrial
setting has led to numerous attempts to integrate a wide
spectrum of these techniques in the simulation workflow

Fig. 1 Characteristic features of
the approaches in the constitu-
tive modeling context
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and also to facilitate material innovation. Combining physi-
cal constraints and data in the context of ML approaches
has shown potential towards moderating the need for large
training datasets [21].

For the purpose of this review on DD constitutive mod-
eling in solid mechanics, with the intent of providing a
structured presentation, we propose for the available DD
approaches the classification outlined in Fig. 1. We distin-
guish among two broad categories with corresponding sub-
categories, as follows:

e methods based on machine learning (ML) techniques.
Within this category, we distinguish among

— uninterpretable (black-box or grey-box) approaches.
This subcategory includes methods that obtain CLs
in which the relation existing between inputs and
outputs cannot be physically explained. These meth-
ods are also sometimes referred to as encoding or
learning of CLs. Prominent ML techniques used
in uninterpretable approaches are those based on
many different types of neural networks (NNs) (see
Sect. 2.1.1). The difference between black-box and
grey-box approaches is that the latter encodes some
known information about the physical system in the
learning framework; this augments the clarity of the
learned model but still does not enable interpretabil-
ity. Recently, sparsification approaches for NN mod-
els aim to balance expressivity and interpretability.

— interpretable approaches. Within this category fall
the techniques that aim at defining an interpretable
analytical expression for the CL, namely a relation
between input and output quantities (e.g., strains
and stresses) through mathematical operators and
parameters whose role can be physically explained.
In the literature, some of these methods are referred
to as methods for automated discovery of CLs from
data, whereby the term discovery is used to refer to
simultaneous model selection and parameter iden-
tification. The special case of parameter identifica-
tion, in which the functional form of the model is
known a priori and only the unknown parameters
are identified, collapses in terms of scope with the
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parameter identification of traditional constitutive
modeling, but is now sometimes also carried out
with ML. Prominent ML techniques used in inter-
pretable approaches are symbolic regression and
sparse regression (see Sect. 2.1.1).

In ML-based approaches, the definition of the opera-
tors and parameters takes the name of training or learn-
ing process, whereas their structure and configuration is
also known as architecture.

e model-free approaches. These aim at integrating the
material observations into the solution stream of a
solid mechanics problem. In other words, they identify
the solution of the system of PDEs governing a solid
mechanics problem within the collected material obser-
vation pairs, thus bypassing an explicit analytical link
between them. Note that, while ML-based methods
deliver a CL mapping the input to the output which, once
obtained, does not need any interaction with the original
data, model-free methods cannot be set apart from the
dataset they try to represent, since the dataset becomes
part of the solution.

The above classification places a strong emphasis on inter-
pretability. Interpretable approaches often lead to parsimo-
nious (i.e. simple) CL representations, and parsimony is
known to counteract the issue of overfitting which comes
as a side effect of over-parametrization and limited training
data. Additionally, parsimonious representations can enable
generalization capabilities beyond the range of input data,
given that the physics remains consistent (follows the same
discovered law) out of that range.

An important aspect not contained in the above classifica-
tion is the distinction between “supervised” and “unsuper-
vised” methods. In ML, training is performed in a supervised
fashion when matching pairs of labeled input and output
data are used, or in an unsupervised manner if no labeled
output data are available or in the absence of a bijective
mapping between input and output quantities. Cases where
the learning process objective is to minimize the devia-
tions between the model predictions and the labeled data
are part of the first category, while the methods whose goal
is to detect hidden patterns or relationships within the data
fall in the second. In the context of constitutive modeling,
input and output quantities are, in the simplest case, strains
and stresses (the situation becomes more complex for path-
dependent material models, see Sect. 5). For this reason, we
denote as supervised the methods that require training data
in the form of stress—strain pairs, and as unsupervised those
that do not require such pairs. The distinction is important
because, while strains can be measured (almost) directly,
stresses can only be computed from measured forces under
very simple loading conditions, such as uniaxial tension, and

are therefore not available in general cases. Unsupervised
methods formulate the learning procedure in such as way as
not to rely on the availability of stress—strain pairs; to com-
pensate for the lack of such pairs, they typically rely on the
enforcement of physics constraints which can be formulated
in terms of realistically measurable data, such as displace-
ments and forces.

Physics constraints are not exclusive of unsupervised
methods; approaches of all types can augment learning by
imposing the fulfillment of such constraints (e.g., global or
local equilibrium, governing PDEs), in which case they are
sometimes also denoted as physics-informed (Fig. 1). To
enforce these constraints, mainly three procedures can be
deployed, either alone or in synergy: i.) the selection of an
architecture that a priori satisfies them, ii.) penalizing the
selection of parameters leading to the violation of the con-
straints, iii.) the a posteriori rejection of optimized models
which are incompatible with the constraints following prede-
fined rejection/acceptance policies. Another ML paradigm is
the so-called reinforcement learning (RL), whose aim is not
limited to the optimization of a predefined architecture but
extends to learning a set of rules that allows for the improve-
ment of the architecture itself by maximizing its predictive
capability following a given metric (Fig. 1). This is nor-
mally done in a trial-and-error fashion by casting architec-
tures whose performances are tested against the available
data; a reward or a penalty is then given following a set of
predefined policies. Note that the described methodologies
are not mutually exclusive, but can be coupled in order to
achieve a better description of the material behavior. The
main characteristic features of the approaches to define a CL
are summarized in Fig. 1, while their detailed description
will be provided later.

1.2 Objective and Organization of the Paper

The primary goal of this review is not to provide an exhaus-
tive list or a ranking of DD attempts in the field of solid
mechanics but, rather, a map of how DD techniques can be
used to advance the constitutive modeling field. We provide
an overview of how DD approaches can exploit the large
amount of available observations in order to obtain richer
CLs able to accurately predict the behavior of different mate-
rials. The available literature is reviewed and classified fol-
lowing the main aspects summarized in Fig. 1 and whether
the behavior they try to represent (e.g., elasticity, plasticity,
damage) is path-independent or path-dependent. Whenever
possible and relevant, we also overview the mechanics/
physics knowledge that the various approaches embed, the
capability to generalize to situations different than those
represented by the data they are exposed to, and the amount
of data they need to provide reliable results (namely, the
data hunger). In the overview, we attempt to pinpoint the
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specific advantages and drawbacks of some of the current
state-of-the-art techniques and our perspectives on the future
of DD constitutive modeling for solid mechanics problems.
Although not treated extensively, the strict relation between
modern experimental techniques and DD approaches is also
hinted at, especially regarding the need for integrated frame-
works where the experiments are designed to support the
definition of accurate and realistic CL.

The paper is structured as follows: in Sect. 2 we summa-
rize some earlier reviews in the context of DD approaches
in solid mechanics and we provide a short overview of DD
methods to establish a common ground for the remainder of
the paper. Section 3 focuses on data sampling approaches, a
central aspect of every approach that focuses on data. Sec-
tion 4 reviews DD CLs for path-independent problems with a
focus on small strain elasticity and finite strain hyperelastic-
ity. Section 5 reviews DD CLs for a range of path-dependent
problems, from plasticity, viscoelasticity, damage, fracture,
and fatigue, to problems in multiphysics. Section 6 presents
some thoughts on guidelines for validation and verification
and proposes a set of possible performance metrics, while
Sect. 7 discusses the current limitations of the reviewed
approaches and draws the main conclusions.

2 DD Methods Outline and Earlier Reviews
2.1 Overview of the Available DD Methods

In the following, a non-exhaustive list of important DD
methods is provided, as they are used either alone or in com-
bination for the different constitutive models discussed in
the following sections. For most of these models, different
variations exist that allow for either classification of data
or fitting regression curves. Since in constitutive modeling,
we are usually concerned with the prediction of quantities
instead of labels, the following summary mainly focuses on
regression tasks.

2.1.1 ML Approaches

Interpretable approaches. Symbolic regression and sparse
regression are probably the closest ML techniques to tradi-
tional constitutive modeling (based on parameter identifi-
cation of assumed laws) and have the advantage that func-
tional dependencies between inputs and outputs are highly
interpretable, and constitutive modeling constraints can be
incorporated, which typically leads to high extrapolation
power. Both approaches are based on finding an analytical
function that best fits a given dataset. In general, approaches
that derive mathematical expressions from targeted experi-
mental data are commonly referred to as symbolic regression
methods; hence, also sparse regression can be interpreted
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as a specific instance of symbolic regression (see also the
extensive review in [22], where symbolic regression meth-
ods, including sparse regression, are viewed through the
lens of operations on graphs). However, in the literature
very often symbolic regression is used to denote methods
based on genetic algorithms. In what follows, we adopt this
terminology; hence, we refer to methods that are based on
genetic algorithms as symbolic regression and treat sparse
regression separately.

In symbolic regression, building blocks such as math-
ematical operators and constants are combined with com-
monly applied analytical functions such as sine or loga-
rithm using genetic algorithms [23, 24]. In the physical
sciences, symbolic regression was popularized by [15], and
an overview with applications to material science is pro-
vided in [25]. Different software packages can be found in
the literature, e.g., GPTIPS [26], Eureqa [27], gplearn [28],
AlFeynman [29]. A recent comparison between common
open-source implementations can be found in [30]. The
disadvantage of these methods is the long training time of
the genetic algorithms without guaranteed convergence to a
good solution. Furthermore, in comparison to other methods,
which are more automatized, a high degree of user knowl-
edge is required since the space of mathematical expressions
has to be a priori provided by the user. Additionally, due
to the commonly low number of trainable parameters, the
method is not as expressive and might struggle with highly
complex functional dependencies.

In contrast to symbolic regression, sparse regression
[31-33] discovers a symbolic model expression from a
predefined catalog (often denoted as a library) of candidate
models. The strength of sparse regression is its computa-
tional efficiency and, in the frequent case of a convex objec-
tive function, guaranteed convergence. The idea of using
sparse regression in the physical sciences was initiated by
[16]. Recently, sparse regression has gained increasing
popularity for material model discovery [34-36]. Also, in
this case, user knowledge is required since the catalog of
material models is chosen upfront by the user. However,
recent research is trying to automatize this task towards a
self-generated library [22].

Uninterpretable approaches. In recent years, artificial
NN and especially deep NNs have been widely used for
many complex regression tasks and NNs are probably the
most encountered type of ML method in the context of DD
constitutive modeling. Their historically first and simplest
form, known as feed-forward neural NN or fully connected
NN, takes vector-valued inputs and maps them to the vec-
tor-valued output using only forward-directed connections
between the hidden layers of the network, that consist of
several hidden nodes. Other forms include sequential mod-
eling architectures such as recurrent (or sequential) NNs
(RNNs) [37], Gated Recurrent Unit (GRU) [38], Long
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Short-Term Memory (LSTM) [37], and Transformers [39],
which are based on internal states that allow for processing
time- and history-dependent datasets. Lastly, convolutional
NN (CNNs) [40], attention networks [41], and graph NNs
(GNN5s)[42] are used to analyze visual imagery and graph
dependencies, respectively. For more information on these
types of NNs, we refer to [43]. One important reason for
the popularity of NN is that all the major current software
implementations are based on Automatic Differentiation
[44]. The most commonly employed open-source libraries
are Tensorflow [45], Pytorch [46] and JAX [47]. Other than
their flexibility, the advantages of NNs include their ease
of usage and their ability to deal with very large datasets.
An important positive aspect of NNs is that they allow to
weakly incorporate constitutive model constraints. On the
other hand, even though NNs with arbitrary widths or depths
are theoretically able to approximate any function [48, 49],
from an engineering point of view with naturally limited
computational resources, convergence cannot be guaran-
teed. Furthermore, NNs do not offer exact inference prop-
erties, their analytical function is hard to interpret due to
the number of trainable weights, and they are reliant on a
large amount of user-chosen parameters (hyperparameters).
Also, performing Bayesian inference using NNs, known as
Bayesian NNs (BNNs)[50], is popular in the ML community
for uncertainty quantification (UQ). Here, additional con-
straints in constitutive modeling can be enforced in various
ways [51]. However, the process typically requires a higher
understanding of statistical learning theory in comparison
to enforcing constraints with NNs.

NNs and Bayesian NNs are widely used for many compu-
tationally expensive scientific problems for performing tasks
such as inverse modeling or UQ. However, these models
are confined to the mapping between a predefined set of
input and output data. They cannot be directly applied to
control or experimental design problems due to the difficulty
in learning optimal decision-making strategies in dynamic
and uncertain environments. To address this issue, an RL
technique that hinges on the concept of dynamic program-
ming is employed [52]. RL is a type of ML model in which
the agent or an NN model learns the best actions to make
decisions by interacting with the environment. The decision-
making process in RL is executed by defining states, actions,
and rewards. During training, the data from the environment
known as the state is provided to the agent to assess the
reward. The main objective of RL is to enhance the model’s
policy or value function, enabling it to take the best actions
over the iterations known as episodes. There are mainly two
types of RL models, namely, model-free and model-based
RL. Model-free RL algorithms, such as Q-learning [53] and
Policy Gradient algorithms [54], focus on learning the opti-
mal solution by directly interacting with the environment.
On the other hand, model-based RL algorithms such as Dyna

[55] and AlphaGo Zero [56] depend on planning based on
the learned model.

Support vector regression (SVR) is well established in
the ML community for real-valued function estimation [57].
Rooted in statistical learning theory, SVR is based on its
well-known classification-based counterpart known as sup-
port vector machines (SVM), which try to systematically
find a linear hyperplane able to cluster input and related
output data in classes. However, the latter assumption fails
to represent the classification when the mapping between
input and output parameters is non-linear. In such cases, the
"kernel trick’ [58] is employed to convert the original data
space into a higher dimensional one where a linear hyper-
plane is again a suitable ansatz. Considering the domain
and codomain of an unknown function composed of classes
representing a restricted range of values, it is possible to
endow the SVM with regression capabilities leading thus
to the SVR. To avoid overfitting, SVR penalizes predictions
farther away than a specific value from the desired output
in a convex loss function. For constitutive modeling in solid
mechanics, SVR has traditionally been far less commonly
employed compared to other ML methods although different
libraries offer the possibility to use SVR. The main open-
source software library used in the literature is libSVM [59].
Alternatively, the Scikit-learn [60] also has an implementa-
tion of SVR, which is, however, also based on libSVM. The
advantages of SVR methods are that they are robust against
outliers in the data, are easy to implement, their computa-
tional complexity does not depend on the dimensionality
of the input space, and, when well fitted, they tend to have
good generalization capabilities [61, 62]. Furthermore, due
to the convexity of the loss function, SVR training delivers
a unique solution that makes training in comparison to other
advanced ML methods easier. Constraints generally encoun-
tered in constitutive modeling can be enforced by adjusting
the loss function [63]. However, the method has problems
in the big data domain and with datasets that contain a sig-
nificant amount of noise. Furthermore, in comparison to
Gaussian process regression (GPR), there is no probabilistic
explanation for the fitting and no exact inference.

Apart from the above-mentioned models for regression
tasks, feature extraction models and probabilistic generative
models are other popular ML areas that are widely used in
the scientific domain. Feature extraction is used to reduce
datasets into their informative and non-redundant parts.
For more details, we refer to [64]. They usually involve
some form of dimensionality reduction, and common tech-
niques of this kind are principal component analysis (PCA)
[65], autoencoders [66], and clustering techniques such as
k-means clustering. Other popular ML domains are proba-
bilistic generative models such as restricted Boltzmann
machine (RBM) [67], variational autoencoder (VAE) [68],
generative adversarial network (GAN) [69], flow-based
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generative models (or Normalizing Flows) [70] or diffusion
models (DM) [71], which have been successfully imple-
mented for various tasks such as dimensionality reduction,
inverse surrogate modeling [72], image generation [69],
anomaly detection [73], and many others. Due to the rela-
tively small datasets generally encountered in constitutive
modeling, these methods have not yet seen a lot of interest
in the community. However, with the ever-increasing avail-
ability of data, they may soon become more important.
Bayesian inference and statistical learning. Another
important class of ML methods is models based on Bayes-
ian inference. They revolve around using Bayes’ theorem to
find the probability distribution of parameters or functions
given observed data and prior distributions. Since often no
closed-form solutions for the posterior distributions exist,
efficient simulation algorithms like Markov Chain Monte
Carlo (MCMC), Metropolis-Hastings (MH), and Hamilto-
nian (or hybrid) Monte Carlo (HMC) are applied to find
approximations. For more information, we refer to [74].
Analytical posterior distributions can be found by using
Gaussian processes as priors. The resulting interpolation
method is typically known as GPR or Kriging [75]. In the
context of ML CL modeling, GPR is the most encountered
form of Bayesian regression due to its simplicity. Differ-
ent open-source software packages for GPR are available,
e.g., DACE [76], DiceKriging [77] or GPyTorch [78]. GPR
methods have significant advantages compared to other ML
models: they have rigorous convergence guarantees, yield
exact inference in the absence of noise, allow for proba-
bilistic error estimation, and are fully trainable with only a
limited amount of user-chosen parameters [75]. The major
issue of GPR is that it scales cubically with the size of the
dataset; this has historically prevented it from being used in
the big data context [79]. Overall, utilizing GPR for consti-
tutive modeling has been a relatively recent phenomenon
in comparison to other ML models. Finally, classical but
proven techniques of statistical learning theory should not be
neglected when deciding which predictive tool to use. Meth-
ods like k-nearest neighbor, random forests, or spline inter-
polation might, depending on the complexity of the data,
even be the best-performing methods for certain tasks. For
a textbook on these traditional techniques, we refer to [80].
Closing remarks. As pointed out, all of the presented
methods have their own strengths and weaknesses, and sim-
ilar to most application areas in engineering there is also
no single best method to apply for constitutive modeling.
The choice of which method to use is typically dependent
on the size of the dataset, the type of the data source, the
required level of interpretability, the degree of dimensional-
ity of the inputs and outputs, and the complexity and amount
of noise in the data. Moreover, in the end, the choice of an
ML method usually boils down to user knowledge of spe-
cific methods and algorithms and the availability of codes;
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facilitating this process could be beneficial for the broader
community. In this regard, due to the number of historical
papers and available tutorials, NNs can certainly be seen
as the easiest and most flexible method for inexperienced
users. Approaches that initially show a steeper learning
curve might however have some significant advantages for
specific applications and goals.

2.1.2 Model-Free Approaches

As mentioned earlier, model-free approaches first proposed
by [81] do not explicitly create material models or their
surrogates to be integrated into computations but, instead,
directly inform the forward problem with a set of discrete
material behavior observations (the so-called material data
set). The main idea is to relax the requirement of the clas-
sical solution procedure of a mechanical boundary value
problem that seeks the solution as the intersection between
a set of basic governing equations (e.g. equilibrium, com-
patibility) and the CL. Instead, the model-free approach
identifies for each point of the domain the state within the
available material observations that is closest to the subset
of points satisfying compatibility and equilibrium. Hence,
the model-free solution strategy relies on the definition of a
discrete quantity, representing a distance induced by a given
metric in the state space, which attains its minimum in cor-
respondence with the material data point that best represents
the solution under the given boundary conditions [82]. The
aim of this approach is to minimize assumptions on the mod-
eling part by relying only on discrete observations of the
material behavior. This makes the model-free approach data-
hungry [83, 84] since it is unable to generalize the observed
behavior. For the same reason, it poses limitations to the
description of dissipative CLs, where the major challenge is
to ensure the representability of the material behavior with-
out the introduction of a priori-defined dependencies from
postulated internal/history variables or oversized datasets.

2.2 Earlier Reviews

There are several recent reviews in the context of DD
approaches for a wide array of solid mechanics problems.
We summarize here the main contributions towards three
main fields: i. single or multiscale approaches to represent
the material behavior, ii. design of new (meta-)materials
with prescribed behavior (namely, material behavior opti-
mization) and, iii., synergistic approaches integrating experi-
mental mechanics and ML methods.

Material behavior representation. In [85] a review of DD
modeling approaches in engineering is presented that aims to
introduce the reader to a variety of approaches and applica-
tions. With a focus on virtual twins, namely computational
frameworks replicating the material behavior that support
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and extend the experimental practice, [86] discusses effi-
cient approaches for the exploitation of data in computations
beyond classical parameters calibration. More focused on
multiscale approaches, surrogate models, and design opti-
mization of composite materials and structures, [87] revises
the available approaches employing NNs, while [88] focuses
more on physics-informed ML and tries to identify applica-
tions and opportunities in the general context of computa-
tional mechanics. Also, [89] extends the review to the whole
ecosystem of ML approaches and tries to outline the future
perspectives of the field. Focusing on mechanical properties,
[90] discusses the importance of data collection, genera-
tion, and preprocessing towards applications in multiscale
materials design.

Design of meta-materials. [91] reviews the advancements
driven by ML tools towards material design innovation,
while in [92] a classification among descriptive, predictive,
or prescriptive is utilized to map ML approaches to prob-
lems of parameter calibration, material characterization,
and material design and optimization. Focusing on material
discovery and the materials genome, [93] discusses how ML
approaches can take advantage of mechanical and chemical
datasets to propel the design of new meta-materials with
improved properties, while [94] and [95] review respectively
the methods available and the challenges and opportunities
involved.

Synergy between experimental and DD methods. Various
hierarchical identification procedures and related data-reduc-
tion methods to accelerate the exploitation of the experimen-
tal information are accounted for in [96], while [97] reviews
the ML approaches involving data from acoustic emission
and resonant ultrasound spectroscopy and points out that
including known physical and mechanistic relationships in
the ML approaches increases the reliability of the trained
models. The integration of experimental and ML methods is
exploited extensively in the area of biomechanics. With this
focus, [98] reviews aspects of the solution of biomechanics
problems using DD methods based on patient-specific data
and highlights how this enables an automatic consideration
of the case-wise variability of the material parameters and
of the uncertainty propagation.

Despite the number of review articles published, to the
best of the authors’ knowledge a review that solely targets
constitutive modeling approaches in solid mechanics is still
lacking. With this paper, we aim to fill this gap.

3 Data Sampling and Design of Experiments

One of the open problems in DD material modeling is the
dependence of the performance on the amount of available
data. One possible remedy to the unavailability of sufficient
data is to train the ML tools on less but qualitatively more

relevant data, i.e. data that capture the major complexities of
the mapping. This can be achieved by relying on pertinent
data sampling strategies. In this section, we briefly review
some of these strategies that have been employed in the lit-
erature for DD material modeling. We differentiate between
one-shot and sequential sampling approaches.

The design of sampling strategies can be paralleled to
experimental design. Experimental design denotes the sys-
tematic planning and structuring of lab experiments (e.g.
loading paths, types of experiments) to gather valuable and
relevant data from lab tests to calibrate constitutive models.
While both sampling strategies and experimental design aim
to efficiently extract the most meaningful data, experimental
design brings an additional layer of complexity. It must not
only consider the theoretical significance of the data but also
the feasibility and efficiency of conducting the experiment in
a real-world lab setting. Practical limitations, such as equip-
ment availability, time constraints, and material properties,
often dictate what can be accomplished in the lab. After
discussing one-shot and sequential sampling approaches, we
briefly overview the works that utilize deep RL for experi-
mental design, showcasing its potential in optimizing and
informing experimental setups.

One-shot sampling. One-shot sampling is characterized
by the determination of the sample size and points in a
single stage. To this end, the input domain for both time-
dependent and time-independent inputs has to be known.
Non-temporal inputs are characterized by a fixed range of
interest, i.e. a sampling interval, or a probability distribution
function. Since sampling from a probability distribution is
straightforward, in the following we focus on deterministic
input domains. The simplest way of generating data for non-
temporal inputs is grid-based sampling (Fig. 2a) where a few
equally spaced values are selected for each parameter. Apart
from its simplicity, this type of strategy has several other
advantages, including easy setup for parameter sensitivity
studies and numerical integration, and of course its space-
filling properties. Grid-based sampling strategies have been
applied in a variety of publications [99-101].

A major limitation of grid-based sampling is their "col-
lapsing" property [102] which essentially means that sample
points may have the same coordinate value when projected
onto a parameter axis. This has the undesirable effect that,
when one of the design parameters has (almost) no influence
on the mapping, then two points whose only difference is
this property can essentially be seen as the same point. This
means that for the purposes of generating a surrogate for
the mapping the same point will be evaluated twice. Hence,
the two crucial criteria for one-shot sampling designs are
space-filling and non-collapsing properties. An obvious way
to avoid a collapsing design would be to use uniform random
sampling. However, especially if a small quantity of sample
points is involved, random sampling approaches tend to be
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Fig. 2 Different one-shot
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not reliably space-filling, i.e. they show clustering behavior
and fail to provide points in large portions of the region, as
seen in Fig. 2b. For this reason quasi-random techniques
such as Latin hypercube sampling [103] are often preferred
(Fig. 2c). This method aims to generate a space-filling
design that is non-collapsing. This strategy is employed
in various works in the context of DD material modeling
[104-106]. In some applications, due to indirect access to
the input space (i.e. the input domain cannot be explicitly
sampled), different strategies have to be employed. E.g., [21]
proposes a sampling approach that generates space-filling
points in the invariant space corresponding to a bounded
domain of the deformation gradient tensor. The approach
builds a space-filling sampling strategy based on simulated
annealing, which provides more efficient and reliable phys-
ics-informed constitutive models than quasi-random sam-
pling in the deformation gradient space.

Sampling from temporal inputs is more complicated as
now a sequence of points has to be generated. This is e.g.
required when the response depends on a specific three-
dimensional loading path. Some aspects of effective tempo-
ral sampling are still an open issue in the literature, e.g. how
to sample temporal curves in a space-filling manner. Dif-
ferent approaches have been proposed. In strain-controlled
loading, [107] defines an upper and lower bound for each
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individual strain component and a fixed number of time
steps. The authors then propose to generate equally spaced
points in the chosen bounds over the time frame using ran-
dom sampling. These points are used as control points of
an interpolator in order to generate smooth loading curves.
Similar approaches are used in [108—110]. [111] samples
the loading path as a random walk which changes its direc-
tion and step size using realizations of independent uniform
random variables. The same method is employed in [110].
Other approaches [112] define the load paths directly as
realizations of a multivariate Gaussian process.

Even though these methods have proven to be successful,
overall, reliable and goal-oriented sampling of sequentially-
based material responses still remains an open issue. Since
non-temporal data-generation techniques are in general more
reliable, DD modeling frameworks that transform a many-to-
one mapping (as seen in plasticity) into one-to-one mappings
can be considered more reliable.

Sequential/adaptive sampling. The problem with one-shot
sampling is that, without a target function, it is difficult to
predetermine an optimal or appropriate sample size as well
as the ideal sample placement. This is especially true for tem-
poral input parameters. For these reasons sequential or adap-
tive sampling techniques have been proposed in the broader
surrogate modeling community [113-115]. These techniques
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have been only sparingly applied in the context of DD material
modeling. However, some approaches have been proposed in
this field that could pave the way forward. To the best of the
authors’ knowledge, [116] is the first contribution that employs
an adaptive sampling scheme for multiscale problems. The
authors use multivariate kriging as a fit for a path-dependent
DD material model. The proposed method is based on using
the variance estimation of the kriging interpolant as an error
estimate in the local material point routine of a finite element
model. In essence, the surrogate takes the stress, pressure,
temperature, and hardening variable of the current load step
as input and returns the approximate values of the lower scale
model, such as the directionality of the plastic velocity gradi-
ent, as well as an error estimate. If this error estimate is larger
than a tolerance value, then a new data point is added at this
input point and the surrogate model is retrained. This frame-
work is refined in [117]. Similar approaches are proposed in
[118, 119], but instead of relying on the error estimate of the
surrogate, the model is adaptively refined when convergence
in the local integration loop at a material point of the macro-
scopic structural problem cannot be achieved. In the context of
model-free plasticity modeling [120] proposes a related idea.
Overall, especially concerning path- and history-dependent
material modeling, adaptive sampling strategies are largely
underused. They have the potential to offer a reliable frame-
work to train more robust DD material models.

Deep RL for experimental design. Deep RL is a subdomain
of RL that combines the concepts of RL and deep NN for
tackling complex tasks involving continuous state and action
spaces in an uncertain and dynamic environment. In the ML
community, there are various deep RL models, such as Deep
Q-Network (DQN) [121], Deep Deterministic Policy Gradient
(DDPG) [122], and others that have been used for a wide range
of problems. These include learning acquisition functions for
Bayesian optimization [123], trading and finance [124], robot-
ics manipulation [125], controls [126], experimental design
[127], and many more. Recently, [128] developed a meta-mod-
eling game framework based on RL, where two ML agents
compete against each other to generate experimental data for
calibrating a constitutive model. Out of all possible design
options for laboratory experiments, the developed deep RL
framework can determine sophisticated experimental designs
that capture the relevant information to train reliable consti-
tutive models. With a focus on using deep RL for expensive
experimental data, [127] develops a framework that combines
deep RL and Kalman filters for calibrating materials models.

4 DD Modeling for Path-Independent CLs

This section reviews the main DD modeling approaches pro-
posed for path-independent CLs, namely for conservative
and thus fully reversible material behavior. A key feature

of this type of materials is that the current state of a point
is uniquely defined by the current value of the strain in that
point. In the following, starting with linear elasticity and
continuing with the finite-strain case, we review the main
related contributions in the context of DD modeling.

4.1 Small-Strain Elasticity

The simplest assumptions in phenomenological constitu-
tive modeling of solid materials are the assumption of small
strains and the often accompanying assumption that the
stress state depends linearly on the strain state c = C : ¢,
where o, € and C denote the Cauchy stress tensor, the infini-
tesimal strain tensor, and the elasticity tensor, respectively.
Under these assumptions, the material characterization
objective boils down to identifying the parameters that gov-
ern the linear stress—strain relation, i.e., the components of
the elasticity tensor C. Although not denoted as such, this
parameter identification problem has often been faced from
a DD perspective since its inception. Despite the simplicity
of the problem, ML opens new doors for elastic property
prediction.

While the response of homogeneous materials appears
straightforward to model, mesoscopically heterogene-
ous materials such as multiphase materials and compos-
ites exhibit more complex stress—strain (or energy-strain)
relations at the macroscopic scale. Hierarchical modeling
is a powerful tool to describe the macroscopic material
responses of such materials; the idea is to conduct lower-
scale simulations of representative volume elements (RVEs),
which capture the characteristic topology of the heteroge-
neous material, to predict the effective material behavior
at the macroscopic scale. Prerequisites to such lower-scale
simulations are, first, that the material properties of the dif-
ferent phases at the micro- or meso-scale are known and,
second, extensive computational effort, especially in the
three-dimensional case. Hierarchical methods such as FE?
require the execution of a lower-scale simulation when-
ever the unknown stress state needs to be calculated from a
known strain state, i.e., the stress—strain relation is implicit
and costly to evaluate. ML-based methods promise a sig-
nificant speed-up; given that a number of lower-scale simu-
lations have been executed, i.e., a set of stress—strain data
pairs is known, ML models can be used to interpolate the
stress—strain data to arrive at an explicit model for the mac-
roscopic stress—strain relation

M: e o0, (D

which can then be used efficiently in forward simulations.
Following the same idea, the data can alternatively be used
to train a differentiable ML model to arrive at an explicit
form of the strain energy density W
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M:ie—W. )

In this case, the stress—strain relation can be found by dif-
ferentiating the above mapping with respect to the strain. A
clear advantage of (2) over (1) is that the output of the map-
ping is scalar, which simplifies the training process. Expres-
sions in the form of (2) further simplify the enforcement of
physical constraints such as thermodynamic consistency, as
discussed in later sections.

Uninterpretable ML approaches. One of the first meth-
ods for the development of models in the form of (2), termed
Numerically Explicit Potentials [129], gathers data of RVE
responses in a discretized loading space and interpolates the
effective response with cubic splines [129] and later NNs
[130]. To reduce the computational cost associated with
the micro-scale simulations for data generation, [131] uses
reduced-order RVE simulations to train a path-independent
NN in the form of (1). The NN is then used as a surrogate for
the macroscopic material behavior in forward finite element
simulations, however, as the accuracy of the NN cannot be
guaranteed outside the training domain, the authors propose
to use reduced-order micro-scale simulations to predict the
effective material response whenever predictions outside the
training domain are required.

[132] proposes an ML-based multiscale material mod-
eling method called Deep Material Network (DMN), which
is constructed as a hierarchical network of layered composite
building blocks with known analytical homogenization that

maps the microscopic material properties C_ ;.. to the effective
material properties Cg..sive
M Cmicro = Ceffeclive' (3)

Each building block takes as input the compliance matrices
of the individual phases and outputs the effective material
properties in a rotated coordinate system. By chaining the
building blocks in a binary tree structure in such a way that
consequent blocks take as input the compliance matrices of
preceding blocks, the emerging network is able to encode the
homogenization process of materials with complex hetero-
geneities. The network parameters are trained based on two-
or three-dimensional [133] linear elastic RVE simulations.
Afterwards, in order to reduce the network complexity while
retaining its predictive abilities, the authors suggest different
model compression methods based on network node deletion
and subtree merging. In [134], the same authors show that
a pre-trained DMN can be used as initial input for the train-
ing process for new similar materials, e.g., the same type of
composite but with different volume fraction f of the mate-
rial phases. In this way, the training process can be acceler-
ated and it can be ensured that different networks share the
same architecture. This in turn enables interpolation between
trained networks: if e.g. two networks for volume fractions f;
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and f, are trained, the material behavior of a structure with
volume fraction f, f; < f < f,, can be obtained from interpo-
lation. In [135] the properties of DMN are studied on a theo-
retical basis. To this end, the authors interpret the network
as a hierarchy of homogenization functions of generalized
standard materials. In this way, they show that the networks
are thermodynamically consistent and exhibit stress—strain
monotonicity. They further propose new types of building
blocks by allowing the composite building blocks proposed
by [132] to rotate, and discuss their implementation in for-
ward finite element simulations in [136]. Further, [137] and
[138] show applications of the DMN in the context of porous
and woven materials, respectively.

Realizing that supervised training of NNs requires a high
amount of stress—strain data pairs, which are hardly available
from experimental measurements or too costly to generate
from RVE simulations, [139] proposes to use the energy-
based characterization method (see [140]) to train NN-based
CLs in an unsupervised manner, i.e., by leveraging full-field
displacement measurements and global reaction forces, but
no stress data. [141, 142] and [19] encounter the same prob-
lem and train NNs using indirectly measured data for the
constitutive modeling of a fiber-reinforced plate [141] and
two-dimensional in-plane shear material behavior [19, 142].

Another context in which ML finds its application is that
of reduced-order modeling. By solving reduced-order mod-
els at the micro-scale, the computational cost of two-scale
simulations can be drastically decreased while retaining high
computational accuracy. [143] proposes to use ML, and in
particular k-means cluster analysis, to divide the RVE geom-
etry in the offline stage into a finite set of clusters with simi-
lar strain concentration. Assuming constant local variables
over these clusters greatly simplifies the solution process of
the Lippmann-Schwinger equation during the online stage.
The method is non-parametric, naturally thermodynami-
cally consistent, and is known as self-consistent clustering
analysis. A great advantage of the method is that the offline
stage can be computed under the assumption of small-strain
elasticity, and the results of the offline stage can be utilized
afterwards to compute material behavior beyond elastic-
ity in the online stage. An equivalent approach is proposed
independently by [144], which derives the method from the
perspective of the Hashin-Shtrikman variational principle.
[145] discusses the analogy between the methods proposed
by [143] and [144] from a theoretical perspective and fur-
ther points out the connection between the self-consistent
clustering analysis and a related reduced-order modeling
method, i.e., the transformation field analysis. Applications
and extensions of the self-consistent clustering analysis are
provided by [146—153]. [154] employ a denoising diffusion
probabilistic model (DDPM) to map the reduced-order rep-
resentation of small-strain elasticity to an embedded rep-
resentation of the corresponding complex microstructures.
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Thus, they resolve the optimization in a reduced-order space
to facilitate the inverse design and generation of microstruc-
tures with specific targeted non-linear properties.

Finally, we mention ML-based approaches which allow
to construct black-box models M taking a set of microstruc-
ture or process parameters as input Z and outputting a set
of targeted effective material properties O, e.g., the elastic
stiffness

M:Iw 0, “

The model M may be any ML-based mapping, such as e.g.
an NN or other function approximator. In this way, material
properties may be predicted without experimental or numer-
ical testing, but solely by knowing characteristic features of
the production process and/or the microstructure. Interested
readers are referred to the (non-comprehensive) list of ref-
erences [139, 155-165]. The same idea can be extended to
predicting mechanical properties as spatially varying fields.
The ML-based mapping M may take spatial measurements
Z(x) as input to predict a spatial property field O(x)

M I(x) » Ox), )

where x denotes the spatial coordinate, see e.g. [163, 164].

Model-free approaches. A model-free approach is pro-
posed in [81] with a first application on truss systems. The
data set is composed of stress and strain tensor pairs and the
solution is obtained by minimizing a distance defined in an
energetic sense between simulated and observed stresses and
strains subject to kinematic and equilibrium constraints, the
latter enforced through Lagrange multipliers. [166] follows
this idea by interpreting the given stress and strain data as
a low-dimensional manifold that is embedded in the high-
dimensional phase space (dimensionality is twelve, due to
six independent components of the stress and strain tensors).
[167, 168] propose the inverse problem of the problem posed
by [81, 166], see also [168, 169]. The objective of their pro-
posed method, denoted as DD identification, is to calculate
the stress field given full-field displacement measurements,
e.g., generated through DIC, without postulating any mate-
rial model.

4.2 Finite-Strain Elasticity

Finite-strain elasticity, while sharing similarities with its
small-strain counterpart, especially in the area of identify-
ing elasticity parameters, introduces unique complexities.
A primary challenge resides in incorporating geometric
nonlinearity and material frame considerations, which com-
plicate the task of parameter identification [170]. Despite
these complexities, constitutive modeling work has turned
to DD models to facilitate and automate calibration of novel
materials. These models do not merely aim for an accurate

fit to the training data, but also for trustworthy predictions
on unseen data points. The robustness of these predictions
can be validated via thorough sensitivity checks of the
input parameters, solidifying the reliability of the models
for broader applications. In this section, we discuss the
evolution of these models and the key considerations they
embody, with a particular focus on parametrization and
adherence to physical constraints.

Parametrization and the purposeful design of the input
and output spaces are important aspects of DD finite-strain
problems. The concern lies in the optimal determination of
the input and output strain and stress states for the DD mate-
rial laws. Some of the strain measures that are used in the
finite-strain description are the deformation gradient (F),
the Green-Lagrange strain tensor (E), and the right Cauchy-
Green deformation tensor (C), paired with their respective
conjugate stress measures: the first Piola-Kirchhoff stress
(P) or the second Piola-Kirchhoff stress (S). In the case
of hyperelasticity, the formulation involves learning energy
density functions with respect to these variables, as illus-
trated by

OW(F) S(E) = OW(E) _ zaW(C)_

P(F) = or
oF oE aC

(6)

The frame of reference chosen for parametrization has a sub-
stantial impact on the size and complexity of the learning
problem. For instance, the deformation gradient F and the
stress tensor P consist of nine components as two-point ten-
sors, while the tensors E, C, and S are symmetric with six
components each. This difference calls for close considera-
tion as it involves learning a non-symmetric fourth-order
elasticity tensor CPF(F) (with 81 coefficients in general) as
opposed to symmetric CSE(E), CS¢(C) elasticity tensors,
both of which possess major and minor symmetries and thus
require calibration for fewer elasticity coefficients. The CL
can be formulated in terms of strain energy density as

M:F>W, M:E~>W o M:Cw— W, @)
or relying on the corresponding strain—stress mappings, i.e.

M:FP, M:C»S, oo M:E-S. (8)

Formulations also often involve mappings from invariants
of strain tensors to energy and stress measures, as addressed
in numerous research works discussed below. Either of the
aforementioned finite-strain elastic tensors depend on the
current state of deformation, making their definition more
complex than in the small-strain framework where only one
constant tensor is needed. An additional important prop-
erty of hyperelastic material models is polyconvexity, which
along with coercivity is a sufficient condition for the solv-
ability of boundary value problems under general boundary
conditions and body forces.
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The selection of strain and stress inputs and outputs in
DD laws has consequences on an important required prop-
erty of finite-strain material laws, namely, material frame
indifference/objectivity. This property ensures that both the
energy and stress response of the material remain constant
upon rigid body motion and rotation. In the context of hyper-
elasticity, it is defined as follows

W(F) = W(QF), P(F)=P(@QF), YQ € S0(3), €))

where Q represents a rotation tensor and SO(3) denotes the
3D rotation group. DD material laws expressed in terms of
P — F relations do not necessarily satisfy objectivity and
may require additional enforcement of the related constraint,
whereas material laws expressed as S — E or S — C rela-
tions are known to be automatically objective [170]. Frame
invariance can also be inherently achieved by selecting an
appropriate strain invariant formulation.

Uninterpretable ML approaches. One of the earliest
attempts to model finite-strain elasticity using NNs goes
back to [171, 172]. These authors mainly focus on rub-
ber materials, utilizing a small NN to model a hyperelastic
energy function. Their approach resembles the finite-strain
model proposed by [173], which also serves as a benchmark.
The authors adopt a strain invariant formulation of the input,
ensuring the concise representation of the strain characteris-
tics. Moreover, their approach also emphasizes the need for
stress and higher-order derivatives from the learned func-
tion, particularly to facilitate the successful implementation
of the trained NN within the finite element solver. This early
exploration of finite-strain elasticity via NNs showcases the
potential and challenges inherent to the task.

More recent work in finite-strain elasticity further
explores the question of training a hyperelastic energy
function and subsequently deriving the stress information
through differentiation. This preference is rooted not only
in its potential to simplify the learning problem - mapping
from the strain space to a single, scalar-valued function W
- but also in its utility in enforcing and validating necessary
properties in the learned material law. [174] leverages both
feed forward NNs and CNNs for predicting a homogenized
energy function of a single microstructure for data from
multiple numerical simulations of evolving crystal micro-
structures. The trained NNs then facilitate the calculation of
the P(F) values through differentiation of the learned W(F)
in the multiscale approach. Meanwhile, [175] introduces
the Sobolev training technique by [176] in the hyperelas-
ticity training procedure for polycrystals. By doing so, the
authors are able to constrain the optimized architecture to
accurately predict derivatives of the learned W(C) to cal-
culate S. Furthermore, by adopting a graph representation
of the polycrystals as material descriptors of anisotropy,
they also generalize the law to a family of microstructures.
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[177] encodes hyperelastic energy functions using input con-
vex NNs, addressing the issues of polyconvexity and thus
material stability. They explore two methods for obtain-
ing polyconvexity: firstly, they employ polyconvex, aniso-
tropic, and objective invariants as inputs; secondly, they use
the deformation gradient, its cofactor, and determinant as
inputs while performing additional data augmentation to
satisfy the objectivity condition. [178] also discusses an
input convex NN-based energy function regression model
framework to enforce mechanics principles such as objec-
tivity, consistency, and dynamic material stability through
proper parameterization of the energy mapping in the S — E
frame, augmenting the loss function, and modeling the NN
weights after a softplus function respectively. Along similar
lines, [179] trains input convex NNs as hyperelastic strain
energy density functions and satisfies key physical con-
straints through a specifically designed NN architecture. In
this work, training is carried out in an unsupervised manner,
i.e. using a loss function which enforces balance of linear
momentum based only on full-field displacement and global
force data, and no stress data. Hence, the approach is directly
applicable to experimental measurements (see also the dis-
cussion on interpretable approaches based on sparse regres-
sion). [180] employs neural ordinary differential equations
(ODEs), a form of polyconvex NNs, to develop DD material
models that inherently satisfy the polyconvexity condition in
elasticity, using the properties of ODEs to create monotonic
functions that approximate the strain energy derivatives, thus
effectively modeling highly nonlinear, anisotropic materi-
als. [181] trains anisotropic NN hyperelastic models for
monoclinic crystals in terms of both P — F and S — E rela-
tions. This study also incorporates energy and stress frame
invariance terms into the loss function during training and
discusses post hoc validation tests to test for material sta-
bility. [182] deploys NN to learn the homogenized three-
dimensional constitutive behavior of anisotropic hyperelastic
cubic lattice metamaterials while ensuring objectivity and
material symmetry in the problem formulation. Expanding
on this approach, [183] embeds a parametric dependence
in the NN formulation, which allows to capture intricate
topological and material variations, thus refining the learned
energy functions.

Many ML studies in the literature establish a direct map-
ping from the strain to the stress material response. This
strain—stress approach is sometimes preferred over an energy
formulation due to its more straightforward implementation
and the common lack of energy data samples. [184] utilizes
principal stress-stretch data in the training of elastic NN
laws, which are found to approximately satisfy objectivity
conditions. In contrast, [185] utilizes NNs to formulate CLs
in terms of S — E using a dataset derived from molecular
dynamics, later validating the learned constitutive tangent
modulus through numerical differentiation. In another study,
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[186] NNs are trained to establish both the stress—strain
S — E and stiffness-strain CS¢ — E nonlinear relations for
crystal structures under various symmetry conditions. [187]
conducts a comparative analysis of NNs, with and without
Sobolev constraints, and local approximate Gaussian process
regression in mapping stress—strain S — C and employ Latin
hypercube sampling, c.f. section 3, to uniformly sample the
space spanned by the deformation gradient.

Interpretable ML approaches. [188] models hyperelastic
behavior for soft materials by identifying the energy func-
tion using spline regression and smoothing penalization,
therefore producing an interpretable ML model. Notably,
the authors use stability conditions in order to handle the
noisy data often present in such materials. Also, [189] and
[21] use the representation theorem of tensor-valued tensor
functions, c.f. [190], which is used to write the stress as a
linear combination of invariant-dependent coefficient func-
tions and basis generators. This allows learning the map-
ping from the invariants of the deformation to the values of
the coefficients and guarantees that the material response is
frame indifferent. In this context, [191] studies and compares
different formulations of the representation. In order to lower
the number of required training samples [21] proposes a
space-filling sampling algorithm in invariant space.

Recently, several efforts have been made to deduce ana-
lytical expressions for material models from data using
either symbolic regression or sparse regression (see the
discussion on terminology in Sect. 2.1.1). In the context of
hyperelasticity, symbolic regression has been used since the
early work by [192], see [193] for a more recent application.
Even more recently, [22] proposes a symbolic regression
method in which potential expressions for physically valid
hyperelastic CLs are generated using regular tree grammars
and model discovery is carried out by combining variational
autoencoders and a covariance matrix adaptation evolution-
ary strategy.

Sparse regression in the context of material modeling
on the other hand is a very recent research field. The first
works in which sparse regression from a potentially large
library of candidate material models is used to discover
hyperelastic strain energy functions as symbolic mathemati-
cal expressions are [34], that develops a method denoted as
EUCLID standing for Efficient Unsupervised Constitutive
Law Identification and Discovery (see [35] for an overview),
and [36], that develops a method coined Variational System
Identification. Beside being interpretable approaches, these
methods are also unsupervised. Instead of relying on labeled
stress—strain data pairs, which are in reality only available
under very simple loading conditions like uniaxial tension
or simple torsion, the material model discovery is informed
by experimentally measurable displacement and global reac-
tion force data. The lack of stress labels is compensated for
by applying a physics-motivated loss function based on the

conservation of linear momentum. This has the advantage
that the learning process can be informed by real data instead
of data generated from micro-scale simulations, which are
only feasible if the microstructure of the material and mod-
els of all its material constituents are known. It is shown
by [194] that the EUCLID framework can also be consid-
ered from a Bayesian perspective for discovering symbolic
hyperelastic models with quantifiable uncertainties. A first
experimental validation of a supervised version of EUCLID
is provided in [195], where sparse regression is leveraged
to discover hyperelastic strain energy functions for human
brain tissue using data stemming from uniaxial tension and
torsion tests of human brain tissue. In [22], the hand-crafting
of the material model library required in sparse regression
approaches is replaced by its automatic generation as the
"language of hyperelastic material models", i.e. as the set
of expressions generated by a context free grammar while
accounting for physics constraints. [196] discusses the
discovery and interpolation of hyperelastic models for the
human brain tissue in a framework that selects model inputs
and forms from a family of constitutive building blocks of
classical models from the hyperelasticity literature through
the optimization of an NN. Another approach for replacing
the hand-crafting of libraries is suggested in [197] by ena-
bling extreme sparsification of physics-augmented neural
networks utilizing a smoothed L regularization approach
showcasing a combination of expressivity and interpretabil-
ity in a range of experimental and synthetic test cases.

Model-free approaches. The strain—stress formulation
is particularly appealing for model-free applications. For
instance, in [198], a model-free approach is extended from
[81] to finite-strain nonlinear elasticity. The physical con-
straints (the principle of virtual work) are enforced with
Lagrange multipliers and the search problem is formulated
in terms of § — E. This choice is made to automatically sat-
isfy the objectivity conditions and ensure the symmetry of
the stiffness matrix. Also, [199] studies well-posedness and
existence of minimizers of model-free finite strain formula-
tions and proposes a formulation of finite elasticity in terms
of P — F. It provides the necessary equilibrium and com-
patibility constraints, defines conditions for material frame
indifference in this approach, and delves into the concepts
of convexity within the finite-strain model-free framework.
Moreover, [83] employs a DD approach to model anisotropic
nonlinear elasticity. The solution search is conducted in both
strain—stress data and anisotropy orientation spaces based on
manifold embedding and a convexity-preserving reconstruc-
tion scheme, called local convexity DD computing.

The model-free approach based on distance minimiza-
tion [81] is extended to account for finite deformations by
introducing appropriate metrics in (F,P) or (E,S) phase
spaces, as discussed by [198] and [200]. To enhance the
performance of the model-free solver in scenarios with
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limited or noisy data, [83] and [201] incorporate an online
locally linear embedding scheme, leveraging the advantages
of local convex linear interpolation. Additionally, [202]
develop an autoencoder framework to enhance local search
efficiency and mitigate noise sensitivity within the model-
free approach by discovering lower-dimensional embedding
spaces. [84] introduces a global manifold learning approach
employing invertible NNs, allowing for direct interpolation
on the manifold and eliminating the need for local discrete
searches. This concept is extended to incorporate an iso-
metric (distance-preservation) constraint to maintain met-
ric structures between ambient and embedding phase spaces
[203]. This method introduces a geometrically inspired regu-
larization technique within the classical autoencoder frame-
work, facilitating noise reduction and interpolation on the
data manifold.

5 DD Modeling for Path-Dependent CLs

This section is devoted to review the DD approaches to
describe path-dependent materials. The characteristic feature
of this class of materials is that the current stress depends on
both the current strain and on the entire deformation history
[204]. Therefore, the bijectivity of the CL is not fulfilled
since a single state of deformation can pair with a possi-
bly infinite number of stress states, leading to the so-called
one-to-many strain—stress mapping. This is in contrast with
the path-independent models, where each strain state cor-
responds to only one stress state, leading to a one-fo-one
mapping. The description of the path-dependent constitu-
tive behavior is also often complicated by an irreversibility
constraint of the (dissipative) processes characterizing the
material response. One potential way of addressing the one-
to-many mapping issue is to introduce in the CL so-called
history variables, also known as internal variables (since
they are not directly observable), whose definition should
ensure a one-to-one mapping, i.e. each strain—stress pair cor-
responds to a unique set of internal variables.

In the following we specifically focus our attention on
hypo- and elastoplasticity, viscoelasticity, damage, fracture,
fatigue and, finally, on their coupling with other physical
processes, i.e. within a multiphysics representation of the
constitutive behavior. As in Sect. 4, we begin each section
with a brief summary of the main features of the specific
material behavior and then we review the most significant
contributions in the context of DD approches.

5.1 Plasticity
The perhaps most widely used history-dependent mate-

rial modeling framework is plasticity. Over the years, dif-
ferent theories of plasticity have been developed, such as
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hypoplasticity [205], elastoplasticity [206], hyperplasticity
[207] or generalized plasticity [208]. Small-strain elasto-
plasticity makes a distinction between elastic and inelas-
tic components of the constitutive response by an additive
decomposition of the strain tensor into elastic and plastic
strains and introduces a notion of yield surface f(o, ¢), which
is dependent on a stress measure ¢ and on a number of ther-
modynamic forces used to define the hardening behavior.
The yield function defines the plastically admissible domain
as the set of stresses for which f(o,e) < 0. The yield func-
tion is classically decomposed as f = 6(o,) — k(s) into a
scalar equivalent stress o, that can be e.g. dependent on
a kinematic hardening tensor, and a resistance k, often a
function of a drag stress which is used to describe isotropic
hardening. On the other hand hypoplastic models, which are
commonly applied in geomechanics, often do not separate
the strain into reversible and irreversible parts and do not
employ yield functions to characterize the onset of yielding.
Here, the information about the past is all concentrated in
the current stress. Mirroring this distinction, as follows we
classify DD constitutive models for plasticity into models
utilizing hypoplastic and elastoplastic ideas.

5.1.1 DD Plasticity Modeled After Hypoplasticity

We start with the hypoplastic case which, for isotropic mate-
rials, aims to predict the current stress or strain values from
a time-discrete version of the CL

Mo, & e}l —>06 (10)

where ¢ is the Jaumann stress rate and M is a tensorial
function [209].

Uninterpretable ML approaches. Since the early works on
ML plasticity modeling were performed in the geomechanics
community, they have close similarities to the hypoplastic
theory. These include the first and perhaps most influential
ML constitutive models for history-dependent problems pub-
lished in the early 1990 s by the group of J. Ghaboussi. The
first study employs a standard NN with sigmoidal activation
functions to fit monotonic loading data from plain concrete
under a biaxial state of stress at small strains [210]. By treat-
ing the mapping problem in a quasi-sequential manner, this
initial study already introduces most of the major ideas that
will be found in papers of the following years. Both stress-
and strain-controlled models are developed. Both approaches
in this setting require a network with six inputs and two
outputs; e.g. in the stress-controlled approach, the six inputs
are the two principal stresses, the two principal strains and
two stress increments (Ao, Ac,), whereas two strain incre-
ments (Ag,, Ag,) are given as outputs. The utilized NN
architecture is visualized in Fig. 3a. The authors only offer
visual comparisons between experimental and approximated
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responses on selected test loading paths, and the developed
DD model (strain-controlled) is not tested in a finite ele-
ment framework. The approach is extended to uniaxial cyclic
loading in a follow-up paper [212]. Here the architecture of
the network is (heuristically) changed by the authors to be
able to distinguish loading and unloading curves by not only
using the current point on the stress—strain curve as input but
also utilizing the previous two points on the loading path,
see Fig. 3b. More information on the networks, as well as
the modeling ideas, can be found in [213]. The findings are
reiterated in [214, 215].

A similar approach as in [210] (training history-depend-
ence in a hypoplastic framework) for DD material mode-
ling of sand is tested in [216], where an additional mate-
rial parameter is considered as input. In the 1990 s, various
authors reapply the same ideas to laminates [217], clays
[218, 219], sand [220, 221], rocks [222, 223], soft soils [224]
or concrete [225]. This approach is also studied and tested in
a more rigorous way on different material behaviors in [226].
In contrast to these works, the study in [227] defines two
NN of the same architecture to model rock joint material
behavior; one is used to deal with small-displacement behav-
ior and the other one with large displacements (the value of
1.5 mm separating the two ranges is arbitrarily chosen by the
authors). This approach aims to distribute the nonlinearities
of the material model between the two networks (since the
networks at this point cannot be too deep due to the avail-
able computational resources). Other than NNs, SVR-based
plastic modeling of geomaterials is investigated in [228,
229] while polynomial regression models are studied in
[230-232]. All of these follow the same idea of using time-
discrete current strain and stress values as inputs and the
predicted stress as an output to their formulations. An adap-
tive approach to determine the ideal network architecture of
the NN for path-dependent material modeling is proposed
in [213, 233-235]. The number of nodes and the necessary
number of history inputs, i.e. ([ej, o-_,-], [sj_l, o-_,-_l], ...,), can
be trained adaptively. The authors use the term "nested"
NN for this process, which is later used for modeling the
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Fig. 3 First NN architectures based on quasi-sequential data used for
stress-controlled path-dependent modeling of concrete inspired by
[211]

behavior of soils [236]. This technique is also employed
to obtain path-dependent ML CLs from indirect data, such
as global load-deflection responses or displacement fields.
Here, the training algorithm of the ML tool is built around
a numerical framework such as the finite element method
(FEM)[237]. Other works employ similar approaches in
later years [238-243]. However, approaches that adaptively
change the architecture of NNs seem to have been no longer
actively pursued in the context of material modeling.

The approaches reviewed so far are based on using the
history of observable quantities such as stress and strain as
inputs to a ML model in order to predict the next stress state.
However, due to the path-dependence of the stress evolu-
tion, these methods likely fail when studying longer loading
curves with complex loading patterns or when extrapolat-
ing outside of the domain of the training data. To address
this issue, more advanced ML approaches introduce inter-
nal variables as additional inputs. In particular, [244, 245]
include for the first time internal variables in a ML stress
evolution law. They focus on a viscoplastic model with kin-
ematic and isotropic hardening and utilize an NN, with the
current strain, the internal variables & and the current stress
as input, and the current rates of the viscoplastic strain £,
and of the internal variables as outputs. For this purpose,
the authors define an implicit constitutive model in the state
space of the form

M e, & 0) = (&, &) (1)

Assuming that the initial conditions are known, a forward
Euler scheme is employed to update the variables from time
step n to n + 1 with

I3 At

vp.n+1 = Evp n vp n

én+l = gn + §At

The stress update is obtained in a similar manner. In this
approach, the internal variables have to be explicitly known.
If this is not the case, the authors describe a procedure to
obtain information about the internal variables from cyclic
loading curves and apply this methodology in an example.
Other work dealing with the explicit definition of the
internal variables includes [246, 247] which rely on data
from repeating unit cells. In [248], an energy-based internal
variable and an internal variable that implies the direction
for the next time- or load-step along the equilibrium path are
used as additional inputs to an NN. Similar approaches that
make use of known or implicitly obtained internal variables
as inputs to NNs that describe the stress evolution law can be
found later in [249], where the accumulated absolute strain
is used as an additional input. Nowadays, the use of internal
variables as additional inputs to guide the training process
is becoming more and more established as DD modeling of
path-dependent materials shifts more and more away from

12)
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experimental data towards data obtained from numerical
simulations. One of the problems associated with using plain
NN approaches that adopt previous time-discrete strains and
stresses as input and current stress as output is their depend-
ence on the strain increment. In order to avoid this problem,
[250] proposes a two-stage algorithm based on the total
strains for modeling the homogenized response of a lower-
scale problem. In the first step, a SVM is used to classify
whether the current loading step (described by total strain
and last equilibrium value of the history variable) results in
an update of the history variable, which is comparable to a
return mapping procedure. Based on this information, in the
second step, the stresses are obtained from a NN.

The aforementioned approaches suffer of reliability and
robustness issues when the behavior need to be extrapolated
outside of the range of data used during the training. A pos-
sibility to relieve this drawback is to introduce physical con-
sistency into the training process, a technique that can also
reduce the data hunger of the method. To the best of the
authors’ knowledge, [251] were the first to include a physi-
cal concept in the training process of an NN used for DD
path-dependent material modeling; they enforce isotropy of
their CL in a soft manner by augmenting the training data-
set by rotated counterparts of existing data. The concept of
physics-informed ML in the incremental modeling of path-
dependent materials using NNs is recently receiving increas-
ing attention, with two recent works leading the way. First of
all, [252] propose using the Cholesky factor L of the tangent
stiffness matrix as the NN output instead of the stress. The
stress update is obtained by

Opp1 = L(£n+l’ L O-n)L(‘£n+1’ L O-n)T(‘€n+l - En) + C-

13)
The positive aspect of this formulation is that it implicitly
enforces the tangent stiffness matrix to be symmetric sem-
idefinite. Secondly, thermodynamics-based NNs (TANNS)
encode the underlying thermodynamic principles directly
into the networks [253, 254]. This is achieved by relying on

Fig.4 TANNS proposed by
[253]
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a dual potential formulation, consisting of the Helmholtz
free energy density F and the dissipation rate potential D,
from which the variables of interest can be derived in a ther-
modynamically consistent form. In the isothermal case, the
framework consists of two NNs, denoted as SNN P and sNNp.
The former is used to predict the increment of the internal
variables

AE = sNNg(g,,,,, A€, 0,,&,) (14)

The other network predicts the value of the Helmholtz free
energy density of the next time step

Fn+1 = SNNF(6n+1’§n+1) (15)

which can be used to obtain the stress update with

JF, . . . .
Cpp = ae"*‘. The TANN architecture is schematized in

n+l

Fig. 4. As a result of the (implicit) thermodynamic consist-
ency, the task of identifying the underlying pattern of ther-
modynamic laws no longer needs to be performed by the ML
tool.

A possibility to deal with path-dependence without
explicitly introducing internal variables is relying on ML
architectures that embed and describe internal states. In this
context, RNNs have been investigated in the literature for
plastic material modeling. The study in [255] is the first to
apply sequential NNs, specifically the Jordan network [256],
in order to learn the path-dependent stress—strain curve of
sand under consideration of a constant strain increment in a
triaxial state of stress. In contrast to the previous approaches,
the internal variables are here implicitly stored in the NN.
Based on investigations of [255] this type of NN offers bet-
ter results than simple NN for the application at hand. For
this reason, they utilize a network with seven inputs, includ-
ing the current stress and strain rates, while the stress state
resulting from the next strain increment defines two net-
work outputs. Some critical points of this paper are further
discussed in [257], including the issue that the network is
only applicable to a specific strain rate. The same network
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architecture is later used by [258] to model clay. The same
authors [259, 260] later improve upon this approach to build
a ML model for sand and gravel by (similarly to [227])
dividing the input space of a feature into two parts, in order
to train two different sequential NNs for the same dataset.
Instead of using Jordan networks, the studies in [261, 262]
employ Elman networks [263], i.e. another simple RNN,
for simulating and predicting the shear behavior of two
different soils. Simple RNN architectures are also used to
model unsaturated soils [264], clays [265] or sand [266]. In
[267] a sequential NN is employed for the three-dimensional
stress—strain relationship of sand under monotonic loading.
Different mapping techniques including quasi-sequential
mapping, sequential mapping, function fragmentation, and
function labeling for history-dependent material datasets
are compared in [268] and [269], where a hybrid quasi-
sequential approach (relying on function labeling) is found
to perform most proficiently. Later on, the author also tests
time-delay NN for history-dependent datasets [270].
Recently, other types of RNNs such as LSTMs and
GRUs have received more attention [99, 108-111, 271-275]
because they are able to be trained more reliably by avoid-
ing the vanishing/exploding gradients problems that are
associated with the earlier version of RNNs. Even though
these general DD frameworks for path-dependent materials
are conceptually similar to the early approach proposed by
[255], they are now predominantly used for three-dimen-
sional applications and also include other parametrizations
as input. E.g. the study in [107] describes the sequential
nature of plasticity using a GRU which takes the history
of spatially averaged strains, material properties for each
microstructural phase and the current time as input and
maps them to the predicted spatially averaged stress. Other
work includes [276], where an LSTM takes the strain history
over a sequence of times as a vectorial input as well as the
latent space data from three-dimensional crystallographic
orientation images using a CNN. The LSTM is then used to
predict the stress evolution. This idea is later refined by the
same authors [277] by relying on convolutional LSTMs to
resolve the stress evolution also spatially. In order to reduce
the reliance on user-chosen hyperparameters, [278] proposes
an approach based on RL that finds the optimal hyperparam-
eter settings (including the network architecture) of RNNs
for modeling path-dependent materials. Lastly, [279] defines
an adversarial training scheme based on input perturbations
that increases the prediction robustness of models trained
with RNNs (GRU specifically). A general problem associ-
ated with RNNs (such as LSTMs or GRU) in the training of
path-dependent plastic material behavior is the dependence
of these methods on the size of the increment. To overcome
this challenge, [280] proposes a new RNN architecture that
enforces self-consistency, i.e. their predictions converge
when the increment size is decreased. A different approach

is proposed in [281], which treats the material model predic-
tion as a mapping between two function spaces without the
need for time discretization.

As a remark, we could not find any ML path-dependent
material modeling approach based on RNNs that includes
physical concepts in the training procedure. This is definitely
an area where more work and development is necessary.
The work that comes the closest is the one in [282], where
a neural ODE framework is employed to model the stress
evolution. In contrast to RNNs, a neural ODE incorporates
time step scaling of the dynamics. Using this architecture as
an internal state variable model and relying on representa-
tion theory, the authors are able to build a ML model that
obeys physical principles, such as frame invariance and the
second law of thermodynamics.

Model-free approaches. The framework based on the
model-free paradigm [81] is more complicated when dealing
with path-dependent material behavior. In [283], the mate-
rial dataset is enlarged with internal variables. In [120] an
energy-based parametrization is proposed that augments the
phase space with the free energy and the dissipation, thereby
enforcing thermodynamic consistency at all times. Similar
approaches include [166, 284]. A different model-free idea
is studied in [285, 286], where the three-dimensional stress/
strain state is projected onto uniaxial tension/compression
data.

5.1.2 DD Plasticity Modeled After Elastoplasticity

Elastoplasticity, in contrast to hypoplasticity, is charac-
terized by modularity due to its clear distinction between
elastic and plastic constitutive responses, with historically
established assumptions for each of these components. In
classical modeling, elastoplasticity is based on a formula-
tion of the elastic response, a yield function description, an
assumption on the direction of the plastic flow, and phenom-
enological models for the hardening behavior. DD elasto-
plastic modeling exploits this modularity by choosing each
of these components (or subcomponents) to be either repre-
sented by a DD formulation or a classical phenomenological
model. The general framework is summarized in Fig. 5. In
contrast to the DD hypoplastic models, described earlier,
these models have both advantages and disadvantages. Some
of the advantages include

e More interpretability. The input—output mapping of DD
models is potentially easier to understand since each
model is used as a representation scheme for a specific
subproblem of the elastoplastic formulation.

e Less data is needed. DD submodels can be chosen in
areas where more data are available, while phenomeno-
logical models can represent the remaining components.
This allows to reduce the reliance on big data.
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Fig.5 Modular elastoplastic material modeling. The initial yielding can be fully DD or can separately include the equivalent stress measure and
the yield stress. Hardening components can e.g. include the deformation resistance or some form of hardening moduli. See [287] and [288]

e Shift to one-to-one mappings. DD hypoplastic models
intrinsically aim to find a consistent mapping for the
whole path-dependent stress evolution. This leads to a
one-to-many mapping problem which is solved e.g. with
RNNSs. On the other hand, DD elastoplastic models can
only use ML models for components that can be mod-
eled by simple one-to-one mappings, like yield function
representations which can be decoupled from the time
integration. Of course, this requires the access to data for
these specific subproblems.

e Simpler enforcement of thermodynamic consistency.
Since the majority of classical elastoplastic models were
designed to be thermodynamically consistent, replacing
single components of these models with specialized DD
solutions allows for easier enforcement of physical con-
straints compared to ML models for plasticity modeled
after hypoplasticity.

On the other hand, this modeling framework also has a
disadvantage:

e More constraints and assumptions. DD hypoplastic
models as presented before are based on a very limited
range of assumptions (such as the choice of the internal
variables) and are therefore models that can discover the
material behavior that underlies the training data. On the
other hand, elastoplastic modeling needs to make more
assumptions (e.g. the split between elastic and plastic
components) and is therefore more restrictive in its abil-
ity to discover unknown physical processes.

Uninterpretable ML approaches. A number of ML
approaches have been proposed that are modeled after
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elastoplasticity. In [289] both back stress and drag stress
are incrementally updated using independent NNs to
represent complex combined hardening laws under uni-
axial cyclic loading, while the elastic law and the yield
function are represented by traditional formulations.
[290] proposes an ML plasticity model that relies on the
representation theorem of scalar-valued functions. By
exploiting the modularity assumption, the authors define
an NN for the elastic response and a separate NN for the
flow rule, both of which can be treated as one-to-one
maps. This allows for physical concepts such as mate-
rial frame indifference and symmetry conditions to be
enforced implicitly. Another example is given by [291],
where established phenomenological models of the elas-
tic response, the yield function, the plastic flow direc-
tion, and the hardening modulus are combined to find
the best fit of a dataset through RL. In [292], a hybrid
formulation is proposed where the plastic flow and the
back stress evolution are represented by one NN, while
the yield function is given by a phenomenological model.
[293] assumes that the elastic response is given by a lin-
ear law, whereas a NN takes the equivalent stress as an
input to obtain the updated stress of the plastic region.
This allows for a smooth transition between elastic and
plastic behaviors. In [294], the linear elastic law and
equivalent stress formulation of the yield function are
phenomenologically assumed, while the deformation
resistance and the dilation angle between the deviatoric
and spherical parts of the normalized direction of flow
are trained by two separate NNs. [295] also splits the ML
model into elastic and plastic components; the elastic trial
stress is obtained from an NN which, if non-admissible,
is mapped back using an RNN formulation. An objective
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loss function that includes frame indifference concepts
is used for training. [296] replaces the general return
mapping framework with an NN that updates the pre-
dicted trial stresses. In a series of recent papers [100,
287, 297], the elastic law and the yield function evolution
are treated as separately trainable ML models. An NN-
based yield function is trained using a level-set hardening
framework whose evolution is dependent on an internal
variable. Other work concentrates on just finding a ML
representation of (parameterized) initial yield functions
[298-302], whereas the remaining components are given
by phenomenological models. [303] uses input convex
NN to enforce the ML yield function representation to
be convex. Hybrid frameworks that locally improve phe-
nomenological yield surfaces with ML models are inves-
tigated in [304, 305], with the latter enforcing physical
constraints. Different subproblems of elastoplasticity may
use NN representations, such as the deformation resist-
ance [306-316] or the isotropic hardening modulus [317].
Other works employ SVR [318, 319] in the same context.

Interpretable ML approaches Lately, interest is grow-
ing in deducing symbolic material models from data using
symbolic regression and sparse regression. The benefit
of symbolic regression and sparse regression is that the
models are expressed by short mathematical expres-
sions that only involve a limited number of terms. This
increases their computational efficiency, physical inter-
pretability, communicability, and calibratability. In the
context of elastoplasticity, this idea is followed by [299,
320, 321] who use symbolic regression and by [322] who
apply the sparse-regression-based EUCLID framework
to discover symbolic expressions for the yield function
and the hardening behavior from reaction force and full-
field displacement data, thus avoiding the use of labeled
stress—strain data pairs. In a similar fashion, but bypassing
the development of hand-crafted libraries, [197] sparsify
physics-augmented neural networks that are developed in
a modular fashion, to obtain compact expressions related
to yield function but also to isotropic and kinematic hard-
ening. In [323], EUCLID is extended to pressure-sensitive
and non-associated plasticity. In [324], the method is fur-
ther generalized to the framework of generalized standard
materials, i.e., a general framework which encompasses
elasticity, viscoelasticity, plasticity and viscoplasticity.

Model-free approaches In section 5.1.1, we have intro-
duced approaches that rely on the so-called model-free
approach to model plastic behavior directly on data of
a given dataset more akin to the hypoplastic modeling
approach. A different model-free elastoplastic-like tech-
nique is proposed in [325], where transition rules between
elastic and plastic responses are introduced which map to
different subsets of the data.

5.1.3 Summary

We conclude this section with the summary table in
Fig. 6, which attempts to categorize some of the reviewed
approaches based on the amount of data they need in input
and on the number and type of constraints they are designed
to satisfy. In general, a decreasing resort to constitutive mod-
eling constraints is expected to correlate to an increasing
need for data.

5.2 Viscoelasticity

One of the traditionally most challenging problems for con-
stitutive modeling is that of viscoelasticity. Several mecha-
nisms can be involved in the micromechanical processes
that govern the macroscopic viscoelastic response, and
correspondingly many characteristic timescales may have
to be considered. Linear viscoelastic models are used in
the regime of small deformations and are often represented
through a combination of linear springs and dashpots, such
as in the Maxwell, Kelvin-Voigt, Zener, and Generalized
Maxwell models. Their nonlinear counterparts can account
for nonlinear elastic contributions (such as those encoun-
tered in the context of hyperelasticity) and also nonlinear
evolution equations. In general, and similar to what was
discussed in the context of elastoplasticity, viscoelasticity
can be cast in term of external (or observable) and internal
variables. We can express the update of the stress o and the
internal variables & at time 7, | as

M e 8} = {00 St ) (16)

which, in contrast to plasticity, are not subject to any addi-
tional constraints. This makes the form of the equations
at hand similar in structure to the problem that an RNN
is designed to replicate. Namely, as the RNN works with
sequential data, the hidden state vector a,,, at time ¢,
depends on the value of the hidden state vector a,, at time £,,,
whereas the output vector y,, ; also depends on a,,, indica-
tive of the history dependence that is being captured. This
natural similarity has led to a lot of ML-enabled constitu-
tive modeling approaches in the context of viscoelasticity
to follow this general approach. The bulk of the literature
can be separated in two main categories, those that focus
on parameter estimation for known viscoelastic constitu-
tive models, and others that utilize different variants of NN
architectures for problems of different complexity. We begin
with the latter.

Uninterpretable ML approaches. In a rather simple set-
ting, but aiming to obtain CLs that generalize, the authors
in [327] utilize a simple NN architecture to obtain what
they refer to as a neural constitutive model for nonlinear
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Fig.6 Quantitative categoriza-
tion of DD modeling of (hypo-
and elasto-) plastic material
behavior. More available data
correlates to less need for con-
stitutive modeling constraints

viscoelasticity. The framework is also designed around the
question of data availability and it allows for learning of
rather simplified scalar-valued CLs from 1D creep test data,
focusing on the non-zero component of the stress tensor for
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the particular test. The network takes temperature and initial
stress level as additional inputs, aiming for further flexibility
of the predictions. In a similar fashion, [328] consider elastic
properties as additional inputs to the NN and aim to learn
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nanoindentation creep responses under fixed loading condi-
tions; however, these creep responses cannot be considered
as full CLs that could e.g. be used in a FEM simulation.
In the same year of [327] another paper [329], leveraging
expertise in NN-based rate-dependent and rate-independent
CLs, constructs a complete framework for a rate-dependent
NN-based CL for viscoelasticity. Here, the stress and the
strain are decomposed in volumetric and deviatoric com-
ponents and the NN takes as inputs the current value of
the strain and the values of stress and strain at the previous
increment. The approach is shown to work satisfactorily and
is also implemented in an Abaqus UMAT so that structural
problems can be tested. In their training data generation, the
authors discuss data augmentation based on symmetry to
train tensor-valued maps, and also obtain training data from
structural simulations.

Several papers focus on learning the response of 1D
experiments with ML approaches in the context of viscoe-
lasticity, but in their essence, they are simple extensions of
[327]. E.g., in [330] radial-basis-function NN are utilized to
learn the 1D dynamic response of thermoplastic elastomers,
where the specific network architecture is chosen to acceler-
ate the training process. More recently, [331] focuses on the
rate-dependent response of polypropylene; it utilizes simple
NN that take strain and temperature as input to learn the
1D large deformation response as a function of the loading
strain rate. A robot-assisted testing system is deployed to
generate large datasets, and Bayesian regularization is used
to identify the network parameters. [332] also focuses on
learning the creep response, in this case, optical glasses,
through an array of ML tools. The authors find these tools
beneficial in terms of extrapolation to extreme temperatures
compared to traditional phenomenological approaches.

From a different starting point, but still focusing on
the 1D case, [333] addresses the fundamentals of history-
dependent responses. Extending previous work where they
had developed a model with associative (short-term) and
hereditary (long-term) memory, inspired by a combination
of the Kelvin-Voigt and the Maxwell models, the authors
develop a new constitutive model with associative and hered-
itary memory as a system of integrodifferential equations.
They then show that this system of equations can be approxi-
mated by a simple NN. They train based on 1D experimen-
tal data and test on non-monotonic 1D loading paths. The
most interesting contribution of this work lies in the inherent
interpretability of the approach since a direct connection
is established between the NN architecture and the system
of integrodifferential equations at hand. An early model
proposed in [271] focuses on learning the time response of
rheological material models stemming from a fractional dif-
ferential equation using an RNN. A partial RNN is chosen,
where the signal flow occurs in the forward direction and the
fading memory is realized by internal feedback connections.

More recently, but in a similar fashion, [163] learns the solu-
tion of a specific boundary value problem with two non-
zero stress components and encodes their response with an
RNN. The work in [334] learns a fuzzy representation of the
stress—strain response with an RNN recovering a fractional
viscoelastic model, and [335] utilizes the RNN-based fuzzy
CLs in a fuzzy-FEM setting to solve structural problems. A
more recent work in the context of computational homogeni-
zation [336] establishes that the homogenized constitutive
response may be approximated by a RNN. As an additional
feature compared to previous approaches, a set of internal
variables discovered in the learning of the homogenization
procedure is tracked as a function of the history of the strain.
[337] extends the work of [21] to consider viscoelasticity
(focusing on materials with limited memory) by employing
tensor representation theorems for the deformation tensors
and for the rate of these tensors. By performing the train-
ing based on limited experiments corresponding to specific
deformation modes and by utilizing constrained GPR, the
trained material laws are shown to proficiently generalize
in the strain space and also with respect to the strain rate.

A multitude of works focus on ML or physics-informed
(in the style of PINNs) solutions of PDEs involving the vis-
coelastic response of solids [338, 339] but this is not the
focus of the review here. We only mention [340], which
deploys PINNSs to train viscoelastic NN-based CLs based on
limited sensor data by formulating a PDE-constrained opti-
mization problem. The NN-based viscoelastic CL embedded
in the structural optimization problem is not fundamentally
different from the one in [242].

Interpretable ML approaches. For applications of sym-
bolic regression in the context of viscoelasticity we refer to
[341] and more recently [342]. Further, the sparse-regres-
sion-based EUCLID framework, which utilizes a large
library of phenomenological models and unlabeled data,
is successfully used by [343] to identify linear viscoelastic
CLs. The same concept is extended in [324] to the theory
of generalized standard materials, which naturally includes
viscoelastic material behavior.

The approaches that focus on parameter estimation are
not covered in depth in this review. In [344], from thin cir-
cular plate bubble experiments with temperature effects,
and reducing the response to 1D, the material constants are
learned for the Christensen viscoelastic model. [345] aims to
optimize the viscoelastic response through additives; based
on experimental measurements, it calibrates the values of
the loss and storage moduli utilizing several ML approaches.
[346] fits the same parameters to compare to experimental
data using a Kelvin-Voigt model. In the context of mag-
netorheological elastomers, [347] suggests the use of NNs
and Extreme Learning Machines (feed-forward NNs with a
single hidden layer) to map shear strain and magnetic field to
storage and loss moduli. [348] uses GPR to fit the constants
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of a complex viscoelastic model based on experimental data;
even though the task is seemingly straightforward, unique-
ness is not guaranteed as the test data are only uniaxial and
monotonic.

Model-free approaches. In [283], the model-free approach
proposed for plasticity is also adapted to viscoelasticity by
relying on a differential representation of the material evolu-
tion history. The model is tested within a monodimensional
state space and applied to the analysis of truss structures.

5.3 Damage and Fracture

The loss of integrity of a structural component can be mod-
eled using different approaches depending on the process
responsible for the material degradation. In the following,
we distinguish between (i) diffuse damage, (ii) fracture, and
(iii) fatigue. Damage describes a gradual deterioration of the
material stiffness and/or strength without significant residual
deformations. Fracture entails the formation and propaga-
tion of a crack, i.e. a discontinuity, which evolves following
Irwin’s or Griffith’s criteria or extensions thereof. Note that
the evolution of a crack in a continuous body can also be
described using continuum damage models that allow for
the localization of the damage parameter in bands with a
limited but not vanishing thickness. Fatigue consists of the
nucleation and propagation of a crack at subcritical load
levels under repeated loading.

5.3.1 Diffuse Damage

The continuum damage mechanics approach pioneered by
Kachanov [349] aims at describing the gradual deteriora-
tion of the structural integrity of a material point when sub-
jected to some type of action (e.g., displacements, forces,
temperature changes, or aging). The main idea behind this
theory is that, at the macroscopic scale, the reduction of stiff-
ness and strength related to the material deterioration can
be condensed in a scalar or tensorial internal damage vari-
able. Often the onset of damage takes place after an initial
elastic regime, which is followed by a stress-softening phase
leading to an elasto-damage constitutive behavior. Since it
cannot be directly measured, the damage variable belongs
to the category of internal variables and, in the most com-
mon case, is assumed to be a scalar. Therefore, the related
CL can be written as

M, :{e, d}— o, (17)

where the damage variable d is governed by an often a priori
postulated evolution law of the type

M, {e q} d, subjected to d>0, (18)
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Here g is a vector collecting the set of mechanical and inter-
nal quantities governing damage evolution, while the non-
negativity constraint is assumed to fulfill the second law of
thermodynamics and takes the name of irreversibility condi-
tion. This condition is the major responsible for the history
dependence of the constitutive models accounting for mate-
rial damage and it constitutes one of the main difficulties in
the definition of a proper DD approach. On the other hand,
it is of primary importance since it allows for a physically
sound description of the unloading/reloading branches in
the material response.

In the following, we first provide an overview of the
most relevant DD approaches including identification prob-
lems and constitutive modeling using NNs, and model-free
approaches. Most studies deal with NNs where damage is
often implicitly accounted for while defining the CL and not
explicitly introduced as an internal variable. No interpretable
approaches are yet available.

Uninterpretable ML approaches. The earliest ML
approaches in continuum damage modeling are devoted
to parameter identification of available models. Although
this review does not focus specifically on them, we propose
here a brief overview due to their relevance in developing
DD approaches for damage. [350] identifies the parameters
of the Gurson-Tvergaard-Needelman (GTN) model using
a NN, which is trained using a set of load—displacement
curves from FEM computations. The trained NN receives
as input the experimental load—displacement curves and
outputs the material parameters, thus surrogating the solu-
tion of an inverse problem. Aware of the poor extrapola-
tion capabilities of the NN, the authors include in the cost
function a penalty term to avoid extrapolation outside the
range of the training data. Also, they point out that a reliable
identification of the full set of GTN model parameters is not
possible, hence, they restrict identification to a subset of the
total parameters that need to be selected a priori depending
on the material at hand. To extend the number of identi-
fied parameters, in [351] the same authors propose a differ-
ent identification method involving an NN to surrogate the
solution of the forward boundary value problem for a small
punch test. The NN is trained using FEM computations; it
receives as input the displacement and the GTN parameters
and it outputs the applied force. The parameter identification
for a new set of experimental load—displacement data is then
performed by adopting a successive quadratic programming
algorithm. Similar identification approaches are adopted
with minor modifications in other studies, e.g. [352].

The second class of approaches deals with the definition
of elasto-damaging CLs using different NN architectures.
[353] surrogates the cohesive traction-separation law at the
interface between concrete and steel using a NN trained
through a set of FEM simulations. The NN takes as input the
components of the interface separation vector and outputs
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the traction components. Hence, damage is not explicitly
introduced but only implicitly accounted for. Since the NN
is not informed by any physical requirement, the authors
enforce some basic features of the CL by partly substitut-
ing ad-hoc calibrated linear relationships to the NN predic-
tions. These include a vanishing traction value for vanishing
or very large separation values, i.e. close to the unloaded
state and to complete decohesion. Also, the obtained model
is not able to distinguish unloading/reloading states and
is thus limited to locally monotonic loading histories. In
[250] the same authors propose a ML constitutive model
for the concrete bulk material to be used in a multiscale
FEM framework. The approach involves the definition of a
NN trained with micro-scale FEM analyses to surrogate the
stress—strain law of the material, while an SVR algorithm
with an exponential kernel is used to detect the unloading/
reloading branches. The algorithm is formulated accord-
ing to a criterion similar to a limit surface whose extension
depends on a history variable defined as the maximum strain
reached during the loading history of a point. To exclude
any mesh dependence related to the underlying (implicit)
local damage approach, the size of the finite elements at the
macro-scale is used as an input in the NN. In turn, this calls
for a training set that includes data for different sizes of the
domain at the micro-scale. Although the formulation of the
approach is general, the authors illustrate its performance
only for 1D cases.

An ML-enhanced multiscale framework is also proposed
by [293, 294] to model elastoplastic damaging foams. In
[293], the authors surrogate the macroscopic stress—strain
relationship for proportional loading with a NN trained using
lower-scale FEM computations. The homogenized local
tangent stiffness tensor is computed directly by derivation
of the NN mapping and the cost function is complemented
with a penalty term to prevent large differences in the order
of magnitude of the neural weights. A different approach
is explored in [294], where the definitions of homogenized
limit surfaces, flow directions and stiffness deterioration
due to the (implicit) damage are ascribed to three different
NNs. In particular, the definition of a limit surface allows to
distinguish between the dissipative and elastic unloading/
reloading stages.

A multiscale framework to define the behavior of a dam-
aging poroelastic material is presented in [273], where three
scales (i.e., micro-, meso- and macro-) are accounted for.
The authors use LSTM-type RNNs to upscale the material
parameters between micro- and mesoscale and between
meso- and macro-scale. The NN are trained using discrete
element and finite element computations for the micro- and
mesoscale, respectively, while the analyses at the macro-
scale are performed using the FEM. The material models
at each scale are defined using directed graphs where the
relations between the various parameters involved are known

as physical or empirical relationships. Also in this case the
damage parameter is not explicitly defined but is implic-
itly considered in the CL. The adoption of RNNs makes the
model intrinsically history-dependent, thus allowing for easy
discrimination between different states, such as unloading/
reloading branches. Another addressed point is the objectiv-
ity of the material response given by the RNN, which is not
satisfied a priori. The authors propose a method to achieve
material objectivity based on a spectral representation of
the training data, which effectively reduces the deviations in
stresses and energy between different observer frames when
evaluating the same system.

Two different NNs are adopted in [354] to define the mac-
roscopic CL of a fiber/matrix composite material. The first
NN is used to surrogate the stress—strain relationship of the
material; also in this case the damage variable is not explic-
itly defined and the model does not include any unloading/
reloading criterion. The second network is used to identify if
the damage takes place in the fibers or in the matrix without
explicitly accounting for them in the simulation.

[355] uses NNs to surrogate the traction-separation law
between adjacent grain boundaries at different temperatures.
In particular, they adopt a standard NN to define the inter-
face secant stiffness, which is then multiplied by the sepa-
ration vector giving a ResNet-like CNN [356]. Differently
from an RNN, the proposed architecture is unable to process
temporal information and, hence, it can be used only for
monotonic loading history. On the other hand, the major
advantage of this approach compared to an RNN is that it
drastically limits the amount of data needed for training. The
authors illustrate the approach in 2D training of the NN by
using a dataset of molecular dynamics simulations. Also, a
procedure to optimize the NN architecture is proposed.

PINNSs are adopted by Haghighat et al. [357] to surro-
gate a coupled damage/plasticity model. The introduction
of physical and modeling constraints allows us to include in
the PINN conditions such as damage irreversibility, vanish-
ing stress for vanishing strain, and complete failure after a
critical damage value, and to automatically detect elastic
loading/unloading/reloading states. However, the approach
requires a very large amount of training data to achieve rea-
sonable accuracy.

Among the approaches that do not belong to the afore-
mentioned categories, [358] proposes a supervised CL dis-
covery approach exploiting directed graph theory to auto-
matically generate different models. The authors test the
proposed approach to obtain the traction-separation law of
a cohesive interface with implicit damage for 2D problems.
The approach requires the definition of the parameters that
possibly govern the CL and a set of rules that the relation-
ships between the various parameters must satisfy to create
a valid CL. The generation of a model takes the name of
game of model generation and each move during a game
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connects two parameters with a relationship until the input
parameters are connected with the outputs. The completed
model is then evaluated by assigning a score based on the
comparison between the model predictions and a set of
material observations. Unlike in [273], here the relationships
between the parameters are encoded by an RNN, which is
trained using a set of discrete element analyses. A deep RL
algorithm is used to iteratively improve the models game
after game, based on the evaluation of the probability that a
certain move (i.e., a connection between two parameters) is
selected by a gamer at a certain point of the game along with
its expected contribution to the final score. Probabilities of
moves and expected score contributions are predicted using
an NN enhanced by a Monte Carlo tree search algorithm.
A new move is then selected so as to maximize the final
model score. The major feature of this supervised approach
is that, once the game and a dataset of material observa-
tions are defined, no operator intervention is needed since
the algorithm is able to learn how to improve its predictive
capabilities from the previous games played. Also, the adop-
tion of an RNN ensures that the model history dependence
is included.

Model-free approaches. A model-free approach is
adopted in [359] to define the macroscopic behavior of
granular materials subjected to different loading conditions.
The material dataset, generated with the level-set discrete
element method, includes also a parametrization that allows
to describe the history dependence of the material behavior.
The definition of the latter is critical to obtain meaningful
results and the authors propose to use either the dissipated
energy or a set of internal variables known to satisfactorily
describe the microstructural arrangement of a granular mate-
rial. Both approaches give similar results but the method to
obtain the material dataset must be selected with particu-
lar care since it must allow for the definition of the desired
quantities.

5.3.2 Fracture

The propagation of a crack inside a solid can be described
by means of different fracture mechanics models depend-
ing on whether the material exhibits a linear or nonlinear
elastic or elastoplastic behavior. Here we will focus only on
linear-elastic fracture mechanics approaches since, to date,
the available literature about DD methods deals only with
this class of behavior. Hence, the available theories revolve
around Irwin’s or Griffith’s criteria and extensions thereof.
Hence, they call for the definition of a stress intensity factor
(SIF) or of an energy release rate that are functions of the
current size of the crack a. Also in this case the fulfillment
of the second law of thermodynamics calls for the introduc-
tion of an irreversibility condition on the crack size, namely
a>0.
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Uninterpretable ML approaches. One of the earliest
approaches is reported in [360, 361]. Here the authors use an
NN to solve problems involving a crack contained in a linear
elastic domain, considering or not the unilateral constraint
given by crack face contact. The definition of the weights
and of the activation functions is inspired by the variational
principle of energy minimization; the outputs are taken as
the displacements, the weights carry the information related
to the elastic properties of the material and the cost function
is the elastic energy of the system. Thus, this can be con-
sidered a prototype of the physics-informed DD approach.
The approach does not account for any propagation criterion
and is used to solve both direct and inverse problems. In for-
ward problems, the kinematic and static fields are computed
for a given external load, while the weights of the NN are
defined using FEM computations. The authors observe a
faster convergence of the constrained problem compared to
its unconstrained counterpart. For the constrained case, the
computational cost is lower than with FEM with singular
elements, while for the unconstrained case, the opposite is
true. In inverse (identification) problems, a set of displace-
ments is supplied to the algorithm and the elastic properties
of the material (i.e. the weights) are obtained following a
backpropagation solution scheme.

Different contributions deal with the computation of
the SIF for different geometries and boundary conditions
(see, e.g., [348, 362]). In particular, [362] proposes a NN
to compute the SIF for a micro-cantilever beam. Training
is performed using a set of FEM computations that is adap-
tively enriched through the targeted addition of sampling
points within the portion of the state space where less accu-
racy is expected. The accuracy is estimated pointwise as the
maximum deviation within thousands of trained NNs and
their average prediction. Although the method exploits the
linearity between load and SIF to achieve a more general
result, the results depend on the geometry considered during
training. The same applies to [348], where the critical SIF is
obtained for a Brazilian test. Here the authors also explore
the possibility of using ML approaches different than NN,
such as decision trees, random forest regression, and extra
regression trees, concluding that the latter two approaches
are more efficient than NNs.

An effective method to describe crack nucleation and
propagation using a damage parameter that localizes in
crack-like narrow bands is the phase-field approach to frac-
ture [363]. In this context, ML-related work has concen-
trated on the solution of the governing PDEs obtained from
the minimization of the phase-field energy functional. [364]
uses NN to surrogate the solution of these PDEs. Two dif-
ferent NNs are trained, one for the linear elastic bulk mate-
rial and the second for the evolution of the damage variable,
and they are embedded into a FEM code either together or
alone. The solution of phase-field fracture problems with an
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approach known as the deep Ritz method (DRM) [365] is
pursued in some recent studies [366—369]. Unlike PINNs,
for problems in which the governing PDEs stem from the
minimization of an energy functional, the DRM directly
minimizes the energy functional instead of the PDE residual.
The approach in [369] solves examples of crack initiation,
propagation, kinking, branching, and coalescence within one
single numerical setup. An operator learning approach [20],
namely variational DeepONets, has also been applied to pre-
dict the crack path in a problem involving crack propagation
in quasi-brittle materials [370]. The potential of all these
approaches is not to be applied to the solution of a single
boundary value problem, but rather to learn solutions to par-
ametric phase-field fracture models. In this setting, NNs can
be trained on a few realizations of the parameter space and
results can be inferred online for all other realizations, lever-
aging the true potential of the DRM and of neural operators.

An SVR approach based on a novel kernel function is
proposed in [371] to surrogate the solution of a phase-
field problem accounting for the stochastic distribution of
the material and geometry parameters. The pool of input
parameters includes the fracture and elastic properties of
the material and the point of application of the load, while
the geometry is considered deterministic. The SVR training
is performed through Monte Carlo sampling, using FEM
results where the material and geometry parameters are sam-
pled from a given statistical distribution and is enhanced
through a clustering technique.

Model-free approaches. A model-free approach based on
variational principles is proposed in [372], where the frac-
ture-related constitutive behavior is encoded into a dataset
of material observations including crack position a and dis-
sipated energy per unit surface (i.e., the fracture toughness).
The constraint set for the admissible state space involves
conditions encoding either a global or a local minimization
of the total energy of the system subjected to a crack irre-
versibility condition. The authors propose and discuss differ-
ent metrics defining the generalized distance and investigate
the effect of noise in the material dataset on the final results.
In [373] the approach is extended to rate-dependent fracture
mechanics. The authors show that some classical constitu-
tive assumptions, such as irreversibility or monotonicity, are
redundant in a model-free setting since they are implicitly
encoded in the material dataset. Note that both cases are
defined and tested for setups for which an analytical expres-
sion of the energy release rate is available.

5.3.3 Fatigue

Classic linear elastic fracture mechanics states that crack
propagation is triggered if a relevant quantity (either the SIF
or the energy release rate) reaches a certain critical value.
However, the experimental evidence demonstrates that, even

below the critical value, a crack can still propagate but to an
extent that becomes measurable only after the application of
several load cycles, giving rise to fatigue crack propagation.

To date, fatigue is still typically described using empiri-
cal laws calibrated on wide experimental datasets, i.e. in an
inherently DD fashion. The most prominent mathematical
description of the fatigue behavior that can be interpreted as
a CL is due to Paris [374] and reads
da "

i CAK™, 19)
where N is the cycle number, da/dN is the fatigue crack
growth rate, AK is the SIF range spanned by the crack tip in
a single load cycle, and C and m are two material parameters.

Uninterpretable ML approaches. In [375] the authors
use an NN to obtain the fatigue crack growth rate and the
remaining fatigue life given the applied load, the crack size,
and additional information commonly used to estimate the
fatigue life. This includes a pre-calibrated empirical function
that should mimic the role of AK and some easily accessible
experimental parameters, making this method more useful
for diagnostics than for modeling.

[376] adopts a Bayesian network approach to predict
the probability of activation of a certain slip plane and the
associated fatigue crack growth rate in body-centric cubic
polycrystal materials. The network is trained using crystal
plasticity computations and experimental data.

Model-free approaches. [373] illustrates that the model-
free approach for rate-dependent fracture mechanics can be
conveniently adapted to fatigue if the time variable is sub-
stituted by the number of cycles N. In this case, the dataset
of material observations is composed of crack growth rate-
driving force pairs, which replace (19). This approach is
able to automatically account for characteristic features of
the fatigue behavior, such as the presence of a threshold for
AK below which no fatigue effects are triggered.

5.4 Multiphysics

Many processes of engineering interest involve multiple
physical mechanisms coupled with the mechanical behavior.
In multiphysics CLs, mechanical quantities such as strains
and stresses are insufficient to describe the material state;
additional quantities related to the e.g. thermal, hydraulic, or
chemical responses may need to be additionally considered.
The complexity of the experiments involving multiphysics
processes makes the identification of the related CLs even
more challenging than in solid mechanics. More specifically,
identifying appropriate material descriptors and establishing
their functional dependence on the material state in the mul-
tiphysics process while satisfying the laws of thermodynam-
ics and accurately modeling experimental data is a complex
endeavor. ML algorithms may offer a promising approach to
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accelerate the discovery or surrogation of material models
in such scenarios. To limit the scope of the following review
to a manageable extent, we focus here on multiphysics prob-
lems relevant to geomechanics and do not cover multiphysics
CLs arising e.g. in thermo-, electro-, or magnetomechanics.
Examples of using DD models for the latter can be found in
[377, 378].

The strain—stress state of the material in a multiphysics
setting may be influenced by a variety of material descrip-
tors, such as the void ratio in geomaterials. The behavior
of these descriptors, as well as the strain and stress states
themselves, may be influenced by other unknown fields, such
as fluid pressure. Moreover, these material descriptors may
interact with each other, and their causal relationships are
not always clear. To review recent developments in mul-
tiphysics constitutive modeling, we can classify problems
into three types: (1) problems in which the material descrip-
tors and their causal relationships are known, but the func-
tional form of the CL is unknown; (2) problems in which the
material descriptors are known, but their causal relationships
and functional form are unknown; and (3) problems in which
the material descriptors, their causal relationships, and their
functional form are all unknown.

In the first category, traditionally, models are handcrafted
based on experimental or simulation data. Advances in com-
putational multiscale methods such as FE? [379, 380] do
not need any functional forms for the constitutive model,
and they can be built based on first principles of thermody-
namics to automatically avoid physical violations. Although
these computational approaches are accurate, they usually
suffer from high computational cost already in the mechan-
ical context, and even more so in a multiphysics setting.
This is because not only the iterations between two scales
are required but also different physics dictate distinct tem-
poral and/or spatial resolutions. In this regard, finding a
functional form may seem to be a more computationally
efficient approach, which additionally enjoys the advantages
connected to interpretability.

5.4.1 Methods to Define the Functional Form of the CL

Uninterpretable ML approaches. [381] employs fully con-
nected NNs to model macro-scale parameters for an iso-
tropic poroelastic medium, without enforcing physics con-
straints in their surrogate modeling approach. In a related
work [382], a similar framework is employed for the aniso-
tropic finite-strain regime, where microstructure descriptors
such as porosity and Poisson’s ratio are used to learn mac-
roscopic homogenized values. This approach bypasses the
need for computationally expensive fine-scale simulations in
concurrent multiscale frameworks. [109] develops a surro-
gate model using GRU and temporal CNNs, which predicts
the homogenized stress tensor and the temperature based on
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micro-scale specimen information and loading conditions.
Their approach does not take into account thermodynamics
rules. [383] utilizes surrogate constitutive models to simu-
late mass transfer in dual-porosity materials at the macro-
scale, reducing the computational cost in classical multiscale
simulations. They demonstrate the effectiveness of autore-
gressive NNs, which have the advantage of being easier to
implement and train compared to RNNs. [384] investigates
the use of surrogate modeling for unsaturated soils; complex
retention curves with different wet and dry branches and
anisotropic permeability models are determined in a purely
DD manner using fine-scale simulations. Additionally, the
study proposes an automated framework based on RL to
identify the best set of hyperparameters.

Overall, surrogate modeling approaches based on NNs or
other types of differentiable approximators (e.g., Gaussian
processes) have the advantage of being scalable for high-
dimensional problems with different types of algebraic and
ODE constraints.

Interpretable ML approaches. In multiphysics CLs, the
material behavior can be expressed by algebraic equations,
in simple cases, or in general, by a system of coupled high-
dimensional ODEs or PDEs. Although symbolic regres-
sion methods find the explicit form of these equations, they
become more and more computationally inefficient when
the number of material descriptors grows, or the desired
functional form is not algebraic, i.e., it is given by ODEs or
PDEs [385]. Moreover, incorporating physics (e.g. thermo-
dynamic) constraints in their discrete search algorithm may
further increase the computational cost. Recently, methods
based on RL have been developed to improve the computa-
tional burden of the symbolic regression search space [386].
Based on the current challenges regarding symbolic regres-
sion, sparse regression appears as a promising option for
interpretable ML approaches; surprisingly, to the best of our
knowledge, it has received very little attention so far. A first
approach in this direction has been suggested by [387], who
propose a polyconvex neural network-based thermoelastic
framework that achieves interpretability by sparsifying the
number of parameters in large neural networks down to only
a few remaining ones.

Model-free approaches. [388] extends the non-paramet-
ric distance-minimization paradigm (i.e. the model-free
approach) to poroelasticity problems. It is assumed that the
material descriptors for a coupled poroelastic problem are
known (based on the effective stress principle and Darcy’s
law), but no functional forms are assumed for the relations
between strain, effective stress, pore pressure, and Darcy’s
velocity. This approach minimizes assumptions on the mod-
eling part. However, the model-free approach is known to be
data-hungry [83, 84], and this feature becomes even more
prominent in a multiphysics setting. To address this issue,
the authors introduce variationally consistent multi-fidelity
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formulations where a model-based method for one field is
hybridized by an entirely DD assumption for the other field
based on data availability and quality. Due to the discrete
nature of the distance-minimization problem, the brute-force
approach for searching in the data (at inference) becomes
inefficient for a multiphysics problem. They develop an effi-
cient data structure based on kd-trees to reduce the compu-
tational burden exponentially.

5.4.2 Methods to Define the Causal Relationship Between
Descriptors and Functional form of the CL

In this category, the problem is more challenging since not
only the functional form is unknown, but also it is not known
how the material descriptors impact each other. The cau-
sality between material descriptors may help to find more
generalizable functional forms. More importantly, it helps
explain the underlying physical process, which is crucial
for a mechanics problem involving e.g. failure or fracture.
[358] formulates such a problem as a directed acyclic graph
(DAG) problem where the nodes are material descriptors,
and the goal is to find edges that lead to an information flow
best describing the input—output relationships. In this work,
each edge uses an RNN model to incorporate any possible
path-dependence which is common in plasticity and visco-
elasticity problems. The approach does not include thermo-
dynamics constraints which could be addressed by recent
ideas from the PINN community [18, 100, 253]. Moreover,
it is assumed that the DAG structure remains constant, which
may not apply to other path-dependent problems.

5.4.3 Methods to Define the Material Descriptors, Their
Causal Relationships, and the Functional form
of the CL

The complexity further increases in the third category since
the set of plausible material descriptors is not known a
priori. Historically, mechanicians have encountered several
such issues; e.g., the existence of the fabric tensor as an
additional material descriptor for describing the plasticity
of granular materials was not apparent based on classical
theories and assumptions [389]. Therefore, it could be ben-
eficial to design an intelligent system to find the optimal
material descriptors based on the material state informa-
tion. [390] proposes a probabilistic framework to find the
plausible set of material descriptors with their associated
confidence interval. They provide a systematic way to incor-
porate uncertainty in causal discovery and predictions. They
study a granular system and show that their framework can
recover some classical theories regarding the fabric tensor.
One limitation of their work is the static assumption on the
DAG structure which could be subjected to change at dif-
ferent loading states.

6 Evaluation, Verification, Validation
and Their Challenges

6.1 Performance Metrics

To evaluate the performance of different DD approaches, a
set of unbiased performance metrics is necessary. A major
problem in DD for mechanics compared to other more
established applications is the lack of standardized tests
to evaluate performance and even an agreement on metrics
to be used for that evaluation. Here, even though our goal
is not to establish or solidify such consent, we try to guide
the development of a framework around this task. To this
end, we propose the following metrics:

e Accuracy — the quality of the predictions, within the
training data, defined by a metric that measures dis-
crepancy. This error is generally established by sam-
pling errors between ground-truth data and predictions.

e Precision — the sensitivity of the predictions with
respect to the amount of available data and their noise,
the sampling method adopted and the distance between
data points in the training set.

¢ Physical/mechanical consistency — the ability to ful-
fill basic physical/mechanical laws or principles with
a general validity, namely not related to specific con-
stitutive modeling choices. Examples are objectivity,
material stability, energy balance, vanishing energy and
stress associated with an undeformed state, and positive
variation of the energy for increasing external loads.

e Interpretability — the amount of information that can
be understood by modelers and decision makers from
a calibrated DD constitutive model.

¢ Generalization ability — the ability of the approach to
provide accurate predictions outside of the training set.
This has as a prerequisite the efficient interpolation on
unseen training data, but more importantly, it evaluates
the accuracy of the model in extrapolation outside the
training domain.

e Cost/performance trade-off — the time and computa-
tional cost required to complete the workflow for pre-
dictions. This includes the time and computational cost
required to train, validate, test, and verify the models,
the time required to run the code as well as the demand
for data to ensure the required level of accuracy, preci-
sion, and generalization.

¢ Robustness — the sensitivity of the above list of metrics
with respect to the amount of available data, noise in
the data, the distance between the predicted loading
path and the calibration data, and the repeatability and
reproducibility of the performance metrics.

@ Springer



J.N. Fuhg et al.

e Stability — the sensitivity of the above list of met-
rics to perturbations of the free parameters of the DD
approach.

The information provided by the proposed metrics also helps
to evaluate some specific characteristics of the obtained DD
CL in relation to the required employment. A non-compre-
hensive list is provided as follows

e Fidelity — the level of accuracy, precision, and generali-
zation achieved in performing a given task (e.g., optimize
a component, predict the behavior of a material under
given conditions, better understand the physics behind
a studied phenomenon). Depending on the applications
it can encompass or not the evaluation of the physical/
mechanical consistency.

¢ Confidence — the precision that can be attained in repro-
ducing the phenomenon of interest with a certain accu-
racy given a set of calibration data. This metric essen-
tially quantifies the uncertainty related to the obtained
CL.

e Data hunger — the amount of training data needed to
reach the desired level of fidelity.

e Numerical behavior — possibility to integrate the
obtained model in a given numerical framework, its
associated cost/performance ratio, and convergence with
respect to the spatial and, if relevant, temporal discretiza-
tion.

¢ Reliability/reproducibility — the sensitivity of the met-
rics with respect to the source of the calibration data
(e.g., different codes for the simulations or laboratories
for the physical tests) and of the training code adopted.

¢ Trustworthiness — a combination of all the metrics rel-
evant to the task at hand that give a synthetic global score
of the performances of the DD CL.

Whenever adopting a DD approach to reproduce a CL it
should be good practice to define which important metrics
apply to the case/application at hand and how the operator
intends to objectively measure them. Moreover, the defini-
tion of the performance metrics should assist in comparing
either different approaches to model the same or similar phe-
nomena (e.g., uninterpretable vs. interpretable approaches
or comparison between different NNs) or the same approach
but on different set of training data (e.g., same material but
different experiments, or different materials but same phe-
nomenon of interest). Another field of application of the
performance metrics is the validation and verification task.
In particular, the definition of the metrics should provide an
unbiased and objective way to assess whether the obtained
CL is able to reproduce the behavior under investigation and
how much the obtained results can be trusted. This topic is
better analyzed in the following section.
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6.2 Verification and Validation

Verification and validation (V &V) is necessary for a con-
fident quantification of engineering predictions, especially
in the context of making decisions in high-consequence
scenarios. Generally, in the computational solid mechanics
community verification addresses the process of confirming
that a mathematical model is correctly represented by its
governing equations, appropriately discretized in a numeri-
cal setting, and that the solution complies with relevant
accuracy requirements [391]. Conversely, validation refers
to quantifying the degree of accuracy to which a model rep-
resents the investigated phenomenon [392]. In the follow-
ing, we broadly ignore V &V from a software development
perspective (we refer to [393, 394] for more information)
and assume that the code is error-free and well implemented.
Also, we refrain from proposing or summarizing guidelines
about how to verify numerical convergence and stability of
a code, for which we refer to [395, 396].

When compared to traditional phenomenological mod-
eling, where the constitutive parameters of the material
models are calibrated using experimental data, DD consti-
tutive modeling involves an additional layer of difficulty. In
particular, the decision logic of a DD approach is oftentimes
opaque even to their designers, therefore a careful, separate,
and independent V &V process to ensure they are reliable
and safe to use must be performed.

In the context of the present work, the V &V process of
DD constitutive modeling involves the same steps as those
of traditional phenomenological constitutive models (c.f.
[397-399]), however, in light of big data availability, the
possible black-box character and presence of many param-
eters of some ML approaches, different additional caveats
have to be accounted for. Past work [400, 401] has also con-
sidered the simplicity of the model as a selection criterion
through the development of OPAL, the Occam-Plausibil-
ity Algorithm, which is a Bayesian framework developed
to address uncertainties in parameters, data, and model
selection. The general workflow of the process is inspired
by [394] and is schematized in Fig. 7. The validation tests
and their outcome including the UQ analysis constitute the
ground truth obtained from the experimental side (which
could come from a simulation or a physical experiment),
while the right branch starting from the definition of the cali-
bration data highlights the development and employment of
the computational model. The general V &V process starts
with the definition of the process or phenomenon of interest
and the identification of the relevant or available variables
and parameters (which possibly constitute the inputs of the
CL) and the Quantities of Interest (Qol) which we aim to
predict (namely, the output of the CL). Then, a conceptual
model has to be developed that includes the general objec-
tive, a target accuracy between modeled and true Qol, as
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Fig.7 Flow chart of model development, verification and validation of a computational model involving DD constitutive models

well as necessary physical and mechanical assumptions of
the model. In this phase, the independent governing vari-
ables whose effect should be included and investigated must
be defined (e.g., which environmental parameters should be
included as variables). Based on the conceptual model, an
experiments design should be carried out so as to allow for,
on the one hand, the collection of the calibration data, and
on the other hand the definition of the validation tests.
Once the input and output quantities (variables/param-
eters and Qols) are collected and their UQ is performed, they
can be adopted for the training of the selected DD approach,
following a supervised (labeled inputs and outputs from the

calibration data are used) or unsupervised approach (only
the inputs are used). At this point, the trained DD approach
becomes a candidate CL and it must be verified in order
to assess if and how well it is able to represent the calibra-
tion data and the physics behind it given a set of desirable
properties measured by a selection of performance metrics.
In this context, the accuracy and sensitivity to the training
data are of utmost importance as well as the physical consist-
ency checks, the fidelity (given the task for which the CL
is needed), and the reliability. Therefore, if the verification
is not satisfied the operator must revise and improve all or
some of the steps from the definition of the calibration data
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to the selection and training of the DD approach until the
verification test is passed. At that moment, the approach
(intended as a mathematical description of a set of data)
can be considered representative of a material behavior and,
hence, a CL.

Once the verified CL is complemented with governing
equations, boundary (and, possibly, initial) conditions, and
the geometry a digital twin of the investigated process is cre-
ated. Note that, in the case of a model-free approach the cali-
bration data are directly injected into the digital twin while
avoiding their manipulation. This also implies the absence of
any CL in terms of a mathematical description. The digital
twin can be used for the validation, which is assessed with
respect to (at least) two aspects: (i) the capability of the
digital twin to reproduce the behavior of real components
(namely, the fidelity) and (ii) the numerical behavior of the
model. In the former case, the digital twin is adapted to the
validation experiments by prescribing the proper geometry
and boundary conditions and then the outcomes of the vali-
dation tests and of the digital twin simulations are quanti-
tatively compared to determine if the trained CL is able to
reproduce the phenomenon of interest. We remark that it is
here particularly important to adopt independent validation
tests, namely tests whose results cannot be represented by
simple combinations of the calibration data. In other words,
the validation data should also test the capacity of the CL
to reproduce loading paths not included in the calibration
dataset. Particular attention should be paid here in testing the
possible overfitting of the data [402—404], an issue that can
lead to inconsistent predictions of the material behavior. In
this phase, it is also important to perform a UQ to estimate
the confidence of the approach to replicate real behaviors
and compare it to the one of the experiments. Concerning
the numerical behavior it is important to evaluate how the
DD approach integrates into the numerical solver (e.g., pos-
sibility of obtaining a consistent tangent matrix, smoothness
of the operators) and the overall convergence behavior of the
model. For both aspects, a set of metrics should be defined
to assess the success or rejection of the validation procedure.
In the negative case, the whole process should be revised,
including the definition of the digital twin and the numerical
framework thereof.

Even though less developed than in computational
mechanics, V &V in the context of DD model development
has been pushed more into the focus lately [405-407] due
to the rising popularity of DD even in high-consequence
applications. In the following, we briefly revise the available
contributions in the context of the V &V of DD approaches.
As a general comment, we remark that the available litera-
ture deals mostly with NNs, while other approaches are less
investigated.

DD verification. In principle verifying a DD model
requires checking that the model is able to broadly represent
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its intended use case and does not behave unexpectedly (e.g.,
blow-up, undefined output for certain inputs) under a broad
range of circumstances. Also, the operator should test the
sensitivity of the model to both free parameters of the train-
ing process as well as calibration data quantity and quality.
Due to the general opaqueness (black-box nature) of many
DD models, corner cases are generally more unpredictable
than for traditional phenomenological modeling. Therefore,
for practitioners, it is crucial to answer the question as to
which specific range of input values the model should be
verified against. In principle, the latter should be sufficient to
explore all the possible practical cases of interest, however,
if this is not possible, the range of input tested should always
be documented and made available.

Another common type of ML verification is the check for
local robustness of a model, see e.g. [408] for a definition.
Essentially a small perturbation in the input should only lead
to a small change in the output. Adversarial attacks [409]
are typically employed in the literature to provide evidence
that the model is robust when no provable guarantee is avail-
able. Other critical verification properties include the output
reachability property, see e.g. [410], i.e. if we know that a
given stress component value can reach a certain magnitude
we need to ensure that our ML output is able to represent
this number. For more information on and general defini-
tions of verification techniques for ML models (specifically,
fully connected NNs), we refer to [411]. In the context of
model-free approaches, verification usually takes the form
of a convergence study with respect to the number of points
available in the material dataset and to the noise amplitude
[81, 372, 412].

Verification of ML models has seen less attention in the
literature compared to their validation.

DD validation. Validation describes the process of
assessing if an approach reproduces the phenomenon of
interest in a broad range of applications and its predictive
capabilities. Compared to classical ML tasks, this is espe-
cially important for constitutive modeling of solids due to
the low/limited data availability often encountered in this
area and the frequent need to extrapolate outside of the train-
ing domain. In the following we review only the aspects
of validation that are specific to DD approaches for CLs;
for the classical aspects (e.g., comparison with validation
tests and convergence) we refer to the available literature
[393-396], which deals particularly with the issue of over-
parametrization for the ML approaches involving many fit-
ting parameters.

In contrast to phenomenological modeling, over-para-
metrization is a typical problem in ML constitutive mod-
eling, hence, validating an ML model often requires checks
for overfitting because it is a major sign of subpar generali-
zation behavior. Various strategies have been proposed in
the literature to either detect overfitting or prevent it, see



A Review on Data-Driven Constitutive Laws for Solids

[402, 403] for more information. The modification of an
ML algorithm so as to prevent overfitting is often referred
to as regularization [404]. In DD constitutive modeling, the
following explicit or implicit regularization methods have
been proposed:

e Early stopping. The most common type of validation
is built upon validation datasets that can be used for
implicit regularization by early stopping (stopping train-
ing when the error on the validation dataset increases, as
this is a sign of overfitting to the training dataset) [413].
Splitting the dataset into training and validation compo-
nents is not always straightforward especially if time- or
history-dependent material behavior is studied [414].

e [P regularization. L regularization in general adds a term
to the training loss function that penalizes the complexity
of the trainable parameters of the ML model. Due to the
reduction of model complexity, it is hoped to avoid over-
fitting and reduce the generalization error. Common reg-
ularization techniques of this type include Ridge regres-
sion or L?-regularization [415], which is used to make the
amplitude of the trainable parameters of a model smaller
[416]. In an adjusted form L?-regularization can appear
as "weight decay" in ML when using stochastic gradient
descent schemes [417]. LP-regression with) < p < 1can
also be used to enforce sparsity on a model, which can
reduce the number of trainable parameters and the sensi-
tivity to noise while making the model more interpretable
[32, 34, 322]. The special case p = 1is known as Lasso
regression [33]. Other methods such as elastic net [418]
use a combination of Ridge and Lasso.

e Dilution and Dropout. When training NN, Dilution and
Dropout are used to randomly drop units and relevant
connections from the NNs during training. This prevents
weights from co-adapting too much, thereby aiding gen-
eralization and avoiding overfitting [419]. This technique
can generally be employed to regularize any ML model
and was e.g. employed by [175] to obtain DD models for
anisotropic hyperelasticity.

e Physics-based regularization. The generalization error of
a DD model can be vastly improved by either implicitly
or explicitly adding physics constraints that underlie the
data to the model. In constitutive modeling, this can take
the form of implicitly enforcing polyconvexity [177, 420]
of hyperelastic laws, convexity of yield functions [303] or
thermodynamic consistency of time- and history-depend-
ent material models [288, 421].

e Adversarial ML. Originally developed to prevent model
exploitation against attacks, adversarial training, i.e.
training on intentionally misleading or perturbed data,
can help the model to generalize better and become more
robust [422]. This includes schemes such as weight per-
turbation [423] or training on perturbed inputs which

are commonly referred to as adversarial examples [424].
[279] uses this technique to improve the generalization
performance of an elastoplastic material model trained
by an RNN.

e Post-hoc explainability. Black-box models, e.g. those
based on NN, can be validated after the training pro-
cess has ended by trying to produce useful approxima-
tions of the decision logic of the model that correspond
to understandable/interpretable representations. This
process typically involves the generation of a second
(post-hoc) model that is used to explain the behavior of
the first black-box model. This can e.g. be achieved by
pruning the model [425], e.g. using parameter reduction
techniques, or training an interpretable model e.g. with
symbolic or polynomial regression. The latter has e.g.
been deployed in [426] for modeling plasticity.

Even though many different ML validation techniques have
been introduced to counteract overfitting and help improve
generalization, one of the open questions in the field is how
ML tools can be certified [427]. There is a lack of general
metrics that specify at which point an ML model can be
trusted, i.e. how interpretable/trustworthy it needs to be.
Furthermore, benchmarks have to be established to tell if a
model can be deemed safe enough to be used even in high-
risk applications.

7 Conclusions

At this point, it is important to distill the main findings of
this journey in constitutive modeling and to outline our
view of the successes, open issues, and opportunities that
lie ahead. Phenomenological constitutive approaches are
by definition based on observations, making them in some
sense the original DD models, but contrary to some of their
more modern counterparts they are also interpretable, able to
generalize, and not prone to overfitting. Borrowing some lan-
guage from the ML community, the archetype in mechanics
for phenomenological constitutive modeling approaches has
been to use simple experiments that result in homogeneous
stress states (e.g. uniaxial, biaxial, simple shear) as “train-
ing" data and to use structural responses that include inho-
mogeneous fields as “validation”. Even though these analyti-
cal approaches often lack expressivity, the strict enforcement
of thermodynamic constraints, and balance laws, as well as
the incorporation of mechanistic insight allow these models
to extrapolate to unseen stress states and be useful and trust-
worthy for safety-critical predictive calculations in structural
engineering as well as in other disciplines. As downsides of
these successes, the development of classical phenomeno-
logical models requires specialized domain knowledge and
a substantial conceptual effort; already the selection of the
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most suitable model among available options, along with
its calibration, necessitates tedious and time-consuming
trial-and-error procedures, which are a significant obstacle
towards material innovation in many engineering fields.

From our standpoint, DD constitutive modeling
approaches, through the introduction of new computational
tools, have the potential to: 1) accommodate the utilization
of larger datasets from modern experimental techniques
and assist in the interpretation of the data, 2) enhance the
flexibility in the exploration and utilization of the modeling
space to best interpret the data; 3) simplify the utilization of
multifidelity and multimodal information (e.g. merge experi-
mental and computational data), 4) automate the connection
from data to predictive simulations streamlining the nec-
essary infrastructure, 5) enable multiscale calculations, as
well as 6) encode information for material variability as a
first step towards uncertainty quantification and reliability
analysis.

As the second wave of DD constitutive modeling
approaches is reaching a stage of maturation beyond ini-
tial exploratory attempts, it is becoming clear that a way to
maintain the benefits of phenomenological modeling while
developing and utilizing expressive and automated DD
approaches is to take full advantage of a long and rich his-
tory of insightful mechanistic research formalized through
what we have denoted throughout the paper as physics con-
straints. We have discussed several examples, all over dif-
ferent classes of DD constitutive models, where successes
in terms of robustness, interpretability, generalization,
and overall trustworthiness are gained by enforcing such
constraints.

Even though some promising results have been recorded,
there are still many open challenges. One of them is the
seamless integration of DD approaches in the existing
infrastructure of advanced experimental mechanics on the
one hand, and of established computational engineering on
the other hand. Experimental approaches based on modern
imaging such as DIC or DVC rely on complex correlation
algorithms that, starting from raw data such as grey level
fields, infer full-field displacement information that can
be directly utilized in learning tasks (e.g. DD discovery
of interpretable CLs, or training of NN-based DD CLs).
In principle, an integration between correlation and learn-
ing algorithms could reduce the accumulation of errors
and streamline the process leading to the establishment of
DD CLs from this type of experimental data. At the other
end of the process, discovered or trained CLs need to be
integrated with traditional computational mechanics tools
such as finite element solvers, in order to be readily used by
engineering practitioners in the solution of boundary value
problems. Automatic differentiation, which is a key tool
for this purpose, often leads to a decrease in computational
performance over non-linear finite element solvers with
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hard-coded algorithms (e.g. in plasticity when using return
mapping algorithms). Note also that error measurements
which commonly indicate the success of a DD approach
are not sufficient to guarantee the convergence of non-linear
finite element solvers embedding DD constitutive models.
To this end, thorough testing of these models in a FEM set-
ting is necessary.

For path-dependent material behavior, an interesting task
(and one that so far has not been sufficiently explored) is the
discovery of underlying irreversible mechanisms and corre-
sponding variables (e.g. hardening variables) directly from
data. Also, sampling becomes significantly more complex
and restricted from experimental protocols, as the learning
task focuses on objects that depend on internal variables
(e.g. yield function).

Additionally, we should strive for DD constitutive models
to be robust in a low-data setting (contrary to the ongoing
trends in computer science), as one could envision access
to limited experimental samples and also limited computa-
tional resources, especially as multiscale problems become
more complex and path-dependent behaviors are considered.
In principle, already available DD approaches are able to
discover CLs on a one-shot basis, i.e. using only one test.
Clearly, the success of this approach needs a sufficiently
complex test geometry and a sufficiently comprehensive
test method (e.g. including loading and unloading stages,
possibly at different rates). Thus, the optimal design of test
methods and specimen geometries to guarantee identifiabil-
ity (especially critical for highly expressive models) could
deliver important contributions in this respect and is still
largely unexplored. In all these endeavors, UQ is expected
to play a major role. Fundamental questions related e.g. to
the amount and quality of data needed to deliver a DD model
(or several competing models) of target uncertainty, and to
the uncertainty of the outcomes of downstream tasks such as
the solution of non-linear problems embedding DD CLs can
only be answered in a probabilistic framework.

Finally, tasks such as the curation of large datasets along
with corresponding benchmark problems should be estab-
lished as a way to evaluate constitutive DD approaches
against the criteria that we have defined in this work. Spe-
cifically, here we suggest starting with two open datasets
for DD constitutive approaches in the context of hypere-
lasticity. The first focuses on RVE-generated data (in the
context of computational homogenization) for a composite
microstructure sampled uniformly in a hypersphere of the
components of the deformation gradient and also includes
some specific loading paths up to larger deformations as a
means to test generalization. To connect with experiments
that do not produce labeled data pairs, the second dataset
and benchmark should correspond to full-field displacement
data and reaction forces for a specific geometry and bound-
ary value problem for training (computationally generated
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through FEM), and a complementary dataset from another
geometry and boundary value problem to validate the DD
constitutive model. More work needs to be done on this front
and the community can only benefit by establishing similar
benchmarks for more complex, path-dependent problems.

Acknowledgements MF, PC and LDL acknowledge support from
the Swiss National Science Foundation (SNF), project number
200021_204316 “Unsupervised data-driven discovery of material
laws”. JF and NB gratefully acknowledge support by the Air Force
Office of Scientific Research under award number FA9550-22-1-0075.
GAP and NB were supported by the SciAl Center, and funded by the
Office of Naval Research (ONR), under Grant Number NO0014-23-
1-2729. WS, BB and NNV are supported by the National Science
Foundation under grant contracts CMMI-1846875 and the Depart-
ment of Energy, National Nuclear Security Administration, Predictive
Science Academic Alliance Program (PSAAP) under Award Number
DE-NA0003962.

Author Contributions The authors confirm contribution to the paper as
follows: JF, NB, WS, and LDL work conceptualization; NB, WS, and
LDL funding acquisition; JF, NB, GAP, BB, WS, NNV, MF, PC and
LDL draft manuscript preparation and editing; all authors reviewed the
manuscript and approved submission.

Data Availability No datasets were generated or analysed during the
current study.

Declarations

Conflict of interest The authors declare no Conflict of interest.

References

1. Young T (1807) A course of lectures on natural philosophy and
the mechanical arts. Taylor and Walton, Luton

2. Truesdell C, Noll W (1965) The non-linear field theories of
mechanics. In: The non-linear field theories of mechanics.
Springer, Berlin. pp 1-579

3. Holzapfel AG (2000) Nonlinear solid mechanics II. Springer,
Berlin

4. Simo JC, Hughes TJ (2006) Computational inelasticity, vol 7.
Springer, Berlin

5. Souza Neto EA, Peric D, Owen DR (2011) Computational meth-
ods for plasticity: theory and applications. Wiley, New York

6. Sutton MA (2013) Computer vision-based, noncontacting defor-
mation measurements in mechanics: a generational transforma-
tion. Appl Mech Rev. https://doi.org/10.1115/1.4024984

7. Sutton MA, Hild F (2015) Recent advances and perspectives in
digital image correlation. Exp Mech 55(1):1-8. https://doi.org/
10.1007/s11340-015-9991-6

8. Withers PJ, Bouman C, Carmignato S, Cnudde V, Grimaldi D,
Hagen CK, Maire E, Manley M, Du Plessis A, Stock SR (2021)
X-ray computed tomography. Nat Rev Methods Primers 1(1):18.
https://doi.org/10.1038/543586-021-00015-4

9. Yang Z, Ren W, Sharma R, McDonald S, Mostafavi M, Ver-
tyagina Y, Marrow TJ (2017) In-situ X-ray computed tomogra-
phy characterisation of 3d fracture evolution and image-based
numerical homogenisation of concrete. Cement Concr Compos
75:74-83. https://doi.org/10.1016/j.cemconcomp.2016.10.001

10. Carrara P, Wu T, Kruse R, Lorenzis LD (2016) Towards multi-

scale modeling of the interaction between transport and fracture

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

in concrete. RILEM Lett 1:94-101. https://doi.org/10.21809/
rilemtechlett

Leclerc H, Périé JN, Roux S, Hild F (2011) Voxel-scale digital
volume correlation. Exp Mech 51(4):479-490. https://doi.org/
10.1007/s11340-010-9407-6

Mendoza A, Neggers J, Hild F, Roux S (2019) Complete mechan-
ical regularization applied to digital image and volume correla-
tion. Comput Methods Appl Mech Eng 355:27-43. https://doi.
org/10.1016/j.cma.2019.06.005

Pierron F, Grédiac M (2021) Towards material testing 2.0. A
review of test design for identification of constitutive parameters
from full-field measurements. Strain 57(1):1-22. https://doi.org/
10.1111/str.12370

Pierron F (2023) Material testing 2.0: a brief review. Strain
2022:1-20. https://doi.org/10.1111/str.12434

Schmidt M, Lipson H (2009) Distilling free-form natural laws
from experimental data. Science 324(5923):81-85. https://doi.
org/10.1126/science.1165893

Brunton SL, Proctor JL, Kutz JN (2016) Discovering governing
equations from data by sparse identification of nonlinear dynami-
cal systems. Proc Natl Acad Sci 113(15):3932-3937

Lagaris IE, Likas A, Fotiadis DI (1998) Artificial neural net-
works for solving ordinary and partial differential equations.
IEEE Trans Neural Netw 9(5):987-1000

Raissi M, Perdikaris P, Karniadakis GE (2019) Physics-informed
neural networks: a deep learning framework for solving forward
and inverse problems involving nonlinear partial differential
equations. J Comput Phys 378:686-707

Liu X, Tao F, Yu W (2020) A neural network enhanced system
for learning nonlinear constitutive law and failure initiation cri-
terion of composites using indirectly measurable data. Compos
Struct 252:112658. https://doi.org/10.1016/j.compstruct.2020.
112658

Lu L, Jin P, Pang G, Zhang Z, Karniadakis GE (2021) Learning
nonlinear operators via Deeponet based on the universal approxi-
mation theorem of operators. Nat Mach Intell 3(3):218-229
Fuhg JN, Bouklas N (2022) On physics-informed data-driven iso-
tropic and anisotropic constitutive models through probabilistic
machine learning and space-filling sampling. Comput Methods
Appl Mech Eng 394:114915

Kissas G, Mishra S, Chatzi E, De Lorenzis L (2024) The lan-
guage of hyperelastic materials. Comput Methods Appl Mech
Eng 428:117053

Koza J (1994) Genetic programming as a means for programming
computers by natural selection. Stat Comput. https://doi.org/10.
1007/BF00175355

Billard L, Diday E (2002) Symbolic regression analysis. In:
Classification, clustering, and data analysis. Springer, Berlin. pp
281-288

Wang Y, Wagner N, Rondinelli JM (2019) Symbolic regression
in materials science. MRS Commun 13:793-805

Searson DP, Leahy DE, Willis MJ (2010) GPTIPS: an open
source genetic programming toolbox for multigene symbolic
regression. Citeseer, Hong Kong, p 4

Dubcédkova R (2011) Eureqa: software review. Springer, Berlin
Stephens T (2016) Genetic programming in python, with a
Scikit-learn inspired API: gplearn.

Udrescu S-M, Tegmark M (2020) Ai Feynman: a physics-
inspired method for symbolic regression. Sci Adv 6(16):2631
La Cava W, Orzechowski P, Burlacu B, Franga FO, Virgolin M,
Jin Y, Kommenda M, Moore JH (2021) Contemporary symbolic
regression methods and their relative performance. arXiv:2107.
14351

Santosa F, Symes WW (1986) Linear inversion of band-limited
reflection seismograms. SIAM J Sci Stat Comput 7(4):1307-
1330. https://doi.org/10.1137/0907087

@ Springer


https://doi.org/10.1115/1.4024984
https://doi.org/10.1007/s11340-015-9991-6
https://doi.org/10.1007/s11340-015-9991-6
https://doi.org/10.1038/s43586-021-00015-4
https://doi.org/10.1016/j.cemconcomp.2016.10.001
https://doi.org/10.21809/rilemtechlett
https://doi.org/10.21809/rilemtechlett
https://doi.org/10.1007/s11340-010-9407-6
https://doi.org/10.1007/s11340-010-9407-6
https://doi.org/10.1016/j.cma.2019.06.005
https://doi.org/10.1016/j.cma.2019.06.005
https://doi.org/10.1111/str.12370
https://doi.org/10.1111/str.12370
https://doi.org/10.1111/str.12434
https://doi.org/10.1126/science.1165893
https://doi.org/10.1126/science.1165893
https://doi.org/10.1016/j.compstruct.2020.112658
https://doi.org/10.1016/j.compstruct.2020.112658
https://doi.org/10.1007/BF00175355
https://doi.org/10.1007/BF00175355
http://arxiv.org/abs/2107.14351
http://arxiv.org/abs/2107.14351
https://doi.org/10.1137/0907087

J.N. Fuhg et al.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

Frank LE, Friedman JH (1993) A statistical view of some
chemometrics regression tools. Technometrics 35(2):109-135
Tibshirani R (1996) Regression shrinkage and selection via the
lasso. J R Stat Soc Ser B (Methodol) 58(1):267-288

Flaschel M, Kumar S, De Lorenzis L (2021) Unsupervised
discovery of interpretable hyperelastic constitutive laws. Com-
put Methods Appl Mech Eng 381:113852. https://doi.org/10.
1016/j.cma.2021.113852

Flaschel M (2023) Automated discovery of material models in
continuum solid mechanics. PhD thesis, ETH Zurich. https://
doi.org/10.3929/ETHZ-B-000602750

Wang Z, Estrada JB, Arruda EM, Garikipati K (2021) Inference
of deformation mechanisms and constitutive response of soft
material surrogates of biological tissue by full-field charac-
terization and data-driven variational system identification. J
Mech Phys Solids 153:104474. https://doi.org/10.1016/j.jmps.
2021.104474

Sherstinsky A (2020) Fundamentals of recurrent neural net-
work (RNN) and long short-term memory (LSTM) network.
Physica D 404:132306

Nosouhian S, Nosouhian F, Khoshouei AK (2021) A review
of recurrent neural network architecture for sequence learning:
comparison between LSTM and GRU

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez
AN, Kaiser L., Polosukhin I (2017) Attention is all you need.
Adv Neural Inf Process Syst 30

Alzubaidi L, Zhang J, Humaidi AJ, Al-Dujaili A, Duan Y, Al-
Shamma O, Santamaria J, Fadhel MA, Al-Amidie M, Farhan L
(2021) Review of deep learning: concepts, CNN architectures,
challenges, applications, future directions. J Big Data 8:1-74
Wang X, Girshick R, Gupta A, He K (2018) Non-local neural
networks. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. pp 7794-7803

Zhou J, Cui G, Hu S, Zhang Z, Yang C, Liu Z, Wang L, Li C,
Sun M (2020) Graph neural networks: a review of methods and
applications. AI Open 1:57-81

Goodfellow I, Bengio Y, Courville A, Bengio Y (2016) Deep
learning, vol 1. MIT Press, Cambridge

Baydin AG, Pearlmutter BA, Radul AA, Siskind JM (2018)
Automatic differentiation in machine learning: a survey. J
Mach Learn Res 18

Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin
M, Ghemawat S, Irving G, Isard M et al (2016) Tensorflow: a
system for large-scale machine learning. In: 12th {USENIX}
symposium on operating systems design and implementation
({OSDI1} 16). pp 265-283

Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G,
Killeen T, Lin Z, Gimelshein N, Antiga L et al (2019) Pytorch:
an imperative style, high-performance deep learning library.
Adv Neural Inf Process Syst 32:8026-8037

Frostig R, Johnson MJ, Leary C (2018) Compiling machine
learning programs via high-level tracing. Syst Mach Learn 4(9)
Hornik K, Stinchcombe M, White H (1989) Multilayer feed-
forward networks are universal approximators. Neural Netw
2(5):359-366

Lu Z, Pu H, Wang F, Hu Z, Wang L (2017) The expressive
power of neural networks: a view from the width. In: Proceed-
ings of the 31st international conference on neural information
processing systems. pp 6232-6240

Lampinen J, Vehtari A (2001) Bayesian approach for neural
networks-review and case studies. Neural Netw 14(3):257-274
Swiler LP, Gulian M, Frankel AL, Safta C, Jakeman JD
(2020) A survey of constrained gaussian process regression:
approaches and implementation challenges. J] Mach Learn
Model Comput 1(2)

@ Springer

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

7.

Arulkumaran K, Deisenroth MP, Brundage M, Bharath AA
(2017) Deep reinforcement learning: a brief survey. IEEE Signal
Process Mag 34(6):26-38

Clifton J, Laber E (2020) Q-learning: theory and applications.
Annu Rev Stat Appl 7:279-301

Grondman I, Busoniu L, Lopes GA, Babuska R (2012) A survey
of actor-critic reinforcement learning: standard and natural policy
gradients. IEEE Trans Syst Man Cybern Part C 42(6):1291-1307
Sutton RS (1991) Dyna, an integrated architecture for learning,
planning, and reacting. ACM Sigart Bull 2(4):160-163

Silver D, Hubert T, Schrittwieser J, Antonoglou I, Lai M, Guez
A, Lanctot M, Sifre L, Kumaran D, Graepel T et al (2018) A gen-
eral reinforcement learning algorithm that masters chess, shogi,
and go through self-play. Science 362(6419):1140-1144
Hearst MA, Dumais ST, Osuna E, Platt J, Scholkopf B (1998)
Support vector machines. IEEE Intell Syst Appl 13(4):18-28
Hofmann M (2006) Support vector machines-kernels and the
kernel trick. Notes 26(3):1-16

Chang C-C, Lin C-J (2011) LIBSVM: a library for support vector
machines. ACM Trans Intell Syst Technol 2(3):1-27

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B,
Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Van-
derplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duch-
esnay E (2011) Scikit-learn: machine learning in Python. J] Mach
Learn Res 12:2825-2830

Smola AJ, Scholkopf B (2004) A tutorial on support vector
regression. Stat Comput 14(3):199-222

Awad M, Khanna R (2015) Support vector regression. In: Effi-
cient learning machines. Springer, Berlin. pp 67-80

Lauer F, Bloch G (2008) Incorporating prior knowledge in sup-
port vector regression. Mach Learn 70(1):89—-118

Guyon I, Gunn S, Nikravesh M, Zadeh LA (2008) Feature extrac-
tion: foundations and applications, vol 207. Springer, Berlin
Jolliffe IT, Cadima J (2016) Principal component analy-
sis: a review and recent developments. Philos Trans R Soc A
374(2065):20150202

Bank D, Koenigstein N, Giryes R (2023) Autoencoders. In:
Machine learning for data science handbook: data mining and
knowledge discovery handbook. pp 353-374

Zhang N, Ding S, Zhang J, Xue Y (2018) An overview on
restricted boltzmann machines. Neurocomputing 275:1186-1199
Kingma DP, Welling M (2013) Auto-encoding variational bayes.
arXiv:1312.6114

Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley
D, Ozair S, Courville A, Bengio Y (2020) Generative adversarial
networks. Commun ACM 63(11):139-144

Dinh L, Sohl-Dickstein J, Bengio S (2016) Density estimation
using real NVP. arXiv:1605.08803

Croitoru F-A, Hondru V, Ionescu RT, Shah M (2023) Diffusion
models in vision: a survey. IEEE Trans Pattern Anal Mach Intell
Padmanabha GA, Zabaras N (2021) Solving inverse problems
using conditional invertible neural networks. J Comput Phys
433:110194

Di Mattia F, Galeone P, De Simoni M, Ghelfi E (2019) A survey
on gans for anomaly detection. arXiv:1906.11632

Korb KB, Nicholson AE (2010) Bayesian artificial intelligence.
CRC Press, Boca Raton

Rasmussen CE (2003) Gaussian processes in machine learning.
In: Summer school on machine learning. Springer, Berlin. pp
63-71

Lophaven SN, Nielsen HB, Sgndergaard J et al (2002) DACE: a
Matlab Kriging toolbox, vol 2. Citeseer

Roustant O, Ginsbourger D, Deville Y (2012) Dicekriging,
diceoptim: two R packages for the analysis of computer experi-
ments by kriging-based metamodeling and optimization. J Stat
Softw 51:1-55


https://doi.org/10.1016/j.cma.2021.113852
https://doi.org/10.1016/j.cma.2021.113852
https://doi.org/10.3929/ETHZ-B-000602750
https://doi.org/10.3929/ETHZ-B-000602750
https://doi.org/10.1016/j.jmps.2021.104474
https://doi.org/10.1016/j.jmps.2021.104474
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1605.08803
http://arxiv.org/abs/1906.11632

A Review on Data-Driven Constitutive Laws for Solids

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

Gardner JR, Pleiss G, Bindel D, Weinberger KQ, Wilson AG
(2018) Gpytorch: blackbox matrix-matrix gaussian process
inference with GPU acceleration. arXiv:1809.11165

Liu H, Ong Y-S, Shen X, Cai J (2020) When gaussian process
meets big data: a review of scalable gps. IEEE Trans Neural
Netw Learn Syst 31(11):4405-4423

James G, Witten D, Hastie T, Tibshirani R (2013) An introduc-
tion to statistical learning, vol 112. Springer, Berlin
Kirchdoerfer T, Ortiz M (2016) Data-driven computational
mechanics. Comput Methods Appl Mech Eng 304:81-101
Carrara P, Ortiz M, De Lorenzis L (2022) Model-free fracture
mechanics and fatigue. In: Current trends and open problems
in computational mechanics. Springer, Berlin. pp 75-82

He X, He Q, Chen J-S, Sinha U, Sinha S (2020) Physics-con-
strained local convexity data-driven modeling of anisotropic
nonlinear elastic solids. Data-Centric Engineering 1
Bahmani B, Sun W (2022) Manifold embedding data-driven
mechanics. J] Mech Phys Solids 166:104927

Montéans FJ, Chinesta F, Gomez-Bombarelli R, Kutz JN (2019)
Data-driven modeling and learning in science and engineering.
Comptes Rendus Mécanique 347(11):845-855

Chinesta F, Cueto E, Abisset-Chavanne E, Duval JL, El Khaldi
F (2020) Virtual, digital and hybrid twins: a new paradigm
in data-based engineering and engineered data. Arch Comput
Methods Eng 27(1):105-134

Liu X, Tian S, Tao F, Du H, Yu W (2021) Machine learning-
assisted modeling of composite materials and structures: a
review. In: AIAA Scitech 2021 Forum. p 2023

Peng GC, Alber M, Tepole AB, Cannon WR, De S, Dura-Ber-
nal S, Garikipati K, Karniadakis G, Lytton WW, Perdikaris P
et al (2021) Multiscale modeling meets machine learning: what
can we learn? Arch Comput Methods Eng 28(3):1017-1037
Kumar S, Kochmann DM (2022) What machine learning can
do for computational solid mechanics. In: Aldakheel F, Hudo-
bivnik B, Soleimani M, Wessels H, Weilenfels C, Marino
M (eds) Current trends and open problems in computational
mechanics. Springer, Cham. pp 275-285. https://doi.org/10.
1007/978-3-030-87312-7_27

Guo K, Yang Z, Yu CH, Buehler MJ (2021) Artificial intelli-
gence and machine learning in design of mechanical materials.
Materials Horizons

Mosavi A, Rabczuk T, Varkonyi-Koczy AR (2018) Reviewing
the novel machine learning tools for materials design. In: Luca
D, Sirghi L, Costin C (eds) Recent advances in technology
research and education, vol 660. Springer, Cham. pp 50-58.
https://doi.org/10.1007/978-3-319-67459-9_7 . Series Title:
Advances in Intelligent Systems and Computing. http://link.
springer.com/10.1007/978-3-319-67459-9_7

Bock FE, Aydin RC, Cyron CJ, Huber N, Kalidindi SR, Kluse-
mann B (2019) A review of the application of machine learning
and data mining approaches in continuum materials mechanics.
Front Mater 6:110

Suh C, Fare C, Warren JA, Pyzer-Knapp EO (2020) Evolving
the materials genome: how machine learning is fueling the
next generation of materials discovery. Annu Rev Mater Res
50:1-25

Huang J, Liew J, Ademiloye A, Liew K (2020) Artificial intel-
ligence in materials modeling and design. Arch Comput Methods
Eng 1-15

Morgan D, Jacobs R (2020) Opportunities and challenges for
machine learning in materials science. Annu Rev Mater Res
50:71-103

Neggers J, Allix O, Hild F, Roux S (2018) Big data in experi-
mental mechanics and model order reduction: today’s challenges
and tomorrow’s opportunities. Arch Comput Methods Eng
25(1):143-164

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

Brodnik N, Muir C, Tulshibagwale N, Rossin J, Echlin M, Hamel
C, Kramer S, Pollock T, Kiser J, Smith C et al (2023) Perspec-
tive: machine learning in experimental solid mechanics. ] Mech
Phys Solids 173:105231

Tepole AB, Zhang J, Gomez H (2022) Data-driven methods in
biomechanics. J Biomech Eng 144(12):120301

Qu T, Di S, Feng Y, Wang M, Zhao T (2021) Towards data-
driven constitutive modelling for granular materials via micro-
mechanics-informed deep learning. Int J Plast 144:103046
Vlassis NN, Sun W (2021) Sobolev training of thermodynamic-
informed neural networks for interpretable elasto-plasticity mod-
els with level set hardening. Comput Methods Appl Mech Eng
377:113695

Fuhg JN, Bohm C, Bouklas N, Fau A, Wriggers P, Marino M
(2021) Model-data-driven constitutive responses: application to
a multiscale computational framework. Int J Eng Sci 167:103522.
https://doi.org/10.1016/j.ijengsci.2021.103522

Crombecq K, Laermans E, Dhaene T (2011) Efficient space-
filling and non-collapsing sequential design strategies for simu-
lation-based modeling. Eur J Oper Res 214(3):683-696

Stein M (1987) Large sample properties of simulations using
latin hypercube sampling. Technometrics 29(2):143-151

Lu X, Giovanis DG, Yvonnet J, Papadopoulos V, Detrez F, Bai
J (2019) A data-driven computational homogenization method
based on neural networks for the nonlinear anisotropic electrical
response of graphene/polymer nanocomposites. Comput Mech
64(2):307-321

Feng N, Zhang G, Khandelwal K (2022) Finite strain Fe, analysis
with data-driven homogenization using deep neural networks.
Comput Struct 263:106742

Fuhg JN, Bouklas N, Jones RE (2022) Learning hyperelastic ani-
sotropy from data via a tensor basis neural network. J Mech Phys
Solids 168:105022. https://doi.org/10.1016/j.jmps.2022.105022
Mozaffar M, Bostanabad R, Chen W, Ehmann K, Cao J, Bessa
M (2019) Deep learning predicts path-dependent plasticity. Proc
Natl Acad Sci 116(52):26414-26420

Gorji MB, Mozaffar M, Heidenreich JN, Cao J, Mohr D (2020)
On the potential of recurrent neural networks for modeling path
dependent plasticity. J Mech Phys Solids 103972

Abueidda DW, Koric S, Sobh NA, Sehitoglu H (2021) Deep
learning for plasticity and thermo-viscoplasticity. Int J Plast
136:102852

Bonatti C, Berisha B, Mohr D (2022) From CP-FFT to CP-RNN:
recurrent neural network surrogate model of crystal plasticity. Int
J Plasticity 103430

Wu L, Kilingar NG, Noels L et al (2020) A recurrent neural net-
work-accelerated multi-scale model for elasto-plastic heterogene-
ous materials subjected to random cyclic and non-proportional
loading paths. Comput Methods Appl Mech Eng 369:113234
Logarzo HJ, Capuano G, Rimoli JJ (2021) Smart constitutive
laws: Inelastic homogenization through machine learning. Com-
put Methods Appl Mech Eng 373:113482

Settles B (2009) Active learning literature survey. University of
California, Santa Cruz

Liu H, Ong Y-S, CaiJ (2018) A survey of adaptive sampling for
global metamodeling in support of simulation-based complex
engineering design. Struct Multidiscip Optim 57(1):393-416
Fuhg JN, Fau A, Nackenhorst U (2020) State-of-the-art and com-
parative review of adaptive sampling methods for kriging. Arch
Comput Methods Eng 1-59

Knap J, Barton N, Hornung R, Arsenlis A, Becker R, Jefferson D
(2008) Adaptive sampling in hierarchical simulation. Int J] Numer
Methods Eng 76(4):572-600

Leiter KW, Barnes BC, Becker R, Knap J (2018) Accelerated
scale-bridging through adaptive surrogate model evaluation. J
Comput Sci 27:91-106

@ Springer


http://arxiv.org/abs/1809.11165
https://doi.org/10.1007/978-3-030-87312-7_27
https://doi.org/10.1007/978-3-030-87312-7_27
https://doi.org/10.1007/978-3-319-67459-9_7
http://link.springer.com/10.1007/978-3-319-67459-9_7
http://link.springer.com/10.1007/978-3-319-67459-9_7
https://doi.org/10.1016/j.ijengsci.2021.103522
https://doi.org/10.1016/j.jmps.2022.105022

J.N. Fuhg et al.

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

Rocha I, Kerfriden P, Meer F (2021) On-the-fly construction of
surrogate constitutive models for concurrent multiscale mechani-
cal analysis through probabilistic machine learning. J Comput
Phys X 9:100083

Kalina KA, Linden L, Brummund J, Késtner M (2022) FeAM
an efficient data-driven multiscale approach based on physics-
constrained neural networks and automated data mining. arXiv:
2207.01045

Karapiperis K, Ortiz M, Andrade JE (2021) Data-driven nonlocal
mechanics: discovering the internal length scales of materials.
Comput Methods Appl Mech Eng 386:114039

Roderick M, MacGlashan J, Tellex S (2017) Implementing the
deep g-network. arXiv:1711.07478

Tiong T, Saad I, Teo KTK, Lago H (2020) Deep reinforcement
learning with robust deep deterministic policy gradient. In: 2020
2nd international conference on electrical, control and instrumen-
tation engineering (ICECIE). IEEE, pp 1-5

Volpp M, Frohlich LP, Fischer K, Doerr A, Falkner S, Hutter F,
Daniel C (2019) Meta-learning acquisition functions for transfer
learning in bayesian optimization. arXiv:1904.02642

Zhang Z, Zohren S, Stephen R (2020) Deep reinforcement learn-
ing for trading. J Financ Data Sci

Kalashnikov D, Irpan A, Pastor P, Ibarz J, Herzog A, Jang E,
Quillen D, Holly E, Kalakrishnan M, Vanhoucke V, et al. (2018)
QT-OPT: scalable deep reinforcement learning for vision-based
robotic manipulation. arXiv:1806.10293

Duan Y, Chen X, Houthooft R, Schulman J, Abbeel P (2016)
Benchmarking deep reinforcement learning for continuous con-
trol. In: International conference on machine learning. PMLR,
pp 1329-1338

Villarreal R, Vlassis NN, Phan NN, Catanach TA, Jones RE,
Trask NA, Kramer SL, Sun W (2023) Design of experiments
for the calibration of history-dependent models via deep rein-
forcement learning and an enhanced kalman filter. Comput Mech
72(1):95-124

Wang K, Sun W, Du Q (2021) A non-cooperative meta-modeling
game for automated third-party calibrating, validating and fal-
sifying constitutive laws with parallelized adversarial attacks.
Comput Methods Appl Mech Eng 373:113514

Yvonnet J, Gonzalez D, He Q-C (2009) Numerically explicit
potentials for the homogenization of nonlinear elastic hetero-
geneous materials. Comput Methods Appl Mech Eng 198(33—
36):2723-2737. https://doi.org/10.1016/j.cma.2009.03.017

Le B, Yvonnet J, He Q-C (2015) Computational homogenization
of nonlinear elastic materials using neural networks. Int ] Numer
Methods Eng 104(12):1061-1084

Fritzen F, Ferndndez M, Larsson F (2019) On-the-fly adaptivity
for nonlinear twoscale simulations using artificial neural net-
works and reduced order modeling. Front Mater 6:75. https://
doi.org/10.3389/fmats.2019.00075

Liu Z, Wu C, Koishi M (2019) A deep material network for
multiscale topology learning and accelerated nonlinear modeling
of heterogeneous materials. Comput Methods Appl Mech Eng
345:1138-1168

Liu Z, Wu C (2019) Exploring the 3d architectures of deep mate-
rial network in data-driven multiscale mechanics. J Mech Phys
Solids 127:20-46

Liu Z, Wu CT, Koishi M (2019) Transfer learning of deep
material network for seamless structure-property predic-
tions. Comput Mech 64(2):451-465. https://doi.org/10.1007/
s00466-019-01704-4

Gajek S, Schneider M, Bohlke T (2020) On the micromechanics
of deep material networks. J Mech Phys Solids 142:103984
Gajek S, Schneider M, Bohlke T (2021) An FE-DMN method
for the multiscale analysis of short fiber reinforced plastic

@ Springer

137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

147.

148.

149.

150.

151.

152.

components. Comput Methods Appl Mech Eng 384:113952.
https://doi.org/10.1016/j.cma.2021.113952

Nguyen VD, Noels L (2021) Interaction-based material network:
a general framework for (porous) microstructured materials.
Comput Methods Appl Mech Eng. https://doi.org/10.1016/j.cma.
2021.114300

Nguyen VD, Noels L (2022) Micromechanics-based material
networks revisited from the interaction viewpoint; robust and
efficient implementation for multi-phase composites. Eur J Mech
A Solids 91:104384. https://doi.org/10.1016/j.euromechsol.2021.
104384

Man H, Furukawa T (2011) Neural network constitutive model-
ling for non-linear characterization of anisotropic materials. Int
J Numer Methods Eng 85(8):939-957

Furukawa T, Michopoulos JG, Kelly DW (2008) Elastic char-
acterization of laminated composites based on multiaxial tests.
Compos Struct 86(1-3):269-278. https://doi.org/10.1016/].
compstruct.2008.03.043

Huang DZ, Xu K, Farhat C, Darve E (2020) Learning constitutive
relations from indirect observations using deep neural networks.
J Comput Phys 416:109491. https://doi.org/10.1016/j.jcp.2020.
109491

Liu X, Tao F, Du H, Yu W, Xu K (2020) Learning nonlinear con-
stitutive laws using neural network models based on indirectly
measurable data. J Appl Mech 87(8):081003. https://doi.org/10.
1115/1.4047036

Liu Z, Bessa M, Liu WK (2016) Self-consistent clustering analy-
sis: an efficient multi-scale scheme for inelastic heterogeneous
materials. Comput Methods Appl Mech Eng 306:319-341
Waulfinghoff S, Cavaliere F, Reese S (2018) Model order reduc-
tion of nonlinear homogenization problems using a Hashin-
Shtrikman type finite element method. Comput Methods Appl
Mech Eng 330:149-179. https://doi.org/10.1016/j.cma.2017.10.
019

Schneider M (2019) On the mathematical foundations of the self-
consistent clustering analysis for non-linear materials at small
strains. Comput Methods Appl Mech Eng 354:783-801. https:/
doi.org/10.1016/j.cma.2019.06.003

Bessa MA, Bostanabad R, Liu Z, Hu A, Apley DW, Brinson C,
Chen W, Liu WK (2017) A framework for data-driven analysis of
materials under uncertainty: countering the curse of dimensional-
ity. Comput Methods Appl Mech Eng 320:633-667

Liu Z, Fleming M, Liu WK (2018) Microstructural material
database for self-consistent clustering analysis of elastoplastic
strain softening materials. Comput Methods Appl Mech Eng
330:547-577

Yu C, Kafka OL, Liu WK (2019) Self-consistent clustering anal-
ysis for multiscale modeling at finite strains. Comput Methods
Appl Mech Eng 349:339-359

Zhang L, Tang S, Yu C, Zhu X, Liu WK (2019) Fast calcula-
tion of interaction tensors in clustering-based homogenization.
Comput Mech 64(2):351-364

Cavaliere F, Reese S, Wulfinghoff S (2020) Efficient two-scale
simulations of engineering structures using the Hashin-Shtrik-
man type finite element method. Comput Mech 65(1):159-175.
https://doi.org/10.1007/s00466-019-01758-4

Jaworek D, Waimann J, Gierden C, Wulfinghoff S, Reese S
(2020) A Hashin-Shtrikman type semi-analytical homogeniza-
tion procedure in multiscale modeling to account for coupled
problems. Technische Mechanik. https://doi.org/10.24352/UB.
OVGU-2020-012 . Artwork Size: 0,41 MB Medium: application/
pdf Publisher: Otto von Guericke University Library, Magde-
burg, Germany.

Castrogiovanni A, Marfia S, Auricchio F, Sacco E (2021)
TFA and HS based homogenization techniques for nonlinear


http://arxiv.org/abs/2207.01045
http://arxiv.org/abs/2207.01045
http://arxiv.org/abs/1711.07478
http://arxiv.org/abs/1904.02642
http://arxiv.org/abs/1806.10293
https://doi.org/10.1016/j.cma.2009.03.017
https://doi.org/10.3389/fmats.2019.00075
https://doi.org/10.3389/fmats.2019.00075
https://doi.org/10.1007/s00466-019-01704-4
https://doi.org/10.1007/s00466-019-01704-4
https://doi.org/10.1016/j.cma.2021.113952
https://doi.org/10.1016/j.cma.2021.114300
https://doi.org/10.1016/j.cma.2021.114300
https://doi.org/10.1016/j.euromechsol.2021.104384
https://doi.org/10.1016/j.euromechsol.2021.104384
https://doi.org/10.1016/j.compstruct.2008.03.043
https://doi.org/10.1016/j.compstruct.2008.03.043
https://doi.org/10.1016/j.jcp.2020.109491
https://doi.org/10.1016/j.jcp.2020.109491
https://doi.org/10.1115/1.4047036
https://doi.org/10.1115/1.4047036
https://doi.org/10.1016/j.cma.2017.10.019
https://doi.org/10.1016/j.cma.2017.10.019
https://doi.org/10.1016/j.cma.2019.06.003
https://doi.org/10.1016/j.cma.2019.06.003
https://doi.org/10.1007/s00466-019-01758-4
https://doi.org/10.24352/UB.OVGU-2020-012
https://doi.org/10.24352/UB.OVGU-2020-012

A Review on Data-Driven Constitutive Laws for Solids

153.

154.

155.

156.

157.

158.

159.

160.

161.

162.

163.

164.

165.

166.

167.

168.

169.

170.

171.

composites. Int J Solids Struct 225:111050. https://doi.org/10.
1016/j.ijsolstr.2021.111050

Waimann J, Gierden C, Schmidt A, Svendsen B, Reese S (2021)
Microstructure simulation using self-consistent clustering analy-
sis. PAMM 20(1). https://doi.org/10.1002/pamm.202000263
Vlassis NN, Sun W (2023) Denoising diffusion algorithm for
inverse design of microstructures with fine-tuned nonlinear mate-
rial properties. Comput Methods Appl Mech Eng 413:116126
Tutumluer E, Seyhan U (1998) Neural network modeling of
anisotropic aggregate behavior from repeated load triaxial tests.
Transp Res Rec 1615(1):86-93

Shin HS, Pande GN (2003) Identification of elastic constants
for orthotropic materials from a structural test. Comput Geotech
30(7):571-577. https://doi.org/10.1016/S0266-352X(03)00062-4
Asteris P, Roussis P, Douvika M (2017) Feed-forward neural
network prediction of the mechanical properties of sandcrete
materials. Sensors 17(6):1344. https://doi.org/10.3390/s1706
1344

Yan W, Lin S, Kafka OL, Lian Y, Yu C, Liu Z, Yan J, Wolff S,
Wu H, Ndip-Agbor E, Mozaffar M, Ehmann K, Cao J, Wagner
GJ, Liu WK (2018) Data-driven multi-scale multi-physics mod-
els to derive process-structure-property relationships for additive
manufacturing. Comput Mech 61(5):521-541. https://doi.org/10.
1007/s00466-018-1539-z

Huber N (2018) Connections between topology and macroscopic
mechanical properties of three-dimensional open-pore materials.
Front Mater 5:69. https://doi.org/10.3389/fmats.2018.00069
Yang Z, Yabansu YC, Al-Bahrani R, Liao W-K, Choudhary AN,
Kalidindi SR, Agrawal A (2018) Deep learning approaches for
mining structure-property linkages in high contrast composites
from simulation datasets. Comput Mater Sci 151:278-287
Messner MC (2020) Convolutional neural network surrogate
models for the mechanical properties of periodic structures. J
Mech Des 142(2):024503. https://doi.org/10.1115/1.4045040
Rao C, Liu Y (2020) Three-dimensional convolutional neural
network (3d-CNN) for heterogeneous material homogenization.
Comput Mater Sci 184:109850

Chen C-T, Gu GX (2021) Learning hidden elasticity with deep
neural networks. Proc Natl Acad Sci 118(31):2102721118.
https://doi.org/10.1073/pnas.2102721118

Ni B, Gao H (2021) A deep learning approach to the inverse
problem of modulus identification in elasticity. MRS Bull
46(1):19-25. https://doi.org/10.1557/s43577-020-00006-y
Mianroodi JR, Rezaei S, Siboni NH, Xu B-X, Raabe D (2021)
Lossless multi-scale constitutive elastic relations with artificial
intelligence. arXiv:2108.02837[cond-mat.]

Ibanez R, Abisset-Chavanne E, Aguado JV, Gonzalez D, Cueto E,
Chinesta F (2018) A manifold learning approach to data-driven
computational elasticity and inelasticity. Arch Comput Methods
Eng 25(1):47-57

Leygue A, Coret M, Réthoré J, Stainier L, Verron E (2018) Data-
based derivation of material response. Comput Methods Appl
Mech Eng 331:184-196. https://doi.org/10.1016/j.cma.2017.11.
013

Stainier L, Leygue A, Ortiz M (2019) Model-free data-driven
methods in mechanics: material data identification and solvers.
Comput Mech 64(2):381-393

Dalémat M, Coret M, Leygue A, Verron E (2019) Measur-
ing stress field without constitutive equation. Mech Mater
136:103087

Holzapfel GA (2002) Nonlinear solid mechanics: a continuum
approach for engineering science. Kluwer Academic Publishers,
Dordrecht

Shen Y, Chandrashekhara K, Breig W, Oliver L (2004) Neural
network based constitutive model for rubber material. Rubber
Chem Technol 77(2):257-277

172.

173.

174.

175.

176.

177.

178.

179.

180.

181.

182.

183.

184.

185.

186.

187.

188.

189.

190.

191.

192.

Liang G, Chandrashekhara K (2008) Neural network based
constitutive model for elastomeric foams. Eng Struct
30(7):2002-2011

Ogden RW (1997) Non-linear Elastic Deformations. Courier
Corporation

Sagiyama K, Garikipati K (2019) Machine learning materials
physics: Deep neural networks trained on elastic free energy
data from martensitic microstructures predict homogenized
stress fields with high accuracy. arXiv:1901.00524

Vlassis NN, Ma R, Sun W (2020) Geometric deep learning for
computational mechanics part I: anisotropic hyperelasticity.
Comput Methods Appl Mech Eng 371:113299

Czarnecki WM, Osindero S, Jaderberg M, Swirszcz G, Pascanu
R (2017) Sobolev training for neural networks. In: Advances
in neural information processing systems. pp 4278-4287
Klein DK, Ferndndez M, Martin RJ, Neff P, Weeger O (2022)
Polyconvex anisotropic hyperelasticity with neural networks.
J Mech Phys Solids 159:104703

As’ad F, Avery P, Farhat C (2022) A mechanics-informed
artificial neural network approach in data-driven constitutive
modeling. Int J Numer Methods Eng 123(12):2738-2759
Thakolkaran P, Joshi A, Zheng Y, Flaschel M, De Lorenzis
L, Kumar S (2022) Nn-euclid: Deep-learning hyperelasticity
without stress data. ] Mech Phys Solids 169:105076.

Tac V, Costabal FS, Tepole AB (2022) Data-driven tissue
mechanics with polyconvex neural ordinary differential equa-
tions. Comput Methods Appl Mech Eng 398:115248

Vlassis NN, Zhao P, Ma R, Sewell T, Sun W (2021) Md-
inferred neural network monoclinic finite-strain hyperelastic-
ity models for f-hmx: sobolev training and validation against
physical constraints. arXiv:2112.02077

Fernidndez M, Jamshidian M, Bohlke T, Kersting K, Weeger O
(2021) Anisotropic hyperelastic constitutive models for finite
deformations combining material theory and data-driven
approaches with application to cubic lattice metamaterials.
Comput Mech 67:653-677

Fernindez M, Fritzen F, Weeger O (2022) Material modeling
for parametric, anisotropic finite strain hyperelasticity based
on machine learning with application in optimization of meta-
materials. Int J Numer Methods Eng 123(2):577-609

Yang H, Guo X, Tang S, Liu WK (2019) Derivation of het-
erogeneous material laws via data-driven principal component
expansions. Comput Mech 64(2):365-379

Chung I, Im S, Cho M (2021) A neural network constitutive
model for hyperelasticity based on molecular dynamics simula-
tions. Int J Numer Methods Eng 122(1):5-24

Im S, Kim H, Kim W, Cho M (2021) Neural network constitu-
tive model for crystal structures. Comput Mech 67(1):185-206
Fuhg JN, Marino M, Bouklas N (2022) Local approximate
gaussian process regression for data-driven constitutive mod-
els: development and comparison with neural networks. Com-
put Methods Appl Mech Eng 388:114217

Latorre M, Monténs FJ (2020) Experimental data reduction for
hyperelasticity. Comput Struct 232:105919

Frankel AL, Jones RE, Swiler LP (2020) Tensor basis gaussian
process models of hyperelastic materials. ] Mach Learn Model
Comput 1(1)

Haupt P (2002) Continuum mechanics and theory of materials.
Springer, Berlin

Fuhg J, Bouklas N, Jones R (2024) Stress representations for
tensor basis neural networks: alternative formulations to finger-
rivlin-ericksen. J Comput Inf Sci Eng 1-39

Schoenauer M, Sebag M, Jouve F, Lamy B, Maitournam H
(1996) Evolutionary identification of macro-mechanical mod-
els 22

@ Springer


https://doi.org/10.1016/j.ijsolstr.2021.111050
https://doi.org/10.1016/j.ijsolstr.2021.111050
https://doi.org/10.1002/pamm.202000263
https://doi.org/10.1016/S0266-352X(03)00062-4
https://doi.org/10.3390/s17061344
https://doi.org/10.3390/s17061344
https://doi.org/10.1007/s00466-018-1539-z
https://doi.org/10.1007/s00466-018-1539-z
https://doi.org/10.3389/fmats.2018.00069
https://doi.org/10.1115/1.4045040
https://doi.org/10.1073/pnas.2102721118
https://doi.org/10.1557/s43577-020-00006-y
http://arxiv.org/abs/2108.02837
https://doi.org/10.1016/j.cma.2017.11.013
https://doi.org/10.1016/j.cma.2017.11.013
http://arxiv.org/abs/1901.00524
http://arxiv.org/abs/2112.02077

J.N. Fuhg et al.

193.

194.

195.

196.

197.

198.

199.

200.

201.

202.

203.

204.

205.

206.

207.

208.

209.

210.

211.

212.

213.

214.

Abdusalamov R, Hillgértner M, Itskov M (2023) Automatic gen-
eration of interpretable hyperelastic material models by symbolic
regression. Int J Numer Methods Eng 7203. https://doi.org/10.
1002/nme.7203

Joshi A, Thakolkaran P, Zheng Y, Escande M, Flaschel M,
De Lorenzis L, Kumar S (2022) Bayesian-euclid: Discovering
hyperelastic material laws with uncertainties. Comput Methods
Appl Mech Eng 398:115225. https://doi.org/10.1016/j.cma.2022.
115225

Flaschel M, Yu H, Reiter N, Hinrichsen J, Budday S, Steinmann
P, Kumar S, De Lorenzis L (2023) Automated discovery of inter-
pretable hyperelastic material models for human brain tissue with
EUCLID. J Mech Phys Solids 180:105404. https://doi.org/10.
1016/j.jmps.2023.105404

Linka K, Pierre SRS, Kuhl E (2023) Automated model discov-
ery for human brain using constitutive artificial neural networks.
Acta Biomater 160:134-151

Fuhg JN, Jones RE, Bouklas N (2024) Extreme sparsification
of physics-augmented neural networks for interpretable model
discovery in mechanics. Comput Methods Appl Mech Eng
426:116973

Nguyen LTK, Keip M-A (2018) A data-driven approach to non-
linear elasticity. Comput Struct 194:97-115

Conti S, Miiller S, Ortiz M (2020) Data-driven finite elasticity.
Arch Ration Mech Anal 1-33

Platzer A, Leygue A, Stainier L, Ortiz M (2021) Finite element
solver for data-driven finite strain elasticity. Comput Methods
Appl Mech Eng 379:113756

He Q, Laurence DW, Lee C-H, Chen J-S (2021) Manifold learn-
ing based data-driven modeling for soft biological tissues. J Bio-
mech 117:110124

He X, He Q, Chen J-S (2021) Deep autoencoders for physics-
constrained data-driven nonlinear materials modeling. Comput
Methods Appl Mech Eng 385:114034

Bahmani B, Sun W (2023) Distance-preserving manifold denois-
ing for data-driven mechanics. Comput Methods Appl Mech Eng
405:115857

Rivlin RS (1972) Materials with memory. Technical report of the
office of naval research (December)

Wu W, Kolymbas D (2000) Hypoplasticity then and now. In:
Constitutive modelling of granular materials. Springer, Berlin,
pp 57-105

Hill R (1998) The mathematical theory of plasticity, vol 11.
Oxford University Press, Oxford

Houlsby GT, Puzrin AM (2007) Principles of hyperplasticity: an
approach to plasticity theory based on thermodynamic principles.
Springer, Berlin

Yu M-H (2006) Generalized plasticity. Springer, Berlin

Wu W, Bauer E (1994) A simple hypoplastic constitutive model
for sand. Int J Numer Anal Meth Geomech 18(12):833-862
Ghaboussi J, Garrett JH, Wu X (1990) Material modeling with
neural networks. In: Proceedings of the international conference
on numerical methods in engineering: theory and applications.
pp 701-717

Ghaboussi J, Garrett J Jr, Wu X (1991) Knowledge-based mod-
eling of material behavior with neural networks. J] Eng Mech
117(1):132-153

Wu X, Ghaboussi J (1990) Representation of material behavior:
neural network-based models. In: 1990 IICNN international joint
conference on neural networks. IEEE, pp 229-234

Wu X (1991) Neural network-based material modeling. PhD the-
sis, University of Illinois at Urbana-Champaign

Ghaboussi J (1992) Potential applications of neuro-biological
computational models in geotechnical engineering. In: Numeri-
cal models in geotechnics. pp 543-555

@ Springer

215.

216.

217.

218.

219.

220.

221.

222.

223.

224.

225.

226.

227.

228.

229.

230.

231.

232.

233.

234.

Ghaboussi J (1992) Neuro-biological computational models
with learning capabilities and their applications in geomechani-
cal modeling. In: Proceedings, workshop on recent accomplish-
ments and future trends in geomechanics in the 21st century
Ellis GW, Yao C, Zhao R (1992) Neural network modeling of the
mechanical behavior of sand. In: Engineering mechanics. ASCE,
pp 421-424

Pidaparti R, Palakal M (1993) Material model for composites
using neural networks. AIAA J 31(8):1533-1535

Penumadu D, Jin-Nan L, Chameau J-L, Arumugam S (1994) Rate
dependent behavior of clays using neural networks. In: Interna-
tional conference on soil mechanics and foundation engineering.
pp 1445-1448

Amorosi A, Rampello S, Millar D (1996) On the use of artificial
neural networks as generic descriptors of geomaterial mechani-
cal behaviour. In: ISRM international symposium-EUROCK 96.
OnePetro

Ghaboussi J, Sidarta D, Lade P (1994) Neural network based
modelling in geomechanics. In: International conference on com-
puter methods and advances in geomechanics. pp 153-164
Sikora Z, Ossowski R, Ichikawa Y, Tkacz K (1998) Neural
networks as a tool for constitutive modelling. Localization and
Bifurcation Theory for Soils and Rocks, Balkema, Rotterdam
Millar D, Clarici E (1994) Investigation of back-propagation
artificial neural networks in modelling the stress-strain behav-
iour of sandstone rock. In: Proceedings of 1994 IEEE interna-
tional conference on neural networks (ICNN’94), vol 5. IEEE,
pp 3326-3331

Millar DL, Calderbank PA (1995) On the investigation of a mul-
tilayer feedforward neural network model of rock deformability
behaviour. In: 8th ISRM congress. OnePetro

Logar J, Turk G (1997) Neural network as a constitutive model
of soil. Zeitschrift Fur Angewandte Mathematik Und Mechanik
77:195-196

Wu X, Ghaboussi J (1993) Modelling unloading mechanism and
cyclic behavior of concrete with adaptive neural networks. In:
Proceedings, second Asian-Pacific conference on computational
mechanics. Sydney, Australia

Pernot S, Lamarque C-H (1999) Application of neural net-
works to the modelling of some constitutive laws. Neural Netw
12(2):371-392

Hadjigeorgiou J, Lessard LS (1995) Predicting joint behavior
using artificial neural networks. In: CAMI’95—computer appli-
cations in the mineral industry: proceedings of the third Canadian
conference on computer applications in the mineral industry
Zhao H, Huang Z, Zou Z (2014) Simulating the stress-strain rela-
tionship of geomaterials by support vector machine. In: Math-
ematical problems in engineering 2014

Shen J, Zhou X (2015) Least squares support vector machine for
constitutive modeling of clay. Int J Eng 28(11):1571-1578
Javadi A, Rezania M (2009) Applications of artificial intelli-
gence and data mining techniques in soil modeling. Geomech
Eng 1(1):53-74

Javadi AA, Rezania M (2009) Intelligent finite element method:
an evolutionary approach to constitutive modeling. Adv Eng
Inform 23(4):442-451

Faramarzi A, Alani AM, Javadi AA (2014) An epr-based
self-learning approach to material modelling. Comput Struct
137:63-71

Joghataie A (1995) Learning and architecture determination
through automatic node generation. In: Proceedings of interna-
tional conference on artificial neural networks in engineering, St
Louis, November

Ghaboussi J, Zhang M, Wu X, Pecknold D (1997) Nested
adaptive neural network: A new architecture. In: Proceeding,


https://doi.org/10.1002/nme.7203
https://doi.org/10.1002/nme.7203
https://doi.org/10.1016/j.cma.2022.115225
https://doi.org/10.1016/j.cma.2022.115225
https://doi.org/10.1016/j.jmps.2023.105404
https://doi.org/10.1016/j.jmps.2023.105404

A Review on Data-Driven Constitutive Laws for Solids

235.

236.

237.

238.

239.

240.

241.

242.

243.

244.

245.

246.

247.

248.

249.

250.

251.

252.

253.

254.

international conference on artificial neural networks in engi-
neering. pp 67-72

Ghaboussi J, Sidarta D (1998) A new nested adaptive neural
network for modeling of constitutive behavior of materials. Int J
Comput Geotech 22(1):29-51

Fu Q, Hashash YM, Jung S, Ghaboussi J (2007) Integration of
laboratory testing and constitutive modeling of soils. Comput
Geotech 34(5):330-345

Ghaboussi J, Pecknold DA, Zhang M, Haj-Ali RM (1998) Auto-
progressive training of neural network constitutive models. Int J
Numer Methods Eng 42(1):105-126

Sidarta D, Ghaboussi J (1998) Constitutive modeling of geo-
materials from non-uniform material tests. Comput Geotech
22(1):53-71

Shin H, Pande G (2000) On self-learning finite element codes
based on monitored response of structures. Comput Geotech
27(3):161-178

Pande G, Shin H (2002) Finite elements with artificial intelli-
gence. In: Eighth international symposium on numerical models
in geomechanics-NUMOG VIII. pp 241-246

Hashash Y, Ghaboussi J, Jung S, Marulanda C (2002) Systematic
update of a numerical model of a deep excavation using field
performance data. In: 8th International symposium on numerical
models in geomechanics, NUMOG 2002. CRC Press/Balkema,
pp 515-522

Jung S, Ghaboussi J (2006) Characterizing rate-dependent mate-
rial behaviors in self-learning simulation. Comput Methods Appl
Mech Eng 196(1-3):608-619

Yun GJ, Saleeb A, Shang S, Binienda W, Menzemer C (2012)
Improved selfsim for inverse extraction of nonuniform, nonlinear,
and inelastic material behavior under cyclic loadings. J Aerosp
Eng 25(2):256-272

Furukawa T (1997) A neural constitutive model for viscoplastic-
ity. In: International conference on computational engineering
science, Costa Rica. pp 453-458

Furukawa T, Yagawa G (1998) Implicit constitutive modelling
for viscoplasticity using neural networks. Int J Numer Methods
Eng 43(2):195-219

Haj-Ali R, Pecknold D, Ghaboussi J (1998) Micromechanics-
based constitutive damage models for composite materials using
artificial neural-networks. Modeling and simulation based engi-
neering, 551-557

Haj-Ali R, Pecknold DA, Ghaboussi J, Voyiadjis GZ (2001) Sim-
ulated micromechanical models using artificial neural networks.
J Eng Mech 127(7):730-738

Yun GJ, Ghaboussi J, Elnashai AS (2008) A new neural network-
based model for hysteretic behavior of materials. Int ] Numer
Methods Eng 73(4):447-469

Huang D, Fuhg JN, WeiBlenfels C, Wriggers P (2020) A machine
learning based plasticity model using proper orthogonal decom-
position. Comput Methods Appl Mech Eng 365:113008

Unger JF, Konke C (2008) Coupling of scales in a multiscale sim-
ulation using neural networks. Comput Struct 86(21-22):1994—
2003. https://doi.org/10.1016/j.compstruc.2008.05.004

Lefik M, Schrefler BA (2003) Artificial neural network as an
incremental non-linear constitutive model for a finite element
code. Comput Methods Appl Mech Eng 192(28-30):3265-3283
Xu K, Huang DZ, Darve E (2021) Learning constitutive relations
using symmetric positive definite neural networks. J Comput
Phys 428:110072

Masi F, Stefanou I, Vannucci P, Maffi-Berthier V (2021) Ther-
modynamics-based artificial neural networks for constitutive
modeling. J Mech Phys Solids 147:104277

Masi F, Stefanou I (2022) Multiscale modeling of inelastic
materials with thermodynamics-based artificial neural networks
(TANN). Comput Methods Appl Mech Eng 398:115190

255.

256.

257.

258.

259.

260.

261.

262.

263.

264.

265.

266.

267.

268.

269.

270.

271.

272.

273.

274.

275.

Ellis G, Yao C, Zhao R, Penumadu D (1995) Stress-strain mod-
eling of sands using artificial neural networks. J Geotech Eng
121(5):429-435

Jordan MI (1990) Attractor dynamics and parallelism in a con-
nectionist sequential machine. In: Artificial neural networks:
concept learning. pp 112-127

Najjar YM, Basheer IA (1996) Discussion: stress-strain mod-
eling of sands using artificial neural networks. J Geotech Eng
122(11):949-951

Penumadu D, Chameau JL (1997) Geomaterial modeling using
neural networks. In: Artificial neural networks for civil engi-
neering: fundamentals and applications. pp 160—184
Penumadu D, Zhao R (1999) Triaxial compression behavior of
sand and gravel using artificial neural networks (ANN). Com-
put Geotech 24(3):207-230

Penumadu D, Zhao R, Frost D (2000) Virtual geotechnical
laboratory experiments using a simulator. Int J Numer Anal
Methods Geomech 24(5):439-451

Zhu J-H, Zaman MM, Anderson SA (1998) Modeling of soil
behavior with a recurrent neural network. Can Geotech J
35(5):858-872

Zhu J-H, Zaman MM, Anderson SA (1998) Modelling of shear-
ing behaviour of a residual soil with recurrent neural network.
Int J Numer Anal Methods Geomech 22(8):671-687

Elman JL (1990) Finding structure in time. Cognit Sci
14(2):179-211

Habibagahi G, Bamdad A (2003) A neural network framework
for mechanical behavior of unsaturated soils. Can Geotech J
40(3):684-693

Najjar YM, Huang C (2007) Simulating the stress-strain behav-
ior of georgia kaolin via recurrent neuronet approach. Comput
Geotech 34(5):346-361

Romo MP, Garcia SR, Mendoza MJ, Taboada-Urtuzuastegui
V (2001) Recurrent and constructive-algorithm networks for
sand behavior modeling. Int ] Geomech 1(4):371-387

Najjar Y, Zhang X (2002) Simulating the 3d stress-strain
response of canadian river sand via dynamic neuro-mechanistic
approach. In: Numerical models in geomechanics: proceedings
of the 8th international symposium NUMOG VIII, Rome, Italy,
10-12 April 2002. CRC Press, p 247

Basheer I, Najjar Y (1998) Modeling cyclic constitutive behav-
ior by neural networks: Theoretical and real data. In: Proceed-
ings of the 12th engineering mechanics conference, La Jolla,
California. pp 952-955

Basheer 1A (2000) Selection of methodology for neural net-
work modeling of constitutive hystereses behavior of soils.
Comput Aided Civil Infrastruct Eng 15(6):445-463

Basheer I (2002) Stress-strain behavior of geomaterials in load-
ing reversal simulated by time-delay neural networks. ] Mater
Civ Eng 14(3):270-273

Oeser M, Freitag S (2009) Modeling of materials with fad-
ing memory using neural networks. Int J Numer Methods Eng
78(7):843-862

Zopf C, Kaliske M (2017) Numerical characterisation of
uncured elastomers by a neural network based approach. Com-
put Struct 182:504-525

Wang K, Sun WC (2018) A multiscale multi-permeability
poroplasticity model linked by recursive homogenizations and
deep learning. Comput Methods Appl Mech Eng 334:337-380
Ghavamian F, Simone A (2019) Accelerating multiscale finite
element simulations of history-dependent materials using a
recurrent neural network. Comput Methods Appl Mech Eng
357:112594

Chen Q, Jia R, Pang S (2021) Deep long short-term mem-
ory neural network for accelerated elastoplastic analysis of

@ Springer


https://doi.org/10.1016/j.compstruc.2008.05.004

J.N. Fuhg et al.

276.

2717.

278.

279.

280.

281.

282.

283.

284.

285.

286.

287.

288.

289.

290.

291.

292.

293.

294.

heterogeneous materials: an integrated data-driven surrogate
approach. Compos Struct 264:113688

Frankel AL, Jones RE, Alleman C, Templeton JA (2019) Predict-
ing the mechanical response of oligocrystals with deep learning.
Comput Mater Sci 169:109099

Frankel A, Tachida K, Jones R (2020) Prediction of the evolu-
tion of the stress field of polycrystals undergoing elastic-plastic
deformation with a hybrid neural network model. Mach Learn
1(3):035005

Fuchs A, Heider Y, Wang K, Sun W, Kaliske M (2021) Dnn2:
A hyper-parameter reinforcement learning game for self-design
of neural network based elasto-plastic constitutive descriptions.
Comput Struct 249:106505

Stocker J, Fuchs A, Leichsenring F, Kaliske M (2022) A novel
self-adversarial training scheme for enhanced robustness of
inelastic constitutive descriptions by neural networks. Comput
Struct 265:106774

Bonatti C, Mohr D (2022) On the importance of self-consistency
in recurrent neural network models representing elasto-plastic
solids. J Mech Phys Solids 158:104697

Liu B, Kovachki N, Li Z, Azizzadenesheli K, Anandkumar A,
Stuart A, Bhattacharya K (2021) A learning-based multiscale
method and its application to inelastic impact problems. arXiv:
2102.07256

Jones R, Frankel A, Johnson K (2021) A neural ordinary differ-
ential equation framework for modeling inelastic stress response
via internal state variables. arXiv:2111.14714

Eggersmann R, Kirchdoerfer T, Reese S, Stainier L, Ortiz M
(2019) Model-free data-driven inelasticity. Comput Methods
Appl Mech Eng 350:81-99

Ladeveze P, Néron D, Gerbaud P-W (2019) Data-driven compu-
tation for history-dependent materials. Comptes Rendus Méca-
nique 347(11):831-844

Tang S, Li Y, Qiu H, Yang H, Saha S, Mojumder S, Liu WK, Guo
X (2020) Map123-ep: a mechanistic-based data-driven approach
for numerical elastoplastic analysis. Comput Methods Appl Mech
Eng 364:112955

Tang S, Yang H, Qiu H, Fleming M, Liu WK, Guo X (2021)
Map123-epf: a mechanistic-based data-driven approach for
numerical elastoplastic modeling at finite strain. Comput Meth-
ods Appl Mech Eng 373:113484

Vlassis NN, Sun W (2022) Component-based machine learning
paradigm for discovering rate-dependent and pressure-sensitive
level-set plasticity models. J Appl Mech 89(2)

Fuhg JN, Hamel CM, Johnson K, Jones R, Bouklas N (2023)
Modular machine learning-based elastoplasticity: Generalization
in the context of limited data. Comput Methods Appl Mech Eng
407:115930

Furukawa T, Hoffman M (2004) Accurate cyclic plastic analysis
using a neural network material model. Eng Anal Bound Elem
28(3):195-204

Jones RE, Templeton JA, Sanders CM, Ostien JT (2018) Machine
learning models of plastic flow based on representation theory.
Computer Model Eng Sci 117

Wang K, Sun W, Du Q (2019) A cooperative game for automated
learning of elasto-plasticity knowledge graphs and models with
ai-guided experimentation. Comput Mech 64(2):467-499
Stoffel M, Bamer F, Markert B (2019) Neural network based con-
stitutive modeling of nonlinear viscoplastic structural response.
Mech Res Commun 95:85-88

Settgast C, Abendroth M, Kuna M (2019) Constitutive modeling
of plastic deformation behavior of open-cell foam structures
using neural networks. Mech Mater 131(2018):1-10. https://doi.
org/10.1016/j.mechmat.2019.01.015

Settgast C, Hiitter G, Kuna M, Abendroth M (2020) A
hybrid approach to simulate the homogenized irreversible

@ Springer

295.

296.

297.

298.

299.

300.

301.

302.

303.

304.

305.

306.

307.

308.

309.

310.

311.

312.

313.

314.

elastic-plastic deformations and damage of foams by neural
networks. Int J Plast 126(2019):102624. https://doi.org/10.
1016/].ijplas.2019.11.003. arXiv:1910.13887

Heider Y, Wang K, Sun W (2020) So (3)-invariance of
informed-graph-based deep neural network for anisotropic
elastoplastic materials. Comput Methods Appl Mech Eng
363:112875

Jang DP, Fazily P, Yoon JW (2021) Machine learning-based con-
stitutive model for j2-plasticity. Int J Plast 138:102919

Vlassis NN, Sun W (2022) Geometric deep learning for com-
putational mechanics part ii: Graph embedding for interpretable
multiscale plasticity. arXiv:2208.00246

Hartmaier A (2020) Data-oriented constitutive modeling of plas-
ticity in metals. Materials 13(7):1600

Park H, Cho M (2021) Multiscale constitutive model using data—
driven yield function. Composites Part B 108831

Shoghi R, Hartmaier A (2022) Optimal data-generation strategy
for machine learning yield functions in anisotropic plasticity.
Virtual Mater Des 879614154

Schmidt J, Biswas A, Vajragupta N, Hartmaier A (2022) Data-
oriented description of texture-dependent anisotropic material
behavior. Model Simul Mater Sci Eng

Xiao M, Sun W (2022) Geometric prior of multi-resolution
yielding manifolds and the local closest point projection for
nearly non-smooth plasticity. Comput Methods Appl Mech Eng
400:115469

Fuhg JN, Wees L, Obstalecki M, Shade P, Bouklas N, Kase-
mer M (2022) Machine-learning convex and texture-dependent
macroscopic yield from crystal plasticity simulations. Materialia
23:101446

Ibafiez R, Abisset-Chavanne E, Gonzélez D, Duval J-L, Cueto
E, Chinesta F (2019) Hybrid constitutive modeling: data-driven
learning of corrections to plasticity models. Int J] Mater Form
12(4):717-725

Fuhg JN, Fau A, Bouklas N, Marino M (2023) Enhancing phe-
nomenological yield functions with data: challenges and oppor-
tunities. Eur J Mech A 104925

Tsoi AC (1991) Application of neural network methodology to
the modelling of the yield strength in a steel rolling plate mill.
In: NIPS. pp 698-705

Hwu Y-J, Pan Y-T, Lenard JG (1996) A comparative study of arti-
ficial neural networks for the prediction of constitutive behaviour
of hsla and carbon steels. Steel Res 67(2):59-66

Hodgson PD, Kong LX, Davies CH (1998) The prediction of
the hot strength in steels with an integrated phenomenological
and artificial neural network model. J Mater Process Technol
87(1-3):131-138

Liu J, Chang H, Hsu T, Ruan X (2000) Prediction of the flow
stress of high-speed steel during hot deformation using a bp arti-
ficial neural network. J Mater Process Technol 103(2):200-205
SunY, Zeng W, Zhao Y, Qi Y, Ma X, Han Y (2010) Development
of constitutive relationship model of ti600 alloy using artificial
neural network. Comput Mater Sci 48(3):686-691

Li H-Y, Wang X-F, Wei D-D, Hu J-D, Li Y-H (2012) A com-
parative study on modified zerilli-armstrong, arrhenius-type
and artificial neural network models to predict high-temperature
deformation behavior in t24 steel. Mater Sci Eng A 536:216-222
Bobbili R, Ramakrishna B, Madhu V, Gogia A (2015) Predic-
tion of flow stress of 7017 aluminium alloy under high strain
rate compression at elevated temperatures. Defence Technol
11(1):93-98

Li X, Roth CC, Mohr D (2019) Machine-learning based tempera-
ture-and rate-dependent plasticity model: application to analysis
of fracture experiments on dp steel. Int J Plast 118:320-344
Yang H, Qiu H, Xiang Q, Tang S, Guo X (2020) Exploring elas-
toplastic constitutive law of microstructured materials through


http://arxiv.org/abs/2102.07256
http://arxiv.org/abs/2102.07256
http://arxiv.org/abs/2111.14714
https://doi.org/10.1016/j.mechmat.2019.01.015
https://doi.org/10.1016/j.mechmat.2019.01.015
https://doi.org/10.1016/j.ijplas.2019.11.003
https://doi.org/10.1016/j.ijplas.2019.11.003
http://arxiv.org/abs/1910.13887
http://arxiv.org/abs/2208.00246

A Review on Data-Driven Constitutive Laws for Solids

315.

316.

317.

318.

319.

320.

321.

322.

323.

324.

325.

326.

327.

328.

329.

330.

331.

332.

333.

334.

335.

artificial neural network-a mechanistic-based data-driven
approach. J Appl Mech 87(9)

Shang H, Wu P, Lou Y, Wang J, Chen Q (2022) Machine learn-
ing-based modeling of the coupling effect of strain rate and tem-
perature on strain hardening for 5182-0 aluminum alloy. ] Mater
Process Technol 302:117501

Li X, Roth CC, Bonatti C, Mohr D (2022) Counterexample-
trained neural network model of rate and temperature dependent
hardening with dynamic strain aging. Int J Plast 151:103218
Zhang A, Mohr D (2020) Using neural networks to represent von
mises plasticity with isotropic hardening. Int J Plast 132:102732
Desu RK, Guntuku SC, Aditya B, Gupta AK (2014) Support vec-
tor regression based flow stress prediction in austenitic stainless
steel 304. Procedia Mater Sci 6:368-375

Peng J, Yamamoto Y, Hawk JA, Lara-Curzio E, Shin D (2020)
Coupling physics in machine learning to predict properties of
high-temperatures alloys. NPJ Comput Mater 6(1):1-7

Versino D, Tonda A, Bronkhorst CA (2017) Data driven mod-
eling of plastic deformation. Comput Methods Appl Mech Eng
318:981-1004

Bomarito GF, Townsend TS, Stewart KM, Esham KV, Emery
JM, Hochhalter JD (2021) Development of interpretable, data-
driven plasticity models with symbolic regression. Comput
Struct 252:106557. https://doi.org/10.1016/j.compstruc.2021.
106557

Flaschel M, Kumar S, De Lorenzis L (2022) Discovering plastic-
ity models without stress data. NPJ Comput Mater 8(1):1-10
Xu H, Flaschel M, De Lorenzis L (2024) Discovering non-asso-
ciated pressure-sensitive plasticity models with euclid

Flaschel M, Kumar S, De Lorenzis L (2023) Automated discov-
ery of generalized standard material models with euclid. Comput
Methods Appl Mech Eng 405:115867. https://doi.org/10.1016/j.
cma.2022.115867

Ciftci K, Hackl K (2021) Data-driven simulation of inelastic
materials using structured data sets, tangent space information
and transition rules. arXiv:2101.10730

Chaboche J-L (1986) Time-independent constitutive theories for
cyclic plasticity. Int J Plast 2(2):149-188

Al-Haik M, Hussaini M, Garmestani H (2006) Prediction of non-
linear viscoelastic behavior of polymeric composites using an
artificial neural network. Int J Plast 22(7):1367-1392

Kim H-K (2008) Multi-scale nonlinear constitutive models
using artificial neural networks. Georgia Institute of Technol-
ogy, Georgia

Jung S, Ghaboussi J (2006) Neural network constitutive model
for rate-dependent materials. Comput Struct 84(15-16):955-963
Kopal I, Harni¢arova M, Valicek J, Kusnerovd M (2017) Mod-
eling the temperature dependence of dynamic mechanical prop-
erties and visco-elastic behavior of thermoplastic polyurethane
using artificial neural network. Polymers 9(10):519

Jordan B, Gorji MB, Mohr D (2020) Neural network model
describing the temperature-and rate-dependent stress-strain
response of polypropylene. Int J Plast 135:102811

Vu AT, Gulati S, Vogel P-A, Grunwald T, Bergs T. Physics-
informed data-driven models for predicting time-and tempera-
ture-dependent viscoelastic material behaviors of optical glasses.
SSRN 3822865

Basistov YA, Yanovsky YG, Danilin AN, Karnet YN (2018)
Dynamic neural network as a model of viscoelastic media. Com-
posites 9(4)

Graf W, Freitag S, Sickert J-U, Kaliske M (2012) Structural anal-
ysis with fuzzy data and neural network based material descrip-
tion. Comput Aided Civil Infrastruct Eng 27(9):640-654
Freitag S, Graf W, Kaliske M (2013) A material description
based on recurrent neural networks for fuzzy data and its applica-
tion within the finite element method. Comput Struct 124:29-37

336.

337.

338.

339.

340.

341.

342.

343.

344.

345.

346.

347.

348.

349.

350.

351.

352.

353.

Bhattacharya K, Liu B, Stuart A, Trautner M (2022) Learning
markovian homogenized models in viscoelasticity. arXiv:2205.
14139

Upadhyay K, Fuhg JN, Bouklas N, Ramesh K (2023) Physics-
informed data-driven discovery of constitutive models with
application to strain-rate-sensitive soft materials. arXiv:2304.
13897

DeVries PM, Thompson TB, Meade BJ (2017) Enabling large-
scale viscoelastic calculations via neural network acceleration.
Geophys Res Lett 44(6):2662-2669

Abueidda DW, Koric S, Al-Rub RA, Parrott CM, James KA,
Sobh NA (2022) A deep learning energy method for hyperelas-
ticity and viscoelasticity. Eur ] Mech A 95:104639

Xu K, Tartakovsky AM, Burghardt J, Darve E (2020) Inverse
modeling of viscoelasticity materials using physics constrained
learning. arXiv:2005.04384

Ratle A, Sebag M (2001) Grammar-guided genetic pro-
gramming and dimensional consistency: application to non-
parametric identification in mechanics. Appl Soft Comput
1(1):105-118. https://doi.org/10.1016/S1568-4946(01)00009-6
Abdusalamov R, Kaplunov J, Itskov M (2023) Discovering
asymptotic expansions using symbolic regression. arXiv.
arXiv:2307.01876[physics]. http://arxiv.org/abs/2307.01876
Marino E, Flaschel M, Kumar S, De Lorenzis L (2023) Auto-
mated identification of linear viscoelastic constitutive laws
with euclid. Mech Mater 181:104643. https://doi.org/10.
1016/j.mechmat.2023.104643.

Erchiqui F, Ozdemir Z, Souli M, Ezzaidi H, Dituba-Ngoma G
(2011) Neural networks approach for characterisation of vis-
coelastic polymers. Can J Chem Eng 89(5):1303-1310
Hosseini AS, Hajikarimi P, Gandomi M, Nejad FM, Gandomi
AH (2021) Optimized machine learning approaches for the
prediction of viscoelastic behavior of modified asphalt binders.
Constr Build Mater 299:124264

Javidan MM, Kim J (2020) Experimental and numerical sen-
sitivity assessment of viscoelasticity for polymer composite
materials. Sci Rep 10(1):1-9

Saharuddin KD, Ariff MHM, Bahiuddin I, Mazlan SA, Aziz
SAA, Nazmi N, Fatah AYA, Mohmad K (2020) Constitutive
models for predicting field-dependent viscoelastic behavior of
magnetorheological elastomer using machine learning. Smart
Mater Struct 29(8):087001

Wang YT, Zhang X, Liu XS (2021) Machine learning
approaches to rock fracture mechanics problems: mode-
I fracture toughness determination. Eng Fract Mech
253(March):107890. https://doi.org/10.1016/j.engfracmech.
2021.107890

Kachanov L (1958) Predictive elastoplastic damage constitutive
law: establishment of equivalence relation between intrinsic and
extrinsic material parameters. Izvestiia Akademii Nauk SSSR,
Otdelenie Teckhnicheskikh Nauk 8:26-31

Abendroth M, Kuna M (2003) Determination of deformation
and failure properties of ductile materials by means of the small
punch test and neural networks. Comput Mater Sci 28:633-644.
https://doi.org/10.1016/j.commatsci.2003.08.031

Abendroth M, Kuna M (2006) Identification of ductile damage
and fracture parameters from the small punch test using neural
networks. Eng Fract Mech 73(6):710-725. https://doi.org/10.
1016/j.engfracmech.2005.10.007

Abbassi F, Belhadj T, Mistou S, Zghal A (2013) Parameter iden-
tification of a mechanical ductile damage using Artificial Neural
Networks in sheet metal forming. Mater Des 45:605-615. https:/
doi.org/10.1016/j.matdes.2012.09.032

Unger JF, Konke C (2009) Neural networks as material models
within a multiscale approach. Comput Struct 87(19-20):1177—
1186. https://doi.org/10.1016/j.compstruc.2008.12.003

@ Springer


https://doi.org/10.1016/j.compstruc.2021.106557
https://doi.org/10.1016/j.compstruc.2021.106557
https://doi.org/10.1016/j.cma.2022.115867
https://doi.org/10.1016/j.cma.2022.115867
http://arxiv.org/abs/2101.10730
http://arxiv.org/abs/2205.14139
http://arxiv.org/abs/2205.14139
http://arxiv.org/abs/2304.13897
http://arxiv.org/abs/2304.13897
http://arxiv.org/abs/2005.04384
https://doi.org/10.1016/S1568-4946(01)00009-6
http://arxiv.org/abs/2307.01876
http://arxiv.org/abs/2307.01876
http://arxiv.org/abs/2307.01876
https://doi.org/10.1016/j.mechmat.2023.104643
https://doi.org/10.1016/j.mechmat.2023.104643
https://doi.org/10.1016/j.engfracmech.2021.107890
https://doi.org/10.1016/j.engfracmech.2021.107890
https://doi.org/10.1016/j.commatsci.2003.08.031
https://doi.org/10.1016/j.engfracmech.2005.10.007
https://doi.org/10.1016/j.engfracmech.2005.10.007
https://doi.org/10.1016/j.matdes.2012.09.032
https://doi.org/10.1016/j.matdes.2012.09.032
https://doi.org/10.1016/j.compstruc.2008.12.003

J.N. Fuhg et al.

354.

355.

356.

357.

358.

359.

360.

361.

362.

363.

364.

365.

366.

367.

368.

369.

370.

371.

Yan S, Zou X, Ilkhani M, Jones A (2020) An efficient multiscale
surrogate modelling framework for composite materials consid-
ering progressive damage based on artificial neural networks.
Composites B 194(January):108014. https://doi.org/10.1016/j.
compositesb.2020.108014

Ferniandez M, Rezaei S, Rezaei Mianroodi J, Fritzen F, Reese S
(2020) Application of artificial neural networks for the prediction
of interface mechanics: a study on grain boundary constitutive
behavior. Adv Model Simul Eng Sci 7(1):1-27. https://doi.org/
10.1186/s40323-019-0138-7

He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for
image recognition. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp 770-778
Haghighat E, Abouali S, Vaziri R (2023) Constitutive model
characterization and discovery using physics-informed deep
learning. Eng Appl Artif Intell 120:105828 https://doi.org/10.
1016/j.engappai.2023.105828

Wang K, Sun W (2019) Meta-modeling game for deriving the-
ory-consistent, microstructure-based traction-separation laws via
deep reinforcement learning. Comput Methods Appl Mech Eng
346:216-241. https://doi.org/10.1016/j.cma.2018.11.026. arXiv:
1810.10535

Karapiperis K, Stainier L, Ortiz M, Andrade JE (2021) Data-
Driven multiscale modeling in mechanics. J] Mech Phys Solids
147(2020):104239. https://doi.org/10.1016/j.jmps.2020.104239
Theocaris PS, Panagiotopoulos PD (1993) Neural networks for
computing in fracture mechanics. Methods and prospects of
applications. Comput Methods Appl Mech Eng 106(1-2):213—
228. https://doi.org/10.1016/0045-7825(93)90191-Y
Panagiotopoulos PD, Waszczyszyn Z (1999) The neural network
approach in plasticity and fracture mechanics. In: Waszczyszyn
Z (ed) Neural networks in the analysis and design of structures.
Springer, Wien, pp 161-195

Liu X, Athanasiou CE, Padture NP, Sheldon BW, Gao H (2021)
Knowledge extraction and transfer in data-driven fracture
mechanics. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.
2104765118

Bourdin B, Francfort G, Marigo JJ (2000) Numerical experi-
ments in revisited brittle fracture. J Mech Phys Solids 48(4):797—
826. https://doi.org/10.1016/S0022-5096(99)00028-9
Aldakheel F, Satari R, Wriggers P (2021) Feed-forward neural
networks for failure mechanics problems. Appl Sci (Switzerland).
https://doi.org/10.3390/app11146483

Yu B et al (2018) The deep ritz method: a deep learning-based
numerical algorithm for solving variational problems. Commun
Math Stat 6(1):1-12

Motlagh YG, Jimack P, Borst R (2022) Deep learning phase-field
model for brittle fractures. Int J Numer Methods Eng (June).
https://doi.org/10.1002/nme.7135

Goswami S, Anitescu C, Chakraborty S, Rabczuk T (2020)
Transfer learning enhanced physics informed neural network
for phase-field modeling of fracture. Theoret Appl Fract Mech
106:102447

Goswami S, Anitescu C, Rabczuk T (2020) Adaptive fourth-
order phase field analysis using deep energy minimization. Theo-
ret Appl Fract Mech 107:102527

Manav M, Molinaro R, Mishra S, De Lorenzis L (2024) Phase-
field modeling of fracture with physics-informed deep learn-
ing. Comput Methods Appl Mech Eng 429:117104. https://doi.
org/10.1016/j.cma.2024.117104

Goswami S, Yin M, Yu Y, Karniadakis GE (2022) A physics-
informed variational deeponet for predicting crack path in quasi-
brittle materials. Comput Methods Appl Mech Eng 391:114587
Feng Y, Wang Q, Wu D, Luo Z, Chen X, Zhang T, Gao W
(2021) Machine learning aided phase field method for fracture

@ Springer

372.

373.

374.

375.

376.

377.

378.

379.

380.

381.

382.

383.

384.

385.

386.

387.

388.

389.

mechanics. Int J Eng Sci 169:1-25. https://doi.org/10.1016/j.
ijengsci.2021.103587

Carrara P, De Lorenzis L, Stainier L, Ortiz M (2020) Data-
driven fracture mechanics. Comput Methods Appl Mech Eng
372:113390. https://doi.org/10.1016/j.cma.2020.113390. arXiv:
2006.03133

Carrara P, Ortiz M, De Lorenzis L (2021) Data-driven
rate-dependent fracture mechanics. J Mech Phys Solids
155(July):104559. https://doi.org/10.1016/j.jmps.2021.104559.
arXiv:2103.12396

Paris PC, Erdogan F (1963) A critical analysis of crack propaga-
tion laws. J Basic Eng 85(4):528-533. https://doi.org/10.1115/1.
3656900

Lee D-W, Hong S-H, Cho S-S, Joo W-S (2005) A study on
fatigue damage modeling using neural networks. J] Mech Sci
Technol 19:1393-1404

Rovinelli A, Sangid MD, Proudhon H, Guilhem Y, Lebensohn
RA, Ludwig W (2018) Predicting the 3d fatigue crack growth
rate of small cracks using multimodal data via bayesian net-
works: in-situ experiments and crystal plasticity simulations. J
Mech Phys Solids 115:208-229

Kalina KA, Gebhart P, Brummund J, Linden L, Sun W, Kiistner
M (2024) Neural network-based multiscale modeling of finite
strain magneto-elasticity with relaxed convexity criteria. Comput
Methods Appl Mech Eng 421:116739

Klein DK, Ortigosa R, Martinez-Frutos J, Weeger O (2024) Non-
linear electro-elastic finite element analysis with neural network
constitutive models. arXiv:2402.07007

Feyel F (2003) A multilevel finite element method (fe2) to
describe the response of highly non-linear structures using
generalized continua. Comput Methods Appl Mech Eng
192(28-30):3233-3244

Kanouté P, Boso D, Chaboche J-L, Schrefler B (2009) Multiscale
methods for composites: a review. Arch Comput Methods Eng
16:31-75

Dehghani H, Zilian A (2020) Poroelastic model parameter identi-
fication using artificial neural networks: on the effects of hetero-
geneous porosity and solid matrix poisson ratio. Comput Mech
66(3):625-649

Dehghani H, Zilian A (2021) Ann-aided incremental multiscale-
remodelling-based finite strain poroelasticity. Comput Mech
1-24

Ashworth M, Elsheikh AH, Doster F (2022) Machine learn-
ing-based multiscale constitutive modelling: development and
application to dual-porosity mass transfer. Adv Water Resour
163:104166

Heider Y, Suh HS, Sun W (2021) An offline multi-scale unsat-
urated poromechanics model enabled by self-designed/self-
improved neural networks. In: International journal for numerical
and analytical methods in geomechanics

Franga FO (2018) A greedy search tree heuristic for symbolic
regression. Inf Sci 442:18-32

Petersen BK, Landajuela M, Mundhenk TN, Santiago CP, Kim
SK, Kim JT (2019) Deep symbolic regression: Recovering math-
ematical expressions from data via risk-seeking policy gradients.
arXiv:1912.04871

Fuhg JN, Jadoon A, Weeger O, Seidl DT, Jones RE (2024) Poly-
convex neural network models of thermoelasticity. arXiv:2404.
15562

Bahmani B, Sun W (2021) A kd-tree-accelerated hybrid data-
driven/model-based approach for poroelasticity problems with
multi-fidelity multi-physics data. Comput Methods Appl Mech
Eng 382:113868

Dafalias YF, Manzari MT (2004) Simple plasticity sand model
accounting for fabric change effects. J] Eng Mech 130(6):622-634


https://doi.org/10.1016/j.compositesb.2020.108014
https://doi.org/10.1016/j.compositesb.2020.108014
https://doi.org/10.1186/s40323-019-0138-7
https://doi.org/10.1186/s40323-019-0138-7
https://doi.org/10.1016/j.engappai.2023.105828
https://doi.org/10.1016/j.engappai.2023.105828
https://doi.org/10.1016/j.cma.2018.11.026
http://arxiv.org/abs/1810.10535
http://arxiv.org/abs/1810.10535
https://doi.org/10.1016/j.jmps.2020.104239
https://doi.org/10.1016/0045-7825(93)90191-Y
https://doi.org/10.1073/pnas.2104765118
https://doi.org/10.1073/pnas.2104765118
https://doi.org/10.1016/S0022-5096(99)00028-9
https://doi.org/10.3390/app11146483
https://doi.org/10.1002/nme.7135
https://doi.org/10.1016/j.ijengsci.2021.103587
https://doi.org/10.1016/j.ijengsci.2021.103587
https://doi.org/10.1016/j.cma.2020.113390
http://arxiv.org/abs/2006.03133
http://arxiv.org/abs/2006.03133
https://doi.org/10.1016/j.jmps.2021.104559
http://arxiv.org/abs/2103.12396
https://doi.org/10.1115/1.3656900
https://doi.org/10.1115/1.3656900
http://arxiv.org/abs/2402.07007
http://arxiv.org/abs/1912.04871
http://arxiv.org/abs/2404.15562
http://arxiv.org/abs/2404.15562

A Review on Data-Driven Constitutive Laws for Solids

390.

391.

392.

393.

394,

39s.

396.

397.

398.

399.

400.

401.

402.

403.

404.

405.

406.

407.

408.

409.

410.

Sun X, Bahmani B, Vlassis NN, Sun W, Xu Y (2022) Data-
driven discovery of interpretable causal relations for deep learn-
ing material laws with uncertainty propagation. Granular Matter
24(1):1-32

Schwer LE (2007) An overview of the ptc 60/v &v 10: guide
for verification and validation in computational solid mechan-
ics: transmitted by le schwer, chair ptc 60/v &v 10. Eng Comput
23(4):245-252

Sargent RG (2009) Verification and validation of simulation
models. In: Proceedings of the 2009 winter simulation confer-
ence (WSC). IEEE, pp 162-176

Wallace DR, Fujii RU (1989) Software verification and valida-
tion: an overview. IEEE Softw 6(3):10-17

Thacker BH, Doebling SW, Hemez FM, Anderson MC, Pepin
JE, Rodriguez EA (2004) Concepts of model verification and
validation

Zienkiewicz OC, Taylor RL, Zhu JZ (2005) The finite element
method: its basis and fundamentals. Elsevier, New York
Hughes TJR (2008) The finite element method: linear static and
dynamic finite element analysis. Courier Corporation

Roache PJ (1998) Verification and Validation in Computational
Science and Engineering, vol 895. Hermosa Albuquerque, NM
Jones AC, Wilcox RK (2008) Finite element analysis of the
spine: towards a framework of verification, validation and sensi-
tivity analysis. Med Eng Phys 30(10):1287-1304

Henninger HB, Reese SP, Anderson AE, Weiss JA (2010) Valida-
tion of computational models in biomechanics. Proc Inst Mech
Eng H 224(7):801-812

Farrell K, Oden JT, Faghihi D (2015) A bayesian framework for
adaptive selection, calibration, and validation of coarse-grained
models of atomistic systems. J] Comput Phys 295:189-208
Farrell-Maupin K, Oden J (2017) Adaptive selection and valida-
tion of models of complex systems in the presence of uncertainty.
Res Math Sci 4(1):14

Ying X (2019) An overview of overfitting and its solutions. In:
Journal of physics: conference series, vol 1168. IOP Publishing,
Bristol, p 022022

Ghojogh B, Crowley M (2019) The theory behind overfitting,
cross validation, regularization, bagging, and boosting: tutorial.
arXiv:1905.12787

Biihlmann P, Van De Geer S (2011) Statistics for high-dimen-
sional data: methods, theory and applications. Springer, Berlin
Ding J, Hu X-H, Gudivada V (2017) A machine learning based
framework for verification and validation of massive scale image
data. IEEE Trans Big Data 7(2):451-467

Pei K, Zhu L, Cao Y, Yang J, Vondrick C, Jana S (2017) Towards
practical verification of machine learning: the case of computer
vision systems. arXiv:1712.01785

Xiang W, Musau P, Wild AA, Lopez DM, Hamilton N, Yang X,
Rosenfeld J, Johnson TT (2018) Verification for machine learn-
ing, autonomy, and neural networks survey. arXiv:1810.01989
Huang X, Kwiatkowska M, Wang S, Wu M (2017) Safety verifi-
cation of deep neural networks. In: Computer aided verification:
29th international conference, CAV 2017, Heidelberg, Germany,
July 24-28, 2017, Proceedings, Part I 30. Springer, Berlin, pp
3-29

Carlini N, Athalye A, Papernot N, Brendel W, Rauber J, Tsipras
D, Goodfellow I, Madry A, Kurakin A (2019) On evaluating
adversarial robustness. arXiv:1902.06705

Ruan W, Huang X, Kwiatkowska M (2018) Reachability analysis
of deep neural networks with provable guarantees. arXiv:1805.
02242

411.

412.

413.

414.

415.

416.

417.

418.

419.

420.

421.

422.

423.

424.

425.

426.

427.

Huang X, Kroening D, Ruan W, Sharp J, Sun Y, Thamo E, Wu
M, Yi X (2020) A survey of safety and trustworthiness of deep
neural networks: verification, testing, adversarial attack and
defence, and interpretability. Comput Sc Rev 37:100270

Conti S, Miiller S, Ortiz M (2018) Data-driven problems in elas-
ticity. Arch Ration Mech Anal 229(1):79-123

Vabalas A, Gowen E, Poliakoff E, Casson AJ (2019) Machine
learning algorithm validation with a limited sample size. PLoS
ONE 14(11):0224365

Bergmeir C, Benitez JM (2012) On the use of cross-validation
for time series predictor evaluation. Inf Sci 191:192-213

Hoerl AE, Kennard RW (1970) Ridge regression: biased estima-
tion for nonorthogonal problems. Technometrics 12(1):55-67
Van Laarhoven, T (2017) L2 regularization versus batch and
weight normalization. arXiv:1706.05350

Loshchilov I, Hutter F (2017) Decoupled weight decay regulari-
zation. arXiv:1711.05101

Zou H, Hastie T (2005) Regularization and variable selection via
the elastic net. J R Stat Soc Ser B 67(2):301-320

Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdi-
nov R (2014) Dropout: a simple way to prevent neural networks
from overfitting. ] Mach Learn Res 15(1):1929-1958

Kalina KA, Linden L, Brummund J, Metsch P, Kistner M (2022)
Automated constitutive modeling of isotropic hyperelasticity
based on artificial neural networks. Comput Mech 69(1):213-232
Gonzalez D, Chinesta F, Cueto E (2019) Thermodynamically
consistent data-driven computational mechanics. Continuum
Mech Thermodyn 31(1):239-253

Stutz D, Hein M, Schiele B (2019) Disentangling adversarial
robustness and generalization. In: Proceedings of the IEEE/
CVF conference on computer vision and pattern recognition. pp
6976-6987

Wu D, Xia S-T, Wang Y (2020) Adversarial weight perturba-
tion helps robust generalization. Adv Neural Inf Process Syst
33:2958-2969

Raghunathan A, Xie SM, Yang F, Duchi JC, Liang P (2019)
Adversarial training can hurt generalization. arXiv:1906.06032
Blalock D, Gonzalez Ortiz JJ, Frankle J, Guttag J (2020) What
is the state of neural network pruning? Proc Mach Learn Syst
2:129-146

Meyer KA, Ekre F (2023) Thermodynamically consistent neu-
ral network plasticity modeling and discovery of evolution laws.
https://doi.org/10.31224/2961

Torens C, Juenger F, Schirmer S, Schopferer S, Maienschein
TD, Dauer JC (2022) Machine learning verification and safety
for unmanned aircraft-a literature study. In: AIAA Scitech 2022
Forum. p 1133

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

@ Springer


http://arxiv.org/abs/1905.12787
http://arxiv.org/abs/1712.01785
http://arxiv.org/abs/1810.01989
http://arxiv.org/abs/1902.06705
http://arxiv.org/abs/1805.02242
http://arxiv.org/abs/1805.02242
http://arxiv.org/abs/1706.05350
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1906.06032
https://doi.org/10.31224/2961

	A Review on Data-Driven Constitutive Laws for Solids
	Abstract
	1 Introduction
	1.1 Classification and Nomenclature
	1.2 Objective and Organization of the Paper

	2 DD Methods Outline and Earlier Reviews
	2.1 Overview of the Available DD Methods
	2.1.1 ML Approaches
	2.1.2 Model-Free Approaches

	2.2 Earlier Reviews

	3 Data Sampling and Design of Experiments
	4 DD Modeling for Path-Independent CLs
	4.1 Small-Strain Elasticity
	4.2 Finite-Strain Elasticity

	5 DD Modeling for Path-Dependent CLs
	5.1 Plasticity
	5.1.1 DD Plasticity Modeled After Hypoplasticity
	5.1.2 DD Plasticity Modeled After Elastoplasticity
	5.1.3 Summary

	5.2 Viscoelasticity
	5.3 Damage and Fracture
	5.3.1 Diffuse Damage
	5.3.2 Fracture
	5.3.3 Fatigue

	5.4 Multiphysics
	5.4.1 Methods to Define the Functional Form of the CL
	5.4.2 Methods to Define the Causal Relationship Between Descriptors and Functional form of the CL
	5.4.3 Methods to Define the Material Descriptors, Their Causal Relationships, and the Functional form of the CL


	6 Evaluation, Verification, Validation and Their Challenges
	6.1 Performance Metrics
	6.2 Verification and Validation

	7 Conclusions
	Acknowledgements 
	References


