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Abstract
This review article highlights state-of-the-art data-driven techniques to discover, encode, surrogate, or emulate constitutive 
laws that describe the path-independent and path-dependent response of solids. Our objective is to provide an organized 
taxonomy to a large spectrum of methodologies developed in the past decades and to discuss the benefits and drawbacks of 
the various techniques for interpreting and forecasting mechanics behavior across different scales. Distinguishing between 
machine-learning-based and model-free methods, we further categorize approaches based on their interpretability and on 
their learning process/type of required data, while discussing the key problems of generalization and trustworthiness. We 
attempt to provide a road map of how these can be reconciled in a data-availability-aware context. We also touch upon rel-
evant aspects such as data sampling techniques, design of experiment, verification, and validation.

1 Introduction

Problems in solid mechanics are formulated in terms of three 
sets of equations: the first encodes basic conservation prin-
ciples (e.g., balance of linear momentum) and governs the 
equilibrium of deformable bodies following the definition 
of a stress tensor; the second describes the kinematics of 
motion in terms of displacements, strains and strain rates. 
The third set, denoted as constitutive law (CL) (or material 
model), describes the response of a material to external stim-
uli by establishing a relation between kinematic and static 
quantities (e.g., between strains and stresses) eventually 

mediated though other measurable and/or internal (i.e., non-
measurable) field variables, whose evolution laws are part 
and parcel of the description. The material behavior and, 
therefore, the CL can be classified either as path-independ-
ent (also, history-independent) if the current state of a point 
does not depend on its previous states, or path-dependent 
(also, history-dependent) when the current state depends on 
the history of states experienced by the point. While conser-
vation principles and kinematics are considered axiomatic 
and epistemic, material modeling is empirical in nature; it 
is in continuous evolution and it constitutes one of the most 
important research fields is mechanics.

Since the introduction of Young’s modulus in the 19th 
century [1], engineers have predominantly defined CLs using 
the so-called phenomenological approach, where experi-
mental observations and physical requirements are distilled 
into a priori selected analytical ansatz relationships whose 
parameters are meant to be characteristic of the material 
[2–5]. Thus, constitutive modeling is traditionally based on 
data and, due to the limitations of traditional experimental 
setups, hinged on limited observations on a restricted set of 
load cases (e.g., inducing uniaxial, biaxial and hydrostatic 
stress states). On the other hand, CLs were expected to gen-
eralize to significantly more complex conditions, a task for 
which the development of continuum thermodynamics theo-
ries and computational techniques has been crucial.

The development of full-field experimental meth-
ods such as digital image correlation (DIC) [6, 7], X-ray 
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computed tomography [8–10] and digital volume correlation 
(DVC) [11, 12] and advances in the related computational 
approaches [13, 14] have shifted the constitutive modeling 
paradigm from a limited- to a large-data regime. In par-
ticular, the computational multiscale techniques available 
to date deliver in-silico observations of arbitrary complex 
implicit macroscopic behaviors from simple CLs defined 
at the micro-scale. However, along with the opportunity 
to obtain better CL comes also the challenge of analyzing 
the increased amount of data available. In this context, the 
recent breakthrough in big data analysis and information 
mining gives a unique opportunity to improve constitutive 
modeling for applications in mechanics and material science. 
Although the preliminary results obtained in this area bring 
great promise of efficient and highly accurate predictions, 
the fast development of this discipline calls for a timely iden-
tification of the most promising directions to pursue in order 
to boost the progress of mechanics and that can introduce a 
diversity of solution techniques.

1.1  Classification and Nomenclature

Available techniques that deal with large data are often 
referred to as data-driven (DD) approaches, due to their 
strict dependence upon a set of experimental or numerical 
observations of the material behavior (Fig."1). In general, 
each method deploys a set of algorithms, assumptions and 
procedures, whose purpose is to analyze the available data 
and deduct useful information to describe the behavior of 
a certain material or class of materials. Since the recent 
breakthroughs in deep learning, machine learning (ML) 
techniques have received renewed interest in applications in 
mechanics and materials. Particularly the rise of sparse iden-
tification and discovery [15, 16], Physics Informed neural 
networks (PINNs) and operator learning approaches [17, 18] 
for the solution of forward and inverse problems involving 
partial differential equations (PDEs) [19, 20] have had a sig-
nificant impact on the computational engineering field, shift-
ing the attention to combining data with physics. The great 
promise of fast and highly accurate predictions for mecha-
nistic simulations as well as cost reduction in an industrial 
setting has led to numerous attempts to integrate a wide 
spectrum of these techniques in the simulation workflow 

and also to facilitate material innovation. Combining physi-
cal constraints and data in the context of ML approaches 
has shown potential towards moderating the need for large 
training datasets [21].

For the purpose of this review on DD constitutive mod-
eling in solid mechanics, with the intent of providing a 
structured presentation, we propose for the available DD 
approaches the classification outlined in Fig."1. We distin-
guish among two broad categories with corresponding sub-
categories, as follows:

• methods based on machine learning (ML) techniques. 
Within this category, we distinguish among
– uninterpretable (black-box or grey-box) approaches. 

This subcategory includes methods that obtain CLs 
in which the relation existing between inputs and 
outputs cannot be physically explained. These meth-
ods are also sometimes referred to as encoding or 
learning of CLs. Prominent ML techniques used 
in uninterpretable approaches are those based on 
many different types of neural networks (NNs) (see 
Sect."2.1.1). The difference between black-box and 
grey-box approaches is that the latter encodes some 
known information about the physical system in the 
learning framework; this augments the clarity of the 
learned model but still does not enable interpretabil-
ity. Recently, sparsification approaches for NN mod-
els aim to balance expressivity and interpretability.

– interpretable approaches. Within this category fall 
the techniques that aim at defining an interpretable 
analytical expression for the CL, namely a relation 
between input and output quantities (e.g., strains 
and stresses) through mathematical operators and 
parameters whose role can be physically explained. 
In the literature, some of these methods are referred 
to as methods for automated discovery of CLs from 
data, whereby the term discovery is used to refer to 
simultaneous model selection and parameter iden-
tification. The special case of parameter identifica-
tion, in which the functional form of the model is 
known a priori and only the unknown parameters 
are identified, collapses in terms of scope with the 

Fig. 1  Characteristic features of 
the approaches in the constitu-
tive modeling context
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parameter identification of traditional constitutive 
modeling, but is now sometimes also carried out 
with ML. Prominent ML techniques used in inter-
pretable approaches are symbolic regression and 
sparse regression (see Sect."2.1.1).

   In ML-based approaches, the definition of the opera-
tors and parameters takes the name of training or learn-
ing process, whereas their structure and configuration is 
also known as architecture.

• model-free approaches. These aim at integrating the 
material observations into the solution stream of a 
solid mechanics problem. In other words, they identify 
the solution of the system of PDEs governing a solid 
mechanics problem within the collected material obser-
vation pairs, thus bypassing an explicit analytical link 
between them. Note that, while ML-based methods 
deliver a CL mapping the input to the output which, once 
obtained, does not need any interaction with the original 
data, model-free methods cannot be set apart from the 
dataset they try to represent, since the dataset becomes 
part of the solution.

The above classification places a strong emphasis on inter-
pretability. Interpretable approaches often lead to parsimo-
nious (i.e. simple) CL representations, and parsimony is 
known to counteract the issue of overfitting which comes 
as a side effect of over-parametrization and limited training 
data. Additionally, parsimonious representations can enable 
generalization capabilities beyond the range of input data, 
given that the physics remains consistent (follows the same 
discovered law) out of that range.

An important aspect not contained in the above classifica-
tion is the distinction between “supervised” and “unsuper-
vised” methods. In ML, training is performed in a supervised 
fashion when matching pairs of labeled input and output 
data are used, or in an unsupervised manner if no labeled 
output data are available or in the absence of a bijective 
mapping between input and output quantities. Cases where 
the learning process objective is to minimize the devia-
tions between the model predictions and the labeled data 
are part of the first category, while the methods whose goal 
is to detect hidden patterns or relationships within the data 
fall in the second. In the context of constitutive modeling, 
input and output quantities are, in the simplest case, strains 
and stresses (the situation becomes more complex for path-
dependent material models, see Sect."5). For this reason, we 
denote as supervised the methods that require training data 
in the form of stress–strain pairs, and as unsupervised those 
that do not require such pairs. The distinction is important 
because, while strains can be measured (almost) directly, 
stresses can only be computed from measured forces under 
very simple loading conditions, such as uniaxial tension, and 

are therefore not available in general cases. Unsupervised 
methods formulate the learning procedure in such as way as 
not to rely on the availability of stress–strain pairs; to com-
pensate for the lack of such pairs, they typically rely on the 
enforcement of physics constraints which can be formulated 
in terms of realistically measurable data, such as displace-
ments and forces.

Physics constraints are not exclusive of unsupervised 
methods; approaches of all types can augment learning by 
imposing the fulfillment of such constraints (e.g., global or 
local equilibrium, governing PDEs), in which case they are 
sometimes also denoted as physics-informed (Fig."1). To 
enforce these constraints, mainly three procedures can be 
deployed, either alone or in synergy: i.) the selection of an 
architecture that a priori satisfies them, ii.) penalizing the 
selection of parameters leading to the violation of the con-
straints, iii.) the a posteriori rejection of optimized models 
which are incompatible with the constraints following prede-
fined rejection/acceptance policies. Another ML paradigm is 
the so-called reinforcement learning (RL), whose aim is not 
limited to the optimization of a predefined architecture but 
extends to learning a set of rules that allows for the improve-
ment of the architecture itself by maximizing its predictive 
capability following a given metric (Fig."1). This is nor-
mally done in a trial-and-error fashion by casting architec-
tures whose performances are tested against the available 
data; a reward or a penalty is then given following a set of 
predefined policies. Note that the described methodologies 
are not mutually exclusive, but can be coupled in order to 
achieve a better description of the material behavior. The 
main characteristic features of the approaches to define a CL 
are summarized in Fig."1, while their detailed description 
will be provided later.

1.2  Objective and Organization of the Paper

The primary goal of this review is not to provide an exhaus-
tive list or a ranking of DD attempts in the field of solid 
mechanics but, rather, a map of how DD techniques can be 
used to advance the constitutive modeling field. We provide 
an overview of how DD approaches can exploit the large 
amount of available observations in order to obtain richer 
CLs able to accurately predict the behavior of different mate-
rials. The available literature is reviewed and classified fol-
lowing the main aspects summarized in Fig."1 and whether 
the behavior they try to represent (e.g., elasticity, plasticity, 
damage) is path-independent or path-dependent. Whenever 
possible and relevant, we also overview the mechanics/
physics knowledge that the various approaches embed, the 
capability to generalize to situations different than those 
represented by the data they are exposed to, and the amount 
of data they need to provide reliable results (namely, the 
data hunger). In the overview, we attempt to pinpoint the 
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specific advantages and drawbacks of some of the current 
state-of-the-art techniques and our perspectives on the future 
of DD constitutive modeling for solid mechanics problems. 
Although not treated extensively, the strict relation between 
modern experimental techniques and DD approaches is also 
hinted at, especially regarding the need for integrated frame-
works where the experiments are designed to support the 
definition of accurate and realistic CL.

The paper is structured as follows: in Sect."2 we summa-
rize some earlier reviews in the context of DD approaches 
in solid mechanics and we provide a short overview of DD 
methods to establish a common ground for the remainder of 
the paper. Section"3 focuses on data sampling approaches, a 
central aspect of every approach that focuses on data. Sec-
tion"4 reviews DD CLs for path-independent problems with a 
focus on small strain elasticity and finite strain hyperelastic-
ity. Section"5 reviews DD CLs for a range of path-dependent 
problems, from plasticity, viscoelasticity, damage, fracture, 
and fatigue, to problems in multiphysics. Section"6 presents 
some thoughts on guidelines for validation and verification 
and proposes a set of possible performance metrics, while 
Sect."7  discusses"the current limitations of the reviewed 
approaches and"draws the main conclusions.

2  DD Methods Outline and Earlier Reviews

2.1  Overview of the Available DD Methods

In the following, a non-exhaustive list of important DD 
methods is provided, as they are used either alone or in com-
bination for the different constitutive models discussed in 
the following sections. For most of these models, different 
variations exist that allow for either classification of data 
or fitting regression curves. Since in constitutive modeling, 
we are usually concerned with the prediction of quantities 
instead of labels, the following summary mainly focuses on 
regression tasks.

2.1.1  ML Approaches

Interpretable approaches. Symbolic regression and sparse 
regression are probably the closest ML techniques to tradi-
tional constitutive modeling (based on parameter identifi-
cation of assumed laws) and have the advantage that func-
tional dependencies between inputs and outputs are highly 
interpretable, and constitutive modeling constraints can be 
incorporated, which typically leads to high extrapolation 
power. Both approaches are based on finding an analytical 
function that best fits a given dataset. In general, approaches 
that derive mathematical expressions from targeted experi-
mental data are commonly referred to as symbolic regression 
methods; hence, also sparse regression can be interpreted 

as a specific instance of symbolic regression (see also the 
extensive review in [22], where symbolic regression meth-
ods, including sparse regression, are viewed through the 
lens of operations on graphs). However, in the literature 
very often symbolic regression is used to denote methods 
based on genetic algorithms. In what follows, we adopt this 
terminology; hence, we refer to methods that are based on 
genetic algorithms as symbolic regression and treat sparse 
regression separately.

In symbolic regression, building blocks such as math-
ematical operators and constants are combined with com-
monly applied analytical functions such as sine or loga-
rithm using genetic algorithms [23, 24]. In the physical 
sciences, symbolic regression was popularized by [15], and 
an overview with applications to material science is pro-
vided in [25]. Different software packages can be found in 
the literature, e.g., GPTIPS [26], Eureqa [27], gplearn [28], 
AIFeynman [29]. A recent comparison between common 
open-source implementations can be found in [30]. The 
disadvantage of these methods is the long training time of 
the genetic algorithms without guaranteed convergence to a 
good solution. Furthermore, in comparison to other methods, 
which are more automatized, a high degree of user knowl-
edge is required since the space of mathematical expressions 
has to be a priori provided by the user. Additionally, due 
to the commonly low number of trainable parameters, the 
method is not as expressive and might struggle with highly 
complex functional dependencies.

In contrast to symbolic regression, sparse regression 
[31–33] discovers a symbolic model expression from a 
predefined catalog (often denoted as a library) of candidate 
models. The strength of sparse regression is its computa-
tional efficiency and, in the frequent case of a convex objec-
tive function, guaranteed convergence. The idea of using 
sparse regression in the physical sciences was initiated by 
[16]. Recently, sparse regression has gained increasing 
popularity for material model discovery [34–36]. Also, in 
this case, user knowledge is required since the catalog of 
material models is chosen upfront by the user. However, 
recent research is trying to automatize this task towards a 
self-generated library [22].

Uninterpretable approaches. In recent years, artificial 
NNs and especially deep NNs have been widely used for 
many complex regression tasks and NNs are probably the 
most encountered type of ML method in the context of DD 
constitutive modeling. Their historically first and simplest 
form, known as feed-forward neural NN or fully connected 
NN, takes vector-valued inputs and maps them to the vec-
tor-valued output using only forward-directed connections 
between the hidden layers of the network, that consist of 
several hidden nodes. Other forms include sequential mod-
eling architectures such as recurrent (or sequential) NNs 
(RNNs) [37], Gated Recurrent Unit (GRU) [38], Long 
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Short-Term Memory (LSTM) [37], and Transformers [39], 
which are based on internal states that allow for processing 
time- and history-dependent datasets. Lastly, convolutional 
NNs (CNNs) [40], attention networks [41], and graph NNs 
(GNNs)[42] are used to analyze visual imagery and graph 
dependencies, respectively. For more information on these 
types of NNs, we refer to [43]. One important reason for 
the popularity of NNs is that all the major current software 
implementations are based on Automatic Differentiation 
[44]. The most commonly employed open-source libraries 
are Tensorflow [45], Pytorch [46] and JAX [47]. Other than 
their flexibility, the advantages of NNs include their ease 
of usage and their ability to deal with very large datasets. 
An important positive aspect of NNs is that they allow to 
weakly incorporate constitutive model constraints. On the 
other hand, even though NNs with arbitrary widths or depths 
are theoretically able to approximate any function [48, 49], 
from an engineering point of view with naturally limited 
computational resources, convergence cannot be guaran-
teed. Furthermore, NNs do not offer exact inference prop-
erties, their analytical function is hard to interpret due to 
the number of trainable weights, and they are reliant on a 
large amount of user-chosen parameters (hyperparameters). 
Also, performing Bayesian inference using NNs, known as 
Bayesian NNs (BNNs)[50], is popular in the ML community 
for uncertainty quantification (UQ). Here, additional con-
straints in constitutive modeling can be enforced in various 
ways [51]. However, the process typically requires a higher 
understanding of statistical learning theory in comparison 
to enforcing constraints with NNs.

NNs and Bayesian NNs are widely used for many compu-
tationally expensive scientific problems for performing tasks 
such as inverse modeling or UQ. However, these models 
are confined to the mapping between a predefined set of 
input and output data. They cannot be directly applied to 
control or experimental design problems due to the difficulty 
in learning optimal decision-making strategies in dynamic 
and uncertain environments. To address this issue, an RL 
technique that hinges on the concept of dynamic program-
ming is employed [52]. RL is a type of ML model in which 
the agent or an NN model learns the best actions to make 
decisions by interacting with the environment. The decision-
making process in RL is executed by defining states, actions, 
and rewards. During training, the data from the environment 
known as the state is provided to the agent to assess the 
reward. The main objective of RL is to enhance the model’s 
policy or value function, enabling it to take the best actions 
over the iterations known as episodes. There are mainly two 
types of RL models, namely, model-free and model-based 
RL. Model-free RL algorithms, such as Q-learning [53] and 
Policy Gradient algorithms [54], focus on learning the opti-
mal solution by directly interacting with the environment. 
On the other hand, model-based RL algorithms such as Dyna 

[55] and AlphaGo Zero [56] depend on planning based on 
the learned model.

Support vector regression (SVR) is well established in 
the ML community for real-valued function estimation [57]. 
Rooted in statistical learning theory, SVR is based on its 
well-known classification-based counterpart known as sup-
port vector machines (SVM), which try to systematically 
find a linear hyperplane able to cluster input and related 
output data in classes. However, the latter assumption fails 
to represent the classification when the mapping between 
input and output parameters is non-linear. In such cases, the 
’kernel trick’ [58] is employed to convert the original data 
space into a higher dimensional one where a linear hyper-
plane is again a suitable ansatz. Considering the domain 
and codomain of an unknown function composed of classes 
representing a restricted range of values, it is possible to 
endow the SVM with regression capabilities leading thus 
to the SVR. To avoid overfitting, SVR penalizes predictions 
farther away than a specific value from the desired output 
in a convex loss function. For constitutive modeling in solid 
mechanics, SVR has traditionally been far less commonly 
employed compared to other ML methods although different 
libraries offer the possibility to use SVR. The main open-
source software library used in the literature is libSVM [59]. 
Alternatively, the Scikit-learn [60] also has an implementa-
tion of SVR, which is, however, also based on libSVM. The 
advantages of SVR methods are that they are robust against 
outliers in the data, are easy to implement, their computa-
tional complexity does not depend on the dimensionality 
of the input space, and, when well fitted, they tend to have 
good generalization capabilities [61, 62]. Furthermore, due 
to the convexity of the loss function, SVR training delivers 
a unique solution that makes training in comparison to other 
advanced ML methods easier. Constraints generally encoun-
tered in constitutive modeling can be enforced by adjusting 
the loss function [63]. However, the method has problems 
in the big data domain and with datasets that contain a sig-
nificant amount of noise. Furthermore, in comparison to 
Gaussian process regression (GPR), there is no probabilistic 
explanation for the fitting and no exact inference.

Apart from the above-mentioned models for regression 
tasks, feature extraction models and probabilistic generative 
models are other popular ML areas that are widely used in 
the scientific domain. Feature extraction is used to reduce 
datasets into their informative and non-redundant parts. 
For more details, we refer to [64]. They usually involve 
some form of dimensionality reduction, and common tech-
niques of this kind are principal component analysis (PCA) 
[65], autoencoders [66], and clustering techniques such as 
k-means clustering. Other popular ML domains are proba-
bilistic generative models such as restricted Boltzmann 
machine (RBM) [67], variational autoencoder (VAE) [68], 
generative adversarial network (GAN) [69], flow-based 
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generative models (or Normalizing Flows) [70] or diffusion 
models (DM) [71], which have been successfully imple-
mented for various tasks such as dimensionality reduction, 
inverse surrogate modeling [72], image generation [69], 
anomaly detection [73], and many others. Due to the rela-
tively small datasets generally encountered in constitutive 
modeling, these methods have not yet seen a lot of interest 
in the community. However, with the ever-increasing avail-
ability of data, they may soon become more important.

Bayesian inference and statistical learning. Another 
important class of ML methods is models based on Bayes-
ian inference. They revolve around using Bayes’ theorem to 
find the probability distribution of parameters or functions 
given observed data and prior distributions. Since often no 
closed-form solutions for the posterior distributions exist, 
efficient simulation algorithms like Markov Chain Monte 
Carlo (MCMC), Metropolis-Hastings (MH), and Hamilto-
nian (or hybrid) Monte Carlo (HMC) are applied to find 
approximations. For more information, we refer to [74]. 
Analytical posterior distributions can be found by using 
Gaussian processes as priors. The resulting interpolation 
method is typically known as GPR or Kriging [75]. In the 
context of ML CL modeling, GPR is the most encountered 
form of Bayesian regression due to its simplicity. Differ-
ent open-source software packages for GPR are available, 
e.g., DACE [76], DiceKriging [77] or GPyTorch [78]. GPR 
methods have significant advantages compared to other ML 
models: they have rigorous convergence guarantees, yield 
exact inference in the absence of noise, allow for proba-
bilistic error estimation, and are fully trainable with only a 
limited amount of user-chosen parameters [75]. The major 
issue of GPR is that it scales cubically with the size of the 
dataset; this has historically prevented it from being used in 
the big data context [79]. Overall, utilizing GPR for consti-
tutive modeling has been a relatively recent phenomenon 
in comparison to other ML models. Finally, classical but 
proven techniques of statistical learning theory should not be 
neglected when deciding which predictive tool to use. Meth-
ods like k-nearest neighbor, random forests, or spline inter-
polation might, depending on the complexity of the data, 
even be the best-performing methods for certain tasks. For 
a textbook on these traditional techniques, we refer to [80].

Closing remarks. As pointed out, all of the presented 
methods have their own strengths and weaknesses, and sim-
ilar to most application areas in engineering there is also 
no single best method to apply for constitutive modeling. 
The choice of which method to use is typically dependent 
on the size of the dataset, the type of the data source, the 
required level of interpretability, the degree of dimensional-
ity of the inputs and outputs, and the complexity and amount 
of noise in the data. Moreover, in the end, the choice of an 
ML method usually boils down to user knowledge of spe-
cific methods and algorithms and the availability of codes; 

facilitating this process could be beneficial for the broader 
community. In this regard, due to the number of historical 
papers and available tutorials, NNs can certainly be seen 
as the easiest and most flexible method for inexperienced 
users. Approaches that initially show a steeper learning 
curve might however have some significant advantages for 
specific applications and goals.

2.1.2  Model-Free Approaches

As mentioned earlier, model-free approaches first proposed 
by [81] do not explicitly create material models or their 
surrogates to be integrated into computations but, instead, 
directly inform the forward problem with a set of discrete 
material behavior observations (the so-called material data 
set). The main idea is to relax the requirement of the clas-
sical solution procedure of a mechanical boundary value 
problem that seeks the solution as the intersection between 
a set of basic governing equations (e.g. equilibrium, com-
patibility) and the CL. Instead, the model-free approach 
identifies for each point of the domain the state within the 
available material observations that is closest to the subset 
of points satisfying compatibility and equilibrium. Hence, 
the model-free solution strategy relies on the definition of a 
discrete quantity, representing a distance induced by a given 
metric in the state space, which attains its minimum in cor-
respondence with the material data point that best represents 
the solution under the given boundary conditions [82]. The 
aim of this approach is to minimize assumptions on the mod-
eling part by relying only on discrete observations of the 
material behavior. This makes the model-free approach data-
hungry [83, 84] since it is unable to generalize the observed 
behavior. For the same reason, it poses limitations to the 
description of dissipative CLs, where the major challenge is 
to ensure the representability of the material behavior with-
out the introduction of a priori-defined dependencies from 
postulated internal/history variables or oversized datasets.

2.2  Earlier Reviews

There are several recent reviews in the context of DD 
approaches for a wide array of solid mechanics problems. 
We summarize here the main contributions towards three 
main fields: i. single or multiscale approaches to represent 
the material behavior, ii. design of new (meta-)materials 
with prescribed behavior (namely, material behavior opti-
mization) and, iii., synergistic approaches integrating experi-
mental mechanics and ML methods.

Material behavior representation. In [85] a review of DD 
modeling approaches in engineering is presented that aims to 
introduce the reader to a variety of approaches and applica-
tions. With a focus on virtual twins, namely computational 
frameworks replicating the material behavior that support 



A Review on Data-Driven Constitutive Laws for Solids  

and extend the experimental practice, [86] discusses effi-
cient approaches for the exploitation of data in computations 
beyond classical parameters calibration. More focused on 
multiscale approaches, surrogate models, and design opti-
mization of composite materials and structures, [87] revises 
the available approaches employing NNs, while [88] focuses 
more on physics-informed ML and tries to identify applica-
tions and opportunities in the general context of computa-
tional mechanics. Also, [89] extends the review to the whole 
ecosystem of ML approaches and tries to outline the future 
perspectives of the field. Focusing on mechanical properties, 
[90] discusses the importance of data collection, genera-
tion, and preprocessing towards applications in multiscale 
materials design.

Design of meta-materials. [91] reviews the advancements 
driven by ML tools towards material design innovation, 
while in [92] a classification among descriptive, predictive, 
or prescriptive is utilized to map ML approaches to prob-
lems of parameter calibration, material characterization, 
and material design and optimization. Focusing on material 
discovery and the materials genome, [93] discusses how ML 
approaches can take advantage of mechanical and chemical 
datasets to propel the design of new meta-materials with 
improved properties, while [94] and [95] review respectively 
the methods available and the challenges and opportunities 
involved.

Synergy between experimental and DD methods. Various 
hierarchical identification procedures and related data-reduc-
tion methods to accelerate the exploitation of the experimen-
tal information are accounted for in [96], while [97] reviews 
the ML approaches involving data from acoustic emission 
and resonant ultrasound spectroscopy and points out that 
including known physical and mechanistic relationships in 
the ML approaches increases the reliability of the trained 
models. The integration of experimental and ML methods is 
exploited extensively in the area of biomechanics. With this 
focus, [98] reviews aspects of the solution of biomechanics 
problems using DD methods based on patient-specific data 
and highlights how this enables an automatic consideration 
of the case-wise variability of the material parameters and 
of the uncertainty propagation.

Despite the number of review articles published, to the 
best of the authors’ knowledge a review that solely targets 
constitutive modeling approaches in solid mechanics is still 
lacking. With this paper, we aim to fill this gap.

3  Data Sampling and Design of Experiments

One of the open problems in DD material modeling is the 
dependence of the performance on the amount of available 
data. One possible remedy to the unavailability of sufficient 
data is to train the ML tools on less but qualitatively more 

relevant data, i.e. data that capture the major complexities of 
the mapping. This can be achieved by relying on pertinent 
data sampling strategies. In this section, we briefly review 
some of these strategies that have been employed in the lit-
erature for DD material modeling. We differentiate between 
one-shot and sequential sampling approaches.

The design of sampling strategies can be paralleled to 
experimental design. Experimental design denotes the sys-
tematic planning and structuring of lab experiments (e.g. 
loading paths, types of experiments) to gather valuable and 
relevant data from lab tests to calibrate constitutive models. 
While both sampling strategies and experimental design aim 
to efficiently extract the most meaningful data, experimental 
design brings an additional layer of complexity. It must not 
only consider the theoretical significance of the data but also 
the feasibility and efficiency of conducting the experiment in 
a real-world lab setting. Practical limitations, such as equip-
ment availability, time constraints, and material properties, 
often dictate what can be accomplished in the lab. After 
discussing one-shot and sequential sampling approaches, we 
briefly overview the works that utilize deep RL for experi-
mental design, showcasing its potential in optimizing and 
informing experimental setups.

One-shot sampling. One-shot sampling is characterized 
by the determination of the sample size and points in a 
single stage. To this end, the input domain for both time-
dependent and time-independent inputs has to be known. 
Non-temporal inputs are characterized by a fixed range of 
interest, i.e. a sampling interval, or a probability distribution 
function. Since sampling from a probability distribution is 
straightforward, in the following we focus on deterministic 
input domains. The simplest way of generating data for non-
temporal inputs is grid-based sampling (Fig."2a) where a few 
equally spaced values are selected for each parameter. Apart 
from its simplicity, this type of strategy has several other 
advantages, including easy setup for parameter sensitivity 
studies and numerical integration, and of course its space-
filling properties. Grid-based sampling strategies have been 
applied in a variety of publications [99–101].

A major limitation of grid-based sampling is their "col-
lapsing" property [102] which essentially means that sample 
points may have the same coordinate value when projected 
onto a parameter axis. This has the undesirable effect that, 
when one of the design parameters has (almost) no influence 
on the mapping, then two points whose only difference is 
this property can essentially be seen as the same point. This 
means that for the purposes of generating a surrogate for 
the mapping the same point will be evaluated twice. Hence, 
the two crucial criteria for one-shot sampling designs are 
space-filling and non-collapsing properties. An obvious way 
to avoid a collapsing design would be to use uniform random 
sampling. However, especially if a small quantity of sample 
points is involved, random sampling approaches tend to be 
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not reliably space-filling, i.e. they show clustering behavior 
and fail to provide points in large portions of the region, as 
seen in Fig."2b. For this reason quasi-random techniques 
such as Latin hypercube sampling [103] are often preferred 
(Fig."2c). This method aims to generate a space-filling 
design that is non-collapsing. This strategy is employed 
in various works in the context of DD material modeling 
[104–106]. In some applications, due to indirect access to 
the input space (i.e. the input domain cannot be explicitly 
sampled), different strategies have to be employed. E.g., [21] 
proposes a sampling approach that generates space-filling 
points in the invariant space corresponding to a bounded 
domain of the deformation gradient tensor. The approach 
builds a space-filling sampling strategy based on simulated 
annealing, which provides more efficient and reliable phys-
ics-informed constitutive models than quasi-random sam-
pling in the deformation gradient space.

Sampling from temporal inputs is more complicated as 
now a sequence of points has to be generated. This is e.g. 
required when the response depends on a specific three-
dimensional loading path. Some aspects of effective tempo-
ral sampling are still an open issue in the literature, e.g. how 
to sample temporal curves in a space-filling manner. Dif-
ferent approaches have been proposed. In strain-controlled 
loading, [107] defines an upper and lower bound for each 

individual strain component and a fixed number of time 
steps. The authors then propose to generate equally spaced 
points in the chosen bounds over the time frame using ran-
dom sampling. These points are used as control points of 
an interpolator in order to generate smooth loading curves. 
Similar approaches are used in [108–110]. [111] samples 
the loading path as a random walk which changes its direc-
tion and step size using realizations of independent uniform 
random variables. The same method is employed in [110]. 
Other approaches [112] define the load paths directly as 
realizations of a multivariate Gaussian process.

Even though these methods have proven to be successful, 
overall, reliable and goal-oriented sampling of sequentially-
based material responses still remains an open issue. Since 
non-temporal data-generation techniques are in general more 
reliable, DD modeling frameworks that transform a many-to-
one mapping (as seen in plasticity) into one-to-one mappings 
can be considered more reliable.

Sequential/adaptive sampling. The problem with one-shot 
sampling is that, without a target function, it is difficult to 
predetermine an optimal or appropriate sample size as well 
as the ideal sample placement. This is especially true for tem-
poral input parameters. For these reasons sequential or adap-
tive sampling techniques have been proposed in the broader 
surrogate modeling community [113–115]. These techniques 

Fig. 2  Different one-shot 
sampling strategies. a Grid 
sampling. The input domain is 
discretized using equidistant 
samples. b Uniform sampling. 
The sample points are generated 
from a uniform distribution 
in the input domain. c Latin 
hypercube sampling. The points 
are sampled such that there is 
only one point at each section of 
a divided input space

(a) Grid sampling (b) Uniform sampling

(c) Latin hypercube sampling
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have been only sparingly applied in the context of DD material 
modeling. However, some approaches have been proposed in 
this field that could pave the way forward. To the best of the 
authors’ knowledge, [116] is the first contribution that employs 
an adaptive sampling scheme for multiscale problems. The 
authors use multivariate kriging as a fit for a path-dependent 
DD material model. The proposed method is based on using 
the variance estimation of the kriging interpolant as an error 
estimate in the local material point routine of a finite element 
model. In essence, the surrogate takes the stress, pressure, 
temperature, and hardening variable of the current load step 
as input and returns the approximate values of the lower scale 
model, such as the directionality of the plastic velocity gradi-
ent, as well as an error estimate. If this error estimate is larger 
than a tolerance value, then a new data point is added at this 
input point and the surrogate model is retrained. This frame-
work is refined in [117]. Similar approaches are proposed in 
[118, 119], but instead of relying on the error estimate of the 
surrogate, the model is adaptively refined when convergence 
in the local integration loop at a material point of the macro-
scopic structural problem cannot be achieved. In the context of 
model-free plasticity modeling [120] proposes a related idea. 
Overall, especially concerning path- and history-dependent 
material modeling, adaptive sampling strategies are largely 
underused. They have the potential to offer a reliable frame-
work to train more robust DD material models.

Deep RL for experimental design. Deep RL is a subdomain 
of RL that combines the concepts of RL and deep NNs for 
tackling complex tasks involving continuous state and action 
spaces in an uncertain and dynamic environment. In the ML 
community, there are various deep RL models, such as Deep 
Q-Network (DQN) [121], Deep Deterministic Policy Gradient 
(DDPG) [122], and others that have been used for a wide range 
of problems. These include learning acquisition functions for 
Bayesian optimization [123], trading and finance [124], robot-
ics manipulation [125], controls [126], experimental design 
[127], and many more. Recently, [128] developed a meta-mod-
eling game framework based on RL, where two ML agents 
compete against each other to generate experimental data for 
calibrating a constitutive model. Out of all possible design 
options for laboratory experiments, the developed deep RL 
framework can determine sophisticated experimental designs 
that capture the relevant information to train reliable consti-
tutive models. With a focus on using deep RL for expensive 
experimental data, [127] develops a framework that combines 
deep RL and Kalman filters for calibrating materials models.

4  DD Modeling for Path-Independent CLs

This section reviews the main DD modeling approaches pro-
posed for path-independent CLs, namely for conservative 
and thus fully reversible material behavior. A key feature 

of this type of materials is that the current state of a point 
is uniquely defined by the current value of the strain in that 
point. In the following, starting with linear elasticity and 
continuing with the finite-strain case, we review the main 
related contributions in the context of DD modeling.

4.1  Small-Strain Elasticity

The simplest assumptions in phenomenological constitu-
tive modeling of solid materials are the assumption of small 
strains and the often accompanying assumption that the 
stress state depends linearly on the strain state 𝝈 =   𝜺 , 
where 𝝈 , 𝜺 and   denote the Cauchy stress tensor, the infini-
tesimal strain tensor, and the elasticity tensor, respectively. 
Under these assumptions, the material characterization 
objective boils down to identifying the parameters that gov-
ern the linear stress–strain relation, i.e., the components of 
the elasticity tensor   . Although not denoted as such, this 
parameter identification problem has often been faced from 
a DD perspective since its inception. Despite the simplicity 
of the problem, ML opens new doors for elastic property 
prediction.

While the response of homogeneous materials appears 
straightforward to model, mesoscopically heterogene-
ous materials such as multiphase materials and compos-
ites exhibit more complex stress–strain (or energy-strain) 
relations at the macroscopic scale. Hierarchical modeling 
is a powerful tool to describe the macroscopic material 
responses of such materials; the idea is to conduct lower-
scale simulations of representative volume elements (RVEs), 
which capture the characteristic topology of the heteroge-
neous material, to predict the effective material behavior 
at the macroscopic scale. Prerequisites to such lower-scale 
simulations are, first, that the material properties of the dif-
ferent phases at the micro- or meso-scale are known and, 
second, extensive computational effort, especially in the 
three-dimensional case. Hierarchical methods such as FE2 
require the execution of a lower-scale simulation when-
ever the unknown stress state needs to be calculated from a 
known strain state, i.e., the stress–strain relation is implicit 
and costly to evaluate. ML-based methods promise a sig-
nificant speed-up; given that a number of lower-scale simu-
lations have been executed, i.e., a set of stress–strain data 
pairs is known, ML models can be used to interpolate the 
stress–strain data to arrive at an explicit model for the mac-
roscopic stress–strain relation

which can then be used efficiently in forward simulations. 
Following the same idea, the data can alternatively be used 
to train a differentiable ML model to arrive at an explicit 
form of the strain energy density W

(1)M  𝜺 𝝈,
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In this case, the stress–strain relation can be found by dif-
ferentiating the above mapping with respect to the strain. A 
clear advantage of (2) over (1) is that the output of the map-
ping is scalar, which simplifies the training process. Expres-
sions in the form of (2) further simplify the enforcement of 
physical constraints such as thermodynamic consistency, as 
discussed in later sections.

Uninterpretable ML approaches. One of the first meth-
ods for the development of models in the form of (2), termed 
Numerically Explicit Potentials [129], gathers data of RVE 
responses in a discretized loading space and interpolates the 
effective response with cubic splines [129] and later NNs 
[130]. To reduce the computational cost associated with 
the micro-scale simulations for data generation, [131] uses 
reduced-order RVE simulations to train a path-independent 
NN in the form of (1). The NN is then used as a surrogate for 
the macroscopic material behavior in forward finite element 
simulations, however, as the accuracy of the NN cannot be 
guaranteed outside the training domain, the authors propose 
to use reduced-order micro-scale simulations to predict the 
effective material response whenever predictions outside the 
training domain are required.

[132] proposes an ML-based multiscale material mod-
eling method called Deep Material Network (DMN), which 
is constructed as a hierarchical network of layered composite 
building blocks with known analytical homogenization that 
maps the microscopic material properties  micro to the effective 
material properties  effective

Each building block takes as input the compliance matrices 
of the individual phases and outputs the effective material 
properties in a rotated coordinate system. By chaining the 
building blocks in a binary tree structure in such a way that 
consequent blocks take as input the compliance matrices of 
preceding blocks, the emerging network is able to encode the 
homogenization process of materials with complex hetero-
geneities. The network parameters are trained based on two- 
or three-dimensional [133] linear elastic RVE simulations. 
Afterwards, in order to reduce the network complexity while 
retaining its predictive abilities, the authors suggest different 
model compression methods based on network node deletion 
and subtree merging. In [134], the same authors show that 
a pre-trained DMN can be used as initial input for the train-
ing process for new similar materials, e.g., the same type of 
composite but with different volume fraction f of the mate-
rial phases. In this way, the training process can be acceler-
ated and it can be ensured that different networks share the 
same architecture. This in turn enables interpolation between 
trained networks: if e.g. two networks for volume fractions f1 

(2)M  𝜺  W.

(3)M   micro   effective.

and f2 are trained, the material behavior of a structure with 
volume fraction f, f1 < f < f2 , can be obtained from interpo-
lation. In [135] the properties of DMN are studied on a theo-
retical basis. To this end, the authors interpret the network 
as a hierarchy of homogenization functions of generalized 
standard materials. In this way, they show that the networks 
are thermodynamically consistent and exhibit stress–strain 
monotonicity. They further propose new types of building 
blocks by allowing the composite building blocks proposed 
by [132] to rotate, and discuss their implementation in for-
ward finite element simulations in [136]. Further, [137] and 
[138] show applications of the DMN in the context of porous 
and woven materials, respectively.

Realizing that supervised training of NNs requires a high 
amount of stress–strain data pairs, which are hardly available 
from experimental measurements or too costly to generate 
from RVE simulations, [139] proposes to use the energy-
based characterization method (see [140]) to train NN-based 
CLs in an unsupervised manner, i.e., by leveraging full-field 
displacement measurements and global reaction forces, but 
no stress data. [141, 142] and [19] encounter the same prob-
lem and train NNs using indirectly measured data for the 
constitutive modeling of a fiber-reinforced plate [141] and 
two-dimensional in-plane shear material behavior [19, 142].

Another context in which ML finds its application is that 
of reduced-order modeling. By solving reduced-order mod-
els at the micro-scale, the computational cost of two-scale 
simulations can be drastically decreased while retaining high 
computational accuracy. [143] proposes to use ML, and in 
particular k-means cluster analysis, to divide the RVE geom-
etry in the offline stage into a finite set of clusters with simi-
lar strain concentration. Assuming constant local variables 
over these clusters greatly simplifies the solution process of 
the Lippmann-Schwinger equation during the online stage. 
The method is non-parametric, naturally thermodynami-
cally consistent, and is known as self-consistent clustering 
analysis. A great advantage of the method is that the offline 
stage can be computed under the assumption of small-strain 
elasticity, and the results of the offline stage can be utilized 
afterwards to compute material behavior beyond elastic-
ity in the online stage. An equivalent approach is proposed 
independently by [144], which derives the method from the 
perspective of the Hashin-Shtrikman variational principle. 
[145] discusses the analogy between the methods proposed 
by [143] and [144] from a theoretical perspective and fur-
ther points out the connection between the self-consistent 
clustering analysis and a related reduced-order modeling 
method, i.e., the transformation field analysis. Applications 
and extensions of the self-consistent clustering analysis are 
provided by [146–153]. [154] employ a denoising diffusion 
probabilistic model (DDPM) to map the reduced-order rep-
resentation of small-strain elasticity to an embedded rep-
resentation of the corresponding complex microstructures. 
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Thus, they resolve the optimization in a reduced-order space 
to facilitate the inverse design and generation of microstruc-
tures with specific targeted non-linear properties.

Finally, we mention ML-based approaches which allow 
to construct black-box models M taking a set of microstruc-
ture or process parameters as input I  and outputting a set 
of targeted effective material properties O , e.g., the elastic 
stiffness

The model M may be any ML-based mapping, such as e.g. 
an NN or other function approximator. In this way, material 
properties may be predicted without experimental or numer-
ical testing, but solely by knowing characteristic features of 
the production process and/or the microstructure. Interested 
readers are referred to the (non-comprehensive) list of ref-
erences [139, 155–165]. The same idea can be extended to 
predicting mechanical properties as spatially varying fields. 
The ML-based mapping M may take spatial measurements 
I(x) as input to predict a spatial property field O(x)

where x denotes the spatial coordinate, see e.g. [163, 164].
Model-free approaches. A model-free approach is pro-

posed in [81] with a first application on truss systems. The 
data set is composed of stress and strain tensor pairs and the 
solution is obtained by minimizing a distance defined in an 
energetic sense between simulated and observed stresses and 
strains subject to kinematic and equilibrium constraints, the 
latter enforced through Lagrange multipliers. [166] follows 
this idea by interpreting the given stress and strain data as 
a low-dimensional manifold that is embedded in the high-
dimensional phase space (dimensionality is twelve, due to 
six independent components of the stress and strain tensors). 
[167, 168] propose the inverse problem of the problem posed 
by [81, 166], see also [168, 169]. The objective of their pro-
posed method, denoted as DD identification, is to calculate 
the stress field given full-field displacement measurements, 
e.g., generated through DIC, without postulating any mate-
rial model.

4.2  Finite-Strain Elasticity

Finite-strain elasticity, while sharing similarities with its 
small-strain counterpart, especially in the area of identify-
ing elasticity parameters, introduces unique complexities. 
A primary challenge resides in incorporating geometric 
nonlinearity and material frame considerations, which com-
plicate the task of parameter identification [170]. Despite 
these complexities, constitutive modeling work has turned 
to DD models to facilitate and automate calibration of novel 
materials. These models do not merely aim for an accurate 

(4)M  I  O,

(5)M  I(x)  O(x),

fit to the training data, but also for trustworthy predictions 
on unseen data points. The robustness of these predictions 
can be validated via thorough sensitivity checks of the 
input parameters, solidifying the reliability of the models 
for broader applications. In this section, we discuss the 
evolution of these models and the key considerations they 
embody, with a particular focus on parametrization and 
adherence to physical constraints.

Parametrization and the purposeful design of the input 
and output spaces are important aspects of DD finite-strain 
problems. The concern lies in the optimal determination of 
the input and output strain and stress states for the DD mate-
rial laws. Some of the strain measures that are used in the 
finite-strain description are the deformation gradient ( F ), 
the Green-Lagrange strain tensor ( E ), and the right Cauchy-
Green deformation tensor ( C ), paired with their respective 
conjugate stress measures: the first Piola-Kirchhoff stress 
( P ) or the second Piola-Kirchhoff stress ( S ). In the case 
of hyperelasticity, the formulation involves learning energy 
density functions with respect to these variables, as illus-
trated by

The frame of reference chosen for parametrization has a sub-
stantial impact on the size and complexity of the learning 
problem. For instance, the deformation gradient F and the 
stress tensor P consist of nine components as two-point ten-
sors, while the tensors E , C , and S are symmetric with six 
components each. This difference calls for close considera-
tion as it involves learning a non-symmetric fourth-order 
elasticity tensor  PF

(F) (with 81 coefficients in general) as 
opposed to symmetric  SE

(E), SC
(C) elasticity tensors, 

both of which possess major and minor symmetries and thus 
require calibration for fewer elasticity coefficients. The CL 
can be formulated in terms of strain energy density as

or relying on the corresponding strain–stress mappings, i.e.

Formulations also often involve mappings from invariants 
of strain tensors to energy and stress measures, as addressed 
in numerous research works discussed below. Either of the 
aforementioned finite-strain elastic tensors depend on the 
current state of deformation, making their definition more 
complex than in the small-strain framework where only one 
constant tensor is needed. An additional important prop-
erty of hyperelastic material models is polyconvexity, which 
along with coercivity is a sufficient condition for the solv-
ability of boundary value problems under general boundary 
conditions and body forces.

(6)P(F) =
 W̄(F)

 F
or S(E) =

 Ŵ(E)

 E
= 2

 W̃(C)

 C
.

(7)M  F   W, M  E  Ŵ or M  C  W̃,

(8)M  F  P , M  C  S , or M  E S.
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The selection of strain and stress inputs and outputs in 
DD laws has consequences on an important required prop-
erty of finite-strain material laws, namely, material frame 
indifference/objectivity. This property ensures that both the 
energy and stress response of the material remain constant 
upon rigid body motion and rotation. In the context of hyper-
elasticity, it is defined as follows

where Q represents a rotation tensor and SO(3) denotes the 
3D rotation group. DD material laws expressed in terms of 
P  F relations do not necessarily satisfy objectivity and 
may require additional enforcement of the related constraint, 
whereas material laws expressed as S  E or S  C rela-
tions are known to be automatically objective [170]. Frame 
invariance can also be inherently achieved by selecting an 
appropriate strain invariant formulation.

Uninterpretable ML approaches. One of the earliest 
attempts to model finite-strain elasticity using NNs goes 
back to [171, 172]. These authors mainly focus on rub-
ber materials, utilizing a small NN to model a hyperelastic 
energy function. Their approach resembles the finite-strain 
model proposed by [173], which also serves as a benchmark. 
The authors adopt a strain invariant formulation of the input, 
ensuring the concise representation of the strain characteris-
tics. Moreover, their approach also emphasizes the need for 
stress and higher-order derivatives from the learned func-
tion, particularly to facilitate the successful implementation 
of the trained NN within the finite element solver. This early 
exploration of finite-strain elasticity via NNs showcases the 
potential and challenges inherent to the task.

More recent work in finite-strain elasticity further 
explores the question of training a hyperelastic energy 
function and subsequently deriving the stress information 
through differentiation. This preference is rooted not only 
in its potential to simplify the learning problem - mapping 
from the strain space to a single, scalar-valued function W 
- but also in its utility in enforcing and validating necessary 
properties in the learned material law. [174] leverages both 
feed forward NNs and CNNs for predicting a homogenized 
energy function of a single microstructure for data from 
multiple numerical simulations of evolving crystal micro-
structures. The trained NNs then facilitate the calculation of 
the P(F) values through differentiation of the learned W(F) 
in the multiscale approach. Meanwhile, [175] introduces 
the Sobolev training technique by [176] in the hyperelas-
ticity training procedure for polycrystals. By doing so, the 
authors are able to constrain the optimized architecture to 
accurately predict derivatives of the learned W(C) to cal-
culate S . Furthermore, by adopting a graph representation 
of the polycrystals as material descriptors of anisotropy, 
they also generalize the law to a family of microstructures. 

(9) W(F) =  W(QF),  P(F) =  P(QF),  Q ∈ SO(3),

[177] encodes hyperelastic energy functions using input con-
vex NNs, addressing the issues of polyconvexity and thus 
material stability. They explore two methods for obtain-
ing polyconvexity: firstly, they employ polyconvex, aniso-
tropic, and objective invariants as inputs; secondly, they use 
the deformation gradient, its cofactor, and determinant as 
inputs while performing additional data augmentation to 
satisfy the objectivity condition. [178] also discusses an 
input convex NN-based energy function regression model 
framework to enforce mechanics principles such as objec-
tivity, consistency, and dynamic material stability through 
proper parameterization of the energy mapping in the S  E 
frame, augmenting the loss function, and modeling the NN 
weights after a softplus function respectively. Along similar 
lines, [179] trains input convex NNs as hyperelastic strain 
energy density functions and satisfies key physical con-
straints through a specifically designed NN architecture. In 
this work, training is carried out in an unsupervised manner, 
i.e. using a loss function which enforces balance of linear 
momentum based only on full-field displacement and global 
force data, and no stress data. Hence, the approach is directly 
applicable to experimental measurements (see also the dis-
cussion on interpretable approaches based on sparse regres-
sion). [180] employs neural ordinary differential equations 
(ODEs), a form of polyconvex NNs, to develop DD material 
models that inherently satisfy the polyconvexity condition in 
elasticity, using the properties of ODEs to create monotonic 
functions that approximate the strain energy derivatives, thus 
effectively modeling highly nonlinear, anisotropic materi-
als. [181] trains anisotropic NN hyperelastic models for 
monoclinic crystals in terms of both P  F and S  E rela-
tions. This study also incorporates energy and stress frame 
invariance terms into the loss function during training and 
discusses post hoc validation tests to test for material sta-
bility. [182] deploys NNs to learn the homogenized three-
dimensional constitutive behavior of anisotropic hyperelastic 
cubic lattice metamaterials while ensuring objectivity and 
material symmetry in the problem formulation. Expanding 
on this approach, [183] embeds a parametric dependence 
in the NN formulation, which allows to capture intricate 
topological and material variations, thus refining the learned 
energy functions.

Many ML studies in the literature establish a direct map-
ping from the strain to the stress material response. This 
strain–stress approach is sometimes preferred over an energy 
formulation due to its more straightforward implementation 
and the common lack of energy data samples. [184] utilizes 
principal stress-stretch data in the training of elastic NN 
laws, which are found to approximately satisfy objectivity 
conditions. In contrast, [185] utilizes NNs to formulate CLs 
in terms of S  E using a dataset derived from molecular 
dynamics, later validating the learned constitutive tangent 
modulus through numerical differentiation. In another study, 
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[186] NNs are trained to establish both the stress–strain 
S  E and stiffness-strain  SE

 E nonlinear relations for 
crystal structures under various symmetry conditions. [187] 
conducts a comparative analysis of NNs, with and without 
Sobolev constraints, and local approximate Gaussian process 
regression in mapping stress–strain S  C and employ Latin 
hypercube sampling, c.f. section"3, to uniformly sample the 
space spanned by the deformation gradient.

Interpretable ML approaches. [188] models hyperelastic 
behavior for soft materials by identifying the energy func-
tion using spline regression and smoothing penalization, 
therefore producing an interpretable ML model. Notably, 
the authors use stability conditions in order to handle the 
noisy data often present in such materials. Also, [189] and 
[21] use the representation theorem of tensor-valued tensor 
functions, c.f. [190], which is used to write the stress as a 
linear combination of invariant-dependent coefficient func-
tions and basis generators. This allows learning the map-
ping from the invariants of the deformation to the values of 
the coefficients and guarantees that the material response is 
frame indifferent. In this context, [191] studies and compares 
different formulations of the representation. In order to lower 
the number of required training samples [21] proposes a 
space-filling sampling algorithm in invariant space.

Recently, several efforts have been made to deduce ana-
lytical expressions for material models from data using 
either symbolic regression or sparse regression (see the 
discussion on terminology in Sect."2.1.1). In the context of 
hyperelasticity, symbolic regression has been used since the 
early work by [192], see [193] for a more recent application. 
Even more recently, [22] proposes a symbolic regression 
method in which potential expressions for physically valid 
hyperelastic CLs are generated using regular tree grammars 
and model discovery is carried out by combining variational 
autoencoders and a covariance matrix adaptation evolution-
ary strategy.

Sparse regression in the context of material modeling 
on the other hand is a very recent research field. The first 
works in which sparse regression from a potentially large 
library of candidate material models is used to discover 
hyperelastic strain energy functions as symbolic mathemati-
cal expressions are [34], that develops a method denoted as 
EUCLID standing for Efficient Unsupervised Constitutive 
Law Identification and Discovery (see [35] for an overview), 
and [36], that develops a method coined Variational System 
Identification. Beside being interpretable approaches, these 
methods are also unsupervised. Instead of relying on labeled 
stress–strain data pairs, which are in reality only available 
under very simple loading conditions like uniaxial tension 
or simple torsion, the material model discovery is informed 
by experimentally measurable displacement and global reac-
tion force data. The lack of stress labels is compensated for 
by applying a physics-motivated loss function based on the 

conservation of linear momentum. This has the advantage 
that the learning process can be informed by real data instead 
of data generated from micro-scale simulations, which are 
only feasible if the microstructure of the material and mod-
els of all its material constituents are known. It is shown 
by [194] that the EUCLID framework can also be consid-
ered from a Bayesian perspective for discovering symbolic 
hyperelastic models with quantifiable uncertainties. A first 
experimental validation of a supervised version of EUCLID 
is provided in [195], where sparse regression is leveraged 
to discover hyperelastic strain energy functions for human 
brain tissue using data stemming from uniaxial tension and 
torsion tests of human brain tissue. In [22], the hand-crafting 
of the material model library required in sparse regression 
approaches is replaced by its automatic generation as the 
"language of hyperelastic material models", i.e. as the set 
of expressions generated by a context free grammar while 
accounting for physics constraints. [196] discusses the 
discovery and interpolation of hyperelastic models for the 
human brain tissue in a framework that selects model inputs 
and forms from a family of constitutive building blocks of 
classical models from the hyperelasticity literature through 
the optimization of an NN. Another approach for replacing 
the hand-crafting of libraries is suggested in [197] by ena-
bling extreme sparsification of physics-augmented neural 
networks utilizing a smoothed L0 regularization approach 
showcasing a combination of expressivity and interpretabil-
ity in a range of experimental and synthetic test cases.

Model-free approaches. The strain–stress formulation 
is particularly appealing for model-free applications. For 
instance, in [198], a model-free approach is extended from 
[81] to finite-strain nonlinear elasticity. The physical con-
straints (the principle of virtual work) are enforced with 
Lagrange multipliers and the search problem is formulated 
in terms of S  E . This choice is made to automatically sat-
isfy the objectivity conditions and ensure the symmetry of 
the stiffness matrix. Also, [199] studies well-posedness and 
existence of minimizers of model-free finite strain formula-
tions and proposes a formulation of finite elasticity in terms 
of P  F . It provides the necessary equilibrium and com-
patibility constraints, defines conditions for material frame 
indifference in this approach, and delves into the concepts 
of convexity within the finite-strain model-free framework. 
Moreover, [83] employs a DD approach to model anisotropic 
nonlinear elasticity. The solution search is conducted in both 
strain–stress data and anisotropy orientation spaces based on 
manifold embedding and a convexity-preserving reconstruc-
tion scheme, called local convexity DD computing.

The model-free approach based on distance minimiza-
tion [81] is extended to account for finite deformations by 
introducing appropriate metrics in (F,P) or (E,S) phase 
spaces, as discussed by [198] and [200]. To enhance the 
performance of the model-free solver in scenarios with 
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limited or noisy data, [83] and [201] incorporate an online 
locally linear embedding scheme, leveraging the advantages 
of local convex linear interpolation. Additionally, [202] 
develop an autoencoder framework to enhance local search 
efficiency and mitigate noise sensitivity within the model-
free approach by discovering lower-dimensional embedding 
spaces. [84] introduces a global manifold learning approach 
employing invertible NNs, allowing for direct interpolation 
on the manifold and eliminating the need for local discrete 
searches. This concept is extended to incorporate an iso-
metric (distance-preservation) constraint to maintain met-
ric structures between ambient and embedding phase spaces 
[203]. This method introduces a geometrically inspired regu-
larization technique within the classical autoencoder frame-
work, facilitating noise reduction and interpolation on the 
data manifold.

5  DD Modeling for Path-Dependent CLs

This section is devoted to review the DD approaches to 
describe path-dependent materials. The characteristic feature 
of this class of materials is that the current stress depends on 
both the current strain and on the entire deformation history 
[204]. Therefore, the bijectivity of the CL is not fulfilled 
since a single state of deformation can pair with a possi-
bly infinite number of stress states, leading to the so-called 
one-to-many strain–stress mapping. This is in contrast with 
the path-independent models, where each strain state cor-
responds to only one stress state, leading to a one-to-one 
mapping. The description of the path-dependent constitu-
tive behavior is also often complicated by an irreversibility 
constraint of the (dissipative) processes characterizing the 
material response. One potential way of addressing the one-
to-many mapping issue is to introduce in the CL so-called 
history variables, also known as internal variables (since 
they are not directly observable), whose definition should 
ensure a one-to-one mapping, i.e. each strain–stress pair cor-
responds to a unique set of internal variables.

In the following we specifically focus our attention on 
hypo- and elastoplasticity, viscoelasticity, damage, fracture, 
fatigue and, finally, on their coupling with other physical 
processes, i.e. within a multiphysics representation of the 
constitutive behavior. As in Sect."4, we begin each section 
with a brief summary of the main features of the specific 
material behavior and then we review the most significant 
contributions in the context of DD approches.

5.1  Plasticity

The perhaps most widely used history-dependent mate-
rial modeling framework is plasticity. Over the years, dif-
ferent theories of plasticity have been developed, such as 

hypoplasticity [205], elastoplasticity [206], hyperplasticity 
[207] or generalized plasticity [208]. Small-strain elasto-
plasticity makes a distinction between elastic and inelas-
tic components of the constitutive response by an additive 
decomposition of the strain tensor into elastic and plastic 
strains and introduces a notion of yield surface f (𝝈,  ) , which 
is dependent on a stress measure 𝝈 and on a number of ther-
modynamic forces used to define the hardening behavior. 
The yield function defines the plastically admissible domain 
as the set of stresses for which f (𝝈,  )  0 . The yield func-
tion is classically decomposed as f = 𝜎(𝝈,  ) − k( ) into a 
scalar equivalent stress 𝜎 , that can be e.g. dependent on 
a kinematic hardening tensor, and a resistance k, often a 
function of a drag stress which is used to describe isotropic 
hardening. On the other hand hypoplastic models, which are 
commonly applied in geomechanics, often do not separate 
the strain into reversible and irreversible parts and do not 
employ yield functions to characterize the onset of yielding. 
Here, the information about the past is all concentrated in 
the current stress. Mirroring this distinction, as follows we 
classify DD constitutive models for plasticity into models 
utilizing hypoplastic and elastoplastic ideas.

5.1.1  DD Plasticity Modeled After Hypoplasticity

We start with the hypoplastic case which, for isotropic mate-
rials, aims to predict the current stress or strain values from 
a time-discrete version of the CL

where  𝝈 is the Jaumann stress rate and M is a tensorial 
function [209].

Uninterpretable ML approaches. Since the early works on 
ML plasticity modeling were performed in the geomechanics 
community, they have close similarities to the hypoplastic 
theory. These include the first and perhaps most influential 
ML constitutive models for history-dependent problems pub-
lished in the early 1990"s by the group of J. Ghaboussi. The 
first study employs a standard NN with sigmoidal activation 
functions to fit monotonic loading data from plain concrete 
under a biaxial state of stress at small strains [210]. By treat-
ing the mapping problem in a quasi-sequential manner, this 
initial study already introduces most of the major ideas that 
will be found in papers of the following years. Both stress- 
and strain-controlled models are developed. Both approaches 
in this setting require a network with six inputs and two 
outputs; e.g. in the stress-controlled approach, the six inputs 
are the two principal stresses, the two principal strains and 
two stress increments (  𝜎1 ,  𝜎2 ), whereas two strain incre-
ments (  𝜀

1

 ,  𝜀
2

 ) are given as outputs. The utilized NN 
architecture is visualized in Fig."3a. The authors only offer 
visual comparisons between experimental and approximated 

(10)M  {𝝈,  𝜺, ∙}   𝝈
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responses on selected test loading paths, and the developed 
DD model (strain-controlled) is not tested in a finite ele-
ment framework. The approach is extended to uniaxial cyclic 
loading in a follow-up paper [212]. Here the architecture of 
the network is (heuristically) changed by the authors to be 
able to distinguish loading and unloading curves by not only 
using the current point on the stress–strain curve as input but 
also utilizing the previous two points on the loading path, 
see Fig."3b. More information on the networks, as well as 
the modeling ideas, can be found in [213]. The findings are 
reiterated in [214, 215].

A similar approach as in [210] (training history-depend-
ence in a hypoplastic framework) for DD material mode-
ling of sand is tested in [216], where an additional mate-
rial parameter is considered as input. In the 1990"s, various 
authors reapply the same ideas to laminates [217], clays 
[218, 219], sand [220, 221], rocks [222, 223], soft soils [224] 
or concrete [225]. This approach is also studied and tested in 
a more rigorous way on different material behaviors in [226]. 
In contrast to these works, the study in [227] defines two 
NNs of the same architecture to model rock joint material 
behavior; one is used to deal with small-displacement behav-
ior and the other one with large displacements (the value of 
1.5 mm separating the two ranges is arbitrarily chosen by the 
authors). This approach aims to distribute the nonlinearities 
of the material model between the two networks (since the 
networks at this point cannot be too deep due to the avail-
able computational resources). Other than NNs, SVR-based 
plastic modeling of geomaterials is investigated in [228, 
229] while polynomial regression models are studied in 
[230–232]. All of these follow the same idea of using time-
discrete current strain and stress values as inputs and the 
predicted stress as an output to their formulations. An adap-
tive approach to determine the ideal network architecture of 
the NNs for path-dependent material modeling is proposed 
in [213, 233–235]. The number of nodes and the necessary 
number of history inputs, i.e. ([𝜀j, 𝜎j], [𝜀j 1, 𝜎j 1],… , ) , can 
be trained adaptively. The authors use the term "nested" 
NN for this process, which is later used for modeling the 

behavior of soils [236]. This technique is also employed 
to obtain path-dependent ML CLs from indirect data, such 
as global load-deflection responses or displacement fields. 
Here, the training algorithm of the ML tool is built around 
a numerical framework such as the finite element method 
(FEM)[237]. Other works employ similar approaches in 
later years [238–243]. However, approaches that adaptively 
change the architecture of NNs seem to have been no longer 
actively pursued in the context of material modeling.

The approaches reviewed so far are based on using the 
history of observable quantities such as stress and strain as 
inputs to a ML model in order to predict the next stress state. 
However, due to the path-dependence of the stress evolu-
tion, these methods likely fail when studying longer loading 
curves with complex loading patterns or when extrapolat-
ing outside of the domain of the training data. To address 
this issue, more advanced ML approaches introduce inter-
nal variables as additional inputs. In particular, [244, 245] 
include for the first time internal variables in a ML stress 
evolution law. They focus on a viscoplastic model with kin-
ematic and isotropic hardening and utilize an NN, with the 
current strain, the internal variables 𝝃 and the current stress 
as input, and the current rates of the viscoplastic strain 𝜺vp 
and of the internal variables as outputs. For this purpose, 
the authors define an implicit constitutive model in the state 
space of the form

Assuming that the initial conditions are known, a forward 
Euler scheme is employed to update the variables from time 
step n to n + 1 with

The stress update is obtained in a similar manner. In this 
approach, the internal variables have to be explicitly known. 
If this is not the case, the authors describe a procedure to 
obtain information about the internal variables from cyclic 
loading curves and apply this methodology in an example.

Other work dealing with the explicit definition of the 
internal variables includes [246, 247] which rely on data 
from repeating unit cells. In [248], an energy-based internal 
variable and an internal variable that implies the direction 
for the next time- or load-step along the equilibrium path are 
used as additional inputs to an NN. Similar approaches that 
make use of known or implicitly obtained internal variables 
as inputs to NNs that describe the stress evolution law can be 
found later in [249], where the accumulated absolute strain 
is used as an additional input. Nowadays, the use of internal 
variables as additional inputs to guide the training process 
is becoming more and more established as DD modeling of 
path-dependent materials shifts more and more away from 

(11)M  {𝜺vp, 𝝃,𝝈}  {  𝜺vp,  𝝃}

(12)
𝜺vp,n+1 = 𝜺vp,n +  𝜺vp,n t

𝝃n+1 = 𝝃n +
 𝝃 t.

(a) Biaxial monotonic loading (b) Uniaxial cyclic loading

Fig. 3  First NN architectures based on quasi-sequential data used for 
stress-controlled path-dependent modeling of concrete inspired by 
[211]
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experimental data towards data obtained from numerical 
simulations. One of the problems associated with using plain 
NN approaches that adopt previous time-discrete strains and 
stresses as input and current stress as output is their depend-
ence on the strain increment. In order to avoid this problem, 
[250] proposes a two-stage algorithm based on the total 
strains for modeling the homogenized response of a lower-
scale problem. In the first step, a SVM is used to classify 
whether the current loading step (described by total strain 
and last equilibrium value of the history variable) results in 
an update of the history variable, which is comparable to a 
return mapping procedure. Based on this information, in the 
second step, the stresses are obtained from a NN.

The aforementioned approaches suffer of reliability and 
robustness issues when the behavior need to be extrapolated 
outside of the range of data used during the training. A pos-
sibility to relieve this drawback is to introduce physical con-
sistency into the training process, a technique that can also 
reduce the data hunger of the method. To the best of the 
authors’ knowledge, [251] were the first to include a physi-
cal concept in the training process of an NN used for DD 
path-dependent material modeling; they enforce isotropy of 
their CL in a soft manner by augmenting the training data-
set by rotated counterparts of existing data. The concept of 
physics-informed ML in the incremental modeling of path-
dependent materials using NNs is recently receiving increas-
ing attention, with two recent works leading the way. First of 
all, [252] propose using the Cholesky factor L of the tangent 
stiffness matrix as the NN output instead of the stress. The 
stress update is obtained by

The positive aspect of this formulation is that it implicitly 
enforces the tangent stiffness matrix to be symmetric sem-
idefinite. Secondly, thermodynamics-based NNs (TANNs) 
encode the underlying thermodynamic principles directly 
into the networks [253, 254]. This is achieved by relying on 

(13)
𝝈n+1 = L(𝜺n+1, 𝜺n,𝝈n)L(𝜺n+1, 𝜺n,𝝈n)

T
(𝜺n+1  𝜺n) + 𝝈n.

a dual potential formulation, consisting of the Helmholtz 
free energy density F and the dissipation rate potential D, 
from which the variables of interest can be derived in a ther-
modynamically consistent form. In the isothermal case, the 
framework consists of two NNs, denoted as sNN𝜉 and sNNF . 
The former is used to predict the increment of the internal 
variables

The other network predicts the value of the Helmholtz free 
energy density of the next time step

which can be used to obtain the stress update with 
𝝈n+1 =

𝜕Fn+1

𝜕𝜺n+1
 . The TANN architecture is schematized in 

Fig."4. As a result of the (implicit) thermodynamic consist-
ency, the task of identifying the underlying pattern of ther-
modynamic laws no longer needs to be performed by the ML 
tool.

A possibility to deal with path-dependence without 
explicitly introducing internal variables is relying on ML 
architectures that embed and describe internal states. In this 
context, RNNs have been investigated in the literature for 
plastic material modeling. The study in [255] is the first to 
apply sequential NNs, specifically the Jordan network [256], 
in order to learn the path-dependent stress–strain curve of 
sand under consideration of a constant strain increment in a 
triaxial state of stress. In contrast to the previous approaches, 
the internal variables are here implicitly stored in the NN. 
Based on investigations of [255] this type of NN offers bet-
ter results than simple NNs for the application at hand. For 
this reason, they utilize a network with seven inputs, includ-
ing the current stress and strain rates, while the stress state 
resulting from the next strain increment defines two net-
work outputs. Some critical points of this paper are further 
discussed in [257], including the issue that the network is 
only applicable to a specific strain rate. The same network 

(14) 𝝃 = sNN
𝝃
(𝜺n+1, 𝜺n,𝝈n, 𝝃n)

(15)Fn+1 = sNNF(𝜺n+1, 𝝃n+1)

Fig. 4  TANNs proposed by 
[253]
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architecture is later used by [258] to model clay. The same 
authors [259, 260] later improve upon this approach to build 
a ML model for sand and gravel by (similarly to [227]) 
dividing the input space of a feature into two parts, in order 
to train two different sequential NNs for the same dataset. 
Instead of using Jordan networks, the studies in [261, 262] 
employ Elman networks [263], i.e. another simple RNN, 
for simulating and predicting the shear behavior of two 
different soils. Simple RNN architectures are also used to 
model unsaturated soils [264], clays [265] or sand [266]. In 
[267] a sequential NN is employed for the three-dimensional 
stress–strain relationship of sand under monotonic loading. 
Different mapping techniques including quasi-sequential 
mapping, sequential mapping, function fragmentation, and 
function labeling for history-dependent material datasets 
are compared in [268] and [269], where a hybrid quasi-
sequential approach (relying on function labeling) is found 
to perform most proficiently. Later on, the author also tests 
time-delay NNs for history-dependent datasets [270].

Recently, other types of RNNs such as LSTMs and 
GRUs have received more attention [99, 108–111, 271–275] 
because they are able to be trained more reliably by avoid-
ing the vanishing/exploding gradients problems that are 
associated with the earlier version of RNNs. Even though 
these general DD frameworks for path-dependent materials 
are conceptually similar to the early approach proposed by 
[255], they are now predominantly used for three-dimen-
sional applications and also include other parametrizations 
as input. E.g. the study in [107] describes the sequential 
nature of plasticity using a GRU which takes the history 
of spatially averaged strains, material properties for each 
microstructural phase and the current time as input and 
maps them to the predicted spatially averaged stress. Other 
work includes [276], where an LSTM takes the strain history 
over a sequence of times as a vectorial input as well as the 
latent space data from three-dimensional crystallographic 
orientation images using a CNN. The LSTM is then used to 
predict the stress evolution. This idea is later refined by the 
same authors [277] by relying on convolutional LSTMs to 
resolve the stress evolution also spatially. In order to reduce 
the reliance on user-chosen hyperparameters, [278] proposes 
an approach based on RL that finds the optimal hyperparam-
eter settings (including the network architecture) of RNNs 
for modeling path-dependent materials. Lastly, [279] defines 
an adversarial training scheme based on input perturbations 
that increases the prediction robustness of models trained 
with RNNs (GRU specifically). A general problem associ-
ated with RNNs (such as LSTMs or GRU) in the training of 
path-dependent plastic material behavior is the dependence 
of these methods on the size of the increment. To overcome 
this challenge, [280] proposes a new RNN architecture that 
enforces self-consistency, i.e. their predictions converge 
when the increment size is decreased. A different approach 

is proposed in [281], which treats the material model predic-
tion as a mapping between two function spaces without the 
need for time discretization.

As a remark, we could not find any ML path-dependent 
material modeling approach based on RNNs that includes 
physical concepts in the training procedure. This is definitely 
an area where more work and development is necessary. 
The work that comes the closest is the one in [282], where 
a neural ODE framework is employed to model the stress 
evolution. In contrast to RNNs, a neural ODE incorporates 
time step scaling of the dynamics. Using this architecture as 
an internal state variable model and relying on representa-
tion theory, the authors are able to build a ML model that 
obeys physical principles, such as frame invariance and the 
second law of thermodynamics.

Model-free approaches. The framework based on the 
model-free paradigm [81] is more complicated when dealing 
with path-dependent material behavior. In [283], the mate-
rial dataset is enlarged with internal variables. In [120] an 
energy-based parametrization is proposed that augments the 
phase space with the free energy and the dissipation, thereby 
enforcing thermodynamic consistency at all times. Similar 
approaches include [166, 284]. A different model-free idea 
is studied in [285, 286], where the three-dimensional stress/
strain state is projected onto uniaxial tension/compression 
data.

5.1.2  DD Plasticity Modeled After Elastoplasticity

Elastoplasticity, in contrast to hypoplasticity, is charac-
terized by modularity due to its clear distinction between 
elastic and plastic constitutive responses, with historically 
established assumptions for each of these components. In 
classical modeling, elastoplasticity is based on a formula-
tion of the elastic response, a yield function description, an 
assumption on the direction of the plastic flow, and phenom-
enological models for the hardening behavior. DD elasto-
plastic modeling exploits this modularity by choosing each 
of these components (or subcomponents) to be either repre-
sented by a DD formulation or a classical phenomenological 
model. The general framework is summarized in Fig."5. In 
contrast to the DD hypoplastic models, described earlier, 
these models have both advantages and disadvantages. Some 
of the advantages include

• More interpretability. The input–output mapping of DD 
models is potentially easier to understand since each 
model is used as a representation scheme for a specific 
subproblem of the elastoplastic formulation.

• Less data is needed. DD submodels can be chosen in 
areas where more data are available, while phenomeno-
logical models can represent the remaining components. 
This allows to reduce the reliance on big data.
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• Shift to one-to-one mappings. DD hypoplastic models 
intrinsically aim to find a consistent mapping for the 
whole path-dependent stress evolution. This leads to a 
one-to-many mapping problem which is solved e.g. with 
RNNs. On the other hand, DD elastoplastic models can 
only use ML models for components that can be mod-
eled by simple one-to-one mappings, like yield function 
representations which can be decoupled from the time 
integration. Of course, this requires the access to data for 
these specific subproblems.

• Simpler enforcement of thermodynamic consistency. 
Since the majority of classical elastoplastic models were 
designed to be thermodynamically consistent, replacing 
single components of these models with specialized DD 
solutions allows for easier enforcement of physical con-
straints compared to ML models for plasticity modeled 
after hypoplasticity.

On the other hand, this modeling framework also has a 
disadvantage:

• More constraints and assumptions. DD hypoplastic 
models as presented before are based on a very limited 
range of assumptions (such as the choice of the internal 
variables) and are therefore models that can discover the 
material behavior that underlies the training data. On the 
other hand, elastoplastic modeling needs to make more 
assumptions (e.g. the split between elastic and plastic 
components) and is therefore more restrictive in its abil-
ity to discover unknown physical processes.

Uninterpretable ML approaches. A number of ML 
approaches have been proposed that are modeled after 

elastoplasticity. In [289] both back stress and drag stress 
are incrementally updated using independent NNs to 
represent complex combined hardening laws under uni-
axial cyclic loading, while the elastic law and the yield 
function are represented by traditional formulations. 
[290] proposes an ML plasticity model that relies on the 
representation theorem of scalar-valued functions. By 
exploiting the modularity assumption, the authors define 
an NN for the elastic response and a separate NN for the 
flow rule, both of which can be treated as one-to-one 
maps. This allows for physical concepts such as mate-
rial frame indifference and symmetry conditions to be 
enforced implicitly. Another example is given by [291], 
where established phenomenological models of the elas-
tic response, the yield function, the plastic flow direc-
tion, and the hardening modulus are combined to find 
the best fit of a dataset through RL. In [292], a hybrid 
formulation is proposed where the plastic flow and the 
back stress evolution are represented by one NN, while 
the yield function is given by a phenomenological model. 
[293] assumes that the elastic response is given by a lin-
ear law, whereas a NN takes the equivalent stress as an 
input to obtain the updated stress of the plastic region. 
This allows for a smooth transition between elastic and 
plastic behaviors. In [294], the linear elastic law and 
equivalent stress formulation of the yield function are 
phenomenologically assumed, while the deformation 
resistance and the dilation angle between the deviatoric 
and spherical parts of the normalized direction of flow 
are trained by two separate NNs. [295] also splits the ML 
model into elastic and plastic components; the elastic trial 
stress is obtained from an NN which, if non-admissible, 
is mapped back using an RNN formulation. An objective 

Elastoplasticity
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response

Data-Driven Phen. Model

Plastic
contributions

Hardening
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Data-Driven Phen. Model

Yield /
Potential
function
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Flow
direction
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Fig. 5  Modular elastoplastic material modeling. The initial yielding can be fully DD or can separately include the equivalent stress measure and 
the yield stress. Hardening components can e.g. include the deformation resistance or some form of hardening moduli. See [287] and [288]
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loss function that includes frame indifference concepts 
is used for training. [296] replaces the general return 
mapping framework with an NN that updates the pre-
dicted trial stresses. In a series of recent papers [100, 
287, 297], the elastic law and the yield function evolution 
are treated as separately trainable ML models. An NN-
based yield function is trained using a level-set hardening 
framework whose evolution is dependent on an internal 
variable. Other work concentrates on just finding a ML 
representation of (parameterized) initial yield functions 
[298–302], whereas the remaining components are given 
by phenomenological models. [303] uses input convex 
NNs to enforce the ML yield function representation to 
be convex. Hybrid frameworks that locally improve phe-
nomenological yield surfaces with ML models are inves-
tigated in [304, 305], with the latter enforcing physical 
constraints. Different subproblems of elastoplasticity may 
use NN representations, such as the deformation resist-
ance [306–316] or the isotropic hardening modulus [317]. 
Other works employ SVR [318, 319] in the same context.

Interpretable ML approaches Lately, interest is grow-
ing in deducing symbolic material models from data using 
symbolic regression and sparse regression. The benefit 
of symbolic regression and sparse regression is that the 
models are expressed by short mathematical expres-
sions that only involve a limited number of terms. This 
increases their computational efficiency, physical inter-
pretability, communicability, and calibratability. In the 
context of elastoplasticity, this idea is followed by [299, 
320, 321] who use symbolic regression and by [322] who 
apply the sparse-regression-based EUCLID framework 
to discover symbolic expressions for the yield function 
and the hardening behavior from reaction force and full-
field displacement data, thus avoiding the use of labeled 
stress–strain data pairs. In a similar fashion, but bypassing 
the development of hand-crafted libraries, [197] sparsify 
physics-augmented neural networks that are developed in 
a modular fashion, to obtain compact expressions related 
to yield function but also to isotropic and kinematic hard-
ening. In [323], EUCLID is extended to pressure-sensitive 
and non-associated plasticity. In [324], the method is fur-
ther generalized to the framework of generalized standard 
materials, i.e., a general framework which encompasses 
elasticity, viscoelasticity, plasticity and viscoplasticity.

Model-free approaches In section"5.1.1, we have intro-
duced approaches that rely on the so-called model-free 
approach to model plastic behavior directly on data of 
a given dataset more akin to the hypoplastic modeling 
approach. A different model-free elastoplastic-like tech-
nique is proposed in [325], where transition rules between 
elastic and plastic responses are introduced which map to 
different subsets of the data.

5.1.3  Summary

We conclude this section with the summary table in 
Fig."6, which attempts to categorize some of the reviewed 
approaches based on the amount of data they need in input 
and on the number and type of constraints they are designed 
to satisfy. In general, a decreasing resort to constitutive mod-
eling constraints is expected to correlate to an increasing 
need for data.

5.2  Viscoelasticity

One of the traditionally most challenging problems for con-
stitutive modeling is that of viscoelasticity. Several mecha-
nisms can be involved in the micromechanical processes 
that govern the macroscopic viscoelastic response, and 
correspondingly many characteristic timescales may have 
to be considered. Linear viscoelastic models are used in 
the regime of small deformations and are often represented 
through a combination of linear springs and dashpots, such 
as in the Maxwell, Kelvin-Voigt, Zener, and Generalized 
Maxwell models. Their nonlinear counterparts can account 
for nonlinear elastic contributions (such as those encoun-
tered in the context of hyperelasticity) and also nonlinear 
evolution equations. In general, and similar to what was 
discussed in the context of elastoplasticity, viscoelasticity 
can be cast in term of external (or observable) and internal 
variables. We can express the update of the stress 𝝈 and the 
internal variables 𝝃 at time tn+1 as

which, in contrast to plasticity, are not subject to any addi-
tional constraints. This makes the form of the equations 
at hand similar in structure to the problem that an RNN 
is designed to replicate. Namely, as the RNN works with 
sequential data, the hidden state vector an+1 at time tn+1 
depends on the value of the hidden state vector an at time tn , 
whereas the output vector yn+1 also depends on an , indica-
tive of the history dependence that is being captured. This 
natural similarity has led to a lot of ML-enabled constitu-
tive modeling approaches in the context of viscoelasticity 
to follow this general approach. The bulk of the literature 
can be separated in two main categories, those that focus 
on parameter estimation for known viscoelastic constitu-
tive models, and others that utilize different variants of NN 
architectures for problems of different complexity. We begin 
with the latter.

Uninterpretable ML approaches. In a rather simple set-
ting, but aiming to obtain CLs that generalize, the authors 
in [327] utilize a simple NN architecture to obtain what 
they refer to as a neural constitutive model for nonlinear 

(16)M  {𝜺n, 𝝃n} {𝝈n+1, 𝝃n+1}
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viscoelasticity. The framework is also designed around the 
question of data availability and it allows for learning of 
rather simplified scalar-valued CLs from 1D creep test data, 
focusing on the non-zero component of the stress tensor for 

the particular test. The network takes temperature and initial 
stress level as additional inputs, aiming for further flexibility 
of the predictions. In a similar fashion, [328] consider elastic 
properties as additional inputs to the NN and aim to learn 

Fig. 6  Quantitative categoriza-
tion of DD modeling of (hypo- 
and elasto-) plastic material 
behavior. More available data 
correlates to less need for con-
stitutive modeling constraints
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nanoindentation creep responses under fixed loading condi-
tions; however, these creep responses cannot be considered 
as full CLs that could e.g. be used in a FEM simulation. 
In the same year of [327] another paper [329], leveraging 
expertise in NN-based rate-dependent and rate-independent 
CLs, constructs a complete framework for a rate-dependent 
NN-based CL for viscoelasticity. Here, the stress and the 
strain are decomposed in volumetric and deviatoric com-
ponents and the NN takes as inputs the current value of 
the strain and the values of stress and strain at the previous 
increment. The approach is shown to work satisfactorily and 
is also implemented in an Abaqus UMAT so that structural 
problems can be tested. In their training data generation, the 
authors discuss data augmentation based on symmetry to 
train tensor-valued maps, and also obtain training data from 
structural simulations.

Several papers focus on learning the response of 1D 
experiments with ML approaches in the context of viscoe-
lasticity, but in their essence, they are simple extensions of 
[327]. E.g., in [330] radial-basis-function NNs are utilized to 
learn the 1D dynamic response of thermoplastic elastomers, 
where the specific network architecture is chosen to acceler-
ate the training process. More recently, [331] focuses on the 
rate-dependent response of polypropylene; it utilizes simple 
NNs that take strain and temperature as input to learn the 
1D large deformation response as a function of the loading 
strain rate. A robot-assisted testing system is deployed to 
generate large datasets, and Bayesian regularization is used 
to identify the network parameters. [332] also focuses on 
learning the creep response, in this case, optical glasses, 
through an array of ML tools. The authors find these tools 
beneficial in terms of extrapolation to extreme temperatures 
compared to traditional phenomenological approaches.

From a different starting point, but still focusing on 
the 1D case, [333] addresses the fundamentals of history-
dependent responses. Extending previous work where they 
had developed a model with associative (short-term) and 
hereditary (long-term) memory, inspired by a combination 
of the Kelvin-Voigt and the Maxwell models, the authors 
develop a new constitutive model with associative and hered-
itary memory as a system of integrodifferential equations. 
They then show that this system of equations can be approxi-
mated by a simple NN. They train based on 1D experimen-
tal data and test on non-monotonic 1D loading paths. The 
most interesting contribution of this work lies in the inherent 
interpretability of the approach since a direct connection 
is established between the NN architecture and the system 
of integrodifferential equations at hand. An early model 
proposed in [271] focuses on learning the time response of 
rheological material models stemming from a fractional dif-
ferential equation using an RNN. A partial RNN is chosen, 
where the signal flow occurs in the forward direction and the 
fading memory is realized by internal feedback connections. 

More recently, but in a similar fashion, [163] learns the solu-
tion of a specific boundary value problem with two non-
zero stress components and encodes their response with an 
RNN. The work in [334] learns a fuzzy representation of the 
stress–strain response with an RNN recovering a fractional 
viscoelastic model, and [335] utilizes the RNN-based fuzzy 
CLs in a fuzzy-FEM setting to solve structural problems. A 
more recent work in the context of computational homogeni-
zation [336] establishes that the homogenized constitutive 
response may be approximated by a RNN. As an additional 
feature compared to previous approaches, a set of internal 
variables discovered in the learning of the homogenization 
procedure is tracked as a function of the history of the strain. 
[337] extends the work of [21] to consider viscoelasticity 
(focusing on materials with limited memory) by employing 
tensor representation theorems for the deformation tensors 
and for the rate of these tensors. By performing the train-
ing based on limited experiments corresponding to specific 
deformation modes and by utilizing constrained GPR, the 
trained material laws are shown to proficiently generalize 
in the strain space and also with respect to the strain rate.

A multitude of works focus on ML or physics-informed 
(in the style of PINNs) solutions of PDEs involving the vis-
coelastic response of solids [338, 339] but this is not the 
focus of the review here. We only mention [340], which 
deploys PINNs to train viscoelastic NN-based CLs based on 
limited sensor data by formulating a PDE-constrained opti-
mization problem. The NN-based viscoelastic CL embedded 
in the structural optimization problem is not fundamentally 
different from the one in [242].

Interpretable ML approaches. For applications of sym-
bolic regression in the context of viscoelasticity we refer to 
[341] and more recently [342]. Further, the sparse-regres-
sion-based EUCLID framework, which utilizes a large 
library of phenomenological models and unlabeled data, 
is successfully used by [343] to identify linear viscoelastic 
CLs. The same concept is extended in [324] to the theory 
of generalized standard materials, which naturally includes 
viscoelastic material behavior.

The approaches that focus on parameter estimation are 
not covered in depth in this review. In [344], from thin cir-
cular plate bubble experiments with temperature effects, 
and reducing the response to 1D, the material constants are 
learned for the Christensen viscoelastic model. [345] aims to 
optimize the viscoelastic response through additives; based 
on experimental measurements, it calibrates the values of 
the loss and storage moduli utilizing several ML approaches. 
[346] fits the same parameters to compare to experimental 
data using a Kelvin-Voigt model. In the context of mag-
netorheological elastomers, [347] suggests the use of NNs 
and Extreme Learning Machines (feed-forward NNs with a 
single hidden layer) to map shear strain and magnetic field to 
storage and loss moduli. [348] uses GPR to fit the constants 
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of a complex viscoelastic model based on experimental data; 
even though the task is seemingly straightforward, unique-
ness is not guaranteed as the test data are only uniaxial and 
monotonic.

Model-free approaches. In [283], the model-free approach 
proposed for plasticity is also adapted to viscoelasticity by 
relying on a differential representation of the material evolu-
tion history. The model is tested within a monodimensional 
state space and applied to the analysis of truss structures.

5.3  Damage and Fracture

The loss of integrity of a structural component can be mod-
eled using different approaches depending on the process 
responsible for the material degradation. In the following, 
we distinguish between (i) diffuse damage, (ii) fracture, and 
(iii) fatigue. Damage describes a gradual deterioration of the 
material stiffness and/or strength without significant residual 
deformations. Fracture entails the formation and propaga-
tion of a crack, i.e. a discontinuity, which evolves following 
Irwin’s or Griffith’s criteria or extensions thereof. Note that 
the evolution of a crack in a continuous body can also be 
described using continuum damage models that allow for 
the localization of the damage parameter in bands with a 
limited but not vanishing thickness. Fatigue consists of the 
nucleation and propagation of a crack at subcritical load 
levels under repeated loading.

5.3.1  Diffuse Damage

The continuum damage mechanics approach pioneered by 
Kachanov [349] aims at describing the gradual deteriora-
tion of the structural integrity of a material point when sub-
jected to some type of action (e.g., displacements, forces, 
temperature changes, or aging). The main idea behind this 
theory is that, at the macroscopic scale, the reduction of stiff-
ness and strength related to the material deterioration can 
be condensed in a scalar or tensorial internal damage vari-
able. Often the onset of damage takes place after an initial 
elastic regime, which is followed by a stress-softening phase 
leading to an elasto-damage constitutive behavior. Since it 
cannot be directly measured, the damage variable belongs 
to the category of internal variables and, in the most com-
mon case, is assumed to be a scalar. Therefore, the related 
CL can be written as

where the damage variable d is governed by an often a priori 
postulated evolution law of the type

(17)M
𝝈
 {𝜺, d} 𝝈 ,

(18)M  d  {𝜺, q}   d , subjected to  d  0 ,

Here q is a vector collecting the set of mechanical and inter-
nal quantities governing damage evolution, while the non-
negativity constraint is assumed to fulfill the second law of 
thermodynamics and takes the name of irreversibility condi-
tion. This condition is the major responsible for the history 
dependence of the constitutive models accounting for mate-
rial damage and it constitutes one of the main difficulties in 
the definition of a proper DD approach. On the other hand, 
it is of primary importance since it allows for a physically 
sound description of the unloading/reloading branches in 
the material response.

In the following, we first provide an overview of the 
most relevant DD approaches including identification prob-
lems and constitutive modeling using NNs, and model-free 
approaches. Most studies deal with NNs where damage is 
often implicitly accounted for while defining the CL and not 
explicitly introduced as an internal variable. No interpretable 
approaches are yet available.

Uninterpretable ML approaches. The earliest ML 
approaches in continuum damage modeling are devoted 
to parameter identification of available models. Although 
this review does not focus specifically on them, we propose 
here a brief overview due to their relevance in developing 
DD approaches for damage. [350] identifies the parameters 
of the Gurson-Tvergaard-Needelman (GTN) model using 
a NN, which is trained using a set of load–displacement 
curves from FEM computations. The trained NN receives 
as input the experimental load–displacement curves and 
outputs the material parameters, thus surrogating the solu-
tion of an inverse problem. Aware of the poor extrapola-
tion capabilities of the NN, the authors include in the cost 
function a penalty term to avoid extrapolation outside the 
range of the training data. Also, they point out that a reliable 
identification of the full set of GTN model parameters is not 
possible, hence, they restrict identification to a subset of the 
total parameters that need to be selected a priori depending 
on the material at hand. To extend the number of identi-
fied parameters, in [351] the same authors propose a differ-
ent identification method involving an NN to surrogate the 
solution of the forward boundary value problem for a small 
punch test. The NN is trained using FEM computations; it 
receives as input the displacement and the GTN parameters 
and it outputs the applied force. The parameter identification 
for a new set of experimental load–displacement data is then 
performed by adopting a successive quadratic programming 
algorithm. Similar identification approaches are adopted 
with minor modifications in other studies, e.g. [352].

The second class of approaches deals with the definition 
of elasto-damaging CLs using different NN architectures. 
[353] surrogates the cohesive traction-separation law at the 
interface between concrete and steel using a NN trained 
through a set of FEM simulations. The NN takes as input the 
components of the interface separation vector and outputs 
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the traction components. Hence, damage is not explicitly 
introduced but only implicitly accounted for. Since the NN 
is not informed by any physical requirement, the authors 
enforce some basic features of the CL by partly substitut-
ing ad-hoc calibrated linear relationships to the NN predic-
tions. These include a vanishing traction value for vanishing 
or very large separation values, i.e. close to the unloaded 
state and to complete decohesion. Also, the obtained model 
is not able to distinguish unloading/reloading states and 
is thus limited to locally monotonic loading histories. In 
[250] the same authors propose a ML constitutive model 
for the concrete bulk material to be used in a multiscale 
FEM framework. The approach involves the definition of a 
NN trained with micro-scale FEM analyses to surrogate the 
stress–strain law of the material, while an SVR algorithm 
with an exponential kernel is used to detect the unloading/
reloading branches. The algorithm is formulated accord-
ing to a criterion similar to a limit surface whose extension 
depends on a history variable defined as the maximum strain 
reached during the loading history of a point. To exclude 
any mesh dependence related to the underlying (implicit) 
local damage approach, the size of the finite elements at the 
macro-scale is used as an input in the NN. In turn, this calls 
for a training set that includes data for different sizes of the 
domain at the micro-scale. Although the formulation of the 
approach is general, the authors illustrate its performance 
only for 1D cases.

An ML-enhanced multiscale framework is also proposed 
by [293, 294] to model elastoplastic damaging foams. In 
[293], the authors surrogate the macroscopic stress–strain 
relationship for proportional loading with a NN trained using 
lower-scale FEM computations. The homogenized local 
tangent stiffness tensor is computed directly by derivation 
of the NN mapping and the cost function is complemented 
with a penalty term to prevent large differences in the order 
of magnitude of the neural weights. A different approach 
is explored in [294], where the definitions of homogenized 
limit surfaces, flow directions and stiffness deterioration 
due to the (implicit) damage are ascribed to three different 
NNs. In particular, the definition of a limit surface allows to 
distinguish between the dissipative and elastic unloading/
reloading stages.

A multiscale framework to define the behavior of a dam-
aging poroelastic material is presented in [273], where three 
scales (i.e., micro-, meso- and macro-) are accounted for. 
The authors use LSTM-type RNNs to upscale the material 
parameters between micro- and mesoscale and between 
meso- and macro-scale. The NNs are trained using discrete 
element and finite element computations for the micro- and 
mesoscale, respectively, while the analyses at the macro-
scale are performed using the FEM. The material models 
at each scale are defined using directed graphs where the 
relations between the various parameters involved are known 

as physical or empirical relationships. Also in this case the 
damage parameter is not explicitly defined but is implic-
itly considered in the CL. The adoption of RNNs makes the 
model intrinsically history-dependent, thus allowing for easy 
discrimination between different states, such as unloading/
reloading branches. Another addressed point is the objectiv-
ity of the material response given by the RNN, which is not 
satisfied a priori. The authors propose a method to achieve 
material objectivity based on a spectral representation of 
the training data, which effectively reduces the deviations in 
stresses and energy between different observer frames when 
evaluating the same system.

Two different NNs are adopted in [354] to define the mac-
roscopic CL of a fiber/matrix composite material. The first 
NN is used to surrogate the stress–strain relationship of the 
material; also in this case the damage variable is not explic-
itly defined and the model does not include any unloading/
reloading criterion. The second network is used to identify if 
the damage takes place in the fibers or in the matrix without 
explicitly accounting for them in the simulation.

[355] uses NNs to surrogate the traction-separation law 
between adjacent grain boundaries at different temperatures. 
In particular, they adopt a standard NN to define the inter-
face secant stiffness, which is then multiplied by the sepa-
ration vector giving a ResNet-like CNN [356]. Differently 
from an RNN, the proposed architecture is unable to process 
temporal information and, hence, it can be used only for 
monotonic loading history. On the other hand, the major 
advantage of this approach compared to an RNN is that it 
drastically limits the amount of data needed for training. The 
authors illustrate the approach in 2D training of the NN by 
using a dataset of molecular dynamics simulations. Also, a 
procedure to optimize the NN architecture is proposed.

PINNs are adopted by Haghighat et"al. [357] to surro-
gate a coupled damage/plasticity model. The introduction 
of physical and modeling constraints allows us to include in 
the PINN conditions such as damage irreversibility, vanish-
ing stress for vanishing strain, and complete failure after a 
critical damage value, and to automatically detect elastic 
loading/unloading/reloading states. However, the approach 
requires a very large amount of training data to achieve rea-
sonable accuracy.

Among the approaches that do not belong to the afore-
mentioned categories, [358] proposes a supervised CL dis-
covery approach exploiting directed graph theory to auto-
matically generate different models. The authors test the 
proposed approach to obtain the traction-separation law of 
a cohesive interface with implicit damage for 2D problems. 
The approach requires the definition of the parameters that 
possibly govern the CL and a set of rules that the relation-
ships between the various parameters must satisfy to create 
a valid CL. The generation of a model takes the name of 
game of model generation and each move during a game 
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connects two parameters with a relationship until the input 
parameters are connected with the outputs. The completed 
model is then evaluated by assigning a score based on the 
comparison between the model predictions and a set of 
material observations. Unlike in [273], here the relationships 
between the parameters are encoded by an RNN, which is 
trained using a set of discrete element analyses. A deep RL 
algorithm is used to iteratively improve the models game 
after game, based on the evaluation of the probability that a 
certain move (i.e., a connection between two parameters) is 
selected by a gamer at a certain point of the game along with 
its expected contribution to the final score. Probabilities of 
moves and expected score contributions are predicted using 
an NN enhanced by a Monte Carlo tree search algorithm. 
A new move is then selected so as to maximize the final 
model score. The major feature of this supervised approach 
is that, once the game and a dataset of material observa-
tions are defined, no operator intervention is needed since 
the algorithm is able to learn how to improve its predictive 
capabilities from the previous games played. Also, the adop-
tion of an RNN ensures that the model history dependence 
is included.

Model-free approaches. A model-free approach is 
adopted in [359] to define the macroscopic behavior of 
granular materials subjected to different loading conditions. 
The material dataset, generated with the level-set discrete 
element method, includes also a parametrization that allows 
to describe the history dependence of the material behavior. 
The definition of the latter is critical to obtain meaningful 
results and the authors propose to use either the dissipated 
energy or a set of internal variables known to satisfactorily 
describe the microstructural arrangement of a granular mate-
rial. Both approaches give similar results but the method to 
obtain the material dataset must be selected with particu-
lar care since it must allow for the definition of the desired 
quantities.

5.3.2  Fracture

The propagation of a crack inside a solid can be described 
by means of different fracture mechanics models depend-
ing on whether the material exhibits a linear or nonlinear 
elastic or elastoplastic behavior. Here we will focus only on 
linear-elastic fracture mechanics approaches since, to date, 
the available literature about DD methods deals only with 
this class of behavior. Hence, the available theories revolve 
around Irwin’s or Griffith’s criteria and extensions thereof. 
Hence, they call for the definition of a stress intensity factor 
(SIF) or of an energy release rate that are functions of the 
current size of the crack a. Also in this case the fulfillment 
of the second law of thermodynamics calls for the introduc-
tion of an irreversibility condition on the crack size, namely 
 a  0.

Uninterpretable ML approaches. One of the earliest 
approaches is reported in [360, 361]. Here the authors use an 
NN to solve problems involving a crack contained in a linear 
elastic domain, considering or not the unilateral constraint 
given by crack face contact. The definition of the weights 
and of the activation functions is inspired by the variational 
principle of energy minimization; the outputs are taken as 
the displacements, the weights carry the information related 
to the elastic properties of the material and the cost function 
is the elastic energy of the system. Thus, this can be con-
sidered a prototype of the physics-informed DD approach. 
The approach does not account for any propagation criterion 
and is used to solve both direct and inverse problems. In for-
ward problems, the kinematic and static fields are computed 
for a given external load, while the weights of the NN are 
defined using FEM computations. The authors observe a 
faster convergence of the constrained problem compared to 
its unconstrained counterpart. For the constrained case, the 
computational cost is lower than with FEM with singular 
elements, while for the unconstrained case, the opposite is 
true. In inverse (identification) problems, a set of displace-
ments is supplied to the algorithm and the elastic properties 
of the material (i.e. the weights) are obtained following a 
backpropagation solution scheme.

Different contributions deal with the computation of 
the SIF for different geometries and boundary conditions 
(see, e.g., [348, 362]). In particular, [362] proposes a NN 
to compute the SIF for a micro-cantilever beam. Training 
is performed using a set of FEM computations that is adap-
tively enriched through the targeted addition of sampling 
points within the portion of the state space where less accu-
racy is expected. The accuracy is estimated pointwise as the 
maximum deviation within thousands of trained NNs and 
their average prediction. Although the method exploits the 
linearity between load and SIF to achieve a more general 
result, the results depend on the geometry considered during 
training. The same applies to [348], where the critical SIF is 
obtained for a Brazilian test. Here the authors also explore 
the possibility of using ML approaches different than NNs, 
such as decision trees, random forest regression, and extra 
regression trees, concluding that the latter two approaches 
are more efficient than NNs.

An effective method to describe crack nucleation and 
propagation using a damage parameter that localizes in 
crack-like narrow bands is the phase-field approach to frac-
ture [363]. In this context, ML-related work has concen-
trated on the solution of the governing PDEs obtained from 
the minimization of the phase-field energy functional. [364] 
uses NNs to surrogate the solution of these PDEs. Two dif-
ferent NNs are trained, one for the linear elastic bulk mate-
rial and the second for the evolution of the damage variable, 
and they are embedded into a FEM code either together or 
alone. The solution of phase-field fracture problems with an 
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approach known as the deep Ritz method (DRM)"[365] is 
pursued in some recent studies [366–369]. Unlike PINNs, 
for problems in which the governing PDEs stem from the 
minimization of an energy functional, the DRM directly 
minimizes the energy functional instead of the PDE residual. 
The approach in [369] solves examples of crack initiation, 
propagation, kinking, branching, and coalescence within one 
single numerical setup. An operator learning approach"[20], 
namely variational DeepONets, has also been applied to pre-
dict the crack path in a problem involving crack propagation 
in quasi-brittle materials"[370]. The potential of all these 
approaches is not to be applied to the solution of a single 
boundary value problem, but rather to learn solutions to par-
ametric phase-field fracture models. In this setting, NNs can 
be trained on a few realizations of the parameter space and 
results can be inferred online for all other realizations, lever-
aging the true potential of the DRM and of neural operators.

An SVR approach based on a novel kernel function is 
proposed in [371] to surrogate the solution of a phase-
field problem accounting for the stochastic distribution of 
the material and geometry parameters. The pool of input 
parameters includes the fracture and elastic properties of 
the material and the point of application of the load, while 
the geometry is considered deterministic. The SVR training 
is performed through Monte Carlo sampling, using FEM 
results where the material and geometry parameters are sam-
pled from a given statistical distribution and is enhanced 
through a clustering technique.

Model-free approaches. A model-free approach based on 
variational principles is proposed in [372], where the frac-
ture-related constitutive behavior is encoded into a dataset 
of material observations including crack position a and dis-
sipated energy per unit surface (i.e., the fracture toughness). 
The constraint set for the admissible state space involves 
conditions encoding either a global or a local minimization 
of the total energy of the system subjected to a crack irre-
versibility condition. The authors propose and discuss differ-
ent metrics defining the generalized distance and investigate 
the effect of noise in the material dataset on the final results. 
In [373] the approach is extended to rate-dependent fracture 
mechanics. The authors show that some classical constitu-
tive assumptions, such as irreversibility or monotonicity, are 
redundant in a model-free setting since they are implicitly 
encoded in the material dataset. Note that both cases are 
defined and tested for setups for which an analytical expres-
sion of the energy release rate is available.

5.3.3  Fatigue

Classic linear elastic fracture mechanics states that crack 
propagation is triggered if a relevant quantity (either the SIF 
or the energy release rate) reaches a certain critical value. 
However, the experimental evidence demonstrates that, even 

below the critical value, a crack can still propagate but to an 
extent that becomes measurable only after the application of 
several load cycles, giving rise to fatigue crack propagation.

To date, fatigue is still typically described using empiri-
cal laws calibrated on wide experimental datasets, i.e. in an 
inherently DD fashion. The most prominent mathematical 
description of the fatigue behavior that can be interpreted as 
a CL is due to Paris [374] and reads

where N is the cycle number, da/dN is the fatigue crack 
growth rate,  K is the SIF range spanned by the crack tip in 
a single load cycle, and C and m are two material parameters.

Uninterpretable ML approaches. In [375] the authors 
use an NN to obtain the fatigue crack growth rate and the 
remaining fatigue life given the applied load, the crack size, 
and additional information commonly used to estimate the 
fatigue life. This includes a pre-calibrated empirical function 
that should mimic the role of  K and some easily accessible 
experimental parameters, making this method more useful 
for diagnostics than for modeling.

[376] adopts a Bayesian network approach to predict 
the probability of activation of a certain slip plane and the 
associated fatigue crack growth rate in body-centric cubic 
polycrystal materials. The network is trained using crystal 
plasticity computations and experimental data.

Model-free approaches. [373] illustrates that the model-
free approach for rate-dependent fracture mechanics can be 
conveniently adapted to fatigue if the time variable is sub-
stituted by the number of cycles N. In this case, the dataset 
of material observations is composed of crack growth rate-
driving force pairs, which replace (19). This approach is 
able to automatically account for characteristic features of 
the fatigue behavior, such as the presence of a threshold for 
 K below which no fatigue effects are triggered.

5.4  Multiphysics

Many processes of engineering interest involve multiple 
physical mechanisms coupled with the mechanical behavior. 
In multiphysics CLs, mechanical quantities such as strains 
and stresses are insufficient to describe the material state; 
additional quantities related to the e.g. thermal, hydraulic, or 
chemical responses may need to be additionally considered. 
The complexity of the experiments involving multiphysics 
processes makes the identification of the related CLs even 
more challenging than in solid mechanics. More specifically, 
identifying appropriate material descriptors and establishing 
their functional dependence on the material state in the mul-
tiphysics process while satisfying the laws of thermodynam-
ics and accurately modeling experimental data is a complex 
endeavor. ML algorithms may offer a promising approach to 

(19)da

dN
= C Km ,



 J. N. Fuhg et al.

accelerate the discovery or surrogation of material models 
in such scenarios. To limit the scope of the following review 
to a manageable extent, we focus here on multiphysics prob-
lems relevant to geomechanics and do not cover multiphysics 
CLs arising e.g. in thermo-, electro-, or magnetomechanics. 
Examples of using DD models for the latter can be found in 
[377, 378].

The strain–stress state of the material in a multiphysics 
setting may be influenced by a variety of material descrip-
tors, such as the void ratio in geomaterials. The behavior 
of these descriptors, as well as the strain and stress states 
themselves, may be influenced by other unknown fields, such 
as fluid pressure. Moreover, these material descriptors may 
interact with each other, and their causal relationships are 
not always clear. To review recent developments in mul-
tiphysics constitutive modeling, we can classify problems 
into three types: (1) problems in which the material descrip-
tors and their causal relationships are known, but the func-
tional form of the CL is unknown; (2) problems in which the 
material descriptors are known, but their causal relationships 
and functional form are unknown; and (3) problems in which 
the material descriptors, their causal relationships, and their 
functional form are all unknown.

In the first category, traditionally, models are handcrafted 
based on experimental or simulation data. Advances in com-
putational multiscale methods such as FE2 [379, 380] do 
not need any functional forms for the constitutive model, 
and they can be built based on first principles of thermody-
namics to automatically avoid physical violations. Although 
these computational approaches are accurate, they usually 
suffer from high computational cost already in the mechan-
ical context, and even more so in a multiphysics setting. 
This is because not only the iterations between two scales 
are required but also different physics dictate distinct tem-
poral and/or spatial resolutions. In this regard, finding a 
functional form may seem to be a more computationally 
efficient approach, which additionally enjoys the advantages 
connected to interpretability.

5.4.1  Methods to Define the Functional Form of the CL

Uninterpretable ML approaches. [381] employs fully con-
nected NNs to model macro-scale parameters for an iso-
tropic poroelastic medium, without enforcing physics con-
straints in their surrogate modeling approach. In a related 
work [382], a similar framework is employed for the aniso-
tropic finite-strain regime, where microstructure descriptors 
such as porosity and Poisson’s ratio are used to learn mac-
roscopic homogenized values. This approach bypasses the 
need for computationally expensive fine-scale simulations in 
concurrent multiscale frameworks. [109] develops a surro-
gate model using GRU and temporal CNNs, which predicts 
the homogenized stress tensor and the temperature based on 

micro-scale specimen information and loading conditions. 
Their approach does not take into account thermodynamics 
rules. [383] utilizes surrogate constitutive models to simu-
late mass transfer in dual-porosity materials at the macro-
scale, reducing the computational cost in classical multiscale 
simulations. They demonstrate the effectiveness of autore-
gressive NNs, which have the advantage of being easier to 
implement and train compared to RNNs. [384] investigates 
the use of surrogate modeling for unsaturated soils; complex 
retention curves with different wet and dry branches and 
anisotropic permeability models are determined in a purely 
DD manner using fine-scale simulations. Additionally, the 
study proposes an automated framework based on RL to 
identify the best set of hyperparameters.

Overall, surrogate modeling approaches based on NNs or 
other types of differentiable approximators (e.g., Gaussian 
processes) have the advantage of being scalable for high-
dimensional problems with different types of algebraic and 
ODE constraints.

Interpretable ML approaches. In multiphysics CLs, the 
material behavior can be expressed by algebraic equations, 
in simple cases, or in general, by a system of coupled high-
dimensional ODEs or PDEs. Although symbolic regres-
sion methods find the explicit form of these equations, they 
become more and more computationally inefficient when 
the number of material descriptors grows, or the desired 
functional form is not algebraic, i.e., it is given by ODEs or 
PDEs [385]. Moreover, incorporating physics (e.g. thermo-
dynamic) constraints in their discrete search algorithm may 
further increase the computational cost. Recently, methods 
based on RL have been developed to improve the computa-
tional burden of the symbolic regression search space [386]. 
Based on the current challenges regarding symbolic regres-
sion, sparse regression appears as a promising option for 
interpretable ML approaches; surprisingly, to the best of our 
knowledge, it has received very little attention so far. A first 
approach in this direction has been suggested by [387], who 
propose a polyconvex neural network-based thermoelastic 
framework that achieves interpretability by sparsifying the 
number of parameters in large neural networks down to only 
a few remaining ones.

Model-free approaches. [388] extends the non-paramet-
ric distance-minimization paradigm (i.e. the model-free 
approach) to poroelasticity problems. It is assumed that the 
material descriptors for a coupled poroelastic problem are 
known (based on the effective stress principle and Darcy’s 
law), but no functional forms are assumed for the relations 
between strain, effective stress, pore pressure, and Darcy’s 
velocity. This approach minimizes assumptions on the mod-
eling part. However, the model-free approach is known to be 
data-hungry [83, 84], and this feature becomes even more 
prominent in a multiphysics setting. To address this issue, 
the authors introduce variationally consistent multi-fidelity 
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formulations where a model-based method for one field is 
hybridized by an entirely DD assumption for the other field 
based on data availability and quality. Due to the discrete 
nature of the distance-minimization problem, the brute-force 
approach for searching in the data (at inference) becomes 
inefficient for a multiphysics problem. They develop an effi-
cient data structure based on kd-trees to reduce the compu-
tational burden exponentially.

5.4.2  Methods to Define the Causal Relationship Between 
Descriptors and Functional form of the CL

In this category, the problem is more challenging since not 
only the functional form is unknown, but also it is not known 
how the material descriptors impact each other. The cau-
sality between material descriptors may help to find more 
generalizable functional forms. More importantly, it helps 
explain the underlying physical process, which is crucial 
for a mechanics problem involving e.g. failure or fracture. 
[358] formulates such a problem as a directed acyclic graph 
(DAG) problem where the nodes are material descriptors, 
and the goal is to find edges that lead to an information flow 
best describing the input–output relationships. In this work, 
each edge uses an RNN model to incorporate any possible 
path-dependence which is common in plasticity and visco-
elasticity problems. The approach does not include thermo-
dynamics constraints which could be addressed by recent 
ideas from the PINN community [18, 100, 253]. Moreover, 
it is assumed that the DAG structure remains constant, which 
may not apply to other path-dependent problems.

5.4.3  Methods to Define the Material Descriptors, Their 
Causal Relationships, and the Functional form 
of the CL

The complexity further increases in the third category since 
the set of plausible material descriptors is not known a 
priori. Historically, mechanicians have encountered several 
such issues; e.g., the existence of the fabric tensor as an 
additional material descriptor for describing the plasticity 
of granular materials was not apparent based on classical 
theories and assumptions [389]. Therefore, it could be ben-
eficial to design an intelligent system to find the optimal 
material descriptors based on the material state informa-
tion. [390] proposes a probabilistic framework to find the 
plausible set of material descriptors with their associated 
confidence interval. They provide a systematic way to incor-
porate uncertainty in causal discovery and predictions. They 
study a granular system and show that their framework can 
recover some classical theories regarding the fabric tensor. 
One limitation of their work is the static assumption on the 
DAG structure which could be subjected to change at dif-
ferent loading states.

6  Evaluation, Veri"cation, Validation 
and Their Challenges

6.1  Performance Metrics

To evaluate the performance of different DD approaches, a 
set of unbiased performance metrics is necessary. A major 
problem in DD for mechanics compared to other more 
established applications is the lack of standardized tests 
to evaluate performance and even an agreement on metrics 
to be used for that evaluation. Here, even though our goal 
is not to establish or solidify such consent, we try to guide 
the development of a framework around this task. To this 
end, we propose the following metrics:

• Accuracy – the quality of the predictions, within the 
training data, defined by a metric that measures dis-
crepancy. This error is generally established by sam-
pling errors between ground-truth data and predictions.

• Precision – the sensitivity of the predictions with 
respect to the amount of available data and their noise, 
the sampling method adopted and the distance between 
data points in the training set.

• Physical/mechanical consistency – the ability to ful-
fill basic physical/mechanical laws or principles with 
a general validity, namely not related to specific con-
stitutive modeling choices. Examples are objectivity, 
material stability, energy balance, vanishing energy and 
stress associated with an undeformed state, and positive 
variation of the energy for increasing external loads.

• Interpretability – the amount of information that can 
be understood by modelers and decision makers from 
a calibrated DD constitutive model.

• Generalization ability – the ability of the approach to 
provide accurate predictions outside of the training set. 
This has as a prerequisite the efficient interpolation on 
unseen training data, but more importantly, it evaluates 
the accuracy of the model in extrapolation outside the 
training domain.

• Cost/performance trade-off – the time and computa-
tional cost required to complete the workflow for pre-
dictions. This includes the time and computational cost 
required to train, validate, test, and verify the models, 
the time required to run the code as well as the demand 
for data to ensure the required level of accuracy, preci-
sion, and generalization.

• Robustness – the sensitivity of the above list of metrics 
with respect to the amount of available data, noise in 
the data, the distance between the predicted loading 
path and the calibration data, and the repeatability and 
reproducibility of the performance metrics.
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• Stability – the sensitivity of the above list of met-
rics to perturbations of the free parameters of the DD 
approach.

The information provided by the proposed metrics also helps 
to evaluate some specific characteristics of the obtained DD 
CL in relation to the required employment. A non-compre-
hensive list is provided as follows

• Fidelity – the level of accuracy, precision, and generali-
zation achieved in performing a given task (e.g., optimize 
a component, predict the behavior of a material under 
given conditions, better understand the physics behind 
a studied phenomenon). Depending on the applications 
it can encompass or not the evaluation of the physical/
mechanical consistency.

• Confidence – the precision that can be attained in repro-
ducing the phenomenon of interest with a certain accu-
racy given a set of calibration data. This metric essen-
tially quantifies the uncertainty related to the obtained 
CL.

• Data hunger – the amount of training data needed to 
reach the desired level of fidelity.

• Numerical behavior – possibility to integrate the 
obtained model in a given numerical framework, its 
associated cost/performance ratio, and convergence with 
respect to the spatial and, if relevant, temporal discretiza-
tion.

• Reliability/reproducibility – the sensitivity of the met-
rics with respect to the source of the calibration data 
(e.g., different codes for the simulations or laboratories 
for the physical tests) and of the training code adopted.

• Trustworthiness – a combination of all the metrics rel-
evant to the task at hand that give a synthetic global score 
of the performances of the DD CL.

Whenever adopting a DD approach to reproduce a CL it 
should be good practice to define which important metrics 
apply to the case/application at hand and how the operator 
intends to objectively measure them. Moreover, the defini-
tion of the performance metrics should assist in comparing 
either different approaches to model the same or similar phe-
nomena (e.g., uninterpretable vs. interpretable approaches 
or comparison between different NNs) or the same approach 
but on different set of training data (e.g., same material but 
different experiments, or different materials but same phe-
nomenon of interest). Another field of application of the 
performance metrics is the validation and verification task. 
In particular, the definition of the metrics should provide an 
unbiased and objective way to assess whether the obtained 
CL is able to reproduce the behavior under investigation and 
how much the obtained results can be trusted. This topic is 
better analyzed in the following section.

6.2  Verification and Validation

Verification and validation (V &V) is necessary for a con-
fident quantification of engineering predictions, especially 
in the context of making decisions in high-consequence 
scenarios. Generally, in the computational solid mechanics 
community verification addresses the process of confirming 
that a mathematical model is correctly represented by its 
governing equations, appropriately discretized in a numeri-
cal setting, and that the solution complies with relevant 
accuracy requirements [391]. Conversely, validation refers 
to quantifying the degree of accuracy to which a model rep-
resents the investigated phenomenon [392]. In the follow-
ing, we broadly ignore V &V from a software development 
perspective (we refer to [393, 394] for more information) 
and assume that the code is error-free and well implemented. 
Also, we refrain from proposing or summarizing guidelines 
about how to verify numerical convergence and stability of 
a code, for which we refer to [395, 396].

When compared to traditional phenomenological mod-
eling, where the constitutive parameters of the material 
models are calibrated using experimental data, DD consti-
tutive modeling involves an additional layer of difficulty. In 
particular, the decision logic of a DD approach is oftentimes 
opaque even to their designers, therefore a careful, separate, 
and independent V &V process to ensure they are reliable 
and safe to use must be performed.

In the context of the present work, the V &V process of 
DD constitutive modeling involves the same steps as those 
of traditional phenomenological constitutive models (c.f. 
[397–399]), however, in light of big data availability, the 
possible black-box character and presence of many param-
eters of some ML approaches, different additional caveats 
have to be accounted for. Past work [400, 401] has also con-
sidered the simplicity of the model as a selection criterion 
through the development of OPAL, the Occam-Plausibil-
ity Algorithm, which is a Bayesian framework developed 
to address uncertainties in parameters, data, and model 
selection. The general workflow of the process is inspired 
by [394] and is schematized in Fig."7. The validation tests 
and their outcome including the UQ analysis constitute the 
ground truth obtained from the experimental side (which 
could come from a simulation or a physical experiment), 
while the right branch starting from the definition of the cali-
bration data highlights the development and employment of 
the computational model. The general V &V process starts 
with the definition of the process or phenomenon of interest 
and the identification of the relevant or available variables 
and parameters (which possibly constitute the inputs of the 
CL) and the Quantities of Interest (QoI) which we aim to 
predict (namely, the output of the CL). Then, a conceptual 
model has to be developed that includes the general objec-
tive, a target accuracy between modeled and true QoI, as 
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well as necessary physical and mechanical assumptions of 
the model. In this phase, the independent governing vari-
ables whose effect should be included and investigated must 
be defined (e.g., which environmental parameters should be 
included as variables). Based on the conceptual model, an 
experiments design should be carried out so as to allow for, 
on the one hand, the collection of the calibration data, and 
on the other hand the definition of the validation tests.

Once the input and output quantities (variables/param-
eters and QoIs) are collected and their UQ is performed, they 
can be adopted for the training of the selected DD approach, 
following a supervised (labeled inputs and outputs from the 

calibration data are used) or unsupervised approach (only 
the inputs are used). At this point, the trained DD approach 
becomes a candidate CL and it must be verified in order 
to assess if and how well it is able to represent the calibra-
tion data and the physics behind it given a set of desirable 
properties measured by a selection of performance metrics. 
In this context, the accuracy and sensitivity to the training 
data are of utmost importance as well as the physical consist-
ency checks, the fidelity (given the task for which the CL 
is needed), and the reliability. Therefore, if the verification 
is not satisfied the operator must revise and improve all or 
some of the steps from the definition of the calibration data 
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to the selection and training of the DD approach until the 
verification test is passed. At that moment, the approach 
(intended as a mathematical description of a set of data) 
can be considered representative of a material behavior and, 
hence, a CL.

Once the verified CL is complemented with governing 
equations, boundary (and, possibly, initial) conditions, and 
the geometry a digital twin of the investigated process is cre-
ated. Note that, in the case of a model-free approach the cali-
bration data are directly injected into the digital twin while 
avoiding their manipulation. This also implies the absence of 
any CL in terms of a mathematical description. The digital 
twin can be used for the validation, which is assessed with 
respect to (at least) two aspects: (i) the capability of the 
digital twin to reproduce the behavior of real components 
(namely, the fidelity) and (ii) the numerical behavior of the 
model. In the former case, the digital twin is adapted to the 
validation experiments by prescribing the proper geometry 
and boundary conditions and then the outcomes of the vali-
dation tests and of the digital twin simulations are quanti-
tatively compared to determine if the trained CL is able to 
reproduce the phenomenon of interest. We remark that it is 
here particularly important to adopt independent validation 
tests, namely tests whose results cannot be represented by 
simple combinations of the calibration data. In other words, 
the validation data should also test the capacity of the CL 
to reproduce loading paths not included in the calibration 
dataset. Particular attention should be paid here in testing the 
possible overfitting of the data [402–404], an issue that can 
lead to inconsistent predictions of the material behavior. In 
this phase, it is also important to perform a UQ to estimate 
the confidence of the approach to replicate real behaviors 
and compare it to the one of the experiments. Concerning 
the numerical behavior it is important to evaluate how the 
DD approach integrates into the numerical solver (e.g., pos-
sibility of obtaining a consistent tangent matrix, smoothness 
of the operators) and the overall convergence behavior of the 
model. For both aspects, a set of metrics should be defined 
to assess the success or rejection of the validation procedure. 
In the negative case, the whole process should be revised, 
including the definition of the digital twin and the numerical 
framework thereof.

Even though less developed than in computational 
mechanics, V &V in the context of DD model development 
has been pushed more into the focus lately [405–407] due 
to the rising popularity of DD even in high-consequence 
applications. In the following, we briefly revise the available 
contributions in the context of the V &V of DD approaches. 
As a general comment, we remark that the available litera-
ture deals mostly with NNs, while other approaches are less 
investigated.

DD verification. In principle verifying a DD model 
requires checking that the model is able to broadly represent 

its intended use case and does not behave unexpectedly (e.g., 
blow-up, undefined output for certain inputs) under a broad 
range of circumstances. Also, the operator should test the 
sensitivity of the model to both free parameters of the train-
ing process as well as calibration data quantity and quality. 
Due to the general opaqueness (black-box nature) of many 
DD models, corner cases are generally more unpredictable 
than for traditional phenomenological modeling. Therefore, 
for practitioners, it is crucial to answer the question as to 
which specific range of input values the model should be 
verified against. In principle, the latter should be sufficient to 
explore all the possible practical cases of interest, however, 
if this is not possible, the range of input tested should always 
be documented and made available.

Another common type of ML verification is the check for 
local robustness of a model, see e.g. [408] for a definition. 
Essentially a small perturbation in the input should only lead 
to a small change in the output. Adversarial attacks [409] 
are typically employed in the literature to provide evidence 
that the model is robust when no provable guarantee is avail-
able. Other critical verification properties include the output 
reachability property, see e.g. [410], i.e. if we know that a 
given stress component value can reach a certain magnitude 
we need to ensure that our ML output is able to represent 
this number. For more information on and general defini-
tions of verification techniques for ML models (specifically, 
fully connected NNs), we refer to [411]. In the context of 
model-free approaches, verification usually takes the form 
of a convergence study with respect to the number of points 
available in the material dataset and to the noise amplitude 
[81, 372, 412].

Verification of ML models has seen less attention in the 
literature compared to their validation.

DD validation. Validation describes the process of 
assessing if an approach reproduces the phenomenon of 
interest in a broad range of applications and its predictive 
capabilities. Compared to classical ML tasks, this is espe-
cially important for constitutive modeling of solids due to 
the low/limited data availability often encountered in this 
area and the frequent need to extrapolate outside of the train-
ing domain. In the following we review only the aspects 
of validation that are specific to DD approaches for CLs; 
for the classical aspects (e.g., comparison with validation 
tests and convergence) we refer to the available literature 
[393–396], which deals particularly with the issue of over-
parametrization for the ML approaches involving many fit-
ting parameters.

In contrast to phenomenological modeling, over-para-
metrization is a typical problem in ML constitutive mod-
eling, hence, validating an ML model often requires checks 
for overfitting because it is a major sign of subpar generali-
zation behavior. Various strategies have been proposed in 
the literature to either detect overfitting or prevent it, see 
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[402, 403] for more information. The modification of an 
ML algorithm so as to prevent overfitting is often referred 
to as regularization [404]. In DD constitutive modeling, the 
following explicit or implicit regularization methods have 
been proposed:

• Early stopping. The most common type of validation 
is built upon validation datasets that can be used for 
implicit regularization by early stopping (stopping train-
ing when the error on the validation dataset increases, as 
this is a sign of overfitting to the training dataset) [413]. 
Splitting the dataset into training and validation compo-
nents is not always straightforward especially if time- or 
history-dependent material behavior is studied [414].

• Lp regularization. Lp regularization in general adds a term 
to the training loss function that penalizes the complexity 
of the trainable parameters of the ML model. Due to the 
reduction of model complexity, it is hoped to avoid over-
fitting and reduce the generalization error. Common reg-
ularization techniques of this type include Ridge regres-
sion or L2-regularization [415], which is used to make the 
amplitude of the trainable parameters of a model smaller 
[416]. In an adjusted form L2-regularization can appear 
as "weight decay" in ML when using stochastic gradient 
descent schemes [417]. Lp-regression with 0 < p  1 can 
also be used to enforce sparsity on a model, which can 
reduce the number of trainable parameters and the sensi-
tivity to noise while making the model more interpretable 
[32, 34, 322]. The special case p = 1 is known as Lasso 
regression [33]. Other methods such as elastic net [418] 
use a combination of Ridge and Lasso.

• Dilution and Dropout. When training NNs, Dilution and 
Dropout are used to randomly drop units and relevant 
connections from the NNs during training. This prevents 
weights from co-adapting too much, thereby aiding gen-
eralization and avoiding overfitting [419]. This technique 
can generally be employed to regularize any ML model 
and was e.g. employed by [175] to obtain DD models for 
anisotropic hyperelasticity.

• Physics-based regularization. The generalization error of 
a DD model can be vastly improved by either implicitly 
or explicitly adding physics constraints that underlie the 
data to the model. In constitutive modeling, this can take 
the form of implicitly enforcing polyconvexity [177, 420] 
of hyperelastic laws, convexity of yield functions [303] or 
thermodynamic consistency of time- and history-depend-
ent material models [288, 421].

• Adversarial ML. Originally developed to prevent model 
exploitation against attacks, adversarial training, i.e. 
training on intentionally misleading or perturbed data, 
can help the model to generalize better and become more 
robust [422]. This includes schemes such as weight per-
turbation [423] or training on perturbed inputs which 

are commonly referred to as adversarial examples [424]. 
[279] uses this technique to improve the generalization 
performance of an elastoplastic material model trained 
by an RNN.

• Post-hoc explainability. Black-box models, e.g. those 
based on NNs, can be validated after the training pro-
cess has ended by trying to produce useful approxima-
tions of the decision logic of the model that correspond 
to understandable/interpretable representations. This 
process typically involves the generation of a second 
(post-hoc) model that is used to explain the behavior of 
the first black-box model. This can e.g. be achieved by 
pruning the model [425], e.g. using parameter reduction 
techniques, or training an interpretable model e.g. with 
symbolic or polynomial regression. The latter has e.g. 
been deployed in [426] for modeling plasticity.

Even though many different ML validation techniques have 
been introduced to counteract overfitting and help improve 
generalization, one of the open questions in the field is how 
ML tools can be certified [427]. There is a lack of general 
metrics that specify at which point an ML model can be 
trusted, i.e. how interpretable/trustworthy it needs to be. 
Furthermore, benchmarks have to be established to tell if a 
model can be deemed safe enough to be used even in high-
risk applications.

7  Conclusions

At this point, it is important to distill the main findings of 
this journey in constitutive modeling and to outline our 
view of the successes, open issues, and opportunities that 
lie ahead. Phenomenological constitutive approaches are 
by definition based on observations, making them in some 
sense the original DD models, but contrary to some of their 
more modern counterparts they are also interpretable, able to 
generalize, and not prone to overfitting. Borrowing some lan-
guage from the ML community, the archetype in mechanics 
for phenomenological constitutive modeling approaches has 
been to use simple experiments that result in homogeneous 
stress states (e.g. uniaxial, biaxial, simple shear) as “train-
ing" data and to use structural responses that include inho-
mogeneous fields as “validation". Even though these analyti-
cal approaches often lack expressivity, the strict enforcement 
of thermodynamic constraints, and balance laws, as well as 
the incorporation of mechanistic insight allow these models 
to extrapolate to unseen stress states and be useful and trust-
worthy for safety-critical predictive calculations in structural 
engineering as well as in other disciplines. As downsides of 
these successes, the development of classical phenomeno-
logical models requires specialized domain knowledge and 
a substantial conceptual effort; already the selection of the 
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most suitable model among available options, along with 
its calibration, necessitates tedious and time-consuming 
trial-and-error procedures, which are a significant obstacle 
towards material innovation in many engineering fields.

From our standpoint, DD constitutive modeling 
approaches, through the introduction of new computational 
tools, have the potential to: 1) accommodate the utilization 
of larger datasets from modern experimental techniques 
and assist in the interpretation of the data, 2) enhance the 
flexibility in the exploration and utilization of the modeling 
space to best interpret the data; 3) simplify the utilization of 
multifidelity and multimodal information (e.g. merge experi-
mental and computational data), 4) automate the connection 
from data to predictive simulations streamlining the nec-
essary infrastructure, 5) enable multiscale calculations, as 
well as 6) encode information for material variability as a 
first step towards uncertainty quantification and reliability 
analysis.

As the second wave of DD constitutive modeling 
approaches is reaching a stage of maturation beyond ini-
tial exploratory attempts, it is becoming clear that a way to 
maintain the benefits of phenomenological modeling while 
developing and utilizing expressive and automated DD 
approaches is to take full advantage of a long and rich his-
tory of insightful mechanistic research formalized through 
what we have denoted throughout the paper as physics con-
straints. We have discussed several examples, all over dif-
ferent classes of DD constitutive models, where successes 
in terms of robustness, interpretability, generalization, 
and overall trustworthiness are gained by enforcing such 
constraints.

Even though some promising results have been recorded, 
there are still many open challenges. One of them is the 
seamless integration of DD approaches in the existing 
infrastructure of advanced experimental mechanics on the 
one hand, and of established computational engineering on 
the other hand. Experimental approaches based on modern 
imaging such as DIC or DVC rely on complex correlation 
algorithms that, starting from raw data such as grey level 
fields, infer full-field displacement information that can 
be directly utilized in learning tasks (e.g. DD discovery 
of interpretable CLs, or training of NN-based DD CLs). 
In principle, an integration between correlation and learn-
ing algorithms could reduce the accumulation of errors 
and streamline the process leading to the establishment of 
DD CLs from this type of experimental data. At the other 
end of the process, discovered or trained CLs need to be 
integrated with traditional computational mechanics tools 
such as finite element solvers, in order to be readily used by 
engineering practitioners in the solution of boundary value 
problems. Automatic differentiation, which is a key tool 
for this purpose, often leads to a decrease in computational 
performance over non-linear finite element solvers with 

hard-coded algorithms (e.g. in plasticity when using return 
mapping algorithms). Note also that error measurements 
which commonly indicate the success of a DD approach 
are not sufficient to guarantee the convergence of non-linear 
finite element solvers embedding DD constitutive models. 
To this end, thorough testing of these models in a FEM set-
ting is necessary.

For path-dependent material behavior, an interesting task 
(and one that so far has not been sufficiently explored) is the 
discovery of underlying irreversible mechanisms and corre-
sponding variables (e.g. hardening variables) directly from 
data. Also, sampling becomes significantly more complex 
and restricted from experimental protocols, as the learning 
task focuses on objects that depend on internal variables 
(e.g. yield function).

Additionally, we should strive for DD constitutive models 
to be robust in a low-data setting (contrary to the ongoing 
trends in computer science), as one could envision access 
to limited experimental samples and also limited computa-
tional resources, especially as multiscale problems become 
more complex and path-dependent behaviors are considered. 
In principle, already available DD approaches are able to 
discover CLs on a one-shot basis, i.e. using only one test. 
Clearly, the success of this approach needs a sufficiently 
complex test geometry and a sufficiently comprehensive 
test method (e.g. including loading and unloading stages, 
possibly at different rates). Thus, the optimal design of test 
methods and specimen geometries to guarantee identifiabil-
ity (especially critical for highly expressive models) could 
deliver important contributions in this respect and is still 
largely unexplored. In all these endeavors, UQ is expected 
to play a major role. Fundamental questions related e.g. to 
the amount and quality of data needed to deliver a DD model 
(or several competing models) of target uncertainty, and to 
the uncertainty of the outcomes of downstream tasks such as 
the solution of non-linear problems embedding DD CLs can 
only be answered in a probabilistic framework.

Finally, tasks such as the curation of large datasets along 
with corresponding benchmark problems should be estab-
lished as a way to evaluate constitutive DD approaches 
against the criteria that we have defined in this work. Spe-
cifically, here we suggest starting with two open datasets 
for DD constitutive approaches in the context of hypere-
lasticity. The first focuses on RVE-generated data (in the 
context of computational homogenization) for a composite 
microstructure sampled uniformly in a hypersphere of the 
components of the deformation gradient and also includes 
some specific loading paths up to larger deformations as a 
means to test generalization. To connect with experiments 
that do not produce labeled data pairs, the second dataset 
and benchmark should correspond to full-field displacement 
data and reaction forces for a specific geometry and bound-
ary value problem for training (computationally generated 
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through FEM), and a complementary dataset from another 
geometry and boundary value problem to validate the DD 
constitutive model. More work needs to be done on this front 
and the community can only benefit by establishing similar 
benchmarks for more complex, path-dependent problems.
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